

The Small Progress Measures algorithm for Parity games

Material: "Small Progress Measures for Solving Parity Games", Marcin Jurdziński

> Jeroen J.A. Keiren jkeiren@win.tue.nl http://www.win.tue.nl/~jkeiren HG 6.81

Department of Mathematics and Computer Science Technische Universiteit Eindhoven

department of mathematics and computing science

Parity games

Recall:

Definition (Parity game)

A parity game Γ is a four tuple $(V, E, p, (V_{Even}, V_{Odd}))$, where:

- (V, E) is a directed graph,
- E is a total edge relation,
- $p:V \rightarrow \textit{\textbf{N}}$ assigns priorities to vertices, and
- (V_{Even}, V_{Odd}) is a partitioning of V
- A player does a step in the game if a token is on a vertex owned by that player;
- A play (denoted π) is an infinite sequence of steps.

Strategies

• A strategy for *Player* is a partial function $\psi_{Player}: V^* \times V_{Player} \to V.$

• A play $\pi = v_1 v_2 v_3 \dots$ is consistent with strategy ψ_{Player} for *Player* iff every $v_i \in \pi$ such that $v_i \in V_{Player}$ is immediately followed by $v_{i+1} = \psi_{Player}(v_1 \dots v_i)$.

Definition (Memoryless strategy)

A memoryless strategy for Player is a partial function $\psi_{Player}: V_{Player} \rightarrow V$ that decides the vertex the token is played to based on the current vertex.

Winning a parity game

Let $\pi = v_1 v_2 v_3 \dots$ be a play:

- $inf(\pi)$ denotes set of priorities occurring infinitely often in π ;
- π is winning for player *Even* iff $\min(\inf(\pi))$ is even;

Definition (Winning strategy)

Strategy ψ_{Player} is a winning strategy for Player from set $W \subseteq V$ if every play starting from a vertex in W, consistent with ψ_{Player} is winning for Player.

• There is a memoryless winning strategy for Player from $W \subseteq V$ iff there is a winning strategy for Player from W.

Goal

Let $G = (V, E, p, (V_{Even}, V_{Odd}))$ be a parity game.

- There is a unique partition (W_{Even}, W_{Odd}) of V such that:
 - Even has winning strategy ψ_{Even} from W_{Even} , and
 - Odd has winning strategy ψ_{Odd} from W_{Odd} .

Goal of parity game algorithms

Compute partitioning (W_{Even}, W_{Odd}) with strategies ψ_{Even} and ψ_{Odd} of V, such that ψ_{Even} is winning for player Even from W_{Even} and ψ_{Odd} is winning for player Odd from W_{Odd} .

Closedness and cycles

Let $G = (V, E, p, (V_{Even}, V_{Odd}))$ be a parity game. A strategy ψ_{Even} is closed on a set $W \subseteq V$ if for all $v \in W$, we have:

- if $v \in V_{Even}$ then $\psi_{Even}(v) \in W$, and
- if $v \in V_{Odd}$ then $(v, w) \in E$ implies $w \in W$.

Each play consistent with strategy ψ_{Even} closed on W, starting in W, stays within W.

Edges
$$(u, v)$$
 only for $u \in V_{Even}$, and only if there also is edge (u, x) for $x \in W$.

A cycle in a parity game is a path v_1, v_2, \ldots, v_n , with $v_1 = v_n$. We say that a cycle v_1, v_2, \ldots, v_n is

- an *i*-cycle if $i = \min\{p(v_j) \mid 1 \le j \le n\}$, *i.e. i* is the smallest priority occurring on the cycle.
- an even cycle if it is an *i*-cycle, *i* is even.

TUe Technische Universiteit Eindhoven University of Technology

Characterization of winning strategies

Let $G = (V, E, p, (V_{Even}, V_{Odd}))$ be a parity game. Let ψ_{Even} be a strategy for player Even, closed on $W \subseteq V$. Define the game $G' = (V', E', p', (V'_{Even}, V'_{Odd}))$ such that:

•
$$V' = W$$

•
$$V'_{Even} = V_{Even} \cap V'$$

•
$$V'_{Odd} = V_{Odd} \cap V'$$

•
$$E' = \{(v, w) \mid v \in V'_{Even} \land w = \psi_{Even}(v)\} \cup \{(v, w) \mid (v, w) \in E \land v \in V'_{Odd}\}$$

•
$$p'(v) = p(v)$$
 for $v \in V'$

 ψ_{Even} is winning for player Even from W if and only if all cycles in G' are even.

Aim of small progress measures

Aim

Characterize the cycles reachable from each vertex using a measure, such that:

- the measure is computable using fixed point iteration,
- the measure assigned to a vertex contains for all odd priorities the maximal number of times this priority can be seen if player *Odd* moves over the graph, until a vertex with smaller priority is seen.

Notation

Let $\alpha \in \mathbb{N}^d$ be a d-tuple of non-negative integers.

- we number its components from 0 to d-1, i.e. $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{d-1})$,
- $\bullet \ <, \leq, =, \neq, \geq, >$ on tuples denote lexicographic ordering,

•
$$(n_0, n_1, \dots, n_k) \equiv_i (m_0, m_1, \dots, m_l)$$
 iff
 $(n_0, n_1, \dots, n_i) \equiv (m_0, m_1, \dots, m_i)$, for $\equiv \in \{<, \le, =, \neq, \ge, >\}$

• Note that if i > k or i > l, the tuples may be suffixed with 0s

Example

- $(0,1,0,1) =_0 (0,2,0,1) \equiv (0) = (0) \equiv \mathsf{true}$
- $\bullet \ (0,1,0,1) <_1 (0,2,0,1) \equiv (0,1) < (0,2) \equiv \mathsf{true}$
- $(0,1,0,1) \geq_3 (0,2,0,1) \equiv (0,1,0,1) \geq (0,2,0,1) \equiv \mathsf{false}$

Notation

Let $G = (V, E, p, (V_{Even}, V_{Odd}))$ be a parity game, and let $d = \max\{p(v) \mid v \in V\} + 1.$

• For $i \in \mathbb{N}$, let $V_i = \{v \mid p(v) = i \land v \in V\}$,

• denote $n_i = \mid V_i \mid$, the number of vertices with priority i,

Definition (\mathbb{M}_G)

Define $\mathbb{M}_G \subseteq \mathbb{N}^d$, such that it is the finite set of *d*-tuples, with 0 on even positions, and non-negative integers bounded by n_i on odd positions *i*.

Parity progress measure

Idea: characterize vertices that can only reach even cycles.

Definition (Parity progress measure)

Let $G = (V, E, p, (V_{Even}, V_{Odd}))$ be a parity game. Function $\varrho: V \to \mathbb{N}^d$ is a parity progress measure for G if for all $(v, w) \in E$ it holds that:

• $\varrho(v) \ge_{p(v)} \varrho(w)$ if p(v) is even

•
$$\varrho(v) >_{p(v)} \varrho(w)$$
 if $p(v)$ is odd

Problem: no parity progress measure can be assigned to these vertices, as parity progress measure only exists for even cycles. (Second clause requires $\rho(v) >_1 \rho(v)$)

Allowing odd cycles

Let $G = (V, E, p, (V_{Even}, V_{Odd}))$ be a parity game.

Define $\mathbb{M}_G^{\top} = \mathbb{M}_G \cup \{\top\}$, such that:

•
$$m\{<,<_i\}$$
 for all $m \in \mathbb{M}_G$,

•
$$\top =_i \top$$
 for all i .

Definition (Prog)

If $\varrho: V \to \mathbb{M}_G^\top$ and $(v, w) \in E$, then $Prog(\varrho, v, w)$ is the least $m \in \mathbb{M}_G^\top$, such that

•
$$m \ge_{p(v)} \varrho(w)$$
 if $p(v)$ is even,

•
$$m >_{p(v)} \varrho(w)$$
, or $m = \varrho(w) = \top$ if $p(v)$ is odd.

Recall the definition of *Prog*:

Definition (Prog)

If $\varrho: V \to \mathbb{M}_G^\top$ and $(v, w) \in E$, then $Prog(\varrho, v, w)$ is the least $m \in \mathbb{M}_G^\top$, such that

• $m \ge_{p(v)} \varrho(w)$ if p(v) is even,

•
$$m >_{p(v)} \varrho(w)$$
, or $m = \varrho(w) = \top$ if $p(v)$ is odd.

$$\varrho(u) = \top \\
 \underbrace{0}_{u} \xrightarrow{Q} \varrho(v) = \top$$

Measure can identify both Even and Odd reachable cycles.

department of mathematics and computing science

Game parity progress measure

Definition (Game parity progress measure)

Let $G = (V, E, p, (V_{Even}, V_{Odd}))$ be a parity game. A function $\varrho: V \to \mathbb{M}_G^\top$ is a game parity progress measure if for all $v \in V$, it holds that:

- if $v \in V_{\underline{Even}}$, then $\exists_{(v,w)\in E}\varrho(v) \ge_{p(v)} Prog(\varrho, v, w)$;
- if $v \in V_{Odd}$, then $\forall_{(v,w) \in E} \varrho(v) \ge_{p(v)} Prog(\varrho, v, w)$, and

Note: if ρ is a game parity progress measure, then $\rho(v) \neq \top$ if and only if all cycles reachable from vertex v are even.

Strategies from progress measures

Let $G = (V, E, p, (V_{Even}, V_{Odd}))$ be a parity game, and $\varrho: V \to \mathbb{M}_G^{\top}$ be a game parity progress measure.

• Define strategy $\overline{\varrho}: V_{Even} \to V$ for player Even, by setting $\overline{\varrho}(v)$ to be a successor w of v that minimizes $\varrho(w)$.

• Let
$$|| \varrho || = \{ v \mid v \in V \land \varrho(v) \neq \top \}$$

Properties:

- If ρ is a game parity progress measure, then $\overline{\rho}$ is a winning strategy for player *Even* from $|| \rho ||$.
- There is a game parity progress measure $\rho: V \to \mathbb{M}_G^{\top}$ such that $|| \rho ||$ is the winning set of player Even.

Fixed points

Characterize game parity progress measure as fixed point of monotone operators in a finite complete lattice:

- a least game parity progress measure μ exists (Knaster-Tarski),
- computable by fixed point iteration (see Lecture 3, slide 13 for an algorithm),
- $\mid\mid \mu \mid\mid$ is winning set of player Even

Let
$$G = (V, E, p, (V_{Even}, V_{Odd}))$$
, and $\mu, \varrho: V \to \mathbb{M}_G^{\top}$.

 $\bullet \ \mu \sqsubseteq \varrho \text{ if } \mu(v) \leq \varrho(v) \text{ for all } v \in V$

• write
$$\mu \sqsubset \varrho$$
 if $\mu \sqsubseteq \varrho$ and $\mu \neq \varrho$.

 \sqsubseteq gives a complete lattice structure on the set of functions $V \to \mathbb{M}_{G}^{\top}$.

Lifting progress measures

Define $Lift(\varrho, v)$ for $v \in V$ as follows:

$$Lift(\varrho, v)(u) = \begin{cases} \varrho(u) & \text{if } u \neq v, \\ \min\{Prog(\varrho, v, w) \mid (v, w) \in E\} & \text{if } u = v \in V_{Even} \\ \max\{Prog(\varrho, v, w) \mid (v, w) \in E\} & \text{if } u = v \in V_{Odd} \end{cases}$$

Observe:

- For every $v \in V$, $Lift(\cdot, v)$ is \sqsubseteq -monotone.
- A function ρ:V → M_G^T is a game parity progress measure if and only if Lift(ρ, v) ⊑ ρ for all v ∈ V.

The algorithm

The least game parity progress measure can now be computed using fixed point approximation:

Algorithm (ProgressMeasureLifting)

 $\begin{array}{l} \mu \leftarrow \lambda v \in V.(0,\ldots,0) \\ \text{while } \mu \sqsubset Lift(\mu,v) \text{ for some } v \in V \text{ do} \\ \mu \leftarrow Lift(\mu,v) \\ \text{end while} \end{array}$

Consider parity game G:

Initially: $\mu \leftarrow \lambda v \in V.(0,0,0,0)$, so

X	. () □ ↓ ←−−	$\langle 2 \rangle Y'$
X'	(1)	() $\rightarrow 2Y$
$Z'\langle 3 \rangle$	<3>←	$\langle 3 \rangle W$
Ŭ	ž	Ŭ

v	$\mu(v)$
X	(0, 0, 0, 0)
X'	(0, 0, 0, 0)
Y	(0, 0, 0, 0)
Y'	(0, 0, 0, 0)
Z	(0, 0, 0, 0)
Z'	(0, 0, 0, 0)
W	(0,0,0,0)

Legend: $\bigcirc Odd Even \\ \bigcirc \bigcirc$

$$\begin{split} Lift(\mu, X) &= \max\{Prog(\mu, X, X'), Prog(\mu, X, X)\} = \\ \max\{(0, 1, 0, 0), (0, 1, 0, 0)\} = (0, 1, 0, 0) \end{split}$$

Consider parity game G:

v		$\mu(v)$	
X		(0, 1, 0, 0)	
X	1	(0, 0, 0, 0)	
Y		(0, 0, 0, 0)	
Y	/	(0, 0, 0, 0)	
Z		(0, 0, 0, 0)	
Z^{*}	/	(0, 0, 0, 0)	
W	7	(0, 0, 0, 0)	
$Lift(\mu, X) = \max\{P$	ro	$q(\mu, X, X'), F$	$Prog(\mu, X, X)\} =$
$\max\{(0, 1, 0, 0), (0, 2)\}$	2, 0	$(0,0)\} = (0,2,$	(0,0)
	-,`	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,0)

	21	u(x)
		$\mu(v)$
	X	Т
	X'	(0, 1, 0, 0)
	Y	(0, 0, 0, 0)
	Y'	(0, 0, 0, 0)
	Z	(0, 0, 0, 0)
	Z'	(0, 0, 0, 0)
	W	(0, 0, 0, 0)
$Lift(\mu, Z$	') = m	$\min\{Prog(\mu, Z', Z')\} =$
$\min\{(0, 0)\}$	$, 0, 1) \}$	= (0, 0, 0, 1)

	v	$\mu(v)$
	X	Т
	X'	(0, 1, 0, 0)
	Y	(0, 0, 0, 0)
	Y'	(0, 0, 0, 0)
	Z	(0, 0, 0, 0)
	Z'	(0,0,0,1)
	W	(0, 0, 0, 0)
$Lift(\mu, Z)$	') = m	$\min\{Prog(\mu, Z', Z')\} =$
$\min\{(0, 0)\}$	(0, 0, 2)	$\} = (0, 0, 0, 2)$

v	$\mu(v)$
X	Т
X'	(0, 1, 0, 0)
Y	(0,0,0,0)
Y'	(0, 0, 0, 0)
Z	(0,0,0,0)
Z'	(0,0,0,2)
W	(0,0,0,0)
$Lift(\mu, Z') = m$	$\inf\{Prog(\mu, Z', Z')\} =$
$\min\{(0,0,0,3)\}$	$\} = (0, 0, 0, 3)$

	v	$\mu(v)$
	X	Т
	X'	(0, 1, 0, 0)
	Y	(0, 0, 0, 0)
	Y'	(0, 0, 0, 0)
	Z	(0, 0, 0, 0)
	Z'	(0,0,0,3)
	W	(0, 0, 0, 0)
$Lift(\mu, Z)$	') = m	$\min\{Prog(\mu, Z', Z')\} =$
$\min\{(0,$	1, 0, 0	$\} = (0, 1, 0, 0)$

	v	$\mu(v)$
	X	Т
	X'	(0, 1, 0, 0)
	Y	(0, 0, 0, 0)
	Y'	(0, 0, 0, 0)
	Z	(0, 0, 0, 0)
	Z'	$\left(0,1,0,0 ight)$
	W	(0,0,0,0)
$Lift(\mu, Z)$	') = m	$\inf\{Prog(\mu, Z', Z')\} =$
$\min\{(0,$	1, 0, 1	$)\} = (0, 1, 0, 1)$

	v	$\mu(v)$
	X	Т
	X'	(0, 1, 0, 0)
	Y	(0, 0, 0, 0)
	Y'	(0, 0, 0, 0)
	Z	(0, 0, 0, 0)
	Z'	(0, 1, 0, 1)
	W	(0, 0, 0, 0)
Repeat	lifting	Z' even more often
$Lift(\mu, Z') = mi$	$in \{ Pro$	$\log(\mu, Z', Z')\} = \min\{\top\} = \top$

Consider parity game G:

v	$\mu(v)$
X	Т
X'	Т
Y	Т
Y'	Т
Z	Т
Z'	Т
W	Т

 μ is least game parity progress measure, and $\mid\mid \mu \mid\mid = \{v \mid v \in V \land \mu(v) \neq \top\} = \emptyset$ is winning set for player *Even*. Hence player *Odd* wins from all vertices

Complexity

Let
$$G = (V, E, p, (V_{Even}, V_{Odd})$$
 be a parity game;
 $n = |V|, e = |E|, d = \max\{p(v) \mid v \in V\}.$

Worst-case running time complexity:

$$\mathcal{O}(de \cdot (\frac{n}{\lfloor d/2 \rfloor})^{\lfloor d/2 \rfloor})$$

Lowerbound on worst-case:

$$\Omega((\lceil n/d\rceil)^{\lceil d/2\rceil})$$

Complexity

Let
$$G = (V, E, p, (V_{Even}, V_{Odd})$$
 be a parity game;
 $n = |V|, e = |E|, d = \max\{p(v) \mid v \in V\}.$

• Algorithm with best known upper bound: Big step algorithm due to Schewe, with complexity

$$\mathcal{O}(d \cdot n^{d/3})$$

 Big step combines recursive algorithm with small progress measures;

Consider the following parity game:

- Compute the winning sets W_{Even} , W_{Odd} for players Even and Odd in this parity game using the small progress measures algorithm.
- Compare the solution with the solution obtained using the recursive algorithm and Gauß elimination.