## CTL<sup>\*</sup> Exercises, October 6, 2009

1. Consider the following formulae, where p, q are atomic propositions:

(A) 
$$\mathbf{A}(\mathbf{FG}(p \to q))$$
  
(B)  $q \land \mathbf{A}(\mathbf{F}(q)) \land \neg(\mathbf{E}[(\neg q)\mathbf{R}(\neg p)])$ 

Answer the following questions for **both** formulae (A) and (B) and provide a brief motivation for every answer that you give.

- (a) Is the formula in LTL? Is it in CTL? Is it in ACTL\*?
- (b) Draw a Kripke Structure with a single initial state in which it holds.
- (c) Draw a Kripke Structure with a single initial state in which it does not hold, but in which it does hold fairly with an appropriate fairness constraint. Also provide this fairness constraint.
- 2. Consider the following three Kripke structures with initial states indicated by a " $\longrightarrow$ " and where  $\{p, q, r\}$  are the atomic propositions. Determine whether the following properties hold. If so, give the relation that supports your answer. If not, give a formula in CTL\* that witnesses this fact.



- (a)  $M_1$  is strong bisimilar to  $M_2$  (i.e.  $M_1 \equiv M_2$ )
- (b)  $M_2$  is strong bisimilar to  $M_3$  (i.e.  $M_2 \equiv M_3$ )
- (c)  $M_3$  simulates  $M_2$  (i.e.  $M_2 \preccurlyeq M_3$ )
- (d)  $M_2$  simulates  $M_3$  (i.e.  $M_3 \preccurlyeq M_2$ )
- 3. Consider the following Kripke Structure:



Consider the following formulae, where p and q are atomic propositions:

- (C)  $\mathbf{A}(\mathbf{F}(q))$
- (D)  $\mathbf{A}[q \mathbf{R} p]$
- (E)  $\mathbf{EF}(\mathbf{A} [q \mathbf{R} p])$
- (a) Determine the set of states where (C) holds using the standard CTL model checking algorithm, based on graph algorithms. Show the intermediate steps.
- (b) Consider the fairness constraint  $\mathcal{F} = \{\{s_2\}, \{s_3\}\}$ . Determine the set of states where (**C**) holds fairly under  $\mathcal{F}$  using the labelling algorithm for fair CTL. Use explicit set notation to represents states instead of BDDs. Show the intermediate steps.
- (c) Determine the set of states where  $(\mathbf{D})$  holds fairly (with  $\mathcal{F}$  as defined above), using the symbolic model checking algorithm for CTL. Use explicit set notation to represents states instead of BDDs. Show the intermediate steps.
- (d) Determine the set of states where (**E**) holds using the symbolic model checking algorithm for CTL model checking. Show the intermediate steps.