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0. Summary 

This paper describes the AUTOMATH verifier which is currently being 

operated at the Technological University at Eindhoven. 

The description is given in terms of a number of procedures, written 

in an ALGOL-like language. 

The contents are: 

1. General remarks. 

2. The description language. 

3. The translator. 

4. Some basic notions and procedures. 

5. Substitution. 

6. Reductions. 

7. CAT and DOM. 

8. Definitional equality. 

9, Correctness of expressions. 

10: Correctness of lines. 

1 1 ,  A paragraph system. 

12. Final remarks. 

For the theoretical background we refer to the papers of Prof. de Bruijn, 

D. van Daalen and R. Nederpelt: [I], [2], [3] and [61. 

*) The author is employed in the AUTOMATH project and is supported by the 

Netherlands Organization for the Advancement of Pure Science (Z.W.O.). 



1. General remarks 

1.1. The aim of this paper is to give a rough description of how the AUT-68 

and AUT-QE verifier is constructed and how it works. Most of the 

procedures are much simplified for the sake of clarity and so as not 

to bother the reader with topics like memory organization, error 

messages etc. 

1.2. Thewhole verifier is embedded in a conversational system (operating 

via a terminal) in order to control the amount of work the program 

might do in certain cases (mostly when an error in the AUTOMATH text 

has been made). The parts of the procedure texts, whose execution is 

(partly) controlled by human intervention, are placed between the 

brackets ? (  and ) ?  . 
Furthermore there is the opportunity to the user to debug the text 

on- line.. 

1.3. Notations 

1.3.1. Expressions are denoted by A,B, ..., AI,A2, ... etc. 

1.3.2.  Syntactical identity is denoted by E 

1.3.3. Bound variables in abstraction expressions are denoted by x,y,...; 

thus e.g. [x,A]B. 

1.3.h. Expressionstrings are denoted by C, r , .  .. 

1.3.5. An expression, occurring in an expressionstring C is denoted by C 

with a subscript; thus C 5 (I1,...,&), where C; are the expressions 

occurring in C (i=l, ..., n). 

1.3.6. Each non-empty string C can be divided into two parts: 

C+ := the last expression of C 

C' := the rest of C (which may be empty). 

Example : 

If C= A,B,C(D,E), F(G,H) then 

C+ = F(G,H),C- = A,B,C,(D,E). 



1.3.7. The composition of a string is denoted by the parenthesis ( (  and ) )  

e.g.: C E ((  c+,E' 1).  

1.3.8. An indicator string [3,§2.13] is denoted by I, and a context [3,§2.2] 

by a 

133.9; Sometimes, in theoretical discussions, the notation of D. van Daalen 

is used [3,§5.3]. 

2. The description language 

2.1. The language used for the description of the verifying procedures, 

is based upon ALGOL '60. 

2.2. Several types (in the sense of ALGOL '60) are added, e.g. expression, 

defined name, etc. 

2.3. A construction case....of begin .... end is added, to avoid repeated - - 
if.. then.. else-constructions. The values of the case selector are - - - 
placed be£ ore the entries, as labels. 

Examples : 

The statement 

if color- red then paint (river valley) - - 
if color- white then paint (Christmas) else - - - 
if color= blue then paint (moon) else paint (nothing), - - 

may now be written as: 

case color of - - 
begin 

red: paint (river valley); 

white: paint (Christmas) ; 

blue: paint (moon) ; 

otherwise : paint (nothing) ; 

end ; - 



Another possibility is: 

paint (case color of - - 
begin 

red: river valley; 

white: Christmas; 

blue: moon; 

otherwise: nothing; 

end) ; - 
So the case-construction may be used for both statement selection and 

assignment selection. 

2 . 4 ,  Some non-ALGOL symbols are used, e.g. k, 0, ..., and sometimes procedure 
identifiers are defined as infix, e.g. d OLDER THAN b would be written 

OLDERTHAN (d ,b) in correct ALGOL . 

2.5. Each procedure, whose identifier is written in capitals or non-ALGOL 

symbols, is explained. 

2.6. No use is made of the parameter device: value. If an actual parameter 

has to be evaluated, this is done once only at the beginning of the 

procedure. All further calls are calls by reference to a program 

variable. 

3. The translator 

Before AUTOMATH texts are presented with the verifier, they are passed 

through a translator. One may consider this translator as a pre- 

processor, checking the context-free part of the AUTOMATH syntax 

(parentheses, commas etc.), coding the identifier-paragraph identification 

(see § I ] ) ,  completing the expressions written in shorthand, etc. 

4 .  Some basic notions and ~rocedures 

4.1 .  Shapes 

Most of the procedures must be able to distinguish the different charac- 

teristic forms in which expressions appear. 



For this purpose we introduce the notion shape, which represents the 

outhermost characteristic form of an expression. 

E.g. the expression: 

<A(B)>c([x,D]E) 

has the "application shape", symbolically denoted by an application 

expression such as <P>Q or <E1>E2. 

4.1.1. The shapes, and their symbolism, which are used, are: 

shape symbolism 

type type 

Prop Prop 

variable variable 

bound variable boundvar 

constant shape d(C) 

application shape &B 

abstraction shape [x,AlB 

4.1.2. When using this symbolism for the shapes, we will permit ourselves to 

use the sub-elements of it, as expressions on which to operate (without 

explicit declaration of and assigment to the program variables). So 

we may write, for example: 

if shape (E)= [x,A]B then domain:=A else... - - - 

4.2. Primitive procedures 

Often, during the verificaton process of a book 8 we need the indicator 

string, the middle expression or the category expression of a certain 

line of 8 .  Each line in the book 23 is uniquely indicated by the name 

introducedin the identifier part of that line (possibly with a para- 

graph reference, see 511). These names will belong to the ALGOL-type 

definedname. 

Because an indicator string may be considered as a string of expressions, 

we may introduce the 

4 . 2 . 1 .  expressionstring procedure INDSTR (d); 

definedname d; 

comment INDSTR becomes the indicator string of the line in which d is 

defined; 

For the middle and category expression procedures: 



expression procedure MIDDLE (d); 

def inedname d; 

comment MIDDLE becomes the middle expression of the line in which d is 

defined. Of course this procedure is only allowed for those d 

which represent an abbreviation. 

expression procedure CATEGORY (dl; 

def inedname d ; 

comment CATEGORY becomes the category expression of the line in which 

d is defined (both for EB lines, PN lines and abbreviations); 

The bodies of these procedures cannot be explained without going into 

details of memory organization, a subject which is beyond the scope of 

this note. 

4.2.4. Another primitive procedure, OLDER THAN , will be explained in 58.2 . 

5 .  Substitution 

5.1. We have introduced two different shapes (and codings) for variables to 

be able to distinguish properly between all the variables occurring in 

an expression. 

By "shape=variable" we code the variables which occur in indicator 

strings (these variables are sometimes called parameters). 

By "shape=boundvar" we code the variables which occur in abstractors. 

Futhermore, in one AUTOMATH book, all binding variables (i.e. variables 

occurring as x in [x,~] ...) get different code-numbers. So the substi- 
tution becomes a simple replacement operation. 

Now there is only one possible way to get a so-calleddash of variables, 

namely in the following example. 

Suppose we have an expression like 

[x,Al(. . . ,<~(x)>[y,Cl [x,Al~(y) ,. . .). 
If we want to reduce the expression between the dots (by B-reduc- 

tion), we will obtain the expression 

[x,Al~(B(x)) 

and we see that the x in D(B(x)) is bound by the wrong abstractor now. 

It is claimed by the author that by this coding system no clash 

(conflict, confusion) of variables arises during the verification 

process of AUTOMATH. 



5.2. Substitution for free variables 

At first we define a procedure SUBST, which will replace free variables 

(shape=variable) by expressions, as follows: 

Let v be astring of free variables (mutually distinct), 

let r be an equally long string of expressions, 
let E be an expression. 

The procedure SUBST constructs a new expression by replacing in E all vi 

by the corresponding r;. 
The procedure (function) identifier SUBST will become the resulting ex- 

pression: U vl , . . . ,vn/rl,. . . ,rnO E (see [31 for this notation). 

We call this procedure by e.g. 

SUBST (v ,r ,El 
The string analogue of SUBST(V,~,E) , STRINGSUBST(V,~,~) means: 
replace, in all Cj, all v; by the corresponding r; . 

5.2.1 .  Procedure text 

5.2.1.1. expression procedure SUBST (v,I', 

expression E; expressionstring v 

comment shape (vi) must be variable; 

SUBST : = 

case shape (E) of - - 
begin 

otherwise : E ; 

end ; - 

5.2.1.2. expressionstring procedure STRINGSUBST(v,r,C); 

expressionstring v,r,C; 

comment shape (vi) must be : variable; 

STRINGSUBST is the string-analogue of SUBST; 



5.3. S u b s t i t u t i o n  f o r  bound v a r i a b l e s  (shape=boundvar) 

This i s  l i k e  t h e  s u b s t i t u t i o n  f o r  f r e e  v a r i a b l e s  ( apa r t  from t h e  f a c t  t h a t  

only one boundvar a t  a time i s  s u b s t i t u t e d  f o r ) .  Therefore we w i l l  only 

g ive  t h e  procedure heading. 

5.3.1. express ion  procedure BOUNDSUBST(X,A,E), 

boundvar x ;  express ion  A,E;  

comment A i s  e i t h e r  an express ion  o r  another  boundvar t o  s u b s t i t u t e  

f o r  x i n  Ej . 

6. Reductions 

The reduct ions involved  i n  t he  v e r i f i c a t i o n  of co r r ec tnes s  of =- formulas 

( c f .  58) a r e  a-, 0-,n- and 6-reduction. See a l s o  [3 ,  52.12 and 56.21. 

6.1. a -  reduct ion  

To perform an a-reduct ion one can e a s i l y  use the  procedure BOUNDSUBST. 

For an express ion  [x,A]B, where x i s  t o  be rep laced  by y ( say ) ,  we have 

simply t o  cons t ruc t  

[ y , ~ ] ~ ~ ~ ~ ~ S U ~ ~ ~ ( x , y , ~ )  

(y must be new of course) .  

6.2. B-reduction 

The @-reductor  i s  w r i t t e n  i n  t he  form: A>B, where $ r ep re sen t s  a boolean B 
procedure wi th  two parameters ,  A and B. 

A t y p i c a l  use of t h i s  procedure i s  e.g. 

i f  E1>E2 then A:=E2 e l s e . . .  
7 B - - 

I f  a B-reduction i s  app l i cab le  t o  A ( so  A E < A ~ > [ X , A ~ ] A ~ )  then  B becomes 

I X / A ~ ~ A ~ ,  and the  procedure i d e n t i f i e r  g e t s  t h e  va lue  - t r ue .  

I f  A has  t he  form <A1>A2 where A2 does n o t  have an a b s t r a c t i o n  shape, 

so  t h a t  no d i r e c t  B-reduction i s  p o s s i b l e ,  then the  procedure t r i e s  

t o  reduce A2 w i t h B a n d / o r  &-reduct ion s o  a s  t o  o b t a i n  the  form 

[x,A~]AL,. A t  t h a t  p o i n t  t he  a c t u a l  8-reduct ion can be c a r r i e d  out .  



6.2.1. Proceeure t e x t  

6.2.1.1.  boolean procedure A>B; B 
express ion  A,B;  

comment i f  A i s  r educ ib l e  by B-reduction, then B becomes t h e  B-reduct 

begin 

i f  shape (A) dP>Q then  - - 
begin boolean poss ib l e ;  

poss ib le :=  shape(Q)= [x,R]T;  

i f  n o t  p o s s i b l e  then  -- - 
begin boolean cont inue;  cont inue:= - t r u e ;  

whi le  cont inue do - 
?(begin  -- case  shape(Q) - of 

begin 

<R>S: cont inue:= QP 

otherwise: continue:= f a l s e ;  

end ; - 
i f  cont inue then  - - 
begin Q:=U; possible:=shape(Q)= [x,R]T; 

continue:=not - poss ib l e ;  

end; - 
end) ? ; - 

end ; - 
i f  p o s s i b l e  then - - 
begin B:=BOUNDSURST(X,P,T); $:=true;  - 

e l s e  > :=fa lse ;  - B - 
end 

e l s e  : = f a l s e .  - 8  - 9  

end ; - 

6.3. q-reduction 

The whole procedure runs under c o n t r o l  of t h e  boolean "e ta reduct ion  

allowed", which may be  s e t  o r  r e s e t  by t h e  user .  When r e s e t  ( e t a r educ t ion  

a l l o w e d 3 a l s e ) ,  t h e  v e r i f i c a t o r  can only use  a-, 6- and 6-reduction. 

I n t e r e s t i n g l y  enough, i n  t h e  AUTOMATH t e x t s ,  checked s o  f a r ,  q-reduction 

has almost never  been been used. 

The q-reductor i s  w r i t t e n  i n  t h e  same form a s  t h e  8-reductor:  A>B. 
rl 



We have f o r  A t h e  fol lowing cases .  

i )  AZ[X,P]<Q>R. 

a )  I f  Q$x then  t h e  procedure f i r s t  t r i e s  t o  reduce <Q>R 

b)  I f  Q l x ,  bu t  x occurs  i n  R then t h e  procedure f i r s t  t r i e s  t o  

remove x i n  R by reducing R. 

c)  I f  Q>x and x does n o t  occur  i n  R ,  then  t h e  n-reduct (B) becomes 

R and > g e t s  t h e  va lue  t r u e .  
Q - 

Now the  procedure f i r s t  t r i e s  t o  reduce Q ,  and af te rwards  t e s t s  i f  

an Q-reduct ion i s  poss ib l e .  

I n  e i t h e r  case i f  no Q-reduct ion i s  p o s s i b l e ,  t h e  procedure i d e n t i f i e r  

> g e t s  t h e  va lue  f a l s e .  
Q 
There appear two procedures i n  >, which must s t i l l  be explained.  a D 
F i r s t l y  t h e r e  i s  t h e  procedure = t o  dec l a re  a s  boolean procedure E1=E2;  

where E l  and E2 a r e  express ions .  

This  procedure i n v e s t i g a t e s  whether E l  and E2 a r e  d e f i n i t i o n a l l y  equa l ,  

and i s  descr ibed  i n  58. 

Secondly t h e r e  i s  t h e  procedure OCCURS I N ,  which searches  an express ion  

f o r  occurrences of a s p e c i f i c  bound v a r i a b l e .  This  procedure i s  def ined  

a s  fo l lows .  

6.3.1. Procedure t e x t  f o r  OCCURS I N .  

6.3.1.1. boolean procedure x OCCURS I N  E ;  

boundvar x ;  express ion  E; 

OCCURS I N : =  

case shape(E) of - - 
begin 

boundvar : xEE ; 

d ( x )  : 3 i  x OCCURS I N  Ci 

<A>B :x OCCURS I N  A o r  x OCCURS I N  B; - 
[ ~ , A ] B  :xOCCURS I N A o r x O C C U R S I N B ;  - 
o themi se  : f a l s e ;  

end ; - 



6 . 3 . 2 . 1 .  Procedure t e x t  f o r  t he  n-reductor 

6 . 3 . 2 . 1 . 1 .  boolean procedure % B ;  

express ion  A , B ;  

comment i f  A i s  r educ ib l e  by n-reduction then  B becomes t h e  n-reduct 

of A; 

i f  etareduction allowed then  - - 
begin 

i f  shape (A) =[x,P]  Q then - - 
case  shape(Q) of - - 
begin 

D aR>T: i f  x=R then  - - 
i f  n o t  x OCCURS I N  T then -- - 
begin >:=t rue ;  B:=T 

11 - 

e l s e  

? ( i f  T2Tl and n o t  x  OCCURS I N  Ti - -- 
then  begin > :=t rue ;  B:=T -- n - 

e l s e  i f  Q 1 then ; : = [ x , P ] Q ~ ~ B  -- BQ - 
e l s e  > : = f a l s e ) ?  - n - 

e l s e  i f  QBQl -- then - 
e l s e  > :=fa lse ;  

n - 

e l s e  > := fa l se ;  - r l -  
[x,R]T: - i f  Q>Q1 then  >:=[X,P]Q~;B 

r l -  n 
e l s e  > := fa l se ;  -. rl 

otherwise: >:=fa l se ;  
r l -  

end ; - 
e l s e  z := fa l se ;  

6 . 3 . 2 . 2 .  The p a r t  between ? (  and j ?  has no t  y e t  been implemented. 

Although such cases  a r e  e a s i l y  cons t ruc ted  (e.g.  [ x , ~ ] < x > f ( x , y ) ,  where 

f (x ,y)$y) ,  i n  p r a c t i c e  t h i s  has  never occurred up t o  ncw. 



The 6-reductor is written in the same way as the B-and n-reductor, and 

tries to perform a single &-reduction on the presented expression.If the 

presented expression has shape d(C), the procedure takes the middle expres- 

sion of the line where d is defined  M MIDDLE(^)) and replaces the free 

variables in it (i.e. the elements of INDSTR(d))by the expressions of C. 

6.4.1. Procedure text 

6.4.1.1. boolean procedure 3 B ;  

expression A,B; 

comment if A reducible by 6-reduction then B becomes the 6-reduct of A. 

begin 

if shape (A) =d (I) then - - 
if d represents an abbreviation then - - 
begin $:=true; - B:=suBST(INDSTR(~), C,  MIDDLE(^)) ; 

else z:=f alse - 
else $:=false; 

end ; - 

7. CAT and DOM 

As pointed out in [3, 96.41, we need two functions, CAT and DOM,to com- 

pute mechanically the category (type) and the domain of an expression 

respectively. 

The "mechanical, type" function CAT is defined by induction on the length * 

of the expressions as follows. 

Let be. a correct book and a a correct context 

i) If 05x1 E a1 , . . . , Xn E an then CAT(xi) :=ai - 
ii) If d is an abbrevia.tion constant, defined in a line of 8 by 

d:=A E B, with indicator string I, - 
then CAT(d(C)) := [I/c ]B 

iii) CAT(<A>B) :=if CAT(B)= [x,P]Q 

then [X/A]Q 

else <A>CAT (B) 



i v )  CAT ([x,A]B) :=[x,A]cAT(B) 

CAT i s  no t  def ined  f o r  v a r i a b l e s  wi th  shape=boundvar ( s ee  §5.1), because 

i n  t h e  v e r i f i c a t i o n  process  t h e r e  i s  no need f o r  it. (59-5) 

Futher  CAT i s  no t  def ined  f o r  I -expressions,  of course.  

It i s  easy t o  s ee  t h a t ,  i f  t h e  argument f o r  CAT i s  a c o r r e c t  express ion ,  

t h e  outcome w i l l  aga in  be c o r r e c t .  

7.2. The procedure t e x t  of CAT r e f l e c t s  t h e  given d e f i n i t i o n  completely. 

7 . 2 . 1 .  express ion  procedure CAT(E); 

Expression E; 

CAT : = 

case  shape(E) of - - 
benin 

v a r i a b l e  : CATEGORY (E)  ; 

end ; - 

7 . 3 .  The "mechanicaZ domain" function DOM 

This procedure has t o  y i e l d  (where p o s s i b l e ) ,  f o r  a given express ion  A,  

an express ion  a ,  such t h a t  f A  - E [ x , a l ~  o r  ~ A = [ ~ , ~ ] B .  

For express ions  A of t h e  form [x,B]c, t he  computing of t h e  domain i s  

t r i v i a l :  DOM(A)zB. 

I f  A i s  a v a r i a b l e ,  we may compute t h e  domain of t he  category of A. 

More d i f f i c u l t  i s  t h e  case where A has t h e  shape 

d(C) o r  t h e  shape <B>C. 

I f  we t r y  t o  reduce A, we may end up wi th  a PN (e.g.:  d(C)?f(r) , f :=PN).  

On the  o t h e r  hand, i f  we t ake  t h e  category of A by computing CAT(A), 

we may ob ta in  - type  o r  [ x l , a l ]  ...[ xn,an]type. 

To dea l  wi th  t h i s  problem we use  t h e  fol lowing s t r a t e g y .  A t  f i r s t  CAT(A) 

i s  computed, and presented  t o  DOM (N.B. This i s  a r ecu r s ive  c a l l ,  s o  

poss ib ly  CAT(CAT(A)) i s  computed ) . I f  DOM(CAT(A)) does n o t  y i e l d  a domain 

a t  a l l ,  then  a 6- o r  B-reduction on A i s  c a r r i e d  out  ( i f  p o s s i b l e ) ,  

and t h e  reduct  i s  aga in  presented  t o  DOM. 



Since only 1,2 and 3-expressions a r e  inves t iga ted ,  the  whole process can 

be given by the  following t r e e  f igure :  

CAT (CAT (A) ) CAT (B ) CAT (CAT (A' ) ) 

7.3.1. Procedure t e x t  - 

7.3.1.1. expression procedure DOM(A) ; 

express ion A; 

case shape(A) of - 
begin 

[x,B]C : DOM:=B; 

v a r i a b l e  : DOM:=DOM(CATEGORY (A) ) ; 

d (1) ,<B>C : begin D: =DOM(CAT (A)). ; 

i f  undefined (D) then - - 
i f  AaA, then DOM:=DOM(A1) - - 
e l s e  i f  A A1 then DOM:=DOM(A1) -- B - 

e l s e  DOM:=undefined - 
e l s e  DOM:=D - 

end ; - 
otherwise : undefined; 

end ; - 



8. D e f i n i t i o n a l  e q u a l i t y  

To v e r i f y  t h e  co r r ec tnes s  of a given =-formula we w i l l  use  t h e  

Church-Rosser theorem: 

i f  A=B then  A X < B  f o r  some C 

( see  a l s o  [ 3 ,  56.3.11). 
D This  d e f i n i t i o n  i s  t h e  guide f o r  t h e  procedure = which we w i l l  in t roduce  

here .  

8.1. Descr ip t ion  of 2 
The type of t h e  procedure i s  boolean,  and t h e  i d e n t i f i e r  w i l l  be  w r i t t e n  

D i n  i n f i x  n o t a t i o n ,  v i z .  A=B ( i n  t h e  same way a s  f o r  >, > e t c . ) .  
D r2 6 

Roughly speaking , in  o rde r  t o  check A=B, t h e  procedure t r i e s  t o  reduce A 

and/or B u n t i l  e i t h e r  t h e  two express ions  a r e  i d e n t i c a l  o r  t h e  dec i s ion  

A ~ B  can be made. 

It i s  no t  always necessary  f o r  both complete express ions  t o  be p re sen t  

dur ing  t h e  whole r educ t ion  process .  I f ,  f o r  example, A-d(C1, C 2 ,  C3) and 

Brd(C1, C 4 ,  C3) then  the  procedure needs only p a r t s  of both express ions ,  
D namely C 2  and Cq, apd w i l l  check C 2 = C 4 .  

So, i n  gene ra l ,  t h e  procedure uses  r e c u r s i v e  c a l l s ,  appl ied  t o  sub-expres- 

d o n s ,  fol lowing t h e  monotonici ty  r u l e s  descr ibed  i n  [ 3 ,  55.5.61. 

Recursive c a l l s  a r e  a l s o  used f o r  t he  reduct ion  sequences. F i r s t l y  t h e  pro- 

cedure t r i e s ,  i f  necesary ,  t o  reduce one of t he  express ions  A and B. Which 

i s  reduced i s  a ma t t e r  of s t r a t e g y .  

I f  one of the  two express ions  i s  reduced, one could cont inue t h e  equa l i t y -  

check by us ing  an iterative o r  a recursive method. A recursive method i s  

chosen i n  o rde r  t o  make t h e  a lgor i thm more readable.  

Excnnp Ze : 

I f  Azd(C) and B=<P>Q then  t h e  procedure f i r s t  t r i e s  t o  reduce B by 

6-reduction. I f  t h i s  succeeds,  and t h e  outcome i s  B1, then the  d e f i n i t i o n a l  

e q u a l i t y  of A and B fol lows from t h a t  of A and B1. 
D 

Otherwise t h e  procedure t r i e s  t o  reduce A t o  Al(say) and checks A l = B .  
D I f  t h i s  a l s o  f a i l s ,  then t h e  procedure i d e n t i f i e r  = g e t s  t h e  va lue  f a l s e .  

8.2. Type inc lus ion  

I f  we want t o  v e r i f y  A E B ,  we check FA and b B ,  compute CAT(A) and check - 
D CAT(A)=B; so  CAT(A) i s  t he  f i r s t  parameter and B i s  t he  second parameter 

of t h e  procedure c a l l .  



I n  o rde r  t o  accept  type inc lus ion  as  w e l l ,  we add a s l i g h t  ex tens ion  t o  
D 
=, namely: 

D 
[ x , ~ ]  type =type -- 

w i l l  be accepted a s  c o r r e c t ,  bu t  n o t  
D 

type=[x,A] type 

The same holds  f o r  - prop. So the  procedure i s  no longer  syrnetr ical  f o r  

1-expressions. 

(Notice t h a t  c a l l s  a r e  sometimes made wi th  reversed  o rde r  of t h e  arguments 
D of =, bu t  a s  one can s e e  i n  t he  procedure t e x t  t hese  cases  can never  r e f e r  

t o  I-expressions) .  
D Now t h e  d e f i n i t i o n  of = i s  exac t ly  t h e  same a s  t h a t  of 5 [ 3 ,  56.1. 

8.3. OLDER THAN 
D D The procedure = needs,  i n  one s p e c i a l  case ,  namely d ( ~ ) = b ( I ' )  and dfb ,  t h e  

boolean procedure OLDER THAN, t o  decide which of d and b must be reduced. 

It seems a good s t r a t e g y  t o  s t a r t  o f f  by r e d u c i n g . t h e  younger of t h e  two, 

i . e .  t h e  cons tan t  which was t h e  more r e c e n t l y ,  f o r  i n  t h i s  way we have 

a chance of reducing i t  t o  t h e  o ther .  

8.3.1. boolean procedure d OLDER THAN b ;  

def inedname d ,b ; 

comment OLDER THAN:= the  l i n e  i n  which b i s  def ined ,  appears l a t e r  i n  

t he  book than  t h e  l i n e  i n  which d i s  def ined;  



8.4. Procedure t e x t  of 9 

D 8.4.1. boolean procedure E l =  E 2 ;  

expression E ~ ,  E 2 ;  
D =: = 

case (shape (El) ,  shape(E2))of - 
begin 

( type,  type) 

( type,  otherwise)  

(prop, prop) 

(prop, otherwise) 

(va r i ab le ,  va r i ab le )  

(va r i ab le ,  d(C)) 

(va r i ab le ,  <A>B) 

(va r i ab le ,  [x,A]B) 

(var iable  , o the ru i se )  

(boundvar , boundvar) 

(boundvar, otherwise) 

(d (U , b ( r )  

(d (C) , otherwise) 

(<A7B, <C7D) 

t r u e  ; - 
f a l s e ;  

t r u e  ; - 
f a l s e ;  

D 
i f  E2>E22 then E1=E22 e l s e  f a l s e ;  - - -- 

6 D 
i f  E2>E22 then E l = E 2 2  e l s e  f a l s e ;  - - -- 

D 
i f  E ~ ~ E ~ ~  then E1=E22 e l s e  f a l s e ;  - - -- 

rl f a l s e ;  

El-E2;  

consider  (var iable ,  shape (E2 ) ) 

i f  drb then - - 
S D 

i f  C=r then t r u e  - -- 
D 

e l s e  ? ( i f  El>E11 then E11=E2 e l s e  f a l s e ) ?  - - 
6 -  

-- 
e l s e  i f  d OLDER THAN b then -- - .. 

i f  E2>E22 then ~ 1 2 ~ 2 2  e l s e  f a l s e  - - -- 
D e l s e  i f  8 l > ~ ~ ~  then E l l = E 2  e l s e  f a l s e ;  -- - -- 

i f  E2>EZ2 then h!lg~22 e l s e  - - - 
D 

i f  E ~ ~ E ~ ~  then E11=E2 e l s e  f a l s e  - - -- 
6 D 

i f  E2>E22 then E1=E22 e l s e  - - - 
D i f  E ~ ~ E ~ ~  then E11=E2 e l s e  f a l s e ;  - - -- 

consi2er  reverse  ( i .  e.  (shape (E2), shape (El ) ) )  
D D i f  A-C and B=D then t r u e  - - -- 

e l s e  ? ( i f  E1>Ell then - - - 
U 

i f  F2>E22 then - - 
B 

i f  ElbE11 then E ~ ~ ~ E ~  - 
B - D 

i f  E 2 r E 2 2  then E l=E22  - n - 

D 4 = E 2  e l s e  - 
D 

E 1=E22 e l s e  f a l s e )  ?; -- 
e l s e  

e l s e  f a l s e ;  -- 
consider  reverse  ; 
D 

B=E 2 ; 
D 

B=E2 ; 
D D 

i f  A=C then B=BOUNDSUBST(y,x,D) e l s e  f a l s e ;  - - -- 
consider  reverse; 



S D 
8.4.2. boolean procedure C1=C2; 

expressionstring 11, C2; 
S D D 

comment 3L is the string analogue of =; 
S D 
== :=if - C1=O then C2:0 - 

- SD - 
else El -E2 and Clf Ex2+; - - 

9. Correctness of expressions. (, k) 

9 .1 .  Correctness of an expression is checked by the boolean procedure " kt', 

operating on an expression (say E) and the incicator string (say I) 

belonging to E. A procedure call is written like I k E. 
Mentioning I is necessary, on account of the free variables in E which 

must all appear in I. 

Two non-trivial cases arise: 

1 ) if shape(E)=<A>B, then the "applicability" (let us say) of B to A has 

to be checked. 
D This is done by looking at :CAT(A)=DOM(B). (see also 13, 56.4.2.31 ) 

2) if shape(E)=d(C) - then 

firstly : all Ci must be correct, 

secondly : all C; must have the correct categories. 

In the case 2 there is a difficulty: 

Let us consider the following book: 

0 * a :=EB ; type. - - 
a * a :=EB ; a 
a * f :=PN ; type - - 
0 * B :=EB ; type - - 
B * b :=EB ; B - 
b * g :=flB,b);type. 

Now: (f3,b) kf(~,b), nevertheless the string of types expected by f is not 

definitially equal to the string of given types: 

We may conclude that after checking the definitional equality of the first 

two categories, we have to replace, in the category string of (a,a), the 

variable a by 6 

This replacement (substitution) is, in a more general way, done by the 

procedure CORRECTCATS. (see also [ 3, 5 2 .5.  and 5.4.6.1) 



9.2. boolean procedure CORRECTCATS (.I, I )  ; 

expres s ions t r ing  C , I ;  

CORRECTCATS:= 

i f  Cz0 then  1 ~ 0  e l s e  - - - 
CORRECTCATS (c- , I-) - and 

CAT(C*)%UBST (I-, E-,CAT (I*)) ; 

9.3. boolean procedure I IE; 
expres s ions t r ing  I; express ion  E; 

case  shape(E) of - - 
begin 

type : - t r u e ;  

Prop : - t r u e ;  

v a r i a b l e  : 3 i  (Ii:E) ; 

&B : I FA - and I t B  and CAT ( A ) ~ D O M  (B) ; - 
[x,AIB : I F A  - and ( (  I , x  ))  IB; (see  R 5.) 

otherwise : f a l s e ;  

end; - 

9.4. boolean procedure I L C ;  

exp res s ions t r ing  1 , C ;  

comment i s  t h e  s t r i n g  analogue of k; 
:= 

i f  E z ~  then  t r u e  - -- 
e l s e  I .I- and I z*; - 

9.3. A comment on I 1 [x,P]Q 

I n  t h i s  ca se ,  t he  checker ,  a f t e r  checking I P, adds a "waste-line" t o  

the  book, of t h e  form: 

I * waste :=EB ;P. - 
I f  we denote t h i s  new book by B', then  t h e  checker checks t h e  s tatement  

For t h i s  reason t h e  co r r ec tnes s  of a bound v a r i a b l e  w i l l  never  be asked 

f o r ,  and i t s  CAT o r  DOM w i l l  never  be computed. 
D 

Only i n  = can t h e  shape boundvar occur. 



10. The co r rec tnes s  of l i n e s  

The checking f o r  co r r ec tnes s  of an AUTOMATH l i n e  i s  now easy t o  d e s c r i b e  

i n  terms of a l r eady  def ined  procedures: 

10.1. boolean procedure CORl?ECT(LINE); 

AUTOMATH l i n e  va lue  LINE; 

CORRECT : = 

case  form of t h e  l i n e  i s  of - - 
begin 

I * N : = P N ; E l  :I F E ;  
n 

I * N := El ; E2 :I El - and I 1 Ep - and CAT(El)= E2; 

otherwise: f a l s e ;  

end; - 

1 1 .  A paragraph system 

As a l r eady  mentioned i n  [ 3  s e c t i o n  2.16,] t h e  s y n t a c t i c a l  d e f i n i t i o n  of 

AUT-68 (and AUT-QE) f o r c e s  us t o  w r i t e  mutual ly exc lus ive  names 

( i d e n t i f i e r s )  f o r  both v a r i a b l e s  and cons tan ts .  This ,  of course,  i s  very  

annoying t o  t h e  w r i t e r  of AUTOMATH. Therefore we have introduced a 

paragraph system. Each AUTOMATH t e x t  may be d iv ided  i n t o  s e c t i o n s ,  c a l l e d  

paragraphs.  A paragraph s t a r t s  with:  

+ paragraph name. 

and ends with:  

- paragraph name. 

I n  a paragraph one may w r i t e  AUTOMATH l i n e s  and o t h e r  paragraphs (sub- 

paragraphs) .  F i n a l l y  t h e  whole book i s  contained i n  one b i g  paragraph, 

s o  a l l  paragraphs occur  nes ted .  Behind t h e  i d e n t i f i e r  of a given con- 

s t a n t  one may w r i t e  a so-cal led paragraph r e fe rence ,  t o  i n d i c a t e  i n  

which paragraph t h i s  i d e n t i f i e r  has  been defined.  An i d e n t i f i e r  b 

w i th  paragraph r e fe rence  t o  (say)  paragraph Pn i s  w r i t t e n  i n  t h e  form: 
I I b1'PI-P2- ...- P , where P2 i s  a sub-paragraph of P I ,P3  i s  a sub-paragraph 

n 
of P 2  ..., and Pn i s  t h e  paragraph i n  which b i s  a c t u a l l y  def ined.  

An i d e n t i f i e r ,  no t  followed by a paragraph r e fe rence ,  r e f e r s  t o  a con- 

s t a n t  o r  v a r i a b l e  def ined  i n  t h e  same paragraph, o r ,  i f  no t  found t h e r e ,  

i n  t he  paragraph, which conta ins  t h a t  one, ans s o  on. 



Example: 

line nr 

I 

(a :=... denotes a definition of a 
. . . (a). . . decotes a reference to a) 

book 

+ A .  

p:=. . . 
+ B. 

+ C. 

. . . (P'~A~~) . . . 

. . . (P~~BII). . . 

reference to line nr: 

no good reference (p has not been 

defined in B) . 
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12 .  F ina l  remarks 

12.1. We repeat  t h a t  the  procedures given here  form only an o u t l i n e  of the  

ac tua l  v e r i f i e r .  Many more parameters a r e  passed through the  procedures 

t o  avoid dupl ica t ion ,  t o  cont ro l  c r i t i c a l  passages, t o  permit communi- 

ca t ion  with the  user  and so  on. 

12.2. With regard t o  e f f i c i e n c y ,  i-mprovements may be poss ib le .  For example, 
D 

p a r t s  of the  s t r a t e g y ,  implemented i n  =, a r e  more o r  l e s s  a r b i t r a r y ,  

although suggested by re f l ex ion  and p r a c t i c a l  work. Experience and 

research may lead t o  b e t t e r  s t r a t e g i e s .  

Also the  use of the  f ea tu res  of [4 ]  may lead t o  a  more e f f i c i e n t  

v e r i f i e r .  

12.3. We a r e  pleased t o  say,  i n  any event ,  t h a t  the  v e r i f i e r  has been working 

s a t i s f a c t o r i l y  up t o  now. 

12.4. An example of a  t e x t  checked with the  described v e r i f i e r  i s  found i n  [ 5 ] ,  


