20 years of FSI experiments in Dundee

Arris S Tijsselinga, Alan E Vardyb

aEindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

bUniversity of Dundee, Civil Engineering Division, Dundee DD1 4HN, United Kingdom

Abstract

Waterhammer with fluid-structure interaction (FSI) with or without cavitation can be a rewarding subject for academic research. This paper gives an overview of two decades of experimental work at the University of Dundee. The experiments concern impact tests on water-filled steel-pipe systems. The aim of the research has been to produce high-quality experimental data for vibrating pipe systems with strong liquid-pipe coupling. One set of new data, namely the natural frequencies of a T-shaped pipe system, is presented. These, and other published data, will be made freely available at www.win.tue.nl/fsi.

Keywords: FSI, waterhammer, cavitation, pipe, impact, experiment
1. Introduction

1.1. Background

Païdoussis' FSI encyclopaedia [1, 2] gives an exhaustive treatment of the dynamics of pipes carrying steady or harmonically perturbed flow. This subject is rich with interesting fundamental problems and solutions. Our work on waterhammer with FSI, categorised by Païdoussis under unsteady FSI phenomena, is academically less exciting, but of considerable importance in industrial piping systems. It was motivated by incidents and accidents caused by waterhammer in which displacement and failure of pipes and supports occurred. Research in this area has largely been driven by safety requirements in the nuclear and chemical industry [3, 4].

1.2. Goal of experiments

The original objective of the research was to design and build a test rig for clean and accurate experiments on vibrating pipes with strong liquid-pipe coupling. By “clean”, we mean the avoidance of complications encountered in conventional reservoir-pipe-valve systems, such as unknown support conditions, unsteady valve behaviour, non-constant reservoir pressure, disturbing pump vibration, de-aeration, etc. The resulting experimental results serve as benchmark data for the validation of theory and software.

1.3. A little bit of history

There are no immediate plans for future experiments so this is a good time to look back. Alan Vardy initiated FSI research in Dundee. In 1984, an undergraduate student undertook preliminary tests with a water-filled pipe dropped vertically onto a steel base.
In 1985, David Fan took over, initially working with the vertical pipe, but subsequently conducting many experiments with pipes suspended horizontally on long steel wires. In 1989 and 1990, Arris Tijsseling of Delft University visited Dundee to carry out cavitation tests; in 1993 he moved to Dundee. Zhang Lixiang of Kunming University was visiting professor in 1994 and in 1997. In 1998, Della Leslie extended the originally planar systems to three-dimensions. Throughout, valuable technical assistance has been given by many persons, of whom Ernie Kuperus and Colin Stark deserve special thanks.

2. Overview of experimental results

Figure 1 shows 7 test systems each composed of steel pipes of 60 mm outer diameter and 4 mm wall thickness. One pipe is 4.5 m long; the others are 1.3 m. The systems, suspended on wires, are closed at their ends and filled with pressurised tap water. Excitation is by the axial or lateral impact of a 5 m long, 51 mm diameter, steel rod on a closed end of the long pipe. Pressures, strains and structural velocities are measured at several positions along the pipes.

![Figure 1](image_url)
The dynamic behaviour of the systems is governed by axial and lateral waves in the pipe walls and by pressure waves in the liquid. The vertical pipe in the 3D-system gives rise to torsional waves and out-of-plane vibration. Strong liquid-pipe coupling occurs at the closed ends, at the elbow and at the tee. Weak coupling exists along the pipes due to axial-radial Poisson contraction/expansion. There is little damping in the system, except when deliberately introduced through a support or a damper. Transient cavitation occurs in cases where the initial static pressure of the liquid is sufficiently low. Transient vibration is recorded in tests of typically 30 milliseconds duration at sampling intervals of 8 microseconds. Free vibration tests are typically of 1.5 seconds duration with sampling intervals of 100 microseconds.

Table 1 lists key publications presenting experimental data. All but one of these contain numerical simulations confirming (and interpreting) the measurements.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Vibration</th>
<th>Impact</th>
<th>Cavitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>transient</td>
<td>free</td>
<td>axial</td>
</tr>
<tr>
<td>single pipe</td>
<td>[5]-[7]</td>
<td>[8]</td>
<td>[5]-[8]</td>
</tr>
<tr>
<td>support</td>
<td>[9]</td>
<td></td>
<td>[9]</td>
</tr>
<tr>
<td>damper</td>
<td>[10]</td>
<td></td>
<td>[10]</td>
</tr>
<tr>
<td>T-shaped</td>
<td>[13],[14]</td>
<td>herein</td>
<td>[13],[14]</td>
</tr>
<tr>
<td>L+T</td>
<td>[15]</td>
<td>*</td>
<td>[15],*</td>
</tr>
<tr>
<td>3D-system</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Table 1

Key publications of experimental results (* to be published)
3. Natural frequencies of water-filled T-shaped system

The fingerprint of a structure is formed by its natural frequencies and FSI is known to change these natural frequencies [4, 8]. An accurate measurement of the natural frequencies of the basic pipe configurations, single, L-shaped and T-shaped, is therefore essential in FSI research. The natural frequencies of a single and L-shaped pipe have been published in [8] and [12], respectively. Previously unpublished natural frequencies of the T-shaped system specified in Table 2 are given here in Table 3. These have been derived from axial impact tests in which the long pipe is assumed not to vibrate laterally. A typical spectrum is shown in Figure 2.

<table>
<thead>
<tr>
<th>pipe lengths (m)</th>
<th>inner radius (mm)</th>
<th>wall thickness (mm)</th>
<th>Young modulus (GPa)</th>
<th>Poisson ratio</th>
<th>mass density (kg/m^3)</th>
<th>impact plug mass (kg)</th>
<th>end cap mass (kg)</th>
<th>T-junction mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.51 m</td>
<td>26.01 mm</td>
<td>3.945 mm</td>
<td>168</td>
<td>0.29</td>
<td>7985 kg/m^3</td>
<td>1.30 kg</td>
<td>0.32 kg</td>
<td>1.06 kg</td>
</tr>
<tr>
<td>1.34 m</td>
<td>1.34 m</td>
<td>26.01 mm</td>
<td>3.945 mm</td>
<td>168</td>
<td>0.29</td>
<td>7985 kg/m^3</td>
<td>1.30 kg</td>
<td>0.32 kg</td>
</tr>
<tr>
<td>1.34 m</td>
<td>1.34 m</td>
<td>26.01 mm</td>
<td>3.945 mm</td>
<td>168</td>
<td>0.29</td>
<td>7985 kg/m^3</td>
<td>1.30 kg</td>
<td>0.32 kg</td>
</tr>
</tbody>
</table>

Table 2

Measured properties of T-shaped pipe system

<table>
<thead>
<tr>
<th>natural frequencies (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 115 152 233 345 381 470 478 579 687 757 796 871 925 986</td>
</tr>
</tbody>
</table>

Table 3

Measured natural frequencies of symmetric water-filled T-shaped pipe system
4. Conclusion

This paper summarises the authors’ experimental research on unsteady FSI phenomena in liquid-filled pipe systems. It lists key publications and it presents one omission in published data, namely the natural frequencies of a water-filled, T-shaped pipe system. These frequencies embrace the significant influence of FSI.

The resulting data have the special feature of exhibiting coupling phenomena without the complications that arise in experiments on pseudo-"real" systems, thereby making the data suitable for academic validation purposes. To facilitate its use for this purpose, much data are freely available on a web-site at the Technical University of Eindhoven, namely www.win.tue.nl/fsi. The site, initially developed in Dundee by Vardy, Leslie and Tijsseling, is now supported exclusively by Tijsseling. Contributions to the site will be welcome from any competent source.
Acknowledgements

20 years of FSI research in Dundee has been funded by CEGB, Delft Hydraulics, EDF, EPSRC (4x), ESDU, Flowguard Ltd, FUGRO and SurgeNet (The Surge-Net project (www.surge-net.info) is supported by funding under the European Commission’s Fifth Framework ‘Growth’ Programme via Thematic Network “Surge-Net” contract reference: G1RT-CT-2002-05069. The authors of this paper are solely responsible for the content, which does not necessarily represent the opinion of the Commission. The Commission is not responsible for any use that might be made of data herein). Since 1993, the work has been guided by more than twenty meetings of an international FSI Advisory Group chaired by Keith Austin (formerly Flowmaster Ltd) consisting of industrialists, consultants, software developers and academics.

References

