
COLLOQUES INTERNATIONAUX 

DU 

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

COLLOQUE INTERNATIONAL 

L O G I Q U E  

CLERMONT-FERRAND 

18-25 juillet 1975 

EXTRAIT 

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQU 



FORMALIZATION OF CLASSICAL MATHEMATICS IN AUTOMATH 

University of Utrecht, Netherlands 

0 - INTRODUCTION. 

AUTOMATH is a formal language, invented by N .G. de Bruijn, suitable for 
the formalization of (large parts of) mathematics, such that the correctness of any 
proof of a  heo or em written in AUTOMATH can be checked rnechmically (by a 
computer). 

A description of the AIITORIIATII project (headed by I'rof. de 13ruijn), and 
its motivation, are given in [dB2 1. Further infor~nation on the languagc and the 
project is given in [vD] , [Za] and [Ju] . 

The present paper deals with an aspect of the project with which the author 
was involved namely, the formalization, in AIJTOMATH, of a certain part of mathe- 
matics, viz. calculus or  classical real analysis. This (together with the formalization 
of some other mathematical topics) will corislitute an ((AUTOMATH book)). 

Only a brief outline of this work is possible here ; a more detailed account 
is planned. 

1 - GENERAL DESCRIPTION OF THE LANGUAGE. 

1.1. We will give a sketch of a version of AUTOMATH called AUT-I1 . (A detailed 
description of another version, AUT-QE, essentially a sub-language of AUT- ll , is 
given in [vD] . We will first give a general description of the language, in accor- 
dance with [vD] , and then, in 5 2, consider those aspects of AUT-ll which 
differ from AUT-QE). 

The language is based on the typed h-calculus, incorporating the well- 
known correspondence between types and propositions, discovered by Curry, 
tIoward, Martin-L6f and Tait (see e.g. [M-1, ] ), and independently by De Bruijn 
( [dB 1 ] , [Sc ] ). 

1.2. NOTATION. Throughout the paper, the symbols (8)) and d ' b ) ,  possibly with 
subscripts, will denote arbitrary expressions of the language. 

(*) The author was previously employed in the AUTOMATH project at the Technological 
University, Eindhoven, Netherlands, and supported by the Netherlands Organization for the 
Advancement of Pure Science (Z.W.O.). 
(**) This article is based on the second of two talks on AUTOMATH given at the Colloquium. 
(The first talk was by N.C. de Bruijn, adapted from his [dB21 ). Thanks are due to my  
colleagues in the project, and to Roe1 de Vrijer, for helpful comments on earlier versions. 



The colon is used for the typing relation ; thus c& : F)) may mean that ((E 
is an object of type 1:)) or ((I? is a proof of the proposition Fu ; more generally, to 
co\wr both cases, we say that ctE has category Fw. 

1.3. AUTOMAT1-I LINES. An AUTOMATH book consists of a sequence of lines. A 
line may be one of three kinds : 

(1)  Context line. A context is a string of parameters (or free variables) 

where each parameter a .  has category Fi (so that ai may be a variable of type Fi, 
1 

or an assurnption of the proposition Fi). Each expression Fi may contain the a .  
I 

for j < i (only). 
This serves as the context of a nlathematical argument. 
A context line, then, introduces such a context, or lengthens one by adding 

new paranit'trrs. 
The empty context will be denoted by (( Q, N. 

(2) Definition line. In a given context, then, we may introduce a constant by defi- 
nilion : 

F ,..., a n : F n  I- C : =  E : F. 
a l :  1 

Here C is the new constant, defined (in the context shown) to  be equal to  the 
expression E ,  with category F ,  where the expressionsE and "may contain the 
parameters a , ..., a n' 

(For convenience, we display the full context on  the left of the definition 
line, separated from the defined constant by (( t )).) 

(3) Primitive notion line. This is +irnilar to  the definition line, except that  the 
constant C is iritroduced, outright, as a ((primitive notion)) of some category : 

a l :  Fl , ..., an :Fn + C := prim :F.  
So (in the context shown) C may be a primitive constant of type F , or a primi- 
tive proof of the proposition J' (i.e. an axiom). 

1.4. SUBSTlTUlION. In  a definition line or primitive notion line the constarit C 
depends (of courst.) on the parameters a ,..., an (cf. 5 1. 3). We may 

e.lhil)it this drpendrricc~ by writing C as C ( a  , ..., an ). 

Let t , ..., t n  be a sequence of terms, and (with F and Fi as in 

9 1.3) 1 e t  F" denote the r e d t  of simultaneously substituting t ..., t n  
* 

for a , ..., a in F, and Pi that of simultaneously substituting n 
t l , . . . , t i - l  for a ,  . a i-1 i n F i ,  f o r l g  i 4.. 

Now suppose further that the sequence t , ..., t instantiates the given 
8 n 

context, i.r., ti  has category Fi for 1 4 i 4 n . Then we may substitute 

these terms for the parameters in C(aI , ..., all),  to  form the expression 
C(tl , ..., t n )  , with category F *. 



1.5. ABSTRACTION AND APPLICATION. Complex expressions may be formed from 
simple expressions (free variables and constants) by (inter alia) the operations of 
abstraction and application. 

If a is a parameter of category E , and F an expression, then we may * 
((abstract over E u to  form the abstraction expression [ X:E]F* (where F 
results from replacing a by the bound variable x in F ). This corresponds, in * 
more usual notation, to  cc( Ax E E )  F )). 

Next, if E and F are two expressions (satisfying certain assumptions of 
type coherence) then we can form the application expression < F>E. This is the 
((application of E to  F B. (Notice that the ((argument)) I;' is written before 
the function E . This unconventional order has certain technical advantages). 

1.6. AN EXAMPLE. Suppose that ((Na)) has been introduced as the type of the natu- 
ral numbers, and we want to define the successor as a primitive constant. This is 
done by a primitive notion line, in the context of an arbitrary natural number : 

a : Na k Sc : = prim : Na . 
Then ctSc)) (or ctSc(a )D) represents the successor of the (arbitrary) natural number 
a, with type again Na. 

If we now want the successor function (of type Na -+ Na), we must abstract 
over Na ; so we define (now in the empty context) : 

0 I- S cFn := [x :Na]Sc (x )  : N a +  Na. 

Suppose next that t is a term of type Na. Then we can apply this successor 
function to t , to  form the expression (c < t  >ScFn)), which is definitionally equal 
to ctSc( t ))) (by -reduction). 

2 - SPECIAL F E A T U R E S  O F  A U T - n  

2.1. 11 must be remembered that our aim is to formalize (a part of) classical rnathe- 
matics. The following question then arises : is an AUTOMATH-like language 
suitable for this '! - since such a language would seem to be appropriate rather for 
forrrializing something like the work in [ Bi ] . 

The answer, as it turns out, is ((Yes)). (We return to this point in 5 3). 
A consequence of the requirement to formalize classical mathematics is a 

loss of the perfect symmetry between propositions and types found, for example, 
in [M-L 1. 

In fact, we have two kinds of expressions : 

(i) t-expressions (cc t )) for ((type)) or cc term))), 
(ii) p-expressions ((( p )) for ((proposition )) or c( proof B). 

These two kinds of expressions will not always be hadled in the same way, as we 
will see. 

If E : F , then E and F are either both t-expressions or both p-expres- 
sions. 

Further, to  every expression E we attach a degree deg(E ) : 1,2 or 3. Ex- 
pressions of degree 1 are (roughly) ((large categories )) (cf. the type ((Vn of [M-L ], 
and if E : I;' then deg(E ) = deg( F) + 1. 

We give some details in 5 2.2 and 5 2.3 . (The description will be informal 



and incomplete, for the sake of brevity and simplicity). 

2.2. FORMATION OF t-EXPRESSIONS. These may be formed in the following ways. 
(t-1) We begin with a constant ((TN of degree 1, the ((category of all types)). 

(t-2) Suppose a : T (so deg( a ) = 2). Then a is a type. (Below, (( a )) will 
refer to this a ). 
(t-3) Suppose a : a (so dt:g(u) = 3). Then a is an object of type a . 

Whal other t-expressions of degree 1 are there ? 
(t-4) a -+ T has degree 1. It is the category of functions from a to T , or of 

cc type-valued functions with domain a N. 

(t-5) Suppose f : a -+ T (so deg( f ) = 2). Then f is a type-valued [unction 

with domain a .  Now we can form a type from f in three ways : 

(i) Application. If a : a then <a> f : T 

(ii) Cartesian product. n(f) : T , (Hence the name (tAUT-II P). This is 
the type of all functions g with domain a such that for all a : ci , 
<a> g :  < a >  f. 

(iii) Type of pairs. Z (f) : T* This is the type of all pairs <a,b> 
such that a : a and 6 : < u>f. 

Note. If f has the form [ x :  a 10 , where the type 0 does not contain the 
bound variable x ,  then we can write (in more usual notation) 

and 

2.3. FORMATION OF p-EXPRESSIONS. We will try, as far as possible, to make the 
description here parallel to that in 9 2.2 for t-expressions. 

(p-1) We begin, again, with a constant (( n )) of degree 1, the ((category of all 
propositions)). 
(p-2) Suppose A : n (so deg(A) = 2). Then A is a proposition (Below, ct A n 
will refer to this A ). 
(p-3) Suppose p : 11 (so deg@) = 3). Thenp is aproof of A . 

What other p-expressions of degree 1 are there '! 
(p-4aj A -z n has degree 1. It is the category of functions from (proofs of) A 
to propositions. 

(p-5a) Suppose f : A  + n (so deg(f ) = 2). We can form aproposition from 
f in three ways : 

(i) Application. If p : A then < p> f : n 
(ii) Generalized implication II (f) : n. This is the proposition proved hy 

those q such that for all p :A ,  < P q  : <p>f. 
(iii) Generalized conjunction 2 (f) : n.  This is the proposition proved by 

those pairs <p,q> such that p :A and q : <p> f. 
Note. If f has the form [ x A ] B ,  where the proposition B does not contain 
the bound variable x , then we can write (in more usual notation) 



and 
A + B for n(f) (ordinary implication) 
A A ,3 for C(f) (ordinary conjunction). 

As further p-expressions we have (with a as in (t-2)) : 

(p-4b) a -+ n has degree 1. It is the category of proposition-valued functions 
with domain a , i.e.predicates on a . 
(p-5b) Suppose P: a -t n (so deg(P) = 2). Then P is apredicate on a . 
Now we cari form a proposition from P in two ways : 

(i) If a : a then < a> P : n . (Note that the convention for the order 
in an application expression works well here ! Wc cari read (4 a> P )) as 
\t a has property Pw or (( a satisfies Pw or (( a is Ps). 

(ii) Universal quantification. n(P)  : n . 
This is the proposition  roved by those p such that for all a : a , 

< a >  p : <a>P. 
(Now what about (((iii) Existential quantification E (P) : 7 ~ ) )  '? 

We return to  this point below, in 3 44). 

2.4. NOTES. (1) The above description is incomplete (as stated previously). For 
example, there is also a disjoint sum of types a @ 0 (for all a : T and 

: T ) Further, we have (for all a : T ) a type a -+ ( a+ n ) of binary 
predicates or relations on a , etc. 

(2) There is abstraction over categories of degree 2 only. Thus, for 
an expression of the form [ x  : E ] F or E -+ F , E must have degree 2, 
while F may have any degree (except 3 in the case of E -+ F ) ; arid the degree 

of the expression is then the same as deg( F ). 

3 - IRRELEVANCE O F  PIZOOFS. 

It slioulcl be clear from the above description that the language incorporates 
minimal logic in +, A and V . 

Further development is necessary to  make the system suitable for the 
formalization of classical mathematics. This is achieved in three steps. 
(1) We introduce 1 as a primitive constant, and the intuitionistic 1 rule as a 
primitive axiom. This gives intuitionistic logic in -+ , A and . 

Now we define -I from -+ and L , and also V and 9 from A , 'd 
and 7 , in the well-known way. 
( 2 )  We introduce the classical 7 7 rule as a primitive axiom. 

Ilowever we still do not have classical logic ! 
The problem is this. Consider e.g. the logarithmic function, defined on the 

positive reds  : 

a : R l ,  p :  a > 0 I- log:= ... : I t1 

(where ((It1 )) is the type of reals, and (( ... )) is an expression defining the log in the 
context of the two parameters a and p . So the log is essentially a function of 
two arguments, namely a real number, and a proof that it is positive. 



This is a familiar situation in constructive mathematics, but how does it 
work in classical mathematics ? Suppose, for example, we have two proofs p arid 

q that 3 > 0. We want to say immediately that 

log(3, p ) = log(3, q) 
(The same problem arises with the reciprocal function, etc.) 

We therefore adopt the principle of 
(3) Irrelevance of proofs. This principle (due to  De Bruijn) can be stated in the 
form : any two proofs of the same proposition (or of definitionally equal propo- 
sitions) are taken as definitionally equul. 

(It follows, to continue the above example, that ctl0g(3,~ )N is definitionally 
equal to ctlog(3, q )N). 

The above three steps, then, form our basis for formalizing classical mathe- 
matics. And, as it turns out, this approach permits quite a natural development of 
classical real analysis ; and (I think) this is because it reflects, to some extent, how 
rnathernaticians actually reason. 

(Even ((generalized implication)) and ((generalized conjunction)) (cf. (p-5a) 
in 8 2.3), which are not usually considered as part of ct classical logic)), turn up 
naturally in reasoning in classical mathematics). 

Ln fact, one of the most interesting aspects of the project (to the author) is 
that it demonstrates the feasibility of founding a large part of everyday mathema- 
tics on the typed h-calculus, rather than on axiomatic set theory. 

4 - STRONG AND WEAK EXISTENCE, SUBTYPES. 

We return to  the problem left open in 5 2, (p-5.b) :what about ((strong 
existential quantification)) of predicates ? - i.e., to  form, from a predicate on 
a , the proposition C (P) , proved by those pairs < a,p> such that a : a 
and p : < a> P (by analogy with (iii) of (t-5) or (p-5.a) ; cf. [Sc] or [M-L] ). 

The problem here is that ((strong existence)) is inconsistent with the principle 
of irrelevance of proofs ! For consider, e.g., the predicate on the naturals of 
((being less than 2)) ; i.e., define the predicate 

81- P := [x:Na] (x < 2) :Na + .rr 

and let p and p be proofs that 0 and 1,  respectively, satisfy P . 
0 1 

Then both < 0, p o >  and < 1,  p < have category C (P) . If this is 

taken as a proposition (((there exists P P) then they are proofs ; so by the principle 
of irrelevance of proofs, they are definitionally equal, and hence (by taking left 
projections) so are 0 and I. 

In fact, we do allow the category C (P), but as a type, not a proposition 
(i.e., its category is T , and it is a t-expression). It is the ((subtype of a on which 
P holds)). Now there is no problem, since (to return to the above example) 
< 0, po > and 4, p1 > are simply two distinct objects of this subtype. 

Hence we stick to the negative fragment of predicate logic, and define 3 
from H arid -, ((tweak existence))). 50 also, for the sake of uniformity, we define 

V from A and 7 ((tweak disjunction))) (although we do have a disjoint sum 



of types a @ 0 , and strong disjunction would probably be harmless). 

5 - DISTINCTION BETWEEN t- AND p- EXPRESSIONS. 

We repeat that an important feature of AUT-I1 is the distinction between 
t- and p-expressions (made possible by the existence of two ((large categories)), -r 
and n ) and differences in their treatment. We summarize some of these diffe- 
rences : 
( I )  The double negation law can be applied to propositions, but not to types. 

(2) The principle of irrelevance of proofs applies (only) to  proofs of a given 
proposition, not to  objects of a given type. (Clearly, we would not want a principle 
of ((irrelevance of objects)) !) 
(3) Although we have universal quantification of predicates corresponding to 
Cartesian products of type-valued functions (compare (ii) of (p-5b) and of (t-5)) 
we do not have strong existential quantification corresponding to  the type of pairs, 
as explained in § 4. 

6 - PREDICATES AND QUANTIFIERS. 

We have, for each type a , a category of predicates on a (as indicated in §2), 

and also (binary) relations on a 
a : T t -Re ln :=  a + ( a + n )  

(also of degree l), and so on. 
Predicates play an important part in our work. Not only are they formed by 

abstracting frorri propositions, but they also occur as predicate variables or para- 
meters, so that we can work in the context of an arbitrarypredicate on a : 

This is useful, for example, in permitting a general treatment of quantifiers. 
For we can view a quantifier on a as an operation from predicates on a to pro- 
positions (as was done for the universal quantifier in [ Ch] ). 

Thus, e.g., the existential quantifier is defined by : 

Other examples of quantifiers are the following. We can define, for predicates 
P on the naturals, the propositions (( P holds eventually)) and <( P holds 
infinitely often)) : 

P : Pred(Na) I- Evt := ... : n 
I I I0 : = ... : n 

In fact, there are many situations, notably in the theory of convergence of series, 
where the ct Evt N quantifier is more important than the universal quantifier. 

7 - SOME FURTHER FEATURES O F  THE LANGUAGE. 

7. I .  EQUALITY. There is, for each type a ,  an equality relation on a , introduced 

as a primitive proposition : 
a : r, a :  a ,  b :  a + E q  :=  prim : n 



((( a equals b D). So equality can only be expressed between objects of a given 
type, but not between types, or between any p-expressions. (But in any case, all 
proofs of the same proposition are definitionally equal). 

We also introduce primitive axioms for equality, namely reflexivity, substi- 
tutivity (for an arbitrary predicate on  a ), and extensionality for functions. (The 
last axiom is probably riot essential for our results in elemerltary real analysis, but 
simplifies the work). 

7.2. SETS. Now we cannot express equality between predicates (as stated above), 
only logical equivalence. Nor can we quantify over all predicates of a given type a ,  
since Z'red(a ) has degree 1. 

r 7 1 herefore we in troduce, for each type a , its ((power type)) : 

a : 'r +Powertype := prim : 'r 

i.e., the type of all sets of ohjects of type a ; and also, the membership relation 
as a new primitive proposition : 

a : T , u : a ,  b : l'owertype(a ) I- E l  : = prim : n 

((( a is an element of b ))) ; and primitive axioms, including set extensionality and 
conrprehension (for an arbitrary predicate on a ), by means of which we can go 
back arid forth between predicates on a and their extensions in Powertype(a ). 

Now ((I'owertypt:( a))) is a t-expression of degree 2, so we can express 
equality between sets of a given type, and also quantify over all such sets. 

7.3. DEFINITION OF 1NI)lVIL)IJALS. Given a predicate P on a type , arid the 
assurnptioris that an object satisfyirig 1' exists and is unique, we may inlroduce, as 
primitives,(a name for) an iridivitll~al object of type a , and the axiom tllat this 
individual satisfies P , thus : 

a : . r ,  P : P r e d ( a ) ,  p P q : U n q ( P ) ~ I n d i v : = p r i r n : a  
11 11 11  11 + Axlndiv := prim : <Indi\bP 

(((Unq)) is the uniqueness cpantifier). 

So this functions rather like an (( ~ - s ~ r n b o l ) )  (cf. e.g. [Ch ] ). 

8 - DEVELOPMENT OF CLASSICAL REAL ANALYSIS. 

8.1. We give, below, an outline of the mathematical development in the book. 
We are guided by the nature of AIJTOMATH, and so a type-theoretical 

rather than set-theoretical basis is used. So we start with a few basic types, inclu- 
ding ((Nau for the naturals and ( ( K I D  for the reals, and build up other types from 
these. For example, Na -+ Na is the type of number-theoretical functions of' one 
argument ; Na -+ K 1  the type of sequences of reals ; El-+ 1i1 the type of (total) 
real-valued functions of a real variable, and so on.  
8.2. We start, then, with the naturals, 

@ I- Na : = prim : T , 
and introduce primitive constants for 0 and successor, as well as Peano's axioms for 
these. There is also a primitive constant for recursion on every type a ,  to  define 
functions of type Na -t a , together with the corresponding axioms. 



Next, we introduce (as primitive constants) the operations and relations for 
the ordered field of reals, 

together with the axioms for this structure, including order-completeness. (More 
accurately, we start with the extended reals as an ordered structure, arid cut down 
to the reals as a subtype). 

Then we define, by recursion, the embedding of the naturals in the reals, 
and hence construct the integers and rationals as predicates o n  (or subtypes of) 
the reals. 

Next, we construct the type of functions of a real variable as follows. 
We take a primitive type (( o-type)) containing exactly orie point cr o D, and form 
the disjoint sum type 

0 t- K w  := K 1  @ w-type : -r 

Then the type of partial functions is defined by : 

0 I- Pfri := R1-t R o  : T 

The idea is that the partial function is ((defined)) at exactly those points where its 
value is not w . 

Now we can define, in the context of an arbitrary partial function and 
arbitrary real point, the predicate of ((being a derivative)) (of the function, at the 
point) arid prove that the derivative (if it exists) is unique. Hence (using ((Indiv)) 
of $ 7.3) we can define the ((derived function)) of any partial function (as another 
partial function). 

We can then compute the derivatives of, e.g., the polynomial and reciprocal 
functions. 

Next, we develop the theory of power series, define the exponential function 
a5 the sum of such a series, arid compute its derivative. P'inally, by an application 
of (a version of) the inverse mapping theorem, we compute the derivative of the 
logarithmic function. 

9 - FUIITHEK MATHEMATICAL TOPICS. 

A. Kornaat, a colleague in the project, has written some sections for the book 
on other topics : 

(1) Set theory, in which the equivalence is shown between various formulations of 
the axiom of choice (such as Zorn's lemma). 

(2) Cornbinatorics, including a proof of the flall-Kbnig theorem [Ha, Th. 5.1.51. 
(3) Metric spaces, including conipactness and conriectedness ; hence the I-Ieine- 
Borel and Bolzano-W eierstrass theorems for the reals. 

Our work is interrelated ; e.g., the work in (3) above depends on the theory 
of the real number field ( 5 8), and, conversely, the proof of the inverse mapping 
theorem (mentioned in 5 8) uses the result, proved in (3) above, that the conti- 
nuous image of a connected subset of a metric space is connected. 

1 0  - ABSTRACT STRUCTURES. 

10.1. AN EXAMPLE. In the course of our work we come across the following problem. 
We have t o  deal with a linear order on  the naturals, and one on the reals, and we do 



not want to  have to prove the same theorems (on linear orders) twice for these 
separate structures. 

Therefore we first consider an ((abstract linear order)), as follows. We define, 
in the context of an arbitrary type a arid relation p on a : 

where ((.. .)) is the conjunction of the axioms for a linear order. So ctAxL0 (a , p ))) 
says that p is a linear order on a . 

Next we take the context 

a :T , p : R e l n ( a )  , p : A x L O ( a , p )  

(so p is the assumption that p is a linear order on a ), and, in this context, 
prove general theorems about linear orders, which we can then apply to  our two 
examples. 

For example, we can prove that the inverse relation to  p is again a linear 
order on a . Hence, from any theorem that we may have about increasing sequen- 
ces on the reals, or about upper bounds (say), we can immediately infer the dual 
theorem for decreasing sequences, or lower bounds (respectively). 

10 .2 .  TELESCOPES. Now a general framework in which to  view linear orders, or 
other algebraic structures, has been proposed by De Bruijn. It uses the notion of 
((telescope )) . 

A telescope, roughly speaking, acts as a ((category)) for certain strings of 
expressions (or ((structures))). More precisely : consider a context 

We can associate with this context a telescope, i.e., the expression 

which consists of n ctmoduless, as shown. Now certain strings of length n will 
((fit into)) or ((belong to)) this telescope, namely those strings which instantiute the 
given context (cf. €j 1.4). 

A telescope therefore functions like a ((generalized Z B. 
Now to apply this to the situation in 5 10.1, we define a specific 3-telescope 

(i.e. telescope of length 3), the ((category of linear orders)) : 

CatLO : = [a : T] [p : Reln(a) ]  [p : AxLO(a , p )  1. 
Those strings of length 3 which fit into ((CatLO)) are called linear orders. Three 
such structures were mentioned in 5 10.1 : the ((abstract linear order)) ( a  , p , p  ), 
and the linear orders on the naturals and on the reals. 

Next, we can define a proposition ctAxComp(a , p ))) which says that 
( a  , p ) satisfies the axiom of order-completeness, and then add another module 
on to  ((CatLO)) to  form a 4-telescope, the ((category of complete linear orders)) : 

CatCLO : = [ a : T ] [p  : Reln (a )  ] [JI  : AxLO(a, p) ] [ q : AxComp(a, p) ] 
So modules can act like adjectives (e.g. ((complete))). (This analogy works 

best in a language like French, where the adjective comes after the noun). 
Another example of a telescope used in the book is the ((category of fields)) 



(a 6-telescope). Again, further modules can be added on to this, to form, in turn, 
the ((category of ordered fields)), and of ((complete ordered fields)). 

The formalism of telescopes may prove especially useful in an AI!TOMATH 
treatment of abstract algebra. 

REFERENCES 

[Bi 1 E. BISHOP, Foundations of Constructive Analysis. 
(McGraw-Hill, New York, 1067). 

[tlBl] N. C:. de BKUIJN, Thc~ mathematical language AUTOMA7'1/, its usage, and 
some of its extensions. 
Syrriposiurri on Autoniatic Demonstration (Vcrsailles, Dec. 1968). 
1,ecture Notes in Mathematics, vol. 125, pp. 29-61. (Springer-Verlag, 
Berlin, 1970) 

[dB21 N.  G.  de BItUlJN, The AUTOMATH mathematics checkingproject. 
Proceedings of the Symposium on APL (Orsay, France, Dee. 1973), 
ed. 1'. Braffort, vol. 1. 

[Ch] Alonzo CIILIKCH, A formulation of the simple theory of types. 
J.  Syrnbolic Logic, vol. 5 (1940) pp. 56-68. 

[vD] D.T. VAN DAAL,I<N, A description of AUTOMATII and some aspecls of 
its language theory. Proceedings o f  the Symposiurn on APL (Orsay, France, 
Dec. 1073), ed. P. Rraffort, vol. 1 .  

[Ha ] M. HALL Jr., Cornbinatorial Theory (Rlaisdell Publ. Co., Waltham, Mass., 
1967. 

[Ju] L.S. VAN BENTIIEM JUTTING, The development of a text  in AUT-QE. 
Proceedings of the Symposium on AI'L (Orsay, France, Dec. 1973), 
ed. P. Rraffort, vol. 1. 

w - L ]  P. MARTIN-LOF, A n  intuitionistic theory of types : predicative part. 
Logic Colloquium 7 3  (Proc. Logic Colloquium, Bristol, July 1973) 
ed. 11.E. Rose and J.C. Shepherdson (North-Holland, Amsterdam, 1975), 
pp. 73-118. 

[Sc] Dana SCOTT, Constructive validity. Symposium o n  Automatic Demonstra- 
tion (Versailles, Dec. 1968). Lecture Nott:s in Mathematics, vol. 125, 
pp. 237-275 (Springer-Vedag, Berlin, 1970). 

[Za] 1. %ANDLEVEN, A verifying program for AUTOMATFI. I'roceedirigs of the 
Symposium on  APL (Orsay, France, Dec. 1973), ed. Y. Rraffort, vol. 1. 


