Iz1,

Department of Mathematics PREPRINT. To be published in the
Technological University Proceedings of the Symposium
Eindhoven, on APL (Paris, December 1973),
The Netherlands. ed. P. Braffort.

A Verifying Program for AUTOMATH

by I. Zandleven *)

0. Summary
This paper describes the AUTOMATH verifier which is currently being

operated at the Technological University at Eindhoven.

The description is given in terms of a number of procedures, written
in an ALGOL-like language.

The contents are:

1. General remarks.

The description language.

The translator.

Some basic notions and procedures.

Substitution,

Reductions.

CAT and DOM.

Definitional equality.

Correctness of expressions.

-

S O 0NN W

Correctness of lines.

—
.

A paragraph system.
12. Final remarks.
For the theoretical background we refer to the papers of Prof. de Bruijn,

D. van Daalen and R. Nederpelt: [1], [2], [3] and [6].

*) The author is employed in the AUTOMATH project and is supported by the

Netherlands Organization for the Advancement of Pure Science (Z.W.0.).

General remarks

The aim of this paper is to give a rough description of how the AUT-68

and AUT-QE verifier is constructed and how it works. Most of the
procedures are much simplified for the sake of clarity and so as not
to bother the reader with topics like memory organization, error

messages etc.

The whole verifier is embedded in a conversational system (operating
via a terminal) in order to control the amount of work the program
might do in certain cases (mostly when an error in the AUTOMATH text
has been made). The parts of the procedure texts, whose execution is
(partly) controlled by human intervention, are placed between the
brackets ?(and)? .

Furthermore there is the opportunity to the user to debug the text

on-line,

Notations

Expressions are denoted by A,B,...,Al,A2,...etc.

Syntactical identity is denoted by =

Bound variables in abstraction expressions are denoted by X,¥,...;

thus e.g. [x,A]B.

Expressionstrings are denoted by Z, T,...

An expression, occurring in an expressionstring I is denoted by I
with a subscript; thus I = (I;,...,5,), where I are the expressions

occurring in & (i=l,...,n).

Each non-empty string I can be divided into two parts:
5+
AN

the last expression of I

the rest of I (which may be empty).
Example:

If I= A,B,C(D,E), F(G,H) then

£* = F(G,H),I~ = A,B,C,(D,E).

1.3.7. The composition of a string is denoted by the parenthesis ((and))
e.g.: T = ((I*,z7)).

1.3.8. An indicator string [3,§2.13] is denoted by I, and a context [3,82.2]

by a

1:3.9. Sometimes, in theoretical discussions, the notation of D. van Daalen

is used [3,85.3].

2. The description language

2.1. The language used for the description of the verifying procedures,

is based upon ALGOL '60.

2.2. Several types (in the sense of ALGOL '60) are added, e.g. expression,

defined name, etc.

2.3. A construction cage....of begin.... end is added, to avoid repeated

if.. then.. else-constructions. The values of the case selector are
placed before theentries, as labels.
Examples:
The statement
if color= red then paint (river valley)
if_color= white then paint (Christmas) else
if color= blue then paint (moon) glig.paint {nothing),
may now be written as:
case color of
red: paint (river valley);
white: paint (Christmas);
blue: paint (moon);

otherwise: paint (nothing);

end;

2.4,

2.5.

2.6.

Another possibility is:
paint (gggg color of
red: river valley;
white: Christmas;
blue: moon;
otherwise: nothing;
end);
So the case-construction may be used for both statement selection and

assignment selection.

Some non-ALGOL symbols are used, e.g. |, #,..., and sometimes procedure
identifiers are defined as infix, e.g. d OLDER THAN b would be written
OLDERTHAN(d,b) in correct ALGOL.

Each procedure, whose identifier is written in capitals or non-ALGOL

symbols, is explained.

No use is made of the parameter device: value. If an actual parameter
has to be evaluated, this is done once only at the beginning of the
procedure. All further calls are calls by reference to a program

variable.

The translator

Before AUTOMATH texts are presented with the verifier, they are passed
through a translator. One may consider this translator as a pre-

processor, checking the context-free part of the AUTOMATH syntax

(parentheses, commas etc.), coding the identifier-paragraph identification

(see §11), completing the expressions written in shorthand, etc.

Some basic notions and procedures

Shapes
Most of the procedures must be able to distinguish the different charac-

teristic forms in which expressions appear.

4.2,

4,2.

For this purpose we introduce the notion shape, which represents the
outhermost characteristic form of an expression.
E.g. the expression:
<A(B)>C([x,DIE)
has the "application shape', symbolically denoted by an application

expression such as <P>Q or <Ej>E;.

The shapes, and their symbolism, which are used, are:

shape symbolism
type : type

prop prop
variable variable
bound variable boundvar
constant shape d(z)
application shape <A>B
abstraction shape [x,A]B

When using this symbolism for the shapes, we will permit ourselves to
use the sub-elements of it, as expressions on which to operate (without
explicit declaration of and assigment to the program variables). So

we may write, for example:

if shape (E)= [x,A]B then domain:=A else...

Primitive procedures

Often, during the verificaton process of a book B we need the indicator
string, the middle expression or the category expression of a certain
line of B. Each line in the book B is uniquely indicated by the name
introduced in the identifier part of that line (possibly with a para-
graph reference, see §11). These names will belong to the ALGOL-type
definedname.

Because an indicator string may be considered as a string of expressions,

we may introduce the

expressionstring procedure INDSTR (d);

definedname d;
comment INDSTR becomes the indicator string of the line in which d is
defined;

For the middle and category expression procedures:

4,2.2. expression procedure MIDDLE (d);

definedname d;
comment MIDDLE becomes the middle expression of the line in which d is
defined. Of course this procedure is only allowed for those d

which represent an abbreviation.

4.2.3. expression procedure CATEGORY (d);

definedname 4;

comment CATEGORY becomes the category expression of the line in which
d is defined (both for EB lines, PN lines and abbreviations);

The bodies of these procedures cannot be explained without going into
details of memory organization, a subject which is beyond the scope of

this note.

4.2.4, Another primitive procedure, OLDER THAN , will be explained in §8.2 .,

5. Substitution

5.1. We have introduced two different shapes (and codings) for variables to
be able to distinguish properly between all the variables occurring in
an expression.

By ''shape=variable' we code the variables which occur in indicator

strings (these variables are sometimes called parameters).

By "shape=boundvar' we code the variables which occur in abstractors.

Futhermore, in one AUTOMATH book, all binding variables (i.e. variables

occurring as x in [x,A]...) get different code-numbers. So the substi-

tution becomes a simple replacement operation.

Now there is only one possible way to get a so-called clash of variables,
namely in the following example.

Suppose we have an expression like

[x,A](...,<B(x)>[y,Cl[x,AID(y),...).
If we want to reduce the expression between the dots (by B-reduc-
tion), we will obtain the expression

[x,AID(B(x))
and we see that the x in D(B(x)) is bound by the wrong abstractor now,
It is claimed by the author that by this coding system no clash

(conflict, confusion) of variables arises during the verification

process of AUTOMATH.

5.2.

5.2.1.

5.2.1.1.

Substitution for free variables
At first we define a procedure SUBST, which will replace free variables
(shape=variable) by expressions, as follows:
Let v be astring of free variables (mutually distinct),
let T be an equally long string of expressions,
let E be an expression.
The procedure SUBST constructs a new expression by replacing in E all vj
by the corresponding ;.
The procedure (function) identifier SUBST will become the resulting ex-—
pression: [vy,...,v /T1,...,Tu JE (see (3] for this notation).
We call this procedure by e.g.
SUBST (v,T,E)
The string analogue of SUBST(v,I,E) , STRINGSUBST(v,I,Z) means:

replace, in all £y, all vj by the corresponding T .
Procedure text

expression procedure SUBST (v,r, E);

expression E; expressionstring v,T;

comment shape (v;) must be variable;
SUBST:=

case shape (E) of

variable : if 3Jj0:=i (vi=E) then rjp else E ;
d(x) : d(STRINGSUBST (v,I,E)) ;

<A>B : <SUBST(v,T,A)>SUBST(v,T,B) ;
[x,A]B : [x,SUBST (v,I,A) JSUBST(v,T,B) ;

otherwise : E ;

end;

expressionstring procedure STRINGSUBST(v,I,Z);

expressionstring v, ,I;

comment shape (vi) must be : variable;

STRINGSUBST is the string—analogue of SUBST;:

STRINGSUBST:= if I = ® then @
else ((STRINGSUBST(v,T,5~), SUBST(v,r,z*)))

5.3.1.

6.2,

Substitution for bound variables (shape=boundvar)

This is like the substitution for free variables (apart from the fact that

only one boundvar at a time is substituted for). Therefore we will only

give the procedure heading.

expression procedure BOUNDSUBST(x,A,E),

boundvar x; expression A,E;

comment A is either an expression or another boundvar to substitute

for x in Ej .

Reductions
The reductions involved in the verification of correctness of =- formulas

(cf. §8) are a-, B-,n— and ©&-reduction. See also [3, §2.12 and §6.2].

a- reduction
To perform an o-reduction one can easily use the procedure BOUNDSUBST.
For an expression [x,A]B, where x is to be replaced by y (say), we have
simply to construct

[y,AIBOUNDSUBST (x,y,B)

(y must be new of course).

B-reduction
The B-reductor is written in the form: AﬁB, where E represents a boolean
procedure with two parameters, A and B.
A typical use of this procedure is e.g.
if EIEEZ then A:=E; else...
If a B-reduction is applicable to A (so A=Z<A;>[x,A,]A3) then B becomes
[x/A10A3, and the procedure identifier gets the value true.
If A has the form <A;>A; where As; does not have an abstraction shape,
so that no direct B-reduction is possible, then the procedure tries
to reduce A with B-and/or §-reduction so as to obtain the form

[x,A3]A;. At that point the actual B-reduction can be carried out.

6.2.1.
6.2.1.1.

6.3.

Procecure text
boolean procedure A>B;

B

expression A,B;
comment if A is reducible by 8-reduction, then B becomes the B-reduct
of A;
if shape(A)=<P>Q then

begin boolean possible;

possible:= shape(Q)= [x,RIT;
if not possible then

begin boolean continue; continue:= true;

while continue do
?(begin case shape(Q) of
<WS:cmmhmm=(%U
d(Z): continue:= QU
otherwise: continue:= false;
end;
if continue then
begin Q:=U; possible:=shape(Q)= [x,R]lT;
continue:=not possible;
end;
end)?;
end;

if possible then

begin B:=BOUNDSUBST (x,P,T): §:=true;

end

else §:=false;

end

else §:=false;

end;

n-reduction

The whole procedure runs under control of the boolean "etareduction
allowed", which may be set or reset by the user. When reset (etareduction
allowed=false), the verificator can only use a-, B- and S-reduction.
Interestingly enough, in the AUTOMATH texts, checked so far, n-reduction
has almost never been been used.

The n-reductor is written in the same form as the B-reductor: A;B.

6.

6.3.1.

3.

We have for A the following cases.
i) A=[x,PI<Q>R.
a) If Q#x then the procedure first tries to reduce <Q>R
b) If Q2x, but x occurs in R then the procedure first tries to
remove X in R by reducing R.

c) If Q>x and x does not occur in R, then the n-reduct (B) becomes

R and % gets the value true.
ii) A=[x,PlQ, Q=d(%) or Q=[y,R]S
Now the procedure first tries to reduce Q, and afterwards tests if
an n-reduction is possible.
In either case if no n-reduction is possible, the procedure identifier
% gets the value false,

There appear two procedures in which must still be explained.

E,

where Ey and E, are expressions.

Firstly there is the procedure to declare as boolean procedure E12E2;

This procedure investigates whether E; and E; are definitionally equal,
and is described in §8.

Secondly there is the procedure OCCURS IN, which searches an expression
for occurrences of a specific bound variable. This procedure is defined

as follows.

Procedure text for OCCURS IN.

boolean procedure x OCCURS 1IN E;

boundvar x; expressiocn Ej;

OCCURS 1IN:=

case shape(E) of
begin

boundyar XZE;

d(z) :3; x OCCURS IN I
<A>B :x OCCURS IN A or x OCCURS IN B;
[y,AlB :x OCCURS IN A or x OCCURS IN B;

otherwise :false;

end;

6.3.2.1.
6.3.2.1.1.

6.3.2.2.

Procedure text for the n-reductor

boolean procedure A%B;
expression A,B;
commen t if A is reducible by n-reduction then B become
of Aj;

if etareduction allowed then

if shape(A)=[x,P]Q then

case shape(Q) of

<R>T: if x2R then
if not x OCCURS IN T then

begin %:=true; B:=T

end

else

?(if T2T; and not x OCCURS IN T

then begin %:=true; B:=T

end
else if QzQ; then >:=[x,PlQ17B
else ;:=false)?

else if QzQ1 then %:=[x,P]Q1%B

else ;:=false;

d(z): if Q3Q; then ;:=[x,P]Q1;B

else ;:=false;

[x,RIT: if Q>Q1 then %:=[x,P]Q1;B

1

else 3:=false;
otherwise: §:=false;

end

else>;:=false;

end;

else ﬁ:=false;

s the n-reduct

The part between ?(and)? has not yet been implemented.

Although such cases are easily constructed (e.g. [x,X]<x>f(x,y), where

f(x,y)§y), in practice this has never occurred up to ncw.

6.4,

6.4.1.

6.4.1.1.

§-reduction

The 8-reductor is written in the same way as the f-and n-reductor, and
tries to perform a single 8-reduction on the presented expression.If the
presented expression has shape d(Z), the procedure takes the middle expres-
sion of the line where d is defined (=MIDDLE(d)) and replaces the free
variables in it (i.e. the elements of INDSTR(d))by the expressions of X.

Procedure text

boolean procedure A%B;
expression A,B;
comment if A reducible by S§-reduction then B becomes the &-reduct of A.
if shape (A)=d(Z) then
if d represents an abbreviation then

begin Ri=true; B:=SUBST (INDSTR(d), %, MIDDLE(d));

end

else g:=false

else §:=false;

end;

CAT and DOM
As pointed out in [3, §6.4], we need two functions, CAT and DOM,to com-—
pute mechanically the category (type) and the domain of an expression

respectively.

The '"mechanical type" function CAT is defined by induction on the length -
of the expressions as follows.
Let B be a correct book and 0 a correct context
i) If o=x; E a1,..., Xpn E oy then CAT(x;):=aj
ii) 1If d is an abbreviation constant, defined in a line of B by
d:=A E B, with indicator string I,
then CAT(d(Z)):=[I/Z]B
iii) CAT(<A>B):=if CAT(B)=[x,P]Q
then [x/A]Q
else <A>CAT(E)

7.2,

7.2.1.,

7.3.

iv) CAT([x,AlB):=[x,A]CAT(B)

CAT is not defined for variables with shape=boundvar (see §5.1), because
in the verification process there is no need for it. (§89.5)

Futher CAT is not defined for l-expressions, of course.

It is easy to see that, if the argument for CAT is a correct expression,

the outcome will again be correct.

The procedure text of CAT reflects the given definition completely.

expression procedure CAT(E);

Expression E;
CAT:=

case shape(E) of

begin
variable : CATEGORY(E);
d(r) : SUBST(INDSTR(d), £, CATEGORY(d));
<A>B . if shape(CAT(B))=[x,P]Q then BOUNDSUBST(x,A,Q)

else <A>CAT(B)
[x,A]lB : [x,AICAT(B);

otherwise :undefined;

end;

The "mechanical domain" function DOM
This procedure has to yield (where possible), for a given expression A,
an expression o, such that FA E [x,a]8 or } A=[x,a]B.
For expressions A of the form [x,B]C, the computing of the domain is
trivial: DOM(A)=B.
If A is a variable, we may compute the domain of the category of A.
More difficult is the case where A has the shape

d(Z) or the shape C.
If we try to reduce A, we may end up with a PN (e.g.: d(r)zf(T),f:=PN).
On the other hand, if we take the category of A by computing CAT(A),
we may obtain type or [xj,aj;]...[xpy,a,]type.
To deal with this problem we use the following strategy. At first CAT(A)

is computed, and presented to DOM (N.B. This is a recursive call, so

possibly CAT(CAT(A)) is computed). If DOM(CAT(A)) does not yield a domain

at all, then a 6- or B8-reduction on A is carried out (if possible),

and the reduct is again presented to DOM.

Since only 1,2 and 3-expressions are investigated, the whole process can

be given by the following tree figure:

é 8’6 \A’ __B’(S e o o=
l v
B’(S B,G 1 8,6 !

CAT (A) —_— B 5. CAT(A') 223 B' ——> .- -
’ l
l \Z

CAT (CAT(A)) CAT (B) CAT (CAT(A"))

7.3.1. Procedure text
7.3.1.1. expression procedure DOM(A);

expression A;
case shape(A) of
[x,B]C : DOM:=B;
variable : DOM:=DOM(CATEGORY (A)):
d(y),C : Eggig D:=DOM(CAT (A));
if undefined (D) then
if AzA; then DOM:=DOM(A;)
else if AzA; then DOM:=DOM(A;)
else DOM:=undefined
else DOM:=D

end;
otherwise : yndefined;

end;

8.2.

Definitional equality

To verify the correctness of a given =-formula we will use the
Church—Rosser theorem:
if A=B then A>C<B for some C
(see also [3, §6.3.11).
This definition is the guide for the procedure D Uhich we will introduce

here.

Description of 2

The type of the procedure is boolean, and the identifier will be written
in infix notation, viz. AEB (in the same way as for ;, 3 etc.).

Roughly speaking,in order to check AQB, the procedure tries to reduce A
and/or B until either the two expressions are identical or the decision
AQB can be made.

It is not always necessary for both complete expressions to be present
during the whole reduction process. If, for example, A=d(I,, Z£,, I3) and
B=d(X;, Zy, L3) then the procedure needs only parts of both expressionms,
namely Z, and Z,, apd will check ZZEZH.

So, in general, the procedure uses recursive calls, applied to sub-expres-—
sions, following the monotonicity rules described in [3, §5.5.6].
Recursive calls are also used for the reduction sequences. Firstly the pro-
cedure tries, if necesary, to reduce one of the expressions A and B. Which
is reduced is a matter of strategy.

If one of the two expressions 1s reduced, one could continue the equality-
check by using an Zterative or a recursive method. A recursive method is
chosen in order to make the algorithm more readable.

Example :

If A=d(Z) and B=<P>Q then the procedure first tries to reduce B by
B-reduction. If this succeeds, and the outcome is Bj, then the definitional
equality of A and B follows from that of A and B;.

Otherwise the procedure tries to reduce A to Aj(say) and checks A12B.

If this also fails, then the procedure identifier 2 gets the value false.

Type inclusion
If we want to verify A E B, we check |A and B, compute CAT(A) and check
CAT(A)QB; so CAT(A) is the first parameter and B is the second parameter

of the procedure call.

8.

8.

3.

3.

In order to accept type inclusion as well, we add a slight extension to
2, namely:

[x,Altype “type
will be accepted as correct, but not

typellx,Aleype
The same holds for prop. So the procedure is no longer symetrical for
l-expressions.
(Notice that calls are sometimes made with reversed order of the arguments
of 2, but as one can see in the procedure text these cases can never refer
to l-expressions).

Now the definition of 2 is exactly the same as that of ¢ [3, §6.].

OLDER THAN

The procedure D needs, in one special case, namely d(E)Bb(F) and d#b, the
boolean procedure OLDER THAN, to decide which of d and b must be reduced.
It seems a good strategy to start off by reducing the younger of the two,
i.e. the constant which was the more recently, for in this way we have

a chance of reducing it to the other.

boolean procedure d OLDER THAN b;

definedname d,b;

comment OLDER THAN:= the line in which b is defined, appears later in

the book than the line in which d is defined;

8.4,

8.4.1,

boolean procedure

Procedure text of D

expression

case

E1, Ep;

begin

(type, type)

(type, otherwise)
(prop, prop)

(prop, otherwise)
(variable, variable)
(variable, d(I))
(variable, <A>B)
(variable, [x,AlB)
(variable, otherwise)
(boundvar, boundvar)
(boundvar, otherwise)

(d(Z), b(I))

(d(Z), <A>B)

(d(Z), [X,A]B)

(d(r), otherwise)
(<A>B, <C>D)

(<A>B) [X)C]D)

(KA>B, otherwise)
([x,Al B, type)
(X,4 B, prop)
([x,AB, [y,C]D)
([x,A]B, otherwise)

end;

D
E1= Ep;

(shape (E;), shape(Ez))2£

true;
false;
true;

false;

H ElEEz

if E>Ej; then E12E22 else false;

. $
: l£ E>>E»5 then E12E22 else false;

: iﬁ_Engzz then E12E22 else false;

false?

EIEEQ;

: consider (variable, shape(E;))

: iﬁ d=b then

iﬁ ZEQF then true

else ?7(if E1>E1; then E112E2 else false)?

Z5E f —&n AL AL L LA
else if d OLDER THAN b then

if E»>Epp then E12E22 else false

else if E1>E11 then E11QE2 else false;

ii E»>E55 then glgEzz else

if E1§E11 then EllgEz else false
.)

if EpSE, then E 2, else

ii ElgEll then E112E2 else false;

: consi%er reverse (i.e.(shape(Es), shape(Ey)))

: iﬁ AEC and BQD then true

. D
else ?2(if Ef%Ell then E; =E; else

if_E2>E22 then E12E22 else false)?;

: if EIsEl1 thgn E112E2 else

if EhEp, then E,0E,, else false;
consiger reverse;

BQEz;

BQEZ;

: if AQC then BQBOUNDSUBST(y,x,D) else false;

1 congider reverse;

8.4.2,

boolean procedure 212222;

expressionstring L1, Io;
comment P is the string analogue of 2;
gD :=if Z;=@ then I,=0
- - +
else I §222 and Zl+ 222 5
Correctness of expressions.)

Correctness of an expression is checked by the boolean procedure " }",
operating on an expression (say E) and the incicator string (say I)
belonging to E. A procedure call is written like I | E.
Mentioning I is necessary, on account of the free variables in E which
must all appear in I,
Two non-trivial cases arise:
1) 1if shape(E)=<A>B, then the "applicability'" (let us say) of B to A has
to be checked.
This is done by looking at :CAT(A)QDOM(B). (see also [3, §6.4.2.3))
2) if shape(E)=d(Z) then
firstly : all I must be correct,
secondly : all I; must have the correct categories.
In the case 2 there is a difficulty:
Let us consider the following book:
B * o :=EB ; type.

* :=EB ; a

QR

a
* f :=PN ; type
* B

:=EB ; type
* b :=EB ; B

T & D

* g :=f(8,b);type.
Now: (8,b) Ff(B,b), nevertheless the string of types expected by f is not
definitially equal to the string of given types:

type, aPtype, g
We may conclude that after checking the definitional equality of the first
two categories, we have to replace, in the category string of (y,a), the
variable o by g
This replacement (substitution) is, in a more general way, done by the

procedure CORRECTCATS.(see also [3, §2.5. and 5.4.6.])

9.3.

9'4.

CORRECTCATS(Z,1);
L,I;

boolean procedure

expressionstring
CORRECTCATS : =
if £=@ then I=0 else
CORRECTCATS(Z ,I) and
catzhyBsuBsT (17,57, cat (1)) ;

boolean procedure I |E;

expressionstring I; expression Ej;

b

case shape(E).gg
type true;
prop true;
variable 3; (I;=E);
d(z) 1 t L and CORRECTCATS(Z,INDSTR(d));
<A>B I}A and T |B and CAT(A)BDOM(B);
[x,A]B : ITFA and ((I,x)) FB; (see 9 5.)
otherwise : false;

end;

boolean procedure

I tz;

expressionstring I,%;
comment t is the string analogue of |

b=

if I=Q then true
else I E I and I} Z+;

F [x,P1Q

A comment on I

In this case, the checker, after checking I F P, adds a 'waste-line" to

the book, of the form:

I * waste :=EB ;P.

If we denote this new book by B', then the checker checks the statement

B', ((I,waste)) | [x/waste]qQ.

For this reason the correctness of a bound variable will never be asked

for, and its CAT or DOM will never be computed.

Only in D can the shape boundvar occur.

10.

1.

11,

The correctness of lines

The checking for correctness of an AUTOMATH line is now easy to describe

in terms of already defined procedures:

boolean procedure CORRECT (LINE);
AUTOMATH line value LINE;
CORRECT :=

case form of the line is of
I *N:=EB;E, :I FE;
I*N:=PN; E; :I FE;
I*N:=FE ;E :I FE and I | E, and cAT(E))2 Eyp;
otherwise: false;

end;

A paragraph system

As already mentioned in [3 section 2.16,] the syntactical definition of
AUT-68 (and AUT-QE) forces us to write mutually exclusive names
(identifiers) for both variables and constants. This, of course, is very
annoying to the writer of AUTOMATH. Therefore we have introduced a
paragraph system. Each AUTOMATH text may be divided into sections, called
paragraphs. A paragraph starts with:

+ paragraph name.
and ends with:

- paragraph name.
In a paragraph one may write AUTOMATH lines and other paragraphs (sub-
paragraphs). Finally the whole book is contained in one big paragraph,
so all paragraphs occur nested. Behind the identifier of a given con-
stant one may write a so—called paragraph reference, to indicate in
which paragraph this identifier has been defined. An identifier b
with paragraph reference to (say) paragraph B is written in the form:
b"P]—Pz—...—Pn", where P
of P

yAd
An identifier, not followed by a paragraph reference, refers to a con-

is a sub-paragraph of P is a sub-paragraph

2 1°F3
«+, and P is the paragraph in which b is actually defined.

stant or variable defined in the same paragraph, or, if not found there,

in the paragraph, which contains that one, ans so on.

Example: (a :=... denotes a definition of a

...(a)...derotes a reference to a)

line nr book reference to line nr:

+ A.

2 e (p"AM) ... i
3 ce ("B ...

no good reference (p has not been

defined in B).

4 Pi=e.s

5 ceoaP)ees 4

6 ... (p"A-B-C")... 4

7 ce (P"A) . 1
- C.

8 eee(P)ee. I
- B.

Reference 1list

[1]

[2]

(3]

(4]

(5]

[6]

De Bruijn, N.G.,

De Bruijn, N.G.,

van Daalen, B T.,

De Bruijn, N.G.,

Jutting, L.S. v. Benthem,

Nederpelt, R P,,

The Mathematical language AUTOMATH,

1ts usage and some of 1ts extensions;
Symposium on Automatic Demonstration
(Versailles, December 1968), Lecture
Notes in Mathematics, Vol. 125,

p, 29-61, Springer Verlag, Berlin 1970.

AUTOMATH, a language for mathematics;
notes (prepared by B. Fawcett) of a
series of lectures in the Séminaire
de Mathématiques Superieures,

Université de Montréal, 1971.

A description of AUTOMATH and some
aspects of its languagetheory, this

volume.

Lambda Caleculus notation with

nameless dwnmies, a tool for

automatic formula manipulation, with
application to the Church-Rosser
theorem, Indag. Math., 34, No. 5, 1972,

The development of a text in AUT-QE,

this volume.

Strong normalisation in a typed
lambda-caleulus with lambda-structured
types, Doctoral dissertation,
Technological University Eindhoven,

1972.

12, Final remarks

12.1. We repeat that the procedures given here form only an outline of the
actual verifier. Many more parameters are passed through the procedures
to avoid duplication, to control critical passages, to permit communi-

cation with the user and so on.

12.2. With regard to efficiency, improvements may be possible. For example,
parts of the strategy, implemented in 2, are more or less arbitrary,
although suggested by reflexion and practical work. Experience and
research may lead to better strategies.

Also the use of the features of [4] may lead to a more efficient

verifier.

12.3. We are pleased to say, in any event, that the verifier has been working

satisfactorily up to now.

12.4. An example of a text checked with the described verifier is found in [5].

