
Department of Mathematics

Technological University

Eindhoven,

The Netherlands.

PREPRINT.TO be published in the

Proceedings of the symposium

on APL (Paris, December 1973),

ed. P. Braffort.

A Verifying Program for AUTOMATH

by I. Zandleven *)

0. Summary

This paper describes the AUTOMATH verifier which is currently being

operated at the Technological University at Eindhoven.

The description is given in terms of a number of procedures, written

in an ALGOL-like language.

The contents are:

1. General remarks.

2. The description language.

3. The translator.

4. Some basic notions and procedures.

5. Substitution.

6. Reductions.

7. CAT and DOM.

8. Definitional equality.

9, Correctness of expressions.

10: Correctness of lines.

1 1 , A paragraph system.

12. Final remarks.

For the theoretical background we refer to the papers of Prof. de Bruijn,

D. van Daalen and R. Nederpelt: [I], [2], [3] and [61.

*) The author is employed in the AUTOMATH project and is supported by the

Netherlands Organization for the Advancement of Pure Science (Z.W.O.).

1. General remarks

1.1. The aim of this paper is to give a rough description of how the AUT-68

and AUT-QE verifier is constructed and how it works. Most of the

procedures are much simplified for the sake of clarity and so as not

to bother the reader with topics like memory organization, error

messages etc.

1.2. Thewhole verifier is embedded in a conversational system (operating

via a terminal) in order to control the amount of work the program

might do in certain cases (mostly when an error in the AUTOMATH text

has been made). The parts of the procedure texts, whose execution is

(partly) controlled by human intervention, are placed between the

brackets ? (and) ? .
Furthermore there is the opportunity to the user to debug the text

on- line..

1.3. Notations

1.3.1. Expressions are denoted by A,B, ..., AI,A2, ... etc.

1.3.2. Syntactical identity is denoted by E

1.3.3. Bound variables in abstraction expressions are denoted by x,y,...;

thus e.g. [x,A]B.

1.3.h. Expressionstrings are denoted by C, r , . ..

1.3.5. An expression, occurring in an expressionstring C is denoted by C

with a subscript; thus C 5 (I1,...,&), where C; are the expressions

occurring in C (i=l, ..., n).

1.3.6. Each non-empty string C can be divided into two parts:

C+ := the last expression of C

C' := the rest of C (which may be empty).

Example :

If C= A,B,C(D,E), F(G,H) then

C+ = F(G,H),C- = A,B,C,(D,E).

1.3.7. The composition of a string is denoted by the parenthesis ((and))

e.g.: C E ((c+,E' 1).

1.3.8. An indicator string [3,§2.13] is denoted by I, and a context [3,§2.2]

by a

133.9; Sometimes, in theoretical discussions, the notation of D. van Daalen

is used [3,§5.3].

2. The description language

2.1. The language used for the description of the verifying procedures,

is based upon ALGOL '60.

2.2. Several types (in the sense of ALGOL '60) are added, e.g. expression,

defined name, etc.

2.3. A construction case....of begin end is added, to avoid repeated - -
if.. then.. else-constructions. The values of the case selector are - - -
placed be£ ore the entries, as labels.

Examples :

The statement

if color- red then paint (river valley) - -
if color- white then paint (Christmas) else - - -
if color= blue then paint (moon) else paint (nothing), - -

may now be written as:

case color of - -
begin

red: paint (river valley);

white: paint (Christmas) ;

blue: paint (moon) ;

otherwise : paint (nothing) ;

end ; -

Another possibility is:

paint (case color of - -
begin

red: river valley;

white: Christmas;

blue: moon;

otherwise: nothing;

end) ; -
So the case-construction may be used for both statement selection and

assignment selection.

2 . 4 , Some non-ALGOL symbols are used, e.g. k, 0, ..., and sometimes procedure
identifiers are defined as infix, e.g. d OLDER THAN b would be written

OLDERTHAN (d ,b) in correct ALGOL .

2.5. Each procedure, whose identifier is written in capitals or non-ALGOL

symbols, is explained.

2.6. No use is made of the parameter device: value. If an actual parameter

has to be evaluated, this is done once only at the beginning of the

procedure. All further calls are calls by reference to a program

variable.

3. The translator

Before AUTOMATH texts are presented with the verifier, they are passed

through a translator. One may consider this translator as a pre-

processor, checking the context-free part of the AUTOMATH syntax

(parentheses, commas etc.), coding the identifier-paragraph identification

(see § I]) , completing the expressions written in shorthand, etc.

4 . Some basic notions and ~rocedures

4.1 . Shapes

Most of the procedures must be able to distinguish the different charac-

teristic forms in which expressions appear.

For this purpose we introduce the notion shape, which represents the

outhermost characteristic form of an expression.

E.g. the expression:

<A(B)>c([x,D]E)

has the "application shape", symbolically denoted by an application

expression such as <P>Q or <E1>E2.

4.1.1. The shapes, and their symbolism, which are used, are:

shape symbolism

type type

Prop Prop

variable variable

bound variable boundvar

constant shape d(C)

application shape &B

abstraction shape [x,AlB

4.1.2. When using this symbolism for the shapes, we will permit ourselves to

use the sub-elements of it, as expressions on which to operate (without

explicit declaration of and assigment to the program variables). So

we may write, for example:

if shape (E)= [x,A]B then domain:=A else... - - -

4.2. Primitive procedures

Often, during the verificaton process of a book 8 we need the indicator

string, the middle expression or the category expression of a certain

line of 8 . Each line in the book 23 is uniquely indicated by the name

introducedin the identifier part of that line (possibly with a para-

graph reference, see 511). These names will belong to the ALGOL-type

definedname.

Because an indicator string may be considered as a string of expressions,

we may introduce the

4 . 2 . 1 . expressionstring procedure INDSTR (d);

definedname d;

comment INDSTR becomes the indicator string of the line in which d is

defined;

For the middle and category expression procedures:

expression procedure MIDDLE (d);

def inedname d;

comment MIDDLE becomes the middle expression of the line in which d is

defined. Of course this procedure is only allowed for those d

which represent an abbreviation.

expression procedure CATEGORY (dl;

def inedname d ;

comment CATEGORY becomes the category expression of the line in which

d is defined (both for EB lines, PN lines and abbreviations);

The bodies of these procedures cannot be explained without going into

details of memory organization, a subject which is beyond the scope of

this note.

4.2.4. Another primitive procedure, OLDER THAN , will be explained in 58.2 .

5 . Substitution

5.1. We have introduced two different shapes (and codings) for variables to

be able to distinguish properly between all the variables occurring in

an expression.

By "shape=variable" we code the variables which occur in indicator

strings (these variables are sometimes called parameters).

By "shape=boundvar" we code the variables which occur in abstractors.

Futhermore, in one AUTOMATH book, all binding variables (i.e. variables

occurring as x in [x,~] ...) get different code-numbers. So the substi-
tution becomes a simple replacement operation.

Now there is only one possible way to get a so-calleddash of variables,

namely in the following example.

Suppose we have an expression like

[x,Al(. . . ,<~(x)>[y,Cl [x,Al~(y) ,. . .).
If we want to reduce the expression between the dots (by B-reduc-

tion), we will obtain the expression

[x,Al~(B(x))

and we see that the x in D(B(x)) is bound by the wrong abstractor now.

It is claimed by the author that by this coding system no clash

(conflict, confusion) of variables arises during the verification

process of AUTOMATH.

5.2. Substitution for free variables

At first we define a procedure SUBST, which will replace free variables

(shape=variable) by expressions, as follows:

Let v be astring of free variables (mutually distinct),

let r be an equally long string of expressions,
let E be an expression.

The procedure SUBST constructs a new expression by replacing in E all vi

by the corresponding r;.
The procedure (function) identifier SUBST will become the resulting ex-

pression: U vl , . . . ,vn/rl,. . . ,rnO E (see [31 for this notation).

We call this procedure by e.g.

SUBST (v ,r ,El
The string analogue of SUBST(V,~,E) , STRINGSUBST(V,~,~) means:
replace, in all Cj, all v; by the corresponding r; .

5.2.1 . Procedure text

5.2.1.1. expression procedure SUBST (v,I',

expression E; expressionstring v

comment shape (vi) must be variable;

SUBST : =

case shape (E) of - -
begin

otherwise : E ;

end ; -

5.2.1.2. expressionstring procedure STRINGSUBST(v,r,C);

expressionstring v,r,C;

comment shape (vi) must be : variable;

STRINGSUBST is the string-analogue of SUBST;

5.3. S u b s t i t u t i o n f o r bound v a r i a b l e s (shape=boundvar)

This i s l i k e t h e s u b s t i t u t i o n f o r f r e e v a r i a b l e s (apa r t from t h e f a c t t h a t

only one boundvar a t a time i s s u b s t i t u t e d f o r) . Therefore we w i l l only

g ive t h e procedure heading.

5.3.1. express ion procedure BOUNDSUBST(X,A,E),

boundvar x ; express ion A,E;

comment A i s e i t h e r an express ion o r another boundvar t o s u b s t i t u t e

f o r x i n Ej .

6. Reductions

The reduct ions involved i n t he v e r i f i c a t i o n of co r r ec tnes s of =- formulas

(c f . 58) a r e a-, 0-,n- and 6-reduction. See a l s o [3 , 52.12 and 56.21.

6.1. a - reduct ion

To perform an a-reduct ion one can e a s i l y use the procedure BOUNDSUBST.

For an express ion [x,A]B, where x i s t o be rep laced by y (say) , we have

simply t o cons t ruc t

[y , ~] ~ ~ ~ ~ ~ S U ~ ~ ~ (x , y , ~)

(y must be new of course) .

6.2. B-reduction

The @-reductor i s w r i t t e n i n t he form: A>B, where $ r ep re sen t s a boolean B
procedure wi th two parameters , A and B.

A t y p i c a l use of t h i s procedure i s e.g.

i f E1>E2 then A:=E2 e l s e . . .
7 B - -

I f a B-reduction i s app l i cab le t o A (so A E < A ~ > [X , A ~] A ~) then B becomes

I X / A ~ ~ A ~ , and the procedure i d e n t i f i e r g e t s t h e va lue - t r ue .

I f A has t he form <A1>A2 where A2 does n o t have an a b s t r a c t i o n shape,

so t h a t no d i r e c t B-reduction i s p o s s i b l e , then the procedure t r i e s

t o reduce A2 w i t h B a n d / o r &-reduct ion s o a s t o o b t a i n the form

[x,A~]AL,. A t t h a t p o i n t t he a c t u a l 8-reduct ion can be c a r r i e d out .

6.2.1. Proceeure t e x t

6.2.1.1. boolean procedure A>B; B
express ion A,B;

comment i f A i s r educ ib l e by B-reduction, then B becomes t h e B-reduct

begin

i f shape (A) dP>Q then - -
begin boolean poss ib l e ;

poss ib le := shape(Q)= [x,R]T;

i f n o t p o s s i b l e then -- -
begin boolean cont inue; cont inue:= - t r u e ;

whi le cont inue do -
?(begin -- case shape(Q) - of

begin

<R>S: cont inue:= QP

otherwise: continue:= f a l s e ;

end ; -
i f cont inue then - -
begin Q:=U; possible:=shape(Q)= [x,R]T;

continue:=not - poss ib l e ;

end; -
end) ? ; -

end ; -
i f p o s s i b l e then - -
begin B:=BOUNDSURST(X,P,T); $:=true; -

e l s e > :=fa lse ; - B -
end

e l s e : = f a l s e . - 8 - 9

end ; -

6.3. q-reduction

The whole procedure runs under c o n t r o l of t h e boolean "e ta reduct ion

allowed", which may be s e t o r r e s e t by t h e user . When r e s e t (e t a r educ t ion

a l l o w e d 3 a l s e) , t h e v e r i f i c a t o r can only use a-, 6- and 6-reduction.

I n t e r e s t i n g l y enough, i n t h e AUTOMATH t e x t s , checked s o f a r , q-reduction

has almost never been been used.

The q-reductor i s w r i t t e n i n t h e same form a s t h e 8-reductor: A>B.
rl

We have f o r A t h e fol lowing cases .

i) AZ[X,P]<Q>R.

a) I f Q$x then t h e procedure f i r s t t r i e s t o reduce <Q>R

b) I f Q l x , bu t x occurs i n R then t h e procedure f i r s t t r i e s t o

remove x i n R by reducing R.

c) I f Q>x and x does n o t occur i n R , then t h e n-reduct (B) becomes

R and > g e t s t h e va lue t r u e .
Q -

Now the procedure f i r s t t r i e s t o reduce Q , and af te rwards t e s t s i f

an Q-reduct ion i s poss ib l e .

I n e i t h e r case i f no Q-reduct ion i s p o s s i b l e , t h e procedure i d e n t i f i e r

> g e t s t h e va lue f a l s e .
Q
There appear two procedures i n >, which must s t i l l be explained. a D
F i r s t l y t h e r e i s t h e procedure = t o dec l a re a s boolean procedure E1=E2;

where E l and E2 a r e express ions .

This procedure i n v e s t i g a t e s whether E l and E2 a r e d e f i n i t i o n a l l y equa l ,

and i s descr ibed i n 58.

Secondly t h e r e i s t h e procedure OCCURS I N , which searches an express ion

f o r occurrences of a s p e c i f i c bound v a r i a b l e . This procedure i s def ined

a s fo l lows .

6.3.1. Procedure t e x t f o r OCCURS I N .

6.3.1.1. boolean procedure x OCCURS I N E ;

boundvar x ; express ion E;

OCCURS I N : =

case shape(E) of - -
begin

boundvar : xEE ;

d (x) : 3 i x OCCURS I N Ci

<A>B :x OCCURS I N A o r x OCCURS I N B; -
[~ , A] B :xOCCURS I N A o r x O C C U R S I N B ; -
o themi se : f a l s e ;

end ; -

6 . 3 . 2 . 1 . Procedure t e x t f o r t he n-reductor

6 . 3 . 2 . 1 . 1 . boolean procedure % B ;

express ion A , B ;

comment i f A i s r educ ib l e by n-reduction then B becomes t h e n-reduct

of A;

i f etareduction allowed then - -
begin

i f shape (A) =[x,P] Q then - -
case shape(Q) of - -
begin

D aR>T: i f x=R then - -
i f n o t x OCCURS I N T then -- -
begin >:=t rue ; B:=T

11 -

e l s e

? (i f T2Tl and n o t x OCCURS I N Ti - --
then begin > :=t rue ; B:=T -- n -

e l s e i f Q 1 then ; : = [x , P] Q ~ ~ B -- BQ -
e l s e > : = f a l s e) ? - n -

e l s e i f QBQl -- then -
e l s e > :=fa lse ;

n -

e l s e > := fa l se ; - r l -
[x,R]T: - i f Q>Q1 then >:=[X,P]Q~;B

r l - n
e l s e > := fa l se ; -. rl

otherwise: >:=fa l se ;
r l -

end ; -
e l s e z := fa l se ;

6 . 3 . 2 . 2 . The p a r t between ? (and j ? has no t y e t been implemented.

Although such cases a r e e a s i l y cons t ruc ted (e.g. [x , ~] < x > f (x , y) , where

f (x ,y)$y) , i n p r a c t i c e t h i s has never occurred up t o ncw.

The 6-reductor is written in the same way as the B-and n-reductor, and

tries to perform a single &-reduction on the presented expression.If the

presented expression has shape d(C), the procedure takes the middle expres-

sion of the line where d is defined M MIDDLE(^)) and replaces the free

variables in it (i.e. the elements of INDSTR(d))by the expressions of C.

6.4.1. Procedure text

6.4.1.1. boolean procedure 3 B ;

expression A,B;

comment if A reducible by 6-reduction then B becomes the 6-reduct of A.

begin

if shape (A) =d (I) then - -
if d represents an abbreviation then - -
begin $:=true; - B:=suBST(INDSTR(~), C, MIDDLE(^)) ;

else z:=f alse -
else $:=false;

end ; -

7. CAT and DOM

As pointed out in [3, 96.41, we need two functions, CAT and DOM,to com-

pute mechanically the category (type) and the domain of an expression

respectively.

The "mechanical, type" function CAT is defined by induction on the length *

of the expressions as follows.

Let be. a correct book and a a correct context

i) If 05x1 E a1 , . . . , Xn E an then CAT(xi) :=ai -
ii) If d is an abbrevia.tion constant, defined in a line of 8 by

d:=A E B, with indicator string I, -
then CAT(d(C)) := [I/c]B

iii) CAT(<A>B) :=if CAT(B)= [x,P]Q

then [X/A]Q

else <A>CAT (B)

i v) CAT ([x,A]B) :=[x,A]cAT(B)

CAT i s no t def ined f o r v a r i a b l e s wi th shape=boundvar (s ee §5.1), because

i n t h e v e r i f i c a t i o n process t h e r e i s no need f o r it. (59-5)

Futher CAT i s no t def ined f o r I -expressions, of course.

It i s easy t o s ee t h a t , i f t h e argument f o r CAT i s a c o r r e c t express ion ,

t h e outcome w i l l aga in be c o r r e c t .

7.2. The procedure t e x t of CAT r e f l e c t s t h e given d e f i n i t i o n completely.

7 . 2 . 1 . express ion procedure CAT(E);

Expression E;

CAT : =

case shape(E) of - -
benin

v a r i a b l e : CATEGORY (E) ;

end ; -

7 . 3 . The "mechanicaZ domain" function DOM

This procedure has t o y i e l d (where p o s s i b l e) , f o r a given express ion A,

an express ion a , such t h a t f A - E [x , a l ~ o r ~ A = [~ , ~] B .

For express ions A of t h e form [x,B]c, t he computing of t h e domain i s

t r i v i a l : DOM(A)zB.

I f A i s a v a r i a b l e , we may compute t h e domain of t he category of A.

More d i f f i c u l t i s t h e case where A has t h e shape

d(C) o r t h e shape C.

I f we t r y t o reduce A, we may end up wi th a PN (e.g.: d(C)?f(r) , f :=PN).

On the o t h e r hand, i f we t ake t h e category of A by computing CAT(A),

we may ob ta in - type o r [x l , a l] ...[xn,an]type.

To dea l wi th t h i s problem we use t h e fol lowing s t r a t e g y . A t f i r s t CAT(A)

i s computed, and presented t o DOM (N.B. This i s a r ecu r s ive c a l l , s o

poss ib ly CAT(CAT(A)) i s computed) . I f DOM(CAT(A)) does n o t y i e l d a domain

a t a l l , then a 6- o r B-reduction on A i s c a r r i e d out (i f p o s s i b l e) ,

and t h e reduct i s aga in presented t o DOM.

Since only 1,2 and 3-expressions a r e inves t iga ted , the whole process can

be given by the following t r e e f igure :

CAT (CAT (A)) CAT (B) CAT (CAT (A'))

7.3.1. Procedure t e x t -

7.3.1.1. expression procedure DOM(A) ;

express ion A;

case shape(A) of -
begin

[x,B]C : DOM:=B;

v a r i a b l e : DOM:=DOM(CATEGORY (A)) ;

d (1) ,C : begin D: =DOM(CAT (A)). ;

i f undefined (D) then - -
i f AaA, then DOM:=DOM(A1) - -
e l s e i f A A1 then DOM:=DOM(A1) -- B -

e l s e DOM:=undefined -
e l s e DOM:=D -

end ; -
otherwise : undefined;

end ; -

8. D e f i n i t i o n a l e q u a l i t y

To v e r i f y t h e co r r ec tnes s of a given =-formula we w i l l use t h e

Church-Rosser theorem:

i f A=B then A X < B f o r some C

(see a l s o [3 , 56.3.11).
D This d e f i n i t i o n i s t h e guide f o r t h e procedure = which we w i l l in t roduce

here .

8.1. Descr ip t ion of 2
The type of t h e procedure i s boolean, and t h e i d e n t i f i e r w i l l be w r i t t e n

D i n i n f i x n o t a t i o n , v i z . A=B (i n t h e same way a s f o r >, > e t c .) .
D r2 6

Roughly speaking , in o rde r t o check A=B, t h e procedure t r i e s t o reduce A

and/or B u n t i l e i t h e r t h e two express ions a r e i d e n t i c a l o r t h e dec i s ion

A ~ B can be made.

It i s no t always necessary f o r both complete express ions t o be p re sen t

dur ing t h e whole r educ t ion process . I f , f o r example, A-d(C1, C 2 , C3) and

Brd(C1, C 4 , C3) then the procedure needs only p a r t s of both express ions ,
D namely C 2 and Cq, apd w i l l check C 2 = C 4 .

So, i n gene ra l , t h e procedure uses r e c u r s i v e c a l l s , appl ied t o sub-expres-

d o n s , fol lowing t h e monotonici ty r u l e s descr ibed i n [3 , 55.5.61.

Recursive c a l l s a r e a l s o used f o r t he reduct ion sequences. F i r s t l y t h e pro-

cedure t r i e s , i f necesary , t o reduce one of t he express ions A and B. Which

i s reduced i s a ma t t e r of s t r a t e g y .

I f one of the two express ions i s reduced, one could cont inue t h e equa l i t y -

check by us ing an iterative o r a recursive method. A recursive method i s

chosen i n o rde r t o make t h e a lgor i thm more readable.

Excnnp Ze :

I f Azd(C) and B=<P>Q then t h e procedure f i r s t t r i e s t o reduce B by

6-reduction. I f t h i s succeeds, and t h e outcome i s B1, then the d e f i n i t i o n a l

e q u a l i t y of A and B fol lows from t h a t of A and B1.
D

Otherwise t h e procedure t r i e s t o reduce A t o Al(say) and checks A l = B .
D I f t h i s a l s o f a i l s , then t h e procedure i d e n t i f i e r = g e t s t h e va lue f a l s e .

8.2. Type inc lus ion

I f we want t o v e r i f y A E B , we check FA and b B , compute CAT(A) and check -
D CAT(A)=B; so CAT(A) i s t he f i r s t parameter and B i s t he second parameter

of t h e procedure c a l l .

I n o rde r t o accept type inc lus ion as w e l l , we add a s l i g h t ex tens ion t o
D
=, namely:

D
[x , ~] type =type --

w i l l be accepted a s c o r r e c t , bu t n o t
D

type=[x,A] type

The same holds f o r - prop. So the procedure i s no longer syrnetr ical f o r

1-expressions.

(Notice t h a t c a l l s a r e sometimes made wi th reversed o rde r of t h e arguments
D of =, bu t a s one can s e e i n t he procedure t e x t t hese cases can never r e f e r

t o I-expressions) .
D Now t h e d e f i n i t i o n of = i s exac t ly t h e same a s t h a t of 5 [3 , 56.1.

8.3. OLDER THAN
D D The procedure = needs, i n one s p e c i a l case , namely d (~) = b (I ') and dfb , t h e

boolean procedure OLDER THAN, t o decide which of d and b must be reduced.

It seems a good s t r a t e g y t o s t a r t o f f by r e d u c i n g . t h e younger of t h e two,

i . e . t h e cons tan t which was t h e more r e c e n t l y , f o r i n t h i s way we have

a chance of reducing i t t o t h e o ther .

8.3.1. boolean procedure d OLDER THAN b ;

def inedname d ,b ;

comment OLDER THAN:= the l i n e i n which b i s def ined , appears l a t e r i n

t he book than t h e l i n e i n which d i s def ined;

8.4. Procedure t e x t of 9

D 8.4.1. boolean procedure E l = E 2 ;

expression E ~ , E 2 ;
D =: =

case (shape (El) , shape(E2))of -
begin

(type, type)

(type, otherwise)

(prop, prop)

(prop, otherwise)

(va r i ab le , va r i ab le)

(va r i ab le , d(C))

(va r i ab le , <A>B)

(va r i ab le , [x,A]B)

(var iable , o the ru i se)

(boundvar , boundvar)

(boundvar, otherwise)

(d (U , b (r)

(d (C) , otherwise)

(<A7B, <C7D)

t r u e ; -
f a l s e ;

t r u e ; -
f a l s e ;

D
i f E2>E22 then E1=E22 e l s e f a l s e ; - - --

6 D
i f E2>E22 then E l = E 2 2 e l s e f a l s e ; - - --

D
i f E ~ ~ E ~ ~ then E1=E22 e l s e f a l s e ; - - --

rl f a l s e ;

El-E2;

consider (var iable , shape (E2))

i f drb then - -
S D

i f C=r then t r u e - --
D

e l s e ? (i f El>E11 then E11=E2 e l s e f a l s e) ? - -
6 -

--
e l s e i f d OLDER THAN b then -- - ..

i f E2>E22 then ~ 1 2 ~ 2 2 e l s e f a l s e - - --
D e l s e i f 8 l > ~ ~ ~ then E l l = E 2 e l s e f a l s e ; -- - --

i f E2>EZ2 then h!lg~22 e l s e - - -
D

i f E ~ ~ E ~ ~ then E11=E2 e l s e f a l s e - - --
6 D

i f E2>E22 then E1=E22 e l s e - - -
D i f E ~ ~ E ~ ~ then E11=E2 e l s e f a l s e ; - - --

consi2er reverse (i . e. (shape (E2), shape (El)))
D D i f A-C and B=D then t r u e - - --

e l s e ? (i f E1>Ell then - - -
U

i f F2>E22 then - -
B

i f ElbE11 then E ~ ~ ~ E ~ -
B - D

i f E 2 r E 2 2 then E l=E22 - n -

D 4 = E 2 e l s e -
D

E 1=E22 e l s e f a l s e) ?; --
e l s e

e l s e f a l s e ; --
consider reverse ;
D

B=E 2 ;
D

B=E2 ;
D D

i f A=C then B=BOUNDSUBST(y,x,D) e l s e f a l s e ; - - --
consider reverse;

S D
8.4.2. boolean procedure C1=C2;

expressionstring 11, C2;
S D D

comment 3L is the string analogue of =;
S D
== :=if - C1=O then C2:0 -

- SD -
else El -E2 and Clf Ex2+; - -

9. Correctness of expressions. (, k)

9 .1 . Correctness of an expression is checked by the boolean procedure " kt',

operating on an expression (say E) and the incicator string (say I)

belonging to E. A procedure call is written like I k E.
Mentioning I is necessary, on account of the free variables in E which

must all appear in I.

Two non-trivial cases arise:

1) if shape(E)=<A>B, then the "applicability" (let us say) of B to A has

to be checked.
D This is done by looking at :CAT(A)=DOM(B). (see also 13, 56.4.2.31)

2) if shape(E)=d(C) - then

firstly : all Ci must be correct,

secondly : all C; must have the correct categories.

In the case 2 there is a difficulty:

Let us consider the following book:

0 * a :=EB ; type. - -
a * a :=EB ; a
a * f :=PN ; type - -
0 * B :=EB ; type - -
B * b :=EB ; B -
b * g :=flB,b);type.

Now: (f3,b) kf(~,b), nevertheless the string of types expected by f is not

definitially equal to the string of given types:

We may conclude that after checking the definitional equality of the first

two categories, we have to replace, in the category string of (a,a), the

variable a by 6

This replacement (substitution) is, in a more general way, done by the

procedure CORRECTCATS. (see also [3, 5 2 .5. and 5.4.6.1)

9.2. boolean procedure CORRECTCATS (.I, I) ;

expres s ions t r ing C , I ;

CORRECTCATS:=

i f Cz0 then 1 ~ 0 e l s e - - -
CORRECTCATS (c- , I-) - and

CAT(C*)%UBST (I-, E-,CAT (I*)) ;

9.3. boolean procedure I IE;
expres s ions t r ing I; express ion E;

case shape(E) of - -
begin

type : - t r u e ;

Prop : - t r u e ;

v a r i a b l e : 3 i (Ii:E) ;

&B : I FA - and I t B and CAT (A) ~ D O M (B) ; -
[x,AIB : I F A - and ((I , x)) IB; (see R 5.)

otherwise : f a l s e ;

end; -

9.4. boolean procedure I L C ;

exp res s ions t r ing 1 , C ;

comment i s t h e s t r i n g analogue of k;
:=

i f E z ~ then t r u e - --
e l s e I .I- and I z*; -

9.3. A comment on I 1 [x,P]Q

I n t h i s ca se , t he checker , a f t e r checking I P, adds a "waste-line" t o

the book, of t h e form:

I * waste :=EB ;P. -
I f we denote t h i s new book by B', then t h e checker checks t h e s tatement

For t h i s reason t h e co r r ec tnes s of a bound v a r i a b l e w i l l never be asked

f o r , and i t s CAT o r DOM w i l l never be computed.
D

Only i n = can t h e shape boundvar occur.

10. The co r rec tnes s of l i n e s

The checking f o r co r r ec tnes s of an AUTOMATH l i n e i s now easy t o d e s c r i b e

i n terms of a l r eady def ined procedures:

10.1. boolean procedure CORl?ECT(LINE);

AUTOMATH l i n e va lue LINE;

CORRECT : =

case form of t h e l i n e i s of - -
begin

I * N : = P N ; E l :I F E ;
n

I * N := El ; E2 :I El - and I 1 Ep - and CAT(El)= E2;

otherwise: f a l s e ;

end; -

1 1 . A paragraph system

As a l r eady mentioned i n [3 s e c t i o n 2.16,] t h e s y n t a c t i c a l d e f i n i t i o n of

AUT-68 (and AUT-QE) f o r c e s us t o w r i t e mutual ly exc lus ive names

(i d e n t i f i e r s) f o r both v a r i a b l e s and cons tan ts . This , of course, i s very

annoying t o t h e w r i t e r of AUTOMATH. Therefore we have introduced a

paragraph system. Each AUTOMATH t e x t may be d iv ided i n t o s e c t i o n s , c a l l e d

paragraphs. A paragraph s t a r t s with:

+ paragraph name.

and ends with:

- paragraph name.

I n a paragraph one may w r i t e AUTOMATH l i n e s and o t h e r paragraphs (sub-

paragraphs) . F i n a l l y t h e whole book i s contained i n one b i g paragraph,

s o a l l paragraphs occur nes ted . Behind t h e i d e n t i f i e r of a given con-

s t a n t one may w r i t e a so-cal led paragraph r e fe rence , t o i n d i c a t e i n

which paragraph t h i s i d e n t i f i e r has been defined. An i d e n t i f i e r b

w i th paragraph r e fe rence t o (say) paragraph Pn i s w r i t t e n i n t h e form:
I I b1'PI-P2- ...- P , where P2 i s a sub-paragraph of P I ,P3 i s a sub-paragraph

n
of P 2 ..., and Pn i s t h e paragraph i n which b i s a c t u a l l y def ined.

An i d e n t i f i e r , no t followed by a paragraph r e fe rence , r e f e r s t o a con-

s t a n t o r v a r i a b l e def ined i n t h e same paragraph, o r , i f no t found t h e r e ,

i n t he paragraph, which conta ins t h a t one, ans s o on.

Example:

line nr

I

(a :=... denotes a definition of a
. . . (a). . . decotes a reference to a)

book

+ A .

p:=. . .
+ B.

+ C.

. . . (P'~A~~) . . .

. . . (P~~BII). . .

reference to line nr:

no good reference (p has not been

defined in B) .

Reference 1 ist

[I] De Bruijn, N.G.,

[21 De Bruijn, N.G.,

[3 1 van Daalen, D T.,

[41 De Bruijn, N.G,,

The Mathematical language AUTOMATH,

i t s usage and some of i t s extensions;

Symposium on Automatic Demonstration

(Versailles, December 1968), Lecture

Notes in Mathematics, Vol. 125,

p, 29-61, Springer Verlag, Berlin 1970.

AUTOMATH, a language for mathematics;

notes (prepared b y B. Fawcett) of a

series of lectures in the SGminaire

de MathGmatiques Superieures,

Universitg de Montrgal, 1971.

A description of AUTOMATH and some

aspects of i t s Zanguagetheory, this

volume.

Lambda Calculus notation with

nameless d d e s , a tool for

automatic formu la manipulation, with

application t o the Church-Rosser

theorem, Indag. Math., 34, No. 5, 1972.

[5 1 Jutting, L.S. v. Benthem, The development of a t ex t i n AUT-QE,

this volume.

[61 Nederpelt, R P., Strong normalisation i n a typed

lambda-calculus with lambda-structured

types, Doctoral dissertation,

Technological University Eindhoven,

1972.

12 . F ina l remarks

12.1. We repeat t h a t the procedures given here form only an o u t l i n e of the

ac tua l v e r i f i e r . Many more parameters a r e passed through the procedures

t o avoid dupl ica t ion , t o cont ro l c r i t i c a l passages, t o permit communi-

ca t ion with the user and so on.

12.2. With regard t o e f f i c i e n c y , i-mprovements may be poss ib le . For example,
D

p a r t s of the s t r a t e g y , implemented i n =, a r e more o r l e s s a r b i t r a r y ,

although suggested by re f l ex ion and p r a c t i c a l work. Experience and

research may lead t o b e t t e r s t r a t e g i e s .

Also the use of the f ea tu res of [4] may lead t o a more e f f i c i e n t

v e r i f i e r .

12.3. We a r e pleased t o say, i n any event , t h a t the v e r i f i e r has been working

s a t i s f a c t o r i l y up t o now.

12.4. An example of a t e x t checked with the described v e r i f i e r i s found i n [5] ,

