UML diagrams

[image: image1.wmf]

multiplicities

Role names

association name

Class name

Data attributes

methods

Class diagrams

Attributes

Syntax: [+|#|-][$ | / | *]attr-name:[data-type] [= initial-value][{attribute-changeability}]

visibility

 + public attribute

 # protected attribute

 - private attribute

 $ class (static) attribute: value applies to entire class of objects

 / derived attribute

 * attribute must be part of the primary key. Only meaningful with persistency.

Operations

[visibility]operation-name[([parameter-kind] parameter-list)][:return-type][{property-string}]

visibility:

 + public operation

 # protected operation

 - private operation

 $ class (static) operation: operation applies to the entire class of objects

 / derived operation

parameter-kind : in, out and inout

parameter-list (comma-separated):
 parameter-name[:data-type]

return-type (needs no explanation)

property-string either or both of:

abstract: abstract operation, operation is defined, but not implemented by the class. The operation must be implemented by all concrete descendant classes.

 query: operation does not modify the attributes of its class.

Names of abstract classes and methods are set in Italics.

Active classes (e.g. ones that execute a polling loop) are shown with a thick border.

Instances of classes are shown like classes, but the class name is replaced by:

“objectname:Classname[Role]”

Association

[image: image11.jpg]Company |, 0| Person

Job

salary

worker
Manages

0.1 | Boss

association name: arrow indicates reading direction: “A Class Does something with A Nother”. Has no equivalent in code.

Role names: if present, the role name next to the class represents the name of the variable in the code. So the association here implies that “A Class” has a set of references to objects of class “A Nother” with name “another”. Objects of class “A Nother” have a reference to “A Class” with name “a”. If the role name is not given, the reference is missing. So if the role name “a” was not there, objects of class “A Nother” could not “see” an “A Class” object.

Aggregation/Composition

[image: image2.jpg]Pat

Whole

KindOfPart

In both cases, role names and aggregation names have been left out.

Black diamond: composition.. Sometimes represented differently by placing the Part class within the Whole class. Objects of type Whole have a variable of type Part. A part is normally created on creation of the composite and dies with it as well. In any case, the composite is the sole responsible for creation and destruction of its parts. An object can only be part of one composite.

Open diamond: aggregation; a part-of relation but less strong than composition. Owner has a collection of objects of type KindOfPart (or type “reference to KindOfPart”). The role name indicates the name of the collection. The collection can vary dynamically. Objects of type KindOfPart may be part of several aggregation relations and may exist independently of its aggregate.

In case of a school, the classrooms in the building could be represented by composition and the staff could be represented by an aggregation.

Inheritance

[image: image3.jpg]s Spedification

beboolean

DoSomething)

Child] Implementation

inheritance

DoSomethingElseAsiell)

Generalization inheritance

An object of type Child inherits the properties of Parent. Therefore, a Child object has a Boolean variable b, a reference “inheritance” to an object of class Implementation and a method DoSomething(). The Child class can implement additional methods and attributes. In this case, the Child class generalizes the behavior of the Parent class.

Realization/Interface inheritance

The class Implementation implements the behavior specified by the class Specification. Alternatively, the class Specification could merely specify an interface that is implemented by the Implementation class. In this case, the class name of Specification should be preceded by “<<interface>>”.

Other elements

The more useful elements of class diagrams:

[image: image4.jpg]Classname.

attibutes

methads(

Packages are used to organize model elements and diagrams. A package defines a namespace. Packages may be nested.

[image: image5.jpg]Package

A dependency shows how model elements depend on each other. In general, this is most useful to show dependencies e.g. of classes on packages or of packages on each other without showing the exact relations.

[image: image6.jpg]Praject

Student

1

team

Customer

A template is a parameterized model element. In order to use it, the parameters must be bound. In this case, “Listelem” is bound to the class Account and “n” to 1000 with the “bind” stereotype.

[image: image7.jpg]bing>(Account;1000)

AccountList

 Interfaces can also be shown by a circle with the name of the interface that is implemented by e.g. the class. In order to see the methods exported by the interface, one should use the notation discussed above (Realization/Interface inheritance).

Some less frequently used constructs that can usually also be modeled differently:

[image: image8.jpg]son

Father

An association class is a special kind of association that is also a class. This is useful when each link between two classes must have its own attribute values, operations or references to objects. In the example shown, the link between Company and Person has an associated class Job, which expresses the person’s salary and function.

[image: image9.jpg]‘Student Administratioon

[Studentia]

01

Person

N-ary association: each instance is an n-tuple of values from the participating classes.

[image: image10.jpg]interface

Associations, aggregations and compositions may be qualified. The qualifier selects an object from a binary association by supplying a value. In the example shown, “Student Administration” is the qualified class, “StudentId” is the qualifier and the target class is “Person”.

The tuple (Student Administration,StudentId) maps to 0 or one person and a Person maps to many(Student Administration,StudentId).

_1044349442.doc
[image: image1.png]Achss

b: integer

DoSomething)

A other

does something with-s————
another

multiplicities

Role names

association name

Class name

Data attributes

methods

