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v theoren In a > calculus with tvpes

In the previous '"Tagung' R.P. Nederpelt has given a description of
AUTOMATH ({12, 127). It has been long conjectured that every expression
in AUTOMATH has o neormel form. An unpublished proof of this has been

ieischhacker (3. Here a proof 1s presented that in a
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lculus closcly resembling AUTOMATH every correct expression has a
} .
e the llnes pointed out Yy Fleisch-

The importance Of this theorem is that it makes it possible for

(2]

us to decide wheihar two expressions are "equal”. In fact, together with

the Church-Rosscer cheoren (see Curry-Feys, [4]) we may deduce that two
1ff they have the same normal form. This helps
in proving that correctness of AUTOMATH expressions is decidable.

language

1018

e will give here cnly a very loose definition. A strict definition

We discern constzats a, b, ¢, ..., variables x, v, z, ..., the
svrhol T and varicus brackets as primitive symbols. Tor the sake of

so other constants like I, s and N.

a constant, a varlable, the symbol T are expressions;
1f°A and B arve expressions then 7A’B and [x,A]B are expressions.
Intultivoly expressions may be thought of as denoting cbjects:
“AY3 denctes the wvalue of the function B for the argument Aj [x,A]B
on essoclating to every x in the domain A the value
3 (which mav depend upon ¥). We will call x bound in {x,AlB.

“e shall discern 3-expressicns, 2-expressions and l-expressions. In-

"mathematical objects', e.g. the natural

tuitlively 3-expressions denote
number one 1s dencted by the cxpression 1, the successor-function in the

atural purbers may be denoted by s, the natural number two, being the

-

successor of cne, is then denoted by {11s,
> y vl
2-cupressions denote "classes” to which mathematical objects belong,

e.o. the set of natural nurhers, denoted by I, or the set of ail function-



mappings N into N, denoted by [x,NIN,
I-expressions denote "superclasses"” to which classes belong, e.3.

[

the superclass of all classes, denoted by T, or the superclass of the

. onr7?

classes of mappings of N into some other class, denoted by Lx,N.T. Syn-

tactically l-expressions are those cxpressions which have T as their last

Now every mathematical object belengs, in our conception, to exzactly
one class and cvery class to exactly one superclass. This induces 2 function
v,"called tvoe, mapping 3-expressions into 2-expressions and 2-expressicnas
into l-expressions. E.g. v(1) =N, y(s) = Ix,DNN, v®) = T etc. It follows
that we must discern between the natural number one, with (1) = XN, and
the real number one, denoted by l* with y(I*) =R, It will be clear now
that an expressions A is either a l-expression, or A 1s a 2-expression and
then v(A) 1s a l-expression or A Is a 3-expression and then ¥ (A) is a
2-expression and v (v(A)) a l-expression.

The type v must be thought of as defined on a finite number of
constants. It may be extended to a new constant a bv defining v(g) as a
certain 2-expression or l-expression which contalns only constants defined
before a. In thls case 2 must be thought of as denoting a definite object

.

of the class or superclass denoted by v(a). We will say that a 1s a de-

P

fined constant.

On bound variables the type ¥ 1is defined, too: in [x,A_3 the variable
¥, which might occur free in B, has type v(x) I A. Hence A must be a
2-expression or a l-expression (otherwise the expression [x,A.B is incorrect).
On composite expressions v -may be defined recursively.

We now give a notation for substituticn: the result of substituting

the expression A for the variable X in the expression B is denoted by
(x := A)B. A definition of substitution we will omit here.
The intuitive meaning of {A}B and [x,AJB leads us to a definition of
reduction as follows:
2) [x%,AIB = {y,Al(x := y)B if y is not free in B.
5)  IAI%,BIC : (x = A)C.
)y [x,Alf%}B.» B if x is not free in B. -
Intuitively the expressions to the right and to the left of > denote the

same objects. We extend the relation » to a monoteone quasi order on all

expressions, i.e. if A = C and B 2 D then {AIB - {C'D and {x,ATR = [x,CID.



Now there are rules according to which it may be decided whether
expression is correct. One of these was mentioned above: in [x,A]B, A

should be either a 2-expression or a l-expression. The maln ideas a

a) A correct expression does not contalin {ree variables or undefined

constants,

> -

b) {AlB is only correct if B denotes a function and ~ belcngs to the

domain of that function (L.e. A is not a l-expression and (&) is

the domain of B).

fined constant a, v(a) should be correct with respect o the
3

constants defined before,

2. The normal form theorem

c¢) The constants should be defined In due order, and for every de-
. bl P

We say that A 1s In normal form (in n.f.) 1f neither A nor any sub-

expression of A i1s 2 or n reducible, It follows that if A iIs in norzal

form then

A = [xi,B!,T[xZ,BZJ‘..ixm,Bm]{Dl}...{Dn}p
where n, m are ncn-negative integers, p denotes a constant, a variable or
the symbol T and Bl""B“’ Dl""Dn are in n.f. We say that A has =2 norzal
form if B in n.f. ewists such that A = B. We now introduce the nora T on

expressions as follows

T(a) = t(y(a)) for all defined constants a.
T(b) =0 for all undefined ccnstants b,
T(x) = 7(A) if x is bound by [x,Al.
T(y) =0 if v is” free.
) if t(A) # 0 and <(B) = [t (A)IP for a certain symbol-
t({A}B) = string P

0 otherwise

[t(A)IT(B) if 1(A) # 0 and *(B) # O

1(Ix,ATB)
L0 otherwise

A strong point of this norm is that is is invariant under substitution

reduction:

Theorem 1: Tf 1(B) # 0 and t(A) = T(x) # 0 Lhen'T((x 1= A)D) = t(B)
The proof is easy when substitution [s well defined.

Theorem 20 If 1(A) # 0 and A = B thon T (B) = {(a).

and



We will prove this for @ reduction:

Suppose A © {C}H x,DJE and B = (x := C)E.

As  1(A) # 0 we know that ©(C) # 0 and ([ x,DIE) = [t (C)It(A).

Hence 1([x,DIE) # 0 and it follows that t([x,DIE) = [t(D)Jt(E).
follows that T(D) = 1(C) and T(E) = 7(A). Moreover 1(x) = 1(D)

(D) = 7(C). There-

7(E) = 1(4A).

It
because x is bound by [x,DI}, hence 1(x)

11

fore, by theorem I, 7(B) = 7((x := C)E)
The next theorem is the crucial part in our proof.

Theorcen 3: If A dis in n.f. with 7(A) = 7(x) # 0 and B is in n.f. with

T(B) # , then C in n.f. exists such that (x := A)B > C.
The proof 1s complicated and proceeds by double induction:
1) with respect to the length of 71(a),
I1) with respect to the length of B. |
The difficulty lies in the case when B = {D!x, because then, by substituting
A for x in B, an expression 1s obtained which is in general not in normal
form.
The next theorem is an easy consequence of theorem 3.
Theorem 4: If 7(A) # O then A has a normal form.
We now state

Theorem 5: If A Is correct then 1(A) # 0.

From theorem 4 and 5 now follows

Theoren f: If A 1s correct then A has a normal form.
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