
Algorithms for Model Checking (2IW55)
Lecture 5

Equivalences and Pre-orders:
State Space Reduction and Preservation of Properties

Chapter 11, 11.1

Tim Willemse
(timw@win.tue.nl)

http://www.win.tue.nl/∼timw
HG 6.81

1/24

Outline

1 Equivalences

2 Pre-orders

3 Bisimulation Reduction

4 Summarising

2/24

Equivalences

Complexity of model checking arises from:

State space explosion: the state space is usually much larger than the specification

Expressive logics have complex model checking algorithms

Ways to deal with the state space explosion:

equivalence reduction: remove states with identical potentials from a state space

on-the-fly: integrate the generation and verification phases, to prune the state space

symbolic model checking: represent sets of states by clever data structures

partial-order reduction: ignore some executions, because they are covered by others

abstraction: remove details by working on conservative over-approximation

3/24

Equivalences

A state space reduction reduces model checking complexity.

Of course, the reduced state space must preserve (an interesting class of) temporal
properties.
This is often characterised by an equivalence relation on Kripke Structures:

reduction must yield an ‘equivalent” model.
“equivalent” models must satisfy the same properties.

Different instances of this scheme:
trace equivalence preserves LTL formulae.
strong bisimulation preserves CTL∗ (and µ-calculus) formulae.
simulation preserves ACTL∗ (and universal µ-calculus) formulae.
branching bisimulation preserves CTL∗-X formulae.

4/24

Equivalences

Let two Kripke Structures over AP be given:

M = 〈S,R, S0, L〉 and
M ′ = 〈S′, R′, S′0, L′〉

Definition (Strong Bisimulation)

A relation B ⊆ S × S′ is a strong bisimulation relation (also zig-zag relation) iff for every
s ∈ S and s′ ∈ S′ with sBs′:

L(s) = L′(s′)

for all s1 ∈ S, if sRs1, then there exists s′1 ∈ S′ such that s′R′s′1 and s1Bs′1
for all s′1 ∈ S′, if s′R′s′1, then there exists s1 ∈ S such that sRs1 and s1Bs′1

5/24

Equivalences

Example

s0

s1

t0

t1

t2

t3

a

b

a

b

a

b

unwinding and duplication preserves bisimulation

Sensitive to the moment of choice
6/24

Equivalences

Example

s0

s1

s2 s3

t0

t1 t2

t3 t4

a

b

c d

a

b b

c d
?

unwinding and duplication preserves bisimulation

Sensitive to the moment of choice
7/24

Equivalences

Example

s0

s1 s2

s3 s4 s5

t0

t1 t2

t3 t4 t5

a

b b

c c d

a

b b

c d d

unwinding and duplication preserves bisimulation

Sensitive to the moment of choice
8/24

Equivalences

Let two Kripke Structures over AP be given:

M = 〈S,R, S0, L〉 and
M ′ = 〈S′, R′, S′0, L′〉

Definition (bisimilarity)

Two states s ∈ S and s′ ∈ S′ are bisimilar, if for some bisimulation relation B, sBs′. The
Kripke Structures M and M ′ are bisimilar (notation: M ≡M ′) iff there exists a
bisimulation relation B, “containing initial states”, i.e.:

∀s0 ∈ S0 ∃s′0 ∈ S′0 : s0Bs
′
0

∀s′0 ∈ S′0 ∃s0 ∈ S0 : s0Bs
′
0

Note:

bisimilarity is an equivalence relation

the union of bisimulation relations is again a bisimulation relation

“bisimilarity” itself is the greatest bisimulation relation

9/24

Equivalences

Strong bisimulation preserves CTL∗:
Recall the CTL∗ semantics:

M, s |= f : state formula f holds in state s,
M,π |= f : path formula f holds along path π.

Recall that M |= f iff for all s0 ∈ S0, M, s0 |= f .

Theorem (14)

If M ≡M ′ (i.e. M and M ′ are bisimilar), then for every CTL∗ state formula f :

M |= f iff M ′ |= f

Practical consequence: In order to check M |= f , it is safe and sufficient to:
1 Reduce M to M ′ modulo bisimilarity,
2 Check whether M ′ |= f .

10/24

Equivalences

Proof sketch:

Given a relation B, we define that path π corresponds to path π′ iff: ∀i. π(i) B π′(i)

Lemma (31)

If B is a bisimulation relation and s B s′ (correction to Lemma 31), then for every
π ∈ path(s) there exists a corresponding path π′ ∈ path(s′) (and vice versa).

Next, with structural induction on CTL∗ formula f one can show: if s and s′ are bisimilar
and π and π′ correspond, then:

1 s |= f if and only if s′ |= f

2 π |= f if and only if π′ |= f

From this, the theorem follows:
for all M,M ′ and CTL∗ formulae f : if M ≡M ′ then M |= f iff M ′ |= f .

11/24

Equivalences

Theorem (reverse)

If M 6≡M ′ then there exists a formula f in CTL , such that M |= f and M ′ 6|= f .

s0

s1 s2

s3 s4 s5

t0

t1 t2

t3 t4 t5

a

b b

c d c

a

b b

d c d

?

Note that both systems have the same paths.

There is no bisimulation relation between these two systems containing the initial
states.

Indeed, the following CTL formula holds in (the initial state of) the right system, but
not on the left: A X (b ∧ E X d)

We will see later that using E is essential.

12/24

Outline

1 Equivalences

2 Pre-orders

3 Bisimulation Reduction

4 Summarising

13/24

Pre-orders

bisimilar models have the same behaviour, so they make true exactly the same
properties.
Idea: If we allow to really forget information, we may:

reduce the state space further, but:
preserve only a smaller class of formulae.

We say that system M ′ simulates system M if M ′ has at least the behaviour of M .

Let two Kripke Structures be given:

M = 〈AP, S,R, S0, L〉 and
M ′ = 〈AP′, S′, R′, S′0, L′〉, with AP′ ⊆ AP.

Definition (Simulation Relation)

A relation H ⊆ S ×S′ is a simulation relation iff for every s ∈ S and s′ ∈ S′ with s H s′:

L(s) ∩ AP′ = L′(s′)

for all s1, if s R s1, then there exists s′1 such that s′R′s′1 and s1 H s′1.

14/24

Pre-orders

Definition (Simulation)

M ′ simulates M (written: M vM ′) iff there exists a simulation relation H, such that

∀s0 ∈ S0. ∃s′0 ∈ S′0. s0 H s′0

This defines an equivalence relation as follows: M ∼M ′ iff M vM ′ and M ′ vM .

Note:

v is a pre-order on Kripke Structures (i.e. it is reflexive and transitive, but not
necessarily symmetric).
Warning:

it is possible that M ∼M ′ but still M 6≡M ′
In words: if two systems simulate each other, they need not be bisimilar.
Intuitively: the two simulations may use a different H, while a bisimulation requires one
B.

15/24

Pre-orders

M ′ M

a

b

c d

a

b b

c d

?

M M ′

a

b

c d

a

b b

c d

N N ′

a

b b

c d c

a

bb

dc d

M vM ′ but not M ′ vM ;

N ∼ N ′ but N 6≡ N ′.

16/24

Pre-orders

Definition (ACTL∗)

ACTL∗ (see p.31) is the fragment of CTL∗ with only universal path quantifiers, no
existential path quantifiers.

Note:

This only makes sense for formulae in positive normal form, i.e. negations only occur
directly in front of atomic propositions.

Examples: A F Gp,A G (p→ A X q) are in ACTL∗, but A G (p→ E X q) is not.
Careful: (A G p)→ (A G q) is not in ACTL∗, because actually:

(A G p)→ (A G q) ≡ ¬(A G p) ∨ (A G q)
≡ (E F ¬p) ∨ (A G q)

17/24

Pre-orders

Simulation preserves ACTL∗:

Theorem

If M vM ′ (i.e. M ′ simulates M), then for every ACTL∗ state formula f over AP’:

if M ′ |= f then M |= f

Practical consequence: In order to check M |= f , it is safe to find an approximation M ′

with M vM ′ and check that M ′ |= f .

However: if M ′ 6|= f , we obtain no information about M |= f — it may or may not hold.

In the previous example, we had: N ∼ N ′ but N 6≡ N ′. Hence:
N and N ′ satisfy the same ACTL∗ formulae

N and N ′ do not satisfy the same CTL formulae

They can only be distinguished using operator E .

18/24

Pre-orders

Example

M

M ′

a

a

a

a

c b

a

c b

Observe that M vM ′ with H indicated left.

Note that M ′ |= A G (a ∨ b ∨ c) and hence
M |= A G (a ∨ b ∨ c).
Note that M ′ 6|= A F (b ∨ c), but actually
M |= A F (b ∨ c). This shows that some
information is really lost.

Note: M |= A X a but M ′ 6|= A X a (wrong
direction) conclusion: M ′ 6vM .

Note: M ′ |= E X b, but M 6|= E X b (not in
ACTL∗).

19/24

Outline

1 Equivalences

2 Pre-orders

3 Bisimulation Reduction

4 Summarising

20/24

Bisimulation Reduction

Computing Bisimulation Equivalence:

Let two Kripke Structures be given:

M = 〈AP, S,R, S0, L〉 and
M ′ = 〈AP, S′, R, S′0, L′〉.

Define a sequence of relations s B∗i s′ iff s and s′ cannot be distinguished within i steps:

s B∗0 s
′ if and only if L(s) = L′(s).

s B∗n+1s
′ if and only if:

1 s B∗n s′, and
2 ∀s1 with R(s, s1), ∃s′1 with s′ R′ s′1 and s1 B∗n s′1.
3 ∀s′1 with R′(s′, s′1), ∃s1 with s R s1 and s1 B∗n s′1.

Let B∗ :=
T

i B
∗
i

Clearly, B∗i ⊇ B∗i+1, so B∗ can be computed by fixed point iteration.

Actually, this can be implemented symbolically by OBDDs

21/24

Bisimulation Reduction

Actually: B∗ is the largest bisimulation between M and M ′.

So: if s and s′ are bisimilar, then s B∗ s′.

To test if M ≡M ′: check if for each s0 ∈ S0 there exists an s′0 ∈ S′0 such that
s0 B

∗ s′0.

By carefully splitting equivalence classes, the procedure can run in O(|R| × log(|S|))
time (Paige-Tarjan).

Similar ideas apply to checking M vM ′.

The algorithm can be modified for state space reduction as follows:

The equivalence classes of B∗ form the states of the reduced state space (minimal
modulo bisimulation).

The transitions between two classes are derived from the transitions between
elements of these classes.

22/24

Outline

1 Equivalences

2 Pre-orders

3 Bisimulation Reduction

4 Summarising

23/24

Summarising

Bisimulation is an equivalence relation.

Bisimulation preserves CTL∗ formulae.

Simulation is a pre-order.

Simulation preserves ACTL∗ formulae only, and only in one direction.

Simulation allows for more reduction but sometimes crucial information is lost.

Bisimulation and Simulation reduction can be computed in polynomial time.

Possible improvement: Instead of:
1 generating state space
2 reducing state space
3 model checking reduced state space,

it would be better to generate a smaller state space immediately.

24/24

	Equivalences
	Pre-orders
	Bisimulation Reduction
	Summarising

