

Algorithms for Model Checking (2IW55)

Lecture 8

Boolean Equation Systems

Background material: Chapter 3 and 6 of

A. Mader, "Verification of Modal Properties using Boolean Equation Systems", Ph.D. thesis, 1997

Tim Willemse

(timw@win.tue.nl) http://www.win.tue.nl/~timw HG 6.81

Outline

- Boolean Equation Systems
- 2 Model Checking using BESs
- Solving BESs
- Exercise

- Boolean Equation Systems are a versatile formal framework for verification.
- Boolean Equation Systems are systems of fixed point equations.

Given a set Var of propositional variables. A Boolean Expression is defined by:

$$f ::= X \mid \mathsf{true} \mid \mathsf{false} \mid f \wedge f \mid f \vee f$$

A Boolean Equation is an equation of the form $\sigma X=f$, where $X\in Var,\ \sigma\in\{\mu,\nu\}$ and f is a Boolean Expression. A Boolean Equation System is a sequence of Boolean Equations:

$$\mathcal{E} ::= \varepsilon \mid (\sigma X = f) \ \mathcal{E}$$

Note:

- Negation is not allowed, in order to ensure monotonicity.
- The order of equations is important. Intuitively, the topmost sign has priority.

- A variable W that occurs in a Boolean Expression of a BES \mathcal{E} is called bound, if there is an equation for W in \mathcal{E} , otherwise W is called free.
- If propositional variables are bound uniquely (i.e., at most once), the BES is well-formed; we only consider well-formed BESs.
- If \mathcal{E} contains no free variables, \mathcal{E} is closed, otherwise it is open.

- A variable W that occurs in a Boolean Expression of a BES \mathcal{E} is called bound, if there is an equation for W in \mathcal{E} , otherwise W is called free.
- If propositional variables are bound uniquely (i.e., at most once), the BES is well-formed; we only consider well-formed BESs.
- If \mathcal{E} contains no free variables, \mathcal{E} is closed, otherwise it is open.

Example

An example of a closed BES \mathcal{E} with three propositional variables X, Y and Z:

$$(\mu X = (X \wedge Y) \vee Z) \ (\nu Y = X \wedge Y) \ (\mu Z = Z \wedge X)$$

- A variable W that occurs in a Boolean Expression of a BES \mathcal{E} is called bound, if there is an equation for W in \mathcal{E} , otherwise W is called free.
- If propositional variables are bound uniquely (i.e., at most once), the BES is well-formed; we only consider well-formed BESs.
- If \mathcal{E} contains no free variables, \mathcal{E} is closed, otherwise it is open.

Example

An example of a closed BES \mathcal{E} with three propositional variables X, Y and Z:

$$(\mu X = (X \wedge Y) \vee Z) \ (\nu Y = X \wedge Y) \ (\mu Z = Z \wedge X)$$

An example of an open BES \mathcal{F} with three propositional variables X,Y and Z:

$$(\mu X = Y \vee Z) \ (\nu Y = X \wedge Y)$$

- A variable W that occurs in a Boolean Expression of a BES \mathcal{E} is called bound, if there is an equation for W in \mathcal{E} , otherwise W is called free.
- If propositional variables are bound uniquely (i.e., at most once), the BES is well-formed; we only consider well-formed BESs.
- If \mathcal{E} contains no free variables, \mathcal{E} is closed, otherwise it is open.

Example

An example of a closed BES \mathcal{E} with three propositional variables X, Y and Z:

$$(\mu X = (X \wedge Y) \vee Z) \ (\nu Y = X \wedge Y) \ (\mu Z = Z \wedge X)$$

An example of an open BES \mathcal{F} with three propositional variables X,Y and Z:

$$(\mu X = Y \vee Z) \ (\nu Y = X \wedge Y)$$

An example of a BES that is not well-formed:

$$(\mu X = X) \ (\nu X = X)$$

Intuitive semantics:

- Let Val be the set of all functions $\eta: Var \to \{\text{false}, \text{true}\}$
- The solution of a BES is a valuation: $\eta: Val$
- Let $[f](\eta)$ denote the value of boolean expression f under valuation η .
- For the solution η of a BES \mathcal{E} , we wish $\eta(X) = [f](\eta)$ for all equations $\sigma X = f$ in \mathcal{E} .
- Also, we want the smallest (for μ) or greatest (for ν) solution, where topmost equation signs take priority over equation signs that follow.

Given a BES \mathcal{E} , we define $[\mathcal{E}]: Val \to Val$ by recursion on \mathcal{E} .

```
\left\{ \begin{array}{ll} [\varepsilon](\eta) & := \eta \\ \\ [(\mu X = f) \ \mathcal{E}](\eta) & := [\mathcal{E}](\eta[X := [f](\eta_{\mu})]) \text{ where } \eta_{\mu} := [\mathcal{E}](\eta[X := \mathsf{false}]) \\ \\ [(\nu X = f) \ \mathcal{E}](\eta) & := [\mathcal{E}](\eta[X := [f](\eta_{\mu})]) \text{ where } \eta_{\nu} := [\mathcal{E}](\eta[X := \mathsf{true}]) \end{array} \right.
```


Outline

- Boolean Equation Systems
- Model Checking using BESs
- Solving BESs
- Exercise

Transformation of the μ -calculus model checking problem to BES

- Given is the following model checking problem: $M, s \models \sigma X$. f
 - ullet a closed μ -calculus formula $\sigma X.$ f in Positive Normal Form and,
 - a Mixed Kripke Structure $M = \langle S, s_0, Act, R, L \rangle$.
 - $s \in S$ is a state
- ullet We define a BES ${\cal E}$ with the following property:

$$([\mathcal{E}](\eta))(X_s) = \text{true iff } M, s \models \sigma X. f$$

- i.e. formula σX . f holds in state s if and only if the solution for X_s yields true.
- This BES is defined as follows:
 - For each subformula $\sigma'Y.g$ and for each state $s \in S$, we add the following equation:

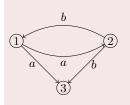
$$\sigma' Y_s = RHS(s,q)$$

• Important: The order of the equations respects the subterm ordering in the original formula $\sigma X.\ f.$

The Right-Hand Side of an equation is defined inductively on the structure of the μ -calculus formula:

$$\begin{array}{lll} RHS(s,p) & = & p \in L(s) \\ RHS(s,X) & = & X_s \\ \\ RHS(s,f \wedge g) & = & RHS(s,f) \wedge RHS(s,g) \\ RHS(s,f \vee g) & = & RHS(s,f) \vee RHS(s,g) \\ \\ RHS(s,[a]f) & = & \bigwedge_{t \in S} \left\{ RHS(t,f) \mid s \xrightarrow{a} t \right\} \\ RHS(s,\langle a \rangle f) & = & \bigvee_{t \in S} \left\{ RHS(t,f) \mid s \xrightarrow{a} t \right\} \\ RHS(s,\mu X. \ f) & = & X_s \\ RHS(s,\nu X. \ f) & = & X_s \\ \\ RHS(s,\nu X. \ f) & = & X_s \\ \\ \\ \text{Conventions:} & \bigwedge_{t \in S} \emptyset = \text{true and } \bigvee_{t \in S} \emptyset = \text{false} \\ \\ \end{array}$$

Example



•
$$RHS(1, [a]X) = RHS(2, X) \wedge RHS(3, X) = X_2 \wedge X_3$$
.

•
$$RHS(2, \langle b \rangle Y) = RHS(1, Y) \vee RHS(3, Y) = Y_1 \vee Y_3$$
.

•
$$RHS(3, \langle b \rangle Y) =$$
false (empty disjunction!)

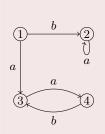
$$\begin{array}{ll} \bullet & RHS(1, \ [a]\langle b\rangle \mu Z. \ Z) \\ = & RHS(2, \ \langle b\rangle \mu Z. \ Z) \wedge RHS(3, \ \langle b\rangle \mu Z. \ Z) \wedge \\ = & (RHS(1, \ \mu Z.Z) \vee RHS(3, \ \mu Z.Z)) \wedge \mathsf{false} \\ = & (Z_1 \vee Z_3) \wedge \mathsf{false} \end{array}$$

• Translation of $\mu X.\langle b \rangle$ true $\vee \langle a \rangle X$ to BES:

$$(\mu X_1 = X_3 \vee X_2) \ (\mu X_2 = \text{true}) \ (\mu X_3 = \text{false})$$

Example

 μ -calculus formula: $\nu X. ([a]X \wedge \nu Y. \mu Z. (\langle b \rangle Y \vee \langle a \rangle Z))$ Translates to the following BES:



$$\begin{array}{rclrcl} \nu X_1 & = & X_3 \wedge Y_1 \\ \nu X_2 & = & X_2 \wedge Y_2 \\ \nu X_3 & = & X_4 \wedge Y_3 \\ \nu X_4 & = & \mathsf{true} \wedge Y_4 \\ \nu Y_1 & = & Z_1 \\ \nu Y_2 & = & Z_2 \\ \nu Y_3 & = & Z_3 \\ \nu Y_4 & = & Z_4 \\ \mu Z_1 & = & Y_2 \vee Z_3 \\ \mu Z_2 & = & \mathsf{false} \vee Z_2 \\ \mu Z_3 & = & \mathsf{false} \vee Z_4 \\ \mu Z_4 & = & Y_3 \vee \mathsf{false} \end{array}$$

Outline

- Boolean Equation Systems
- 2 Model Checking using BESs
- Solving BESs
- Exercise

- We reduced the model checking problem $M, s \models f$ to the solution of a BES with $\mathcal{O}(|M| \times |f|)$ equations.
- We now want a fast procedure to solve such BESs.
- An extremely tedious way to solve a BES is to unfold its semantics.
- A very appealing solution is to solve it by Gauß Elimination.

Gauß Elimination uses the following 4 basic operations to solve a BES:

• local solution: eliminate X in its defining equation:

$$\mathcal{E}_0$$
 $(\mu X = f)$ \mathcal{E}_1 becomes \mathcal{E}_0 $(\mu X = f[X := false])$ \mathcal{E}_1 \mathcal{E}_0 $(\nu X = f)$ \mathcal{E}_1 becomes \mathcal{E}_0 $(\nu X = f[X := true])$ \mathcal{E}_1

Substitute definitions to the left:

$$\mathcal{E}_0 \ (\sigma_1 X = X \vee \underline{Y}) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \wedge X) \ \mathcal{E}_2$$
 pecomes:
$$\mathcal{E}_0 \ (\sigma_1 X = X \vee (\underline{Y} \wedge \underline{X})) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \wedge X) \ \mathcal{E}_2$$

• Substitute closed equations to the right:

$$\mathcal{E}_0 \ (\sigma_1 X = \mathsf{true}) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \land X) \mathcal{E}_2$$
becomes:
$$\mathcal{E}_0 \ (\sigma_1 X = \mathsf{true}) \ \mathcal{E}_1 \ (\sigma_2 Y = Y \land \mathsf{true}) \ \mathcal{E}_2$$

• Boolean simplication: At least the following:

$$b \land \mathsf{true} \to b$$
 $b \lor \mathsf{true} \to \mathsf{true}$ $b \land \mathsf{false} \to \mathsf{false}$ $b \lor \mathsf{false} \to b$

Example

$$(\mu X = X \vee Y) \ (\nu Y = X \vee (Y \wedge Z)) \ (\mu Z = Y \wedge Z)$$

$$local \rightarrow$$

$$(\mu X = \mathsf{false} \vee Y) \ (\nu Y = X \vee (\mathsf{true} \wedge Z)) \ (\mu Z = Y \wedge \mathsf{false})$$

simplifications
$$\rightarrow$$

$$(\mu X = Y) \ (\nu Y = X \vee Z)) \ (\mu Z = \text{false})$$

$$(\mu X = Y)$$
 $(\nu Y = X \vee \mathsf{false})$ $(\mu Z = \mathsf{false})$

simplifications
$$\rightarrow$$

$$(\mu X = Y) \ (\nu Y = X) \ (\mu Z = \text{false})$$

substitution backwards \rightarrow

$$(\mu X = X) \ (\nu Y = X) \ (\mu Z = \text{false})$$

local →

$$(\mu X = \text{false}) \ (\nu Y = X) \ (\mu Z = \text{false})$$

substitution to the right
$$\rightarrow$$

$$(\mu X = \text{false}) \ (\nu Y = \text{false}) \ (\mu Z = \text{false})$$

Gauß Elimination is a decision procedure for computing the solution to a BES.

```
Input: a BES (\sigma_1 X_1 = f_1) \ldots (\sigma_n X_n = f_n). Returns: the solution for X_1. for i=n downto 1 do  \text{if } \sigma_i = \mu \text{ then } f_i := f_i[X_i := \text{false}] \\  \text{else } f_i := f_i[X_i := \text{true}] \\  \text{end if} \\  \text{for } j = 1 \text{ to } i-1 \text{ do } f_j := f_j[X_i := f_i] \\  \text{end for} \\  \text{end for}
```

Note:

- Invariants of the outer loop:
 - f_i contains only variables X_i with $j \leq i$.
 - for all $i < j \le n$, X_j does not occur in f_j .
- Upon termination (i = 0), $\sigma_1 X_1 = f_1$ is closed and evaluates to true or false.
- One could substitute the solution for X_1 to the right and repeat the procedure to solve X_2 , etcetera.

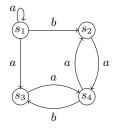
Complexity of Gauß Elimination.

- Note that in $\mathcal{O}(n^2)$ substitutions, we obtain the final answer for X_1 .
- However, f_1 can have $\mathcal{O}(2^n)$ different copies of e_n as subterms, so intermediate expressions could become exponentially big.
- Practical efficiency increases a lot if one keeps all intermediate terms simplified all the time.
- Gauß Elimination can be sped up if a forward dependency analysis is conducted (so-called local model checking).
- Precise efficiency depends heavily on the set of simplification rules.
- Precise complexity of Gauß Elimination is yet unknown.
- Complexity of Gauß Elimination is independent of the alternation depth (see Proposition 6.4 [Mader]).

Outline

- Boolean Equation Systems
- 2 Model Checking using BESs
- Solving BESs
- Exercise

Exercise



Consider the following μ -Calculus formula f:

$$\nu X.([a]X \wedge \nu Y.\mu Z.(\langle b \rangle Y \vee \langle a \rangle Z))$$

- Use the Emerson-Lei algorithm for computing whether $M, s_1 \models f$.
- Translate the model checking question $M\models f$ to a BES; indicate how $M,s\models \phi$ corresponds to the variables in the BES.
- Solve the BES by Gauß Elimination.