Digital Signature Schemes and the Random Oracle Model

A. Hülsing
Today’s goal

Review provable security of “in use” signature schemes. (PKCS #1 v2.x)
Digital Signature

Source: http://hari-cio-8a.blog.ugm.ac.id/files/2013/03/DSA.jpg
Definition: Digital Signature (formally)

Let \mathcal{M} be the message space. A digital signature scheme $\text{DSig} = (\text{KeyGen}, \text{Sign}, \text{Verify})$ is a triple of PPT algorithms

- $\text{KeyGen}(1^k)$: upon input of a security parameter 1^k outputs a private signing key sk and a public verification key pk,

- $\text{Sign}(sk, M)$: outputs a signature σ under sk for message M, if $M \in \mathcal{M}$,

- $\text{Verify}(pk, M, \sigma)$: outputs 1 iff σ is a valid signature on M under pk,

such that the following correctness condition is fulfilled:

$$\forall (pk, sk) \leftarrow \text{KeyGen}(1^k), \forall (M \in \mathcal{M})$$

$$\text{Verify}(pk, M, \text{Sign}(sk, M)) = 1.$$
Consider adversary A

- **Full break (FB):** A can compute the secret key.
- **Universal forgery (UU):** A can forge a signature for any given message. A can efficiently answer any signing query.
- **Selective forgery (SU):** A can forge a signature for some message of its choice. In this case A commits itself to a message before the attack starts.
- **Existential forgery (EU):** A can forge a signature for one, arbitrary message. A might output a forgery for any message for which it did not learn the signature from an oracle during the attack.
Attack Models

• **Key-only attack (KOA):** A only gets the public key for which it has to forge a signature.

• **Random message attack (RMA):** A learns the public key and the signatures on a set of random messages.

• **Adaptively chosen message attack (CMA):** A learns the public key and is allowed to adaptively ask for the signatures on messages of its choice.
Existential unforgeability under adaptive chosen message attacks

\[PK, 1^n \rightarrow A \rightarrow (\sigma^*, M^*) \rightarrow (\sigma_i, M_i) \rightarrow M_i \rightarrow q_s \rightarrow SK \rightarrow \text{SIGN} \]

Success if \(M^* \neq M_i \), \(\forall i \in [0, q] \) and \(\text{Verify}(\text{pk, } \sigma^*, M^*) = \text{Accept} \)
Reduction

\[M^A \]

Problem

Transform Problem

Implement SIGN

SIGN

Solution

Extract Solution

PK, \(1^n \)

\(q_s \)

\(M_i \)

\((\sigma_i, M_i) \)

\(\mathcal{A} \)

\((\sigma^*, M^*) \)
Why security reductions?

• Current RSA signature standards so far unbroken

• Vulnerabilities might exist! (And existed for previous proposals)

• Might be possible to forge RSA signatures without solving RSA problem or factoring!
What could possibly go wrong?
Let \((N, e, d) \leftarrow \text{GenRSA}(1^k)\) be a PPT algorithm that outputs a modulus \(N\) that is the product of two \(k\)-bit primes (except possibly with negligible probability), along with an integer \(e > 0\) with \(\gcd(e, \phi(N)) = 1\) and an integer \(d > 0\) satisfying \(ed = 1 \mod \phi(N)\).

For any \((N, e, d) \leftarrow \text{GenRSA}(1^k)\) and any \(y \in \mathbb{Z}_N^*\) we have
\[
(y^d)^e = y^{de} = y^{de \mod \phi(N)} = y^1 = y \mod N
\]
Definition 1. We say that the RSA problem is hard relative to GenRSA if for all PPT algorithms A, the following is negligible:

\[Pr[(N, e, d) \leftarrow \text{GenRSA}(1^k); \ y \leftarrow \mathbb{Z}_N^*; \ x \leftarrow A(N, e, y): x^e = y \mod N]. \]
A simple RSA Signature (a.k.a. textbook RSA)

KeyGen(1^k): Run $(N, e, d) \leftarrow \text{GenRSA}(1^k)$.

Return (pk, sk) with $pk = (N, e), sk = d$.

Sign(sk, M): Return $\sigma = (M^d \mod N)$

Verify(pk, M, σ): Return 1 iff $\sigma^e \mod N = M$
Some RSA properties

- Public function:
 \[P(x) = x^e \mod N \]

- Secret function:
 \[S(x) = x^d \mod N \]

- Reciprocal property (RP):
 \[P \circ S = S \circ P = Id \]

- Multiplicative property (MP):
 \[\forall x, y \in \mathbb{Z}_N: S(xy) = S(x)S(y) \]
Existential forgery under KOA

Given public key $\mathbf{pk} = (N, e)$

- Choose random $\sigma \in \mathbb{Z}_N$.
- Apply public function:

$$P(\sigma) = \sigma^e \mod N = M$$

- Return signature-message pair (σ, M).
Universal forgery under CMA

Given public key $\mathbf{pk} = (N, e)$
To create a forgery on a given message M:

1. Choose two messages $x, y \in \mathbb{Z}_N$ such that $xy = M \mod N$
2. Ask for signatures σ_x of x and σ_y of y
3. Output forgery $(\sigma_x \sigma_y, M)$
Universal forgery under CMA: The Blinding Attack

Given public key $pk = (N, e)$
To create a forgery on any given message M:

1. Sample random $r \in \mathbb{Z}_N^*$
2. Ask for signature σ on $r^eM \mod N$
3. Output forgery $\left(\frac{\sigma}{r} \mod N, M \right)$

Recall $\sigma = (r^eM)^d = r^{ed}M^d = rM^d \mod N$
Hence $\frac{\sigma}{r} = M^d \mod N$
A slightly better RSA Signature

Assume Hashfunction $H: \{0, 1\}^* \rightarrow \{0, 1\}^n$ for e.g. $n = 160$ (like with SHA1)

$\text{KeyGen}(1^k)$: Run $(N, e, d) \leftarrow \text{GenRSA}(1^k)$.
Return (pk, sk) with $pk = (N, e), sk = d$.

$\text{Sign}(sk, M)$: Pad with suff. zeros that
$\mu(M) = (0 \ldots 0 || H(M)) \in \mathbb{Z}_N^*$
Return $\sigma = \mu(M)^d \mod N$

$\text{Verify}(pk, M, \sigma)$: Return 1 iff
$\sigma^e \mod N =\mu(M) = (0 \ldots 0 || H(M))$
B-smooth: An integer is B-smooth if all its prime factors are smaller than B.
Remember Index Calculus?

Given public key \(pk = (N, e) \)

1. Select a bound \(y \) and let \(S = (p_1, \ldots, p_l) \) be the list of primes smaller than \(y \).

2. Find at least \(l + 1 \) messages \(M_i \) such that each \(\mu(M_i) = (0 \ldots 0 || H(M_i)) \) is a product of primes in \(S \) (i.e. \(y \)-smooth).

3. Express one \(\mu(M_j) \) as a multiplicative combination of the other \(\mu(M_i) \) by solving a linear system given by the exponent vectors of the \(\mu(M_i) \) with respect to the primes in \(S \).

4. Ask for the signatures on all \(M_i, i \neq j \) and forge signature on \(M_j \).
Step 3

Recall $\mu(M_i) = (0 \ldots 0 || H(M_i))$

1. We can write $\forall M_i, 1 \leq i \leq \tau$: $\mu(M_i) = \prod_{j=1}^{l} p_j^{\nu_{i,j}}$

2. Associate with $\mu(M_i)$ length l vector $V_i(\nu_{i,1} \mod e, \ldots, \nu_{i,l} \mod e)$

3. $\tau \geq l + 1$ and there are only l linearly independent length l vectors: We can express one vector as combination of others mod e. Let this be $V_\tau = \sum_{i=1}^{\tau-1} \beta_i V_i + e\Gamma$; for some $\Gamma = (\gamma_1, \ldots, \gamma_l)$

4. Hence,$$\mu(M_\tau) = \left(\prod_{j=1}^{l} p_j^{\gamma_j} \right)^e \prod_{i=1}^{\tau-1} \mu(M_i)^{\beta_i}$$
Step 4

1. Ask for signatures $\sigma_i = \mu(M_i)^d \mod N$ on M_i for $1 \leq i < \tau$

2. Compute:

$$\sigma^* = \mu(M_\tau)^d = \left(\prod_{j=1}^{l} p_j^{y_j} \right) \prod_{i=1}^{\tau-1} \left(\mu(M_i)^d \right)^{\beta_i} \mod N$$

3. Output forgery (σ^*, M_τ)
Summing up

- Original attack (Misarsky, PKC’98) works even for more complicated paddings (ISO/IEC 9796-2)

- Attack only works for small n! (Complexity depends on l and probability that an n-bit number is y-smooth).

- But using SHA-1 ($n = 160$) the attack takes much less than 2^{50} operations!

There are many ways to make mistakes...
(Similar attacks apply to encryption!)
That‘s why we want security reductions
The Random Oracle Model
Standard model vs. idealized model

Standard model:
Assume building block has property P (e.g., collision resistance). Use property in reduction.

Idealized model:
Assume a building block behaves perfectly (e.g. hash function behaves like truly random function). Replace building block by an oracle in reduction.
Reduction

\[M^A \]

Problem

Transform Problem

Implement SIGN

Solution

Extract Solution

\[PK, 1^n \]

\[q_s \]

\[M_i \]

\[(\sigma_i, M_i) \]

\[A \]

\[(\sigma^*, M^*) \]
Random Oracle Model (ROM)

- **Idealized Model**
- **Perfectly Random Function**
"Lazy Sampling":

- Keep list of \((x_i, y_i)\)
- Given \(M_j\), search for \(x_i = M_j\)
- If \(x_i = M_j\) exists, return \(y_i\)
- Else sample new \(y\) from Domain, using uniform distribution
- Add \((M_j, y)\) to table
- Return \(y\)
ROM security

- Take scheme that uses cryptographic hash
- For proof, replace hash by RO
 - Different flavors:
 Random function vs. Programmable RO

- Heuristic security argument
- Allows to verify construction
- Worked for ”Natural schemes” so far

- However: Artificial counter examples exist!
Full Domain Hash Signature Scheme
Trapdoor (One-way) Permutation

\[F(pk, x) = \pi(x) \]

\[F(sk, y) = \pi^{-1}(y) \]

Computing \(\pi^{-1}(y) \) without knowledge of \(sk \) is computationally hard
RSA Trapdoor (One-way) Permutation

\[(N, e, d) \leftarrow \text{GenRSA}(1^k); \quad pk = (N, e); \quad sk = d\]

\[F(pk, x) = x^e \mod N\]

\[F(sk, y) = y^d \mod N\]

Computing \(\pi^{-1}(y)\) without knowledge of \(sk\) computationally hard if RSA Assumption holds
\[\sigma = Sign(sk, M) \]
\[= \pi^{-1}(H(M)) \]
\[= F(sk, H(M)) \]
Generic FDH: Verify

Verify \(pk, M, \sigma \):
check \(y = H(M) \iff \pi(\sigma) = F(pk, \sigma) = y' \)
RSA-PFDH

- Randomized FDH

- Simplified RSA-PSS
 - Standardized in PKCS #1 v2
 (slightly different randomization)

- Tight Reduction from RSA Assumption in ROM
RSA-PFDH

Assume Hashfunction $H : \{0, 1\}^* \rightarrow \mathbb{Z}_N^*$

KeyGen(1^k): Run $(N, e, d) \leftarrow \text{GenRSA}(1^k)$.
Return (pk, sk) with $pk = (N, e), sk = d$.

Sign(sk, M): Sample $r \leftarrow U_\kappa$; Compute $y = H(r || M)$
Return $\sigma = (r, y^d \mod N)$

Verify(pk, M, σ): Return 1 iff $\sigma^e \mod N = H(r || M)$
If the RSA Assumption holds, RSA-PFDH is existentially unforgeable under adaptive chosen message attacks in the ROM.
Proof

TODO:
Show that any forger \(A \) against RSA-PFDH can be used to break the RSA Assumption with approx. the same time and success probability.

"Given a forger \(A \) against RSA-PFDH with success probability \(\varepsilon \), we construct an oracle Machine \(M^A \) that succeeds with probability \(\varepsilon/4 \)."
Reduction

\[\mathcal{M}^A \]

Transform Problem

Implement SIGN

Extract Solution

\[x^e = y \mod N \]

\[N, e, y \]

\[(\sigma_i, M_i) \]

\[(\sigma^*, M^*) \]

\[pk, 1^n \]

\[\mathcal{A} \]

\[RO \]

\[H(M_j) \]

\[M_j \]

\[\mathcal{N}, e, y \]

\[x \]
Reduction: Transform Problem

\[M^A \]

\[pk = (N, e) \]

Transform Problem

Implement SIGN

Extract Solution

\[x^e = y \mod N \]

\[x: x^e = y \mod N \]

\[pk, 1^n \]

\[(\sigma^*, M^*) \]

\[H(M_j) \]

\[A \]

\[M_i \]

\[(\sigma_i, M_i) \]
Simulate RO such that you can answer SIGN-queries.
Reduction: Implement SIGN

\[\mathcal{M}^A \]

Transform Problem

Implement SIGN

Extract Solution

RO

\[\begin{align*}
N, e, y & \quad \rightarrow \quad \text{Implement SIGN} \\
N, e, y & \quad \rightarrow \quad \text{Transform Problem} \\
x & \quad \rightarrow \quad x^e \equiv y \mod N \\
pk & = (N, e) \quad \rightarrow \quad \text{Extract Solution} \\
(M_i) & \quad \rightarrow \quad \mathcal{A} \\
H(M_j) & \quad \rightarrow \quad (\sigma^*, M^*) \\
\mathcal{A} & \quad \rightarrow \quad (\sigma_i, M_i) \\
\end{align*} \]
Implement SIGN – Simulate RO

• Keep table of tripples (\(*,*,*)

• When A asks for \(H(r||M)\):
 1. If there is an entry \(((r||M), x, z)\) in table, return \(z\)
 2. If list \(L_M\) already exists, go to 3. Otherwise, choose \(q_s\) values \(r_{M,1}, \ldots, r_{M,q_s} \leftarrow \{0,1\}^k\) and store them in a list \(L_M\).
 3. If \(r \in L_M\) then let \(i\) be such that \(r = r_{M,i}\). Choose random \(x_{M,i} \in \mathbb{Z}_N^*\) and return the answer \(z = x_{M,i}^e \mod N\). Store \((r||M, x_{M,i}, z)\) in the table. (RP)
 4. If \(r \notin L_M\), choose random \(x \in \mathbb{Z}_N^*\) and return the answer \(z = yx^e \mod N\). Store \((r||M, x, z)\) in the table.
Implement SIGN

- When A requests some message M to be signed for the i th time:
 - let $r_{M,i}$ be the i th value in L_M and
 - compute $z = H(r_{M,i} || M)$ using RO.
 - Let $(r || M, x_{M,i}, z)$ be the corresponding entry in the RO table.
 - Output signature $(r_{M,i}, x_{M,i})$.
Observation

• All **SIGN** queries can be answered!

• **SIGN** queries are answered using hash

\[H(r_{M,i} || M) = z = x_{M,i}^e \mod N \]

➢ Signature \((r_{M,i}, x_{M,i})\) known by programming RO

• All other hash queries are answered with

\[H(r || M) = z = yx^e \mod N \]

(with high probability).

➢ Signature not known!

➢ **BUT**: Allows to extract solution from forgery!

• Note: Any **A** with non-negl. success probability has to query RO for digest of forgery message!
Implement SIGN

\[(\sigma_i, M_i) \]

Extract Solution

\[(\sigma^*, M^*) \]

Transform Problem

\[M^A \]

pk, 1^n

RO

\[pk = (N, e) \]

\[x^e = y \mod N \]
Reduction: Extract Solution

- If A outputs a forgery $(M^*, (r^*, \sigma^*))$:
 - If $r^* \in L_{M^*}$ abort.
 - Else, let $(r^* \| M^*, x, z)$ be the corresponding entry of the table.
 - Output $\frac{\sigma^*}{x} \mod N$.

- Note:

\[
\left(\frac{\sigma^*}{x} \right)^e = \frac{\sigma^*^e}{x^e} = \frac{H(r^* \| M^*)}{x^e} = \frac{yx^e}{x^e} = y \mod N
\]

\[
\Rightarrow \frac{\sigma^*}{x} = \frac{e \sqrt{y}}{x} \mod N
\]
Analysis

- **Transform Problem:**
 - Succeeds always
 - Generates exactly matching distribution

- **Implement SIGN / RO:**
 - Succeeds always (we choose r)
 - Generates exactly matching distribution:
 - **RO:** Outputs are uniform in \mathbb{Z}_N^*
 - **SIGN:** Follows from RO

- **Extract Solution:**
 - Succeeds iff A succeeds AND
 - $r^* \notin L_{M^*} \Rightarrow p = \Pr[r^* \notin L_{M^*}] = (1 - 2^{-\kappa})q_s$
 Setting $\kappa = \log_2 q_s$: $p \geq \frac{1}{4}$ assuming $q_s \geq 2$
What have we shown?

• We can turn any forger A against RSA-PFDH with success probability ε into an algorithm M^A that solves the RSA problem with probability $\varepsilon/4$.

• In reverse:
 If there exists no algorithm to solve the RSA problem with probability $\geq \varepsilon$ then there exists no forger against RSA-PFDH that succeeds with probability $\geq 4\varepsilon$.

• As proof is in ROM we have to add ”... As long as the used hash function behaves like a RO.”
How to implement RO? (In practice)

Formerly:
• Use hash function + PRG
• E.g. SHA2 in counter mode / SHA2-HMAC in counter mode keyed with SHA2(M)

Today:
• Use XOF
• E.g. SHAKE128
Conclusion

• Ad Hoc constructions problematic
 • Blinding / Index Calculus

• Proofs (even in ROM) allow to check construction

• There is one standardized RSA Sig with proof

• Similar situation for DSA (ROM proof)
Thank you!

Questions?