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A SI1IV.W 0 1 7  THE PKOJECT AUTOMATH 

N.C.  d e  B r u i j n  

1 .  PURPOSE OF THIS SUlWEY 

Thus f a r , m u c h a b o u t  AU'l'OMATH was w r i t t e n  i n  s e p a r a t e  r e p o r t s .  

Most of t h i s  work li,is been made a v a i l a b l e  upon r e q u e s t ,  b u t  o n l y  

a snlal l  p a r t  was publisllctl i n  j o u r n a l s ,  c o n f e r e n c e  p r o c e e d i n g s ,  

e t c .  U n f o r t u n a t e l y ,  a g e n e r a l  su rvey  i n  tlle form of  a  book i s  

s t i l l  l a c k i n g .  A s h o r t  survcay was g i v e n  i n  de  ~ r u i j n  (1973) ,  b u t  

tlic p r e s e n t  one w i l l  be m u c l l  more e x t e n s i v e .  N a t u r a l l y ,  t h i s  su r -  

vcy w i l l  r e p o r t  abou t  work t l i a t  h a s  been done,  i s  going on ,  o r  is  

p l , ~ n n e d  f o r  t l ~ e  f u t u r e .  Hut i t  w i l l  a l s o  be used t o  e x p l a i n  how 

v a r i o u s  p a r t s  of tile p r o j e c t  a r e  r e l a t e d .  Moreover we s h a l l  t r y  

t o  c l a r i f y  a few p o i n t s  wliictt many o u t s i d e r s  c o n s i d e r  a s  uncom- 

mon o r  even w e i r d .  I n  p a r t i c u l a r  we spend q u i t e  some a t t e n t i o n  

t o  our  concept  of  t y p c s  and t h e  m a t t e r  o f  " p r o p o s i t i o n s  a s  types" 

( s e c t i o n  14) .  F i n a l l y  t h e  su rvey  w i l l  be used t o  v e n t i l a t e  opin- 

i o n s  and views i n  mathemat ics  which a r e  n o t  e a s i l y  s e t  down i n  

more t e c h n i c a l  r e p o r t s .  

Somc f u r t h e r  matc.rinl of a  g e n e r a l  n a t u r e  can be found e . g .  i n  

dc  B r u i j n  (1968b)  , J u t t i n g  (1 9 7 7 ) .  For t h o s e  who have n o t  r e a d  

a n y t h i n g  about  t h e  p r o j e c t ,  t l l i s  su rvey  cannot  p r e t e n d  t o  g i v e  

more tllan a vague i d e a  of t h e  l anguages .  For  g e t t i n g  a  b e t t e r  

i d e a ,  d e  B r u i j n  (1 971 b ) , van Daalen (1973) may be  recommended; 

van Dnalcn (1973) g i v e s  a very  p r e c i s e  d e f i n i t i o n  af AUT-QE, one 

of t h e  most  prominent members of  t h e  f a m i l y  ( s e e  s e c t i o n s  9 , i 3 ) .  



2. PURPOSES OF THE PROJECT AUTOMATH 

The project was conceived in 1966; the first report was de 

Bruijn (l968a). Tl~e idea was to develop a system of writing en- 

tire mathematical theories in such a precise fashion that verifi- 

cation of the correctness can be carried out by formal opera- 

tions on the text. Here "formal" means: without "understanding" 

the "meaning", and therefore it has to be possible to instruct 

computers how to check the correctness. Indeed, the fact that we 

do have computers will be one of the reasons why our generation 
, 

hks better chances than those who tried to have similar claims5?* 

in the past, like Leibniz, Peano and Hilbert. Even if we do not 

actually u6e computers, they are there to set the standard of 

what is "formal" verification. 

In the next three sections we discuss motivations for the 

project: checking, understanding and processing. The first two 

motives secm to favour tlic choice of a system of a very general 

nature, not neccssnrily tied to today's ideas of formalizing 

mathematics in terms of classical logic and set theory. 

3. CHECKING 

Most mathematicians can very well check themselves what they 

read and write. Ncvtrtllelc~ss only a small portion of mathemat- 

ical literature is ,ibsolutc~ly flawless. Moreover, human checking 

seems to be '1 social t i f f a i r  too: mathematicians put trust in 

something since they tliink or know that other mathematicians 

have checked it. 

Very meticulous cl~ecking is definitely unpopular. The thing 

we have in mind puts quite a burden on those who write the math- 

cmatics to b c  chcckcd. They have to justify every little step 

cxtcnsively. I t  is only nfter this that a computer can do the 

final cliecking and grlariin tre the correctness. 

Wc ~nc.ntion two cases wcare checking may be important. The first 

one, is for things wtlic.11 arc1 very hard and condensed, and where 

tlic,re is little intuitive or experimental support. The second 



one is for long and tedious proofs which form very long chains 

of very c,lcmcntary stt.ps. Such things may occtlr incombinatorial 

argumcnts, but, more important, in the large amount of work that 

has to be done to check the semantic correctness of large Corn- 

puttr programs or machine designs. 

Checking may actually bcl carried out in man-machine coopera- 

tion. This may also mean tlist, at least temporarily, parts of the 

checking may be omitted if they refer to things we are absolutely 

sure of. 

Many errors in matltematics are made at the interfaces between 

theories. Therefore, we want to do the checking in a system that 

embraces a11 tlie tllt>oric,s involved. For example, if we want to 

cllcck that tllc rt.gul;lr 17-gon can be constructed by ruler and 

contpsss, we 11avC to I,c ablcs  to formulate the rules of geometric 

constructions into our system. 

4. 1JNDEKSTANDING 

Formal systems help us to understand mathematics already by 

the mere fact that they force us to subdivide mathematical dis- 

cussion into (i) language (ii) metalanguage and (iii) interpreta- 

tion. Tllc role of tllc lattcr is often underestimated. Those who 

say tltat matliematics is set theory, usually disregard the fact 

that they handle ;in extensive system of interpretation which is 

almost complettly intuitive. Quite often it is just the interpre- 

tation tltat means "understanding" mathematics. Therefore we want 

a system that checks ;IS much as possible of what we can actually 

say. (Tllis is as far as we can go: we cannot expect a machine or 

a person to clieck what is in the back of our minds). Our system 

should check a kind of language that comes as close as possible 

to what we write in ordinary mathematics. 

If we want to understand mathematics we also have to get in- 

sight into the roles of axioms, definitions, proofs, theorems. 

We cannot expect to get such an insight from a basic theory that 

has been built up itself with axioms, definitions, proofs and 



tl1eorc3ms. 1 L is mucl~ t~cttcr to have a foundation that is nothing 

hut n scst of rulcs for manipulating language. On such a founda- 

tion we can build logic and mathematics, possibly with the use 

of axioms. There is notlli ng against axioms, but we should be free 

to accept them or to reject them. Axioms should not be tied to 

the fundamentals of our system. 

Another thing that a good language may help us to understand 

is the structure or tlie complexity of an argument. The text may 

reveal analogies in tlie structure of arguments, and classifica- 

tion of their inherent difficulty. As to the classification of 

difficulty we mention that a very useful borderline between 
11 elementary1' and "higlier" mathematics is that elementary mathe- 

matics is the part of mathematics that can be expressed without 

lambda calculus. In other words: "elementary" is what can be said 

in PAL (see section 1 1 ) .  

5 .  PROCESSING 

The fact that a machine can read, check and store the mathe- 

matics we produce, can have several advantages. One of these is 

that we can be absolutely sure that two mathematicians use the 

same tlleorem with exactly the same conditions. But a machine can 

also process its contents for answering questions. Examples: (i) 

produce a glossary of a text, (ii) find out in a given argument 

whether a given axiom does or does not play a (direct or indirect) 

role, (iii) print all notions and arguments that are needed to 

understand a given tl~~orcm, omit everything that is irrelevant to 

it. 

6 .  WHAT K I N D  01: MA'I'HIIMN'ICS CAN WE: LIO? 

'l'hc AU'I'OMATH system is like a big restaurant that serves all 

sorts of food: vegetarian, kosher, or anything else the 

wants. 'The Iangungc,~ are not tied to any logical system 

a n y  logic has been built in. Admittedly there are basic 

of functional i ty and typing, but these need not be used 

thcy seen1 to be intc,nded for. Those who want to say tha 

customer 

hardly 

not ions 

the way 

a 



i unct  i o n  i s  ;i sr~l)sclt i n  ;I c.cxrtciin c a r t e s i a n  p r o d u c t ,  can say  i t  

i n  AU'I'OMATH, I ~ u t  tl~cb rcs taurc ln t  a l s o  c a t e r s  f o r  tliosc who want t o  

d c ~ s c r i l ~ c ~  rnatllcmcltic.,rl f u n c ~ t i o n s  by means o f  t h e  f u n c t i o n a l i t y  

a v a i l a l ~ l e  i n  t h e  language i t s e l f .  Those who reject t h e  axiom of 

c h o i c e  o r  t h e  excluded middle  can u s e  t h e  sys tem,  a s  w e l l  a s  

a d e p t s  i n  "New Matll" and t h o s e  who s e e  " t r u t h "  a s  a  m a t t e r  of 

checking z e r o s  and ones  i n  t r u t h  t a b l e s .  

N e v e r t h e l e s s  some customers  a r e  b e t t e r  s e r v e d  t h a n  o t h e r s .  

The bes t - se rved  a r e  t h o s e  who t r y  t o  keep c l o s e  t o  t h e  way mathe- 

m a t i c i a n s  a c t u a l l y  t a l k  and t h i n k .  They can  u s e  t h e  t y p e s  f o r  

d o i n g  typed s e t  t h e o r y ,  t h e  c o n t e x t  s t r u c t u r e  t o  r e p r e s e n t  t h e i r  

o r d i n a r y  way of  r e a s o n i n g  ( n a t u r a l  d e d u c t i o n ) ,  and t h e  b u i l t - i n  

f u n c t i o n a l i t y  f o r  d e s c r i b i n g  t h e i r  f u n c t i o n s .  

For typed s e t  t l ~ e o r y  and n a t u r a l  d e d u c t i o n  i n  r e l a t i o n  t o  

AUTOMATH, s e e  d e  U r u i j n  (1975a) ,  Nederpe l t  (1977) .  Formal Zermelo- 

F r s n k e l  s e t  t l leory was w r i t t e n  i n  AUT-68 ( c f .  s e c t i o n  9) by van 

l laa len  (1970) .  For a l a r g e  p i e c e  of  mathemat ics  d e s c r i b e d  i n  t h e  

" n a t u r a l 1 '  s t y l e ,  we r e f e r  t o  t h e  Landau t r a n s l a t i o n  ( s e e  s e c t i o n s  

20 and 25) .  

7 .  BOOKS AND CONTEX'I'S 

We w r i t e  o u r  mathemat ics  i n  books,  c o n s i s t i n g  of sequences  of 

l i n e s .  Each l i n e  i s  w r i t t e n  i n  some c o n t e x t .  

We u s e  t h e  w o r d l k o n t e x t " i n  a  r e s t r i c t e d  s e n s e .  A t  each p o i n t  

of a  ma themat ica l  d i s c u s s i o n  we can  c o n s i d e r  

( i )  Tlic s c t  of ; issumptions which a r e  c o n s i d e r e d  t o  be v a l i d  

a t  t h a t  p o i n t .  

( i i )  'Tile s e t  of v a r i a b l e s  which a r e  " a l i v e "  a t  t h a t  p o i n t .  

( i i i )  s c t  of a l l  n o t i o n s  t h a t  have been developed p r e v i -  

o u s l y  ( e i t h e r  by dc,f i n i t i o n s  o r  by t a k i n g  them a s  p r i m i t i v e s ) .  

Many peop le  w i l l  say  t h a t  t h e  c o n t e x t  i s  ( i ) + ( i i i ) ,  and d i s r e -  

ga rd  ( i i )  ( t h e i r  i d e a  i s  t h a t  t h e r e  i s  a n  i n f i n i t e  pool of v a r l -  

a b l e s  which a r c  always a v a i l a b l e ) .  

We s h a l l  usc  t l l c >  word c o n t e x t  d i f f e r e n t l y ,  t a k i n g  i t  t o  be 



d e s c r i b e d  by ( i ) + ( i i ) .  'There i s  no reason  f o r  u s  t o  s p e c i f y ( i i i ) ,  

s i n c e  i t  f o l l o w s  from tlle g i v e n  o r d e r  o f  t h e  l i n e s  i n  t h e  book. 

Tllis i s  not  t r u e  f o r  ( i )  : assumpt ions  can be b o t h  i n t r o d u c e d  and 

d i s c a r d e d .  And a s  t o  ( i i ) :  o u r  p o i n t  t o  t a k e  t h i s  a s  p a r t  of t h e  

c o n t e x t ,  i s  tlle f a c t  t h a t  t h e  v a r i a b l e s  w i l l  be  typed .  These 

t y p e s  may be expressed  by means of " o l d e r "  v a r i a b l e s  b u t  t h e i r  

c o n s t r u c t i o n  may a l s o  depend on t h e  f a c t  t h a t  t h e  assumpt ions  of 

t l ie  c o n t e x t  a r e  v a l i d  ( i . e .  tlie t y p e s  may be d e f i n e d  by expres-  

s i o n s  c o n t a i n i n g  t h i n g s  t h a t  were d e f i n e d  o n l y  under t h e s e  

aesumpt ions)  . 
S i m i l a r l y ,  t h e  assumpt ions  may be  expressed  i n  terms of  v a r i -  

a b l e s  be long ing  t o  t h e  c o n t e x t .  I n  t h i s  r e s p e c t  assumpt ions  and 

v a r i a b l e s  p l a y  t h e  same r o l e  i n  t h e  c o n t e x t .  They can  appear  i n  

any o r d e r .  L e t  u s  g i v e  a n  in fo rmal  example of a  c o n t e x t :  

"Let  n be a  n a t u r a l  number. L e t  P b e  a  p o i n t  of  R . 
n  

Le t  Q be  a  p o i n t  of K . Assume d(P,Q) > n." 
n  

T h i s  c o n t e x t  c o n t a i n s  t h r e e  v a r i a b l e s  n,P,Q and one assump- 

t i o n .  We s a y  t h a t  t h i s  c o n t e x t  h a s  l e n g t h  4 .  Things  of t h e  k ind  

( i i i )  a r e  " n a t u r a l  number", " p o i n t  of  R ", "dl1, ">" .  
n  

I n  a mathemat ics  book we c a n  i n d i c a t e  t h e  c o n t e x t  of eve ry  

l i n e .  There  i s  a  s p e c i a l  k ind of l i n e s  t h a t  s e r v e  t o  d e f i n e  new 

c o n t e x t s  ( t h e s e  l i n e s  a r e  c a l l e d  block openers) .Examples :  "Let 

n  be  n n a t u r a l  number". "Assume d(P,Q) > n". Block openers  a r e  

p laced  i n  a  c o n t e x t  too .  

A c o n t e x t  can be s e e n  a s  a  sequence of b lock  o p e n e r s ,  a r ranged  

i n  t h e  o r d e r  i n  whic.11 they  appear  i n  t h e  book. I f  t h e s e  c o n t e x t  

l i n e s   ire 1,tbeled A ,,..., A , t h e n  t h e  c o n t e x t  of  A i s A  ,,..., A 
11 n  n- T 

l ' l~e rc . fo rc  t h e  ( .on tex t  A , . . . , A  i s  adequate1 y d e s c r i b e d  by men- 
1 n  

t io r l ing  A on ly :  l o o k i n g  up l i n e  A i n  t h e  book w i l l  r e v e a l  A 
n  n  n-l ' 

e t c .  

The word "b lock  opener"  s u g g e s t s  t h e  u s u a l  s i t u a t i o n  t h a t  

assumpt ions  a r e  t a k e n  t o  be  v a l i d  d u r i n g  a  sequence of  consecu- 

t i v e  l i n e s ,  and t h a t  v a l i d i t y  r e g i o n s  of assumpt ions  a r e  n e s t e d  



intervals. These things will not begenerallyassumed however. A 

context can shrink for a while, and be picked up later. 

8. DEFINITIONAL LINES AND PN-LINES 

What kind of material can be written in a context (apart from 

block openers that extend the context)? It will turn out that we 

can get away wit11 two things: definitional lines and PN-1ines.In 

tl~e first case we have a new identifier (symbol or word), and an 

expression (in tcxrms of old identifiers and material from the 

context); the line is interpreted as the definition of the new 

identifier. In a PN-line, however, no expression is given, but 

the symbol PN is written instead, The interpretation is that the 

identifier is introduced as a primitive symbol. In section 14 it 

will be explained how some of the definitional lines can be inter 

preted as theorems with proofs and some of the PN-lines as axioms. 

9. THE LANGUAGE FAMTLY 

As basic language we take SEMIPAL. It is not able to handle 

mclthematics, but just intended to give a record of how things 

are expressed in terms of others. The contexts in SEMIPAL are 

sequences of untyped variables. Apart from the block openers there 

are definitional lines and PN-lines. The expressions arecomposed 

of identifiers and variables. If the context is x I ,  ..., xn, the 
new identifier is p, then the line is written as something like 

On the right we have an example of an expression. In order to 

explain what we intend with this line, it is better to write 

p(x,, ..., x ) instead of p; the interpretation is that p is intro- 
n 

duced as a function of n variables. The expression on the right 

is assumed to be correct, i.e. (i)  each non-variable identifier 

11as been introduced previously in the book, with a context length 

eqrl'll to thc number of subt.xpressjons it has in (9. I ) ,  (ii) the 

v.1riab1c.s o c . c u r r i n g  in (9.1) all belong to the context xl , . . . ,x . 
n 

SEMIPAL can be extcnded in two ways. 



(i) by admitting lambda expressions (A-SEt4IPAL). 

(ii) by attacl~ing a type to every expression, taken from a 

fixcd finite sct ol' types. ~,et us call this PAL-FT (PAL with 

f ixcd types). 

We can go beyond ( i  i) : 

(iii) by admitting tlit introduction of type variables and of 

primitive types. Tliis will be called PAL ("Primitive Automath 

Language") . 
The combination of PAL and A-SEMIPAL leads to AUT-68 (for a 

long time this was called AUTOMATH), and, a little beyond it, AUT- 

QE. Let us write A r H if every correct book in language A is also 

correct in language B .  Then we have PAL I AUT-68 5 AUT-QE. 

A different extension of PAL is J.zuckerls AUT-PI (see section 

22). 

The language AUT-SL (single line AUT, see de Bruijn (1971a), 

Nedcrpelt (1973) has been created mainly in order to geta stream- 

lined language theory. It is a very general higher-order language, 

obtained by giving up all restrictions on abstraction, and ad- 

mitting all numbers 0,1,2, ... as degrees (see section 11). Once 

this IIRS bcen done, wc ran write PN'S as block openers (cf. sec - 

tion.l6), climinatc, all definitional lines, and thus obtain a 

complete book in the form of a single line. 

10. ABBREVIATION SYSTEM 

In SEMIPAL we have a simple abbreviation system that can be 

maintained throughout the language family. If p was introduced 

by (9.1), say, thcn in later expressions p is allowed to have 

fewer than n subexprcssions. The missing subexpressions are just 

supplied by adding xI,x,, ... on the left. For example: if 
E , E  . . . , E  a re  c.xpressions, then p(E . . , E  ) is an abbreviation 
3 4' n 3' ' n 

for p(x ,x2,L3,. . . ,l< ) .  (So p(E3,. . . ,En) can only be used in a 
1 11 

context containing the first two variables of the context of 

(9.1))- 

Quite a ciiffclrc'n~ kind u P  abbreviation, (again for all lan- 



guages of t h e  f a m i l y )  l i e s  i n  t h e  paragraph s!i.stem ( f o r  a  des-  

c r i p t i o n  s e e  J u t t i n g  (1977).  I t  h a s  t h e  p r a c t i c a l  advantage t h a t  

names f o r  i d c n t i f i c t r s  ( e . g .  common l e t t e r s  l i k e  x , a ,  ...) can b e  

used o v e r  and o v e r  a g a i n .  TIle book i s  d i v i d e d  i n t o  s e c t i o n s ,  sub- 

s e c t i o n s ,  sub-subsec t ions ,  ... ( a l l  c a l l e d  p a r a g r a p h s ) .  I f  we men- 

t i o n  an i d e n t i f i e r  we mean t h e  one t h a t  was i n t r o d u c e d  i n  t h e  

s m a l l e s t  s u r r o u n d i n g  pa ragraph ;  i f  we want t o  r e f e r  t o  a d i f f e r -  

e n t  i d e n t i f i e r  w i t h  t h e  same name, we have t o  ment ion i t s  para-  

graph number. 

1 1 . TYPING ANI)  1)EGKISES 

We b e g i n  w i t h  a language w i t h  f i x e d  t y p e s .  Le t  u s  c a l l  i t  PAL- 

FT. We s t a r t  from SEMIPAL, and we a t t a c h  a  type  ( t a k e n  from t h e  

g i v e n  s e t )  t o  e v e r y  v a r i a b l e ,  t o  e v e r y  i d e n t i f i e r  and t o  every  

e x p r e s s i o n .  Tlie r u l e s  a r e  obv ious :  i f  we form a n  e x p r e s s i o n  by 

s u b s t i t u t i n g  e x p r e s s i o n s  E ,..., E f o r  x l ,  ..., x  i n p ( x , ,  ..., x n ) ,  1 n  n  
then  f o r  each i t h e  type  of  E shou ld  e q u a l  t h e  one of x  and 

i i' 
p ( E I ,  ..., E ) g e t s  t h e  same t y p e  a s  p .  The type  can  be  w r i t t e n  

n  
a t  t h e  end of  each l i n e  of t h e  book ( i n c l u d i n g  b lock  o p e n e r s ) .  A s  

a s e p e r a t i o n  mark w e  can u s e  t h e  semicolon (we a l s o  w r i t e  p  : T 

i n  t h e  meta language i n  o r d e r  t o  Say t h a t  p  has  t h e  type  T ) .  

Let us p a s s  t o  PAL. We i n t r o d u c e  a  new symbol t y p e ,  and say 

t l i a t  -r : type  f o r  e v e r y  type‘ we had t h u s  f a r .  Let  u s  admit  t h i s  

new kind of t y p i n g  f o r  b l o c k  openers  a s  w e l l  a s  f o r  PN-lines.  

Then by  obvious  e x t e n s i o n s  of  o u r  r u l e s ,  we can  g e t  t h e  new t y p e s  

i n  t h e  d e f i n i t i o n a l  l i n e s  t o o .  We do n o t  need t h e  c o l l e c t i o n  of  

f i x e d  t y p e s  anymore: t h e  same e f f e c t  can  be  o b t a i n e d  w i t h  PN- 

l i n e s  "T := PN : type".  -- 
S i n c e  PN-lines can  be  w r i t t e n  i n s i d e  a c o n t e x t ,  we can g e t b i g  

e x p r e s s i o n s  typed by type  ( i . e .  we g e t  t y p e s  depending on a  num- 

b e r  of p a r a m e t e r s ) .  

1,et us say  t h a t  type  i s  :In e x p r e s s i o n  of degree  1 ; i f  E : type  -- 

w c  say t h a t  I< h a s  d e g r e e  2 ;  i f  F : E and E : type  we say  t h a t  F 

h a s  degree  3 .  



s t r i c . t c , d  t o  1 , 2 , 3 .  'I ' l ic .rc8 would n o t  be  any I~arni  i n  a d m i t t i n g  

11 i g l lcr  t l c ~ g r c ~ e s ,  b11t t l je  d c ' s r r i p t i o n  of  p r e s e n t - d a y  m a t h e m a t i c s  

d o c s  n o t  seem t o  rcqui rcr  morc t h a n  t h r e e  d e g r e e s .  T h e r e  i s  a  

s r~ ,q : e s t i on  of u s i n g  dcgrc,c  4  i n  de  B r u i j n  ( 1 9 7 4 b ) ,  b u t  what  i s  

done  w i t h  i t  migh t  3 1  s o  bc, done  w i t h  lower  d e g r e e s  by s l i g h t  

m o d i f i c a t i o n s  of  t h e  1anguii);e. 

Thc t y p i n g  r u l e  o f  PAL-FT i s  t o  b e  m o d i f i e d  i n  PAL: t h e  t y p e  

of p(LS . . , I 7  ) i s  t o  bc, w l ~ a t  we g e t  i f  i n  t h e  t y p e  of  
I "  I 1  

p ( x I , .  . . ,X ) we s u 1 ) s t i  t u t ~  E f o r  x , . . . , E  f o r  x . And we r e q u i r e  
11 1 1 n  n  

t h a t  t l ic  t y p e  of  1:. i s  " d c , f i n i t i o n a l l y  e q u a l "  ( s e e  s e c t i o n  18) 
I 

t o  t h e  one  we g e t  b y  t l i a t  same s u b s t i t u t i o n  i n  t h e  t y p e  of  x 
i 

( t l i e  l a t t e r  t y p e  d o c s  n o t  c o n t a i n  X . , X ~ + ~ , . . . , X , ) .  
1 

12.  A D D I N G  T I E  1,AMHI)A CALCULUS 

I n  s e c t i o n  9  we announced A-SEMIPAL a s  what  we g e t  f rom PAL 

by a d m i t t i n g  A-exprc~ss ions  a s  e x p r e s s i o n s .  ( T h i s  l a n g u a g e  h a s  

n e v e r  been  used  o r  s t r ~ d i t . d  i n  t h e  p r o j e c t ;  i t  i s  o n l y  men t ioned  

I icre  a s  3 r e s t  i n g - p o i n t  i n  t h e  d i s c u s s i o n ) .  I f  E i s  a n  e x p r e s s i o n  

c o n t a i n i n g  t h e  v a r i a b l e  x ,  t h e n  X E i s  a n  e x p r e s s i o n  i n  wh ich  x 
X 

i s  no l o n g t r  a  v a r i a b l e  b u t  a  dummy. The p a s s a g e  f rom E t o  A E 
X 

i s  c a l l e d  abnt tmal?'{>n. 'The i n t e r p r e t a t i o n  is  t h a t  h E i s  a  func-  
X 

t i o n ,  w h i c l ~  a t  any  p o i n t  p Iias a s  i t s  v a l u e  t h e  e x p r e s s i o n  we 

g e t  i f  i n  E we r e p l a c e  x by p  ( t h e  r e s u l t  o f  t h i s  s u b s t i t u t i o n  

i s  wr i  t t e n  i n  the, m e t a l a n g u a g e  a s  [x / p 1 17) . 
The c o u n t e r p a r t  o f  a b s t r a c t i o n  i s  c a l l e d  n p y l i c u t i o n .  We w r i t e  

p [ f l  f o r  t h e  t h i n g  t l i a t  i s  i n t e r p r e t e d  a s  t h e  v a l u e  of  t h e  func-  

t i o n  f  a t  t l le p o i n t  11. (l'hr. u s u a l  way o f  w r i t i n g  f p  o r  f  ( p )  i s  

i n c o n v e n i e n t  s i n c c  a b s t r , i c . t i o n  i s  w r i t t e n  on t l l e  l e f t ,  and i t  

Ilappens s o  o f t e n  t 1 1 ; l t  a b s t r a c t i o n s  and a p p l i c a t i o n s  a r e  t i e d  t o -  

g e t l i e r  i n  p a i r s .  

A c r u c i a l  role .  i 11 L l i c '  m c t a l a n g u a g e  i s  p l a y e d  by 6-rcduc~t?'on. 

7'1iis means r e d u c i n g  X E t o  [ x  I p  1 E ,  i n  a c c o r d a n c e  w i t h  t h e  
X 

i n t e r p r e t a t i o n .  L e s s  i m p o r t a n t  i s  rl-rpduc-tion, r e d u c i n g  A { X ) E  
X 



t o  E i n  c a s e 5  w 1 1 t . r ~  E d o e s  n o t  c o n t a i n  X .  

I n  4-SI'MlI'Ai, wc, I1.1ve two d i f f e r e n t  wdys t o  d e s c r i b e  t h e  r e l a -  

t i o n  bcbtween . I  f u n c ~ t i o n  1, .I v a l u e  p o f  t l i c t  v a r i ' l b l e ,  and t h e  

v,ll ue 01  t l ~ c  i unc t io11  , i t  t l ~ o t  p o i n t .  O n e  WAY i s  t h e  a p p l i c a t i o n  

{ p ) l ,  t l ic ,  o t l i e r  one  is  by means o f  what  we s h a l l  c a l l  i ~ ~ s t a n t i a -  

t i o ? ~ .  I 1  f  i s  a n  i d e n t i f i e r  i n t r o d u c e d  i n  t h e  c o n t e x t  x  ( e i t h e r  

by '1 d c . f i n i t i o n a 1  l i n e  o r  by a PN-l ine o r  by a  b l o c k  o p e n e r )  t h e n  

we c a n  u s e  t h e  e x p r e s s i o n  f ( p )  i n  l a t e r  l i n e s .  T h i s  f e a t u r e  o f  

t h e  l a n g u a g e  h a s  d i s d d v a n t a g c s  ( two ways o f  w r i t i n g ,  w i t h  t h e  

same i l l t e r p r e t a t i o n )  ,ind h . l rd ly  any a d v a n t a g e  : i n s  t a n t i a t  i o n  d o e s  

n o t  do wllat a p p l i c a t i o n  c a n n o t  do .  T h i s  w i l l  b e  d i f f e r e n t  i n  t yp -  

ed l a n g u a g e s :  t h e  scope:; o f  i n s t a n t i a t i o n  and a p p l i c a t i o n  o v e r l a p ,  

b u t  none o f  t h e  two s c o p e s  i s  c o n t a i n e d  i n  t h e  o t h e r .  

13. A1)I)ING TYPEI) LAM13I)A CALCULUS TO PAL 

We f i r s t  s a y  t t l , l t  t h e  word " typed"  i n  t h e  t i t l e  d o e s  n o t  r e f e r  

t o  f ixcti  t y p e s  l i k t .  i n  PAL-12'1' o f  s e c t i o n  1 1  . We s h a l l  admi t  t y p e  

v a r i a b l e s ,  and  l ambd ,~  e x p r e s s i o n s  a s  t y p e s .  'The re fo re  we g e t  

1)eyond wllat i s  usu , l l l  y c , t l l e d  t yped  lambda c a l c u l u s .  

T h c  t ypcd  lambda c x p r c s s i o n s  we want  t o  add t o  PAL a r e  o f  t h e  

form ), 1%. ' i ' l :~  1% mCly cc)ilt , l in x  a s  a v a r i a b l e ,  and i t  h a s  t o  b e  
x :  A 

;I I eg i  t im.ite c ~ x p r c ~ s s  i o n  thnder t h e  a s s u m p t i o n  t l ~ a t  t h e  t y p e  o f  x  

i s  A .  I n  t l ~ c b  mc't; i l ; ing~~,lgc wcx s p e a k  o f  " a b s t r a c t i o n  o v e r  A" o r  

" , l b s t r c l c t i on  of  U 0vc.r A". 

The s u b s c r i p t e d  n o ~ a t i o n  ), i s  h a r d  t o  p r i n t  i n  t h e  many 
u:U 

c a s e s  wliere U i s  'in e x p r e s s i o n  c o n t a i n i n g  f u r t h e r  1 ' s .  T h e r e f o r e  

we a lways  w r i t ( .  r u  : 111 i n s t e a d  o f  ), 
u:U' 

'I'hcre arcL v , n - i o ~ l s  p o s s i b i  l i t i e s  t o  p l a y  t h e  game. F o r  a  s u r v e y  

we) r e f c r  t o  dc. I5rui jn ( l 974&1) .  I n  p a r t i c u l a r  we have  t o  d e c i d e  

whst d c g r e c s  l o r  A 'lnd 1% w t b  , idmi t .  Both i n  AlJT-68 and AUT-QE we 

admi t  a l , s t r , ~ c t i o n  uvcxr A ' s  o f  d e g r e e  2 o n l y .  I n  AUT-68 t h e  ab- 

s t r a c t e d  expression li c d n  l ~ a v e  d e g r e e  2 o r  3 ,  i n  AUT-QE B c a n  

llclve d e g r c c  I , ?  o r  3 .  Tile t y p i n g  r u l e  f o r  ) , - e x p r e s s i o n s  i n  AUT-QE 

i s  rougl l ly  t l ~ i  s :  i i  i n  thc. c o n t e x t  y ex t ended  by x:A we have  



H(x) :C(x) ,  t h e n  i n  t h e  c o n t c s t  y we have  ~ x : A ] B ( x ) : ~ x : A ~ c ( ~ ) .  I n  

Allrl'-68 tllis i s  d i l - f c . r cn t  i f  B h a s  d e g r e e  2 .  I f  ~ ( x )  : t y p e  t h e n  

AUT-68 o b t a i n s  [x :A] l5(x)  : t y p e .  - 
I n  AU'L-QE tlic "c lu , i s i - exp re s s ions"  ( l i k e  r x : ~ ] t ~ p r )  seem 

s t r a n g e ,  b u t  once, c)nc 6 c . t ~  accus tomed t o  them t h e y  t u r n  o u t  t o  

I I C  qu i  tc .  n a t u r a l  ;111tl e n - j o y a b l e .  They a l l o w  a p p l i c a t i o n s  {a  } f  i f  

wc, know f : l ' , l ' : r x :A] typc  and 3 : A .  - - 
T h e r e  i s  a r u l c  i n  AU'1'-QE t h a t  i n c r e a s e s  t h e  power of  t h e  l a n -  

guage .  'Thc r u l e  i s  c .ci l led igpc' inc./,usio?i. I f  w e  have  a  t y p i n g  

l i k e  T : r u : U l r v : V l t y p e  .- we s a y  t h a t  t h e  t y p i n g  T  : ru:U]type and 

T : t y p e  a r e  a l s o  a c c e p t a b l e  ( a c c e p t a b l e  i n  t i l e  s e n s e  o f  t h e  

r u l e s  f o r  i n s t a n t i ~ t i o n  and a p p l i c a t i o n ) .  E x p r e s s e d  s u p e r f i c i a l l y :  

t v c r y t h i n g w c  s a y  f o r  a r b i t r a r y  t y p e s  c a n  be  u sed  f o r  f u n c t i o n  

t y  1" s t o< ,  . 
A c t u a l l y  we can  L : I ~ C J  tt1rc.e d e c i s i o n s  a b o u t  t y p e  i n c l u s i o n .  I t  

c a n  bc f0rbiddc.n ( I  i ke i n  AUT-SL) , a l lowed  ( l i k c  i n  AUT-QE) o r  

p r e s c r i b e d  ( l i k e  iri AUT-68). P r e s c r i b i n g  t y p e  i n c l u s i o n  means 

t l ~ a t  t l ic  a b s t r a c t i o n s  i n  f r o n t  o f  t y p e  have t o  h e  s k i p p e d .  

I n  AU'I'-68 t y p i ~ i g s  arc. u n i q u e  i n  t h e  f o l l o w i n g  s e n s e .  Tf i n  

sonw c o n t e x t  I)otli A : I $  ,lnd A : B 3  a r e  c o r r e c t ,  t h v n  B and B t u r n  
1 - 1 2 

ouL t o  be d c f  i n i t i o n a l l y  cbqual ( s e e  s e c t i o n  1 8 ) .  I n  ALK-QE t h i s  

Ilo!ds w i t 1 1  t h e  c x ~ c ~ p t  io11 o f  t y p e  i n c l u s i o n .  But t h i s  i s  j u s t  a 

m a t t e r  of  p h r a s i n g  t l ie  l a n g u a g e  d e f i n i t i o n .  We c a n  a l s o  s a y  t h a t  

t y p i n g  i s  u n i q u e  b u t  t h a t  t h e  t y p i n g  r u l e  i s  l i b e r a l i z e d  ( c f .  

"mock typ ing"  i n  d r  H r u i j n  ( l 9 7 4 a ) ) .  

I f  A : t y p c  and I< : t y p e  we a r e  a b l e  t o  s a y  " l e t  f  b e  a  map- 
-- 

p i n g  o f  A t o  I<" by means o f  a b l o c k  o p e n e r  'If : r x  : A I R " .  T h i s  

sllows t l l a t  i n  t l le  typed  l anguage  t h e  lambda c a l c u l u s  c a n  do  what  

i n s t a n t i a t i o n  c a n n o t  d o  ( c f .  s e c t i o n  1 2 )  . On t h e  o t h e r  hand ,  by 

i n s t a n t i a t i o n  wcl a r c  a b l e  t o  h a n d l e  b l o c k  o p e n e r s  l i k e  "A : type': 

and t l ic  f u n c t i o n a l  r e l a t i o n s h i p s  e x p r e s s e d  i n  t h i s  c o n t e x t  c a n n o t  

b c  c lx l~ re s scd  by a b s t r a c t i o n ,  a t  l e a s t  n o t  i n  l a n g u a g e s  ( l i k e  

AU'1'-68, 1211'1'-QU) t l i n t  f o r b i d  a b s t r a c t i o n  o v e r  e x p r e s s i o n s  o f  d e g r e e  



1 ( e . ~ .  o v c r  t y p e ) .  

14 . USF OF 'I'YPTNG IW1.: 1II:ASON LNG 

'I'lrc f a c t  t l ~ a t  I'AL, and i t s  d e s c e n d a n t s  AUT-68 and AUT-QE can b e  

uscd f o r  mathemat ica l  r e a s o n i n g  depends on t h e  i d e a  of proposi- 

i i ' o t i : :  (1:: L ? ~ l u ' : : .  I<oughly i t  means t h a t  i f  p  i s  a  proof f o r  a  prop- 

o s i t i o l l ,  w e  writ ' ,  i t  a s  ~1 t y p i n g  p:P.  Th i s  p r i n c i p l e  goes  back t o  

Curry ,rnd Fc,ys ( l 9 5 8 ) ,  and was e l a b o r a t e d  by Howard ( l 9 6 9 ) ,  Pra- 

w i t z ( 1 9 7 1 ) ,  G i r a r d  (1972) ,  Mar t in   of (1973) .  Completely indepen- 

d e n t l y  of t h e s e  developments i t  appeared i n  de  B r u i j n  (1968a ,b ) .  

T r e a t i n g  p r o p o s i t i o n s  '1s t y p e s  i s  d e f i n i t e l y  n o t  i n  t h e  way of 

t l l ink ing  o f  tlre o r d i n a r y  niat l lematician,  y e t  i t  i s  vc.ry c l o s e  t o  

wh ,2 t  he ,1ct11;i1 1 y tloc~s. We slr , i l l  t r y  t o  e x p l a i n  t h i s  p r e s e n t l y .  

Assume t h a t  o u r  book c o n t a i n s  t h e  f o l l o w i n g  theorem ( d e s c r i b e d  

i n f o r m a l l y ) ,  f o r  some g iven  f u n c t i o n s  @,$: 

"Theorem 1 .  T x t  x  b e  a  r e a l  number. Assume $(x) > 1 .  
n  

Let  n  be an  i n t e g e r .  Assume $(x)  > x  . Then $ (x)  > n". 

We want t o  a p p l y  t h i s  l a t e r ,  w i t h  x=q,  n=5,  and want t o  conclude 

$ ( q )  5 .  We have t o  convince  o u r s e l v c s  t h a t  t h e  c o n d i t i o n s  a r e  

s a t i s f i e d .  To t h i s  end we w r i t e  a proof f o r  $ ( q )  > I and l a b e l  

t h i s  r e s u l t  a s  ( I ) .  And we w r i t e  n proof f o r  @ ( q )  > q5 and l a b e l  

t h a t  r e s u l t  a s  ( 2 ) .  Now we c l a i m  t o  app ly  t h e  theorem, p r o v i d i n g  

i n  t h i s  o r d e r  q ,  ( I ) ,  5 ,  ( 2 ) .  So t h e  (1) and ( 2 )  a r e  t r e a t e d  on 

a pa r  w i t h  t h e  names (of " o b j e c t s " )  q  and 5 .  I s  (1) t o  be  consid-  

e r e d  a s  a  name f o r  t h e  p r o p o s i t i o n  $ ( q )  -, I ?  No, t h e  a p p l i c a t i o n  

of t h e  theorem i s  n o t  l e g i t i m a t e  because  of t h e  e x i s t e n c e  of t h e  

p r o p o s i t i o n  + ( q )  -, 1 ,  b u t  because  of i t s  b e i n g  proved.  S o c o n s i d e r  

t l ~ c  r e f c r e n c c  (1)  '1s a r e f e r e n c e  t o  a proof o f  $ ( q )  > 1 .  Le t  us  

t r y  t o  c x p l a i n  o u r  a p p l i c . i t i o n  t o  a machine t h a t  knows 'l'hc~orem 1 .  

' I ' l~c ,  nracl~inc, wants  t o  chc\c-k ( i )  t h a t  q  i s  a r e a l  number, ( i i )  t h a t  

( I )  i s  '1 s t ~ i t c ~ m c n t  t11at $ ( q )  1 h a s  been proved,  ( i i i )  t h a t  5 i s  
5 

,111 i11tc'gc,r, ( i v )  t l l ' r t  (1)  r c x f e r s  t o  a proof of  @ ( q )  -, q  . We on ly  

nc,c>d t o  changt~ ,I few words in  o r d e r  t o  g e t :  q  i s  a  r e a l  number, 

( 1 )  i s  2 proof of  $ ( q )  > 1 ,  5 i s  a n  i n t e g e r ,  ( 2 )  i s  a proof of 



+ ( q )  q5 .  A l l  togel  i ler ,  we have a proof o r  i b ( q )  > 5.  

'I'lre p ~ l r , i l  l c.1 ism be twc.cn p r o o f s  and "o rd ina ry"  mnthemat i c a l  ob- 

j e c t s  g e t s  rxvc,n s t r o ~ l g c r  i f  we r e a l i z e  t h a t  many o b j e c t s  a r e  de- 

f i n e d  c o n d i t i o n a l l y  on ly .  I f  we d e f i n e  a  f u n c t i o n  f f o r  x r e a l ,  

x 1 t l ien t h e  use  o f  t h e  v a l u e  of t h e  f u n c t i o n  a t  a  p o i n t  r e -  

q u i r e s  ( i )  t h a t  p o i n t  (a  r e a l  number), ( i i )  a  proof t h a t  t h e  r e a l  

number i s  > 1 .  Now t h e  v a l o e  of t h e  f u n c t i o n  i s  a n  o b j e c t ,  and i t  

depends on an o b j e c t  and a p r o o f .  So p r o o f s  may depend on o b j e c t s  

and o b j e c t s  may depend on p r o o f s .  One might say  t h a t  we have been 

c o n f u s i n g  "proofs"  w i t h  " r e f e r e n c e s  t o  p roofs"  o r  "names of 

p roofs" .  Uut i n  in fo rmal  t a l k  we make t h e  same s w i t c h i n g s  from 

" ~ b j e c t s "  t o  "namcs o f  o I ) j ec t s1 ' .  There  i s  no t  much of a  p o i n t  i n  

a r g u i n g  wlietller p r o o f s  a r e  a s  r e a l  o r  more r e a l  than  o b j e c t s .  

Quot ing W i t t g e n s t e i  n ' s  "l)onl t  a s k  f o r  t h e  meaning, a s k  f o r  t h e  

use" ,  we must say t h a t  a s  f a r  a s  t h e  u s e  i s  concerned,  t h e  par-  

a l l e l i s m  i s  complete .  

I n  t h e  above example, t h e  proof of $ ( q )  > 5 i s  a s i n g l e - s t e p  

p r o o f .  I n  PAL i t  i s  cxprcsscd  i n  a l i n e  

Theorem 2 := 'l'l~eorem I ( q ,  ( I ) ,  5 ,  ( 2 )  ) : P 

w l 1 c . r ~  P in  some. way r e p r e s e n t s  t h e  p r o p o s i t i o n  +(q)  > 5 ( o r  r a t h e r  

t h e  type' of  p r o o f s  of t l l a t  p r o p o s i t i o n ) .  The term " s i n g l e - s t e p  

proof"  means t h a t  wc o n l y  have t o  q u o t e .  I t  would become a  m u l t i -  

s t e p  proof i f  ( I )  was not  a v a i l a b l e  d i r e c t l y  i n  t h e  book, b u t  ( I )  

lrad t o  bc c o n s t r u c t e d  on t h e  s p o t ,  a g a i n  by s u b s t i t u t i n g  t h i n g s  

i n  t h e  name of t h e  [)roof of a theorem, 1 i k e  "lemma 3 ( q , q ) "  i n  

I n  t h i s  way arguments of s e v e r a l  s t e p s  can be condensed i n  a  

s i n g l e  I i n c .  

Let  u s  i l l u s t r a t e  t h e  p r i n c i p l e  " p r o p o s i t i o n s  a s  types"  by how 

i t  works f o r  i m p l i c a t i o n s .  Let  p  and q be p r o p o s i t i o n s .  Having a  

proof of thr' imp1 i c a t i o n  p t q  can be  i n t e r p r e t e d  a s  t h i s :  we 

1 1 3 ~ ~ '  a p r o c ~ d u r e  by which we a r e  a b l e  t o  g i v e  a  proof of  q  f o r  



every custonit:r who might present us d proof of p. That is, our 

procedure is ;I function that maps the set of all proofs of p into 

proofs of q. Ilsing our terminology of context, we can say that in 

the context "x : proof(p)" (representing "let x be a proof of p") 

wcx (.an wri tc. .I lint. 

f := . . . : prooL ( q )  . 
By the abstraction rule of AUT-68 or AUT-QE we get, outside 

the x-context (see section 13 fot the notation), 

Hence rt : proof(p)] proof(q) acts as the proof type of the im- 

plication. 

15. USING TWO EXPRESSIONS OF DEGREE 1 .  

For various reasons it is attractive to introduce a symbol 

prop of degree 1 that behaves exactly like type, but withdiffer- 

ent interpretation. If A : H ,  B : type then A is the name of an 

object of type B, and if C : D, P : prop then C is the name of a 

proof for the proposition cxpressed by the proof type D. 

One reason to make tile distinction between type and prop is to 

give an easier insight into the interpretations, but there are 

also more essential reasons for making the difference. One of the 

forms of the logical double negation axiom, written by means of 

"prop1', turns into the axiom about Hilbert's E-operator if we re- 

place prop by type. So if we want to do classical logic and do 

not want to accept the axiom of choice, we need some distinction. 

It should be mentioned, however, that introduction of prop is not 

the only way out of this difficulty. (Another way is to create a 

primitive type called "bool" (for boolean) and for every boolean 

b 3 primitive type "proof type of b"). 

Another suggestion to profit by treating type and prop differ- 

entl y, is "proof irrelevance" (section 2 4 ) .  

We can now give a survey of the various kinds of lines involv- 

ing prop. First, block openers "x : prop" introduce propositional 



v a r i a b l e s .  PN l i n e s  "p := PN : prop" i n t r o d u c e  p r i m i t i v e  p ropos i -  

t i o n s .  A dcf i n i  t i o n a l  lint. "b := . . . : propT1 i n t r o d u c e s  a n  abbre-  -- 
v i < i t i o n  f o r  '1 more complcx expression r e p r e s e n t i n g  a  p r o p o s i t i o n .  

Next we t a k c  somc P w i t 1 1  P : prop .  T h i s  P i s  i n t e r p r e t e d  a s  t h e  - 
prool- type  of  n p r o p o s i t i o n .  Now t h e  b lock  opener  x  : P s t a t e s  

t h e  [ ) I -opos i t ion  a s  a n  assumpt ion.  The PN-line u  := PN : P  i s  in -  

t c r p r c t e d  .is s t , l t  i ~ l g  t h e  p r o p o s i t i o n s  a s  a n  axiom. The d e f i n i t i o n -  

a 1  l i n e  v := li : s t a t c s  t h e  p r o p o s i t i o n  a s  theorem. T h c  expres-  

s i o n  E r e p r e s e n t s  tlie p r o o f ,  and v  i s  a  name f o r  t h e  p r o o f .  The 

theorems themselves  do n o t  g e t  names. I n  o r d e r  t o  q u o t e  a theorem 

i t  s u f f i c e s  t o  q u o t e  a  name f o r  t h e  p r o o f .  

Con tex t s  a r c  sequences  of b lock  openers  l i k e  

A t  t h e  p l a c e s  wlicrc~ A j : prop t h e  i n t e r p r e t a t i o n  i s  t h a t  x i s  t h e  
j 

name of  t h e  assumpt ion,  '-~t p l a c e s  where A .  : type  t h e  x i s  a  
1 - j 

v a r i a b l e .  And, of cours t3 ,  t l i e re  can be p l a c e s  where A = type  o r  
j - 

A. = prop.  
J -- 

E s p e c i a l l y  i n  AUT-QE i t  i s  a t t r a c t i v e  t o  t a l k  "prop-s ty le ;  i . e .  -- 

t o  s u p p r e s s  a l l  p r o p o s i t i o n s  and t a l k  about  t h e i r  proof t y p e s o n l y .  

I t  t u r n s  o u t  t l l a t  t l ~ c r e  i s  h a r d l y  e v e r  a n e c e s s i t y  t o  t a l k  abou t  

t l lc .  p r o p o s i t i o n s  any more ( t a l k i n g  about p r o p o s i t i o n s  i s  c a l l e d  

"bool-s t y l e M )  . 'I'he cx;mplc. a t  t h e  end of s e c t i o n  14 shows how t h i s  

works: wc can  j u s t  t i c r J i ' ? ~ r '  t h e  proof type  of tlle i m p l i c a t i o n  asso-  

c i a t e d  w i t h  the  proof types  P and Q by r t  : PIQ. 

'The more of t e n  onc docbs t h i s  k ind  of t h i n g ,  t h e  e a s i e r  one f o r -  

g e t s  t i l t  o r i g i n a l  use  of t h e  word " p r o p o s i t i o n " .  T h i s  may e x p l a i n  

why t l ~ e  AUTOW'l'tl worltc)rs began t o  say  prop i n s t e a d  of proof t y p e .  

A consequence i s  t h a t  i f  P : p r o p  they  do no t  pronounce p  : P  a s  

I1p i s  a P" b u t  a s  "p proves  PI'. 

16. AXLOMS v s  . ASSUMP'I'TONS 

I f  wc, Ilave a PN-line i n  a n  empty c o n t e x t  t l i e re  i s  no harm i n  

r e p l a c i n g  i t  b y  i111 .issumpt i o n .  T h e  name of t 1 1 ~  assumpt ion w i l l  be 

a p a r t  of eve ry  c o n t e x t  i n  t h e  s e q u e l .  Taking i t  a s  a n  assumpt ion 



gives more flc)xil~i 1 i ty, since nxioms are things we can never get 

rid of (r~nlclss wc start a new book) and assumptions can be dis- 

cilrded if wc wisll. 

If 2 PN-line is written in a non-empty context we cansometimes, 

but not always, replace it by an equivalent axiom in the empty 

context (and next rcpla~.c' i t  by an assumption). Whether this is 

ix)ssiblc~ depends on the tit>grtles involved in the context as well 

as on the degree of the type of the PN-line, both in connection 

with the abstraction rules of the language. In AUT-SL, the most 

liberal language of tile family, a11 PN's can be eliminated this 

way. 

17. DERIVATION RULES 

Tn tile AUTOMATH family there is no essential differencebetween 

:logic. ;~nd ~lut~i~cmat ic.s. 1,ogi~:al connectives can be taken as PN's 

or ns dcfined notions, inference rules can be taken as axioms or 

as derived r u l c b s ,  ; I I I ~  l a t ~ ~ r  applications of such rules have the 

same form as n p p l  ic,;~t ions of mathematical theorems. 

As an exampl e wp prcxscmt the double negation law. Somehow we 

Iiave ;in c,xprc.ss io~l (:ON witll CON : prop. It has the following inter- 

pretation: if in solnc. context we have an expression p with p : CON, 

then "we have a contradiction" (one can even say that p is a con- 

tradiction). In thC context P : prop we next define NON(P) (by 

means of a definitional line) as rx : PICON. The "doublenegation 

law'' can now be written as follows: 

rP : prop] r y  : NON(NON(P))] * dbng := PN : P. -- 

'1'0 the left of the asterisk the context is indicated: "let P be 

a prop, let y be a proof of the double negation". In this context 

we postulate the truth of P. The identifier "dbng" is chosen as 

the name of the law. 

18. TWO KINDS OF I'QIJALITY 

'l'herc. is (already in SEMIPAL) a notion of definitional equality 

between expressions. The notion plays a central role in language 



t h e o r y .  I n  typed 1anj;uages i t  i s  e s s e n t i a l  a l r e a d y  i n  t h e  l an -  

guage d c . f i n i t i o n  ( s c ~ c n  tile cnd of s e c t i o n  1 1 ) .  D e f i n i t i o n a l  equal-  

i t y  i s  &:enerated by A-rcaductions (6 - reduc t ion  means e l i m i n a t i o n  

of some p r e v i o u s l y  d c f i ~ l e d  i d e n t i f i e r ,  r e p l a c i n g  i t  by i t s  d e f i -  

n i t i o n  g iven  i n  t h e  d e f i n i t i o n a l  l i n e )  and t h e  0- and T i - reduc t ions  

of t h e  lambda c a l c u l u s .  

I n  o u r  languages  no f a c i l i t i e s  have been p rov ided  f o r  t a l k i n g  

i n  t h e  book about  d e f i n i t i o n a l  e q u a l i t y .  T t  i s  h a r d l y  n e c e s s a r y ,  

f o r  i f  A and 13 a r e  d e f i n i t i o n a l l y  e q u i v a l e n t  then  a t  eve ry  p l a c e  

i n  t h e  book A may be  r e p l a c e d  by B w i t h o u t  any a rgumenta t ion .  The 

k ind  of e q u a l i t y  mathemat ic ians  do t a l k  about  i s  what we c a l l  

book eyuazity. I t  may be i n t r o d u c e d  by means of  a  PN (bu t  t h e r e  

a r c  a l s o  p o s s i b i l i t i e s  t o  cl'r';fl?'r~r? book e q u a l i t y ) ,  and i t s  b a s i c  

p r o p e r t i e s  can  be  covered by axioms o r  theorems. 

19. LRNGUAGE THEOKY 

1,anguage theory  i s  about  r e d u c t i o n s  ( t h e  6-, B- and 11-reductions 

mentioned i n  s e c t i o n  18), normal forms ( i . e .  e x p r e s s i o n s  which 

do n o t  admit  r e d u c t i o n s )  and about  t h e  r e l a t i o n  between c o r r e c t  

e x p r e s s i o n s  and t h e i r  t y p e s  ( " c o r r e c t "  means: a c c e p t a b l e  i n  t h e  

book).  Impor tan t  p a r t s  of tile language t h e o r y  were o b t a i n e d  i n  

J u t t i n g  (1 97 I ) ,  van Dnalen ( l 9 7 3 ) ,  Nederpe l t  (1 973) ,  de  V r i j e r  

(1975) .  The for thcoming Ph.D. t h e s i s  by D . T .  van Daalen w i l l  

cover  a l l  a s p e c t s  of t h e  language theory  a t  l e a s t  f o r  AUT-68, 

AUT-QE and AUT-SI,. The e s s e n t i a l  r e s u l t s  a r e  ( i n  a  rough formu- 

1 a t i o n )  

( i )  The  Cliurcli-Kosscr theorclm: If A and B a r e  d e f i n i t i o n a l l y  

pcluivalcnt  tl1c.n t l l t r c  i s  :in e x p r e s s i o n  C such t h a t  bo th  A and B 

can bc rtxducc,d t o  C by scqllt,nces of r e d u c t i o n s .  

( i i )  Tlle normal fornl theorcin: F o r  eve ry  A t h e r e  i s  a  normal form 

N t o  which A r a n  be reduced by a  sequence of r c d u c t i o n s ;  N i s  

un ique ly  dc te rmincd .  

( i  i i ) 'l'llc. s t r o n g  nonnal f  ornl theorem: Every r e d u c t i o n  sequence 

t e rmina tes  (and  f o r  cve ry  A t h e r e  i s  an  upper bound t o  t h e  l e n g t h  



of t 1 1 ~  r c d u c t  i on  scquc~nccs s t a r t i n g  ;it A) . 
( i v )  'I'llc. c l o su rc ,  tllc.orem: I f  A i s  c o r r e c t  . ~ n d  i f  A r e d u c e s  t o  B 

t h e n  B i s  c o r r e c t .  

We n o t e  t l l a t  ( i i )  i s  n o t  t r u e  f o r  un typed  lambda c a l c u l u s .  I t  

i s  t r u e ,  Ilowcvckr, f o r  t h e  ~ ~ n t y p e d  l a n g u a g c  SEMIPAL (which h a s  no 

I a m I ~ d ' ~ s )  . 

20.  VERIFICATION 

One of  t h e  most  i m p o r t a n t  t h i n g s  i n  t h e  p r o j e c t  i s  t h a t  we ex- 

p e c t  mach ines  t o  check  t h e  c o r r e c t n e s s  of what  humans h a v e w r i t t e n  

T h i s  would b e  a n  e a s y  programming j o b  i f  t h e  l a n g u a g e  would r e -  

q u i r e  o f  t h e  w r i t e r  t h a t  e v c r y  l i t t l e  a p p l i c a t i o n  o f  t h e  r u l e s  

o f  t h e  l a n g u a g e  s l i o u l d b e  i ~ i d i c a t e d  i n  t h e  t e x t .  But t h i s  i s  o u t  

o f  t h e  q u e s t i o n :  

t c x t s  wllich arc, 

s e n t  s y s t e m .  We 

i t s  own i n i t i a t i  

f rom e x p t , r i e n c e  we know t l ~ n t  i t  would r e q u i r e  

h u n d r e d s  of  t i m e s  l o n g e r  t h a n  t h e y  a r e  i n  o u r  p re -  

ex1)c.c~ tile machine t o  do mucli o f  t h e  c h e c k i n g  on  

v c ,  n o t  n e c . c ~ s s a r i l y  i n  t h e  same way t h e  t e x t -  

w r i  t c , r  m igh t  Iiave Ii,id i n  milid. 

'Slic m,lcliine h a s  t o  f i n d  o u t  w h e t h e r  t h e r e  i s  a  s e q u e n c e  o f  

a p p l i c a t i o n s  o f  t h e  l a n g u a g e  r u l e s  t h a t  m o t i v a t e s  t h e  c o r r e c t n e s s  

of a  l i n e  of t h e  book,  oncc  a l l  p r e v i o u s  l i n e s  have  been  checked .  

The r e s u l t s  o f  l a n g u a g e  t l i co ry  show ( a t  l e a s t  f o r  SEMIPAL, PAL, 

AU'1'-68, AUT-QE, AUT-SL) t l i a t  t h i s  i s  a u t o m a ~ i c d l l y  d e c i d a b l e .  Def- 

i ~ l i t i o n a l  e q u i v a l e n c e  o f  two e x p r e s s i o n s  c a n  b e  e s t a b l i s h e d  by 

r e d u c i n g  b o t h  t o  t h c i r  nornm,ll form and c h e c k i n g  w h e t h e r  t h e s e  a r e  

t h e  same. But a l r e a d y  i n  s h o r t  books  t h i s  may t u r n  o u t  t o  g i v e  a  

p r o h i b i t i v e  amount of  work ( i n  p a r t i c u l a r  i t  w i l l  d u p l i c a t e  much 

of  t h e  work done  i n  c h e c k i n g  p r e v i o u s  l i n e s ) .  What we r e a l l y  want  

i s  '1 good c t r i r t e g y  by which t h e  machine  c a n  t r y  t o  f i n d  a  s h o r t e r  

way f rom one  e x p r e s s i o n  t o  t h e  o t h e r ,  a b o u t  a s  s h o r t  a s  what  may 

have  bccn i n  t h e  w r i t e r ' s  mind.  

'She compu te r  programs whose e x e c u t i o n  e f f e c t u a t e  t h e  v e r i f i -  

c ' i t i o n  of  a  book,  a r e  c a l l e d  ucr i f i e r s  o r  clzt .c~k~rs.  For  AUT-68 

and AUT-QE t h e  v e r i f i e r s  o p e r a t e  s a t i s f a c t o r i l y .  The c h e c k i n g  



can be done o n - l i n e  from a  t e l e p r i n t e r .  I n  some c a s e s  where t h e  

program's  s t r a t e g y  seems t o  r u n  i n t o  v e r y  much work, t h e  machine 

may a s k  whettler t l ~ e  w r i t e r  r e a l l y  wants i t .  I n  most c a s e s  i t  t u r n s  

nu t  t h a t  t h e  w r i t e r  has  made a  m i s t a k e .  I t  would no t  be s e n s i b l e  

t o  r e q u i r e  t11,it t h e  machine proves t h a t  a  l i n e  i s  i n c o r r e c t :  

sucll '1 proof might rc.cluirc ( .va luat ion of normal forms.  T h e r e f o r e ,  

i t  i s  bc. t tcr  t o  l e t  ttle mac t~ ine  r e p o r t  i f  i t  has  a  s e r i o u s  d i f f i -  

c u l t y .  Arid on some r a r e  o c c a s i o n s  we may l e t  t h e  machine a s k  f o r  

a  h i n t  i n  what d i r e c t i o n  t o  s e a r c h .  Sometimes i t  may h e l p  t h e  

machine i f  we w r i t e  a  few e x t r a  l i n e s  i n  t h e  book, j u s t  a s  i f  

we a r e  e x p l a i n i n g  mathemat ics  t o  human r e a d e r s .  I n  g e n e r a l ,  i f  

we condense two l i n e s  i n t o  one,  then  checking t h e  condensed l i n e  

may r c q u i r e  more work then  check ing  t h e  s e p e r a t e  l i n e s  one by one.  

Most o f  tlle work o n  v e r i f i e r s  was done by 1 .Zandleven ( c f .  

Zandlevcn (1973) i n  t h e  ycLclrs 1971-1976. L a t e r  t h i s  work was con- 

t i n u e d  by A-Kornaat  and L . S .  van Benthem J u t t i n g .  A v e r y  l a r g e  

p a r t  of tile c f f o r t  i s  j u s t  caused by t h e  l i m i t a t i o n s  of t o d a y ' s  

computer tecllnology.  The  amount of i n f o r m a t i o n  involved i n  han- 

d l i n g  moderate amounts of mathemat ics  i s  s o  b i g  t h a t  i t  has  t o  be 

d i s t r i b u t e d  e i f i c i e n t l y  over  t h e  v a r i o u s  k i n d s  of f a s t  and slow 

memory, and cl lccking a s i n g l e  l i n e  may r e q u i r e  c o n s u l t a t i o n  of  

many remote p ' l r t s  of t h e  book. The pa ragraph  sys tem ( s e e  s e c t i o n  

10) p l a y s  a  r o l e  i n  coping w i t h  t h e s e  d i f f i c u l t i e s .  

I n  hand l ing  s u l ~ s t i t u t i o n  i n  lambda c a l c u l u s  i t  i s  o f t e n  nec- 

cssclry t o  re-namc tiurnmics i n  s u b s t i t u t i o n  o p e r a t i o n s ,  i n  o r d e r  t o  

avo id  "name c las l lcs" .  I n  o r d e r  t o  s i m p l i f y  t h i s ,  namefree lambda 

c a l c u l u s  was deve1opc.d de  l i r u i j n  (1 9 7 2 b ) ,  (I  978a) ,  where r e f e r -  

ences  t o  dummies . l rcx  no t  i n d i c a t e d  by name but  by r e f e r e n c e  d e p t h .  

Th i s  system l i e s  a t  the  r o o t  of t o d a y ' s  v e r i f i e r s .  

A s  i t  was s a i d  l)c,torc., t l ~ c  problem of how t o  hand le  l a r g e  

.Imoun t s  of mathemat ics  r e q u i r e s  c o n s i d e r a b l e  e f f o r t  i n  t h e  d e s i g n  

of  tlle v e r i f i e r s ,  b u t  t h e  m a t t e r  of s t r a t e g i e s  i s  more e s s e n t i a l .  

i i  i s ,  of c o u r s e ,  c l o s e l y  r e l a t e d  t o  language t h e o r y .  The c l o s u r e  

theorem ( s e c t i o n  19) i s  impor tan t :  i t  s a v e s  much work, e .g .  i t  



saves clir~cking typc.s whcm doing 6-reduc.tion. 

'1'11~ c~ssenti.il ttiSlicul ty of verification is also the essential 

d i  i f  icul ty of lang~~age theory. It i s the fact that def initionally 

cqual expressions are connected by chains A ,A2,...,A in which 
1 n 

thc reductions go either way: sometimes A .  reduces to A s ome- 
1 i+l ' 

times A. reduces to A,. 
I +  1 1 

Jutting (1977) gives some details about experiences with the 

checking of :I relatively large text (viz. the translation of Lan- 

d~u's "Grundlagen", Landau (1930)). The coded version (Jutting 
7 

(1976)) consists of about 5.10 bits. This may seem very large 

(may be 10 to 50 times as large as a direct encoding of thewords 

and symbols 1,andau wrote himself), but it is still of the order 

of what n single cassette tape can contain. 

21. AU'I'OMA'L'IC THEOREM PKOVING 

Automatic theorem proving is a very hard subject. In order to 

bc efficient it certainly requires clever adaption to the kind of 

problems it is applied to. Therefore it is very questionable 

whether it would profit mucl~ from AUTOMATH, with its claims for 

generality and adaptivity to l~uman reasoning. Admittedly, our 

verifiers do automatic sc~irching, and may establish definitional 

equ,ilitic~s the writer has not bothered to see through, but this 

is not the level of what is usually called automatic theorem 

proving. 

Never tllrless one may think of building "attachments" to the 

verifier which find proofs of little gaps the writer might like 

to leave. Tl~is might be done completely outside the system (e.g. 

by consulting the computer's arithmetic unit or by checking tauto- 

logies by inspection of cases), but it can also be conceived that 

the machine, after finding its proof, writes it in AUTOMATH and 

checks it by its own verifier. An attachment of the latter type 

was built (as a student's exercise) by K.M.A.Wieringa. Given nat- 

rlr,ll nu~ribcrs p , q , r  with pq=r, where p,q,r are presented in the 

binary number system, his program produces an AUTOMATH text prov- 



ing pq=r. The number of lines is of the order of the number of 

digits wc write down wit11 ordinary pencil-and-paper multiplica- 

tion. 

Attachments of the first kind, working outside the system, can 

of course work very much faster, At least some of them will be 

very profitable, but t h r  AUTOMATH group never worked in this 

direction. They rather did what others don't than what others do 

very efficiently already. 

22. FURTHER LANGUAGE EXTENSIONS 

There is a number of things that mathematicians find so self- 

evident that they do not see them as part of the structure of 

axioms, definitions, and thc,orems, but more as a part of their 

language. This is deceptive, of course (after all we seem to do 

a lot of mathematical work subconsciously), but nevertheless one 

can try to incorporate as much as possible in the language defi- 

nition. To quote a few unrelated things: pairs, strings, set 

theoretical opcr'ttions, equality, commutativity and associativity, 

mathematical induction. Onc might say that in AUT-68 and AUT-QE 

only two things l~avc been implemented: functional relationship 

'ind typing. All the rest is left to the book-writers. 

We nevclr Tound 1nuc.11 use for building mathtmatical induct ion 

into tile language dc~finition (it is done in some other construc- 

tive systems). The reason is that in our system we have books to 

write in, and for a thing like induction it is as easy to quote 

the rule from a book as to apply a language facility. But for some 

of the other subjects mentioned above, the use of language facil- 

ities would be very much shorter than quoting from the book. 

Every extension miy sc~riously complicate both language theory 

and verifier. It is not clcar how far one should go. J .  Zucker 

devised AUT-1'1 (Zucker(1975)) as a relatively mild adaption and 

extension of AUT-68. It is ~uucti easier to write than AUT-68. 

Z~~ckcr wrote an extcnsivc. manuscript "Keal Analysis" directly in 

AUT-PI (it is not a translation of something that was written 



f irst in ordin,lry l ,lngu,lgc on scrap paper) . A i cw ct~dpters were 

written by A.Korn,l,lt, W ~ L O  ,iLso produced somc h,lrder material in 

ALI'1'-PL, viz. tile proofs of the equivalence of various forms of 

tl~c axiom of choici,. 

AU'I'-1'1 uses somc proper extensions (like facilities for hand - 

ling i rs) and a number of things which are more in the line of 

fast not'ltion. Much of this belongs to a system called AUT-SYNT 

(partly developed by 1.Zmdleven) which has facilities for oper- 

ations on syntactic vc2riables, strings, and telescopfs (a tele- 

scope is a string of block openers with types, like [x :Al] ... 
1 

...r x :An]; tt~e name comes from hand telescopes with tubes fitting 
n 

into each other). 
, I  

The work on language theory and verifier of these languages 

is uni inishcd. 

One way to look :?t AUT-SYNT is that it is just an auxiliary 

language (like in dc Uruijn (1972~1)) that helps us to prepare an 

input text in a language like AUT-68 or AUT-QE, where language 

tlleory and verificr <Ire on prettv safe grounds. It is likely that 

on the long run A1J'l'-68 i~rovided with AUT-SYNT input facilities 

will not be less . ~ d ~ q c i t ~  than some of the fancier languages, at 

least for classical mathematics. 

23. IS THERE A NEED FOR HIGHER ORDER LANGUAGE? 

As it was said before, AUT-68 is a first order language since 

there is no abstraction over expressions of degree 1 .  Yet this 

does not seem to be a serious limitation, since a few extraaxioms 

in the book extend rl~e power of the language. As an example, we 

mention how clbstrcictior~ over 1 1 9  can be mimicked. We start with - 

an axiom in the empty contvxt "bool := PN : type", and from now 

on expressions b with b : bool are interpreted as propositions. 

Next, in a context rx : bool] we take the axiom "proof := PN : 

: propt'. (111 older publicat ions we wrote "'TKUEt1 instead of 

"proof"). Thc effect is tl~at for every proposition b the typing 

u : proof(b) will mcnn that u is a proof for b. Now we can mimic 



ab~tr~lction over prop. Instcad of s~ying that f (p) holds for all 

prop, wc say t11,lt f(proof(h)) holds for a11 b : bool, and the P :  

al~s t r,lc L ion is ~iow over some tlling of degrc~~ 2. 

The rc.poi-ts dc liruijn (1976), (1977), (1978b) givi, suggestions 

how s 1 igllt c>xtens ions of A1JT-68, and how AIJT-QE-NTI (AUT-QE with- 

out typc inclusion) can bc used for mimicking stronger languages. 

24. I'KOOF LRIIELEVANCE 

This is a feature wc miglit add to our languages if we are in- 

teres ted in classicnl matlicmatics only. The classical matliemati- 

cinn would find it t,vcn [lard to understand what its counterpart 

"proof rclevance" is. We give an example. If x is a real number, 

then P(x) stands for "proof of x > 0". Now we def ine1'1og" (the 

logaritlim) in the context [ x  : real][y : P(x) 1 ,  and if we want 

to tCllh cil)out log j we Ilavc to write log(3,p), where p is some 

proof for 3 0. Now tilt, 1) is relevant, and we have some trouble 

in saying tl~it log(3,p) doC.; not depend on p. This can be done by 

means of the general ,lxioms for book equality, with the effect 

that in this case log(3,p ) and log(3,p2) are book-equal if both 
1 

p1 and p,, are proofs 3 -, 0. - 
Some time and somc annoyance can be saved if we extend the 

language by proclaiming t h a ~  proofs of one and the same proposi- 

tion are always definitionally equal. This extra rule was called 

"proof irrelevance" in dc Bruijn (1974b). We of course do not 

want to have the similar feature for type. 

25.  ?IATHEMATICS PKO1)UCEl) IN AUTOMATH 

As a test case for handling larger amounts of mathematics, 

Jutting (1976) gave a line-by-line translation of Landau1s"Grund- 

lagen" (Landau (1930)) into AUT-QE. His experiences are reported 

in Jutting (1977). Landau's book was chosen because it presents 

material of different kinds in a very constant style of presen- 

tation: the steps do not get bigger towards the end of the book. 

It would of course have been much easier to rewrite Landau's 

book first, so as to make it easier to translate, but it was our 



aim to show that AUTOMATH can cope with any kind of mathematics, 

not just the matliemat ics especially designed for it. 

A n v ~ l l c r  substantial piece of work is Zucker's "Real Analysis" 

(mentioned in section 22). And J.T.Udding writes (in AUT-QE) a 

new tlitory of real numbtbrs bdsed on an approach that avoids the 

repeated troublesome embeddings Landau had to go through. 

Many smaller pieces of mathematics have been done by students. 

The experience is that in a period of 2 or 3 weeks a mathematics 

student (without any tr,iining in logic) is able to learn AUT-QE, 

produce a piece of text (possible using basic material already 

known to the computer), punch it, have it checked via ateleprink 

er, correct it, and get a final AUT-QE version. For an account of 

how a piece of mathematics is translated in several stages see 

Jutting ( 1 9 7 3 ) .  

The easiest things to translate are very condensed and very 

abstract pieces of mathematics (Example: the proofs of equivalence 

of various forms of the ,ixioni of choice did not become much longer 

than the original text). Hard subjects are those where (subconsci- 

ous) ''experience" comes in, 1 ike in analysis and combinatorics . 
A very important thing tliat can be concluded from all writing 

experiments is the cao?~sLn?qi of the loss fac tor .  The loss factor 

expresses what we loose in shortness when translating very metic- 

ulous "ordinary" mathematics into AUTOMATH. This factor may be 

quite big, something like 10 or 20, but it is constant: it does 

not increase if we go further in the book. It would not be too 

hard to push the constant factor down by efficient abbreviations. 

26. WORK I N  PKOGRESS 

Apart from things discussed before, we mcbntion a few sub-pro- 

jects which are studied now or will be studied in the near future. 

(i) Programming language semantics. This may become an important 

customer for AUTOMATH. The idea is, to write in a single book: 

definition of a programming language and of its semantics, the 

logic and mathematics involved, particular programs, and proofs 



for their ~ent~i11tic.s. 'I'llc. ideal situation is tliis: a computer that 

lus to cxerutc> a 1110gr3111, rt~~ids it directly from that book, thus 

avoiding every kind of interpretation. K.M.A.Wieringa is working 

on a systcm proposcd in dc Bruijn (1975b). 

(ii) A far rcnclling cxtcnsion of lambda calculus is presented 

in de I3rui.jn (1 978 c) and studied in Wieringa (1 978). In ordinary 

lambda c:ilculus w r  can interpret substitution and (3-reduction as 

replacing end-points of trees by branches of trees. The extension 

in de Bruijn (1978 c) means that we can also break open some edge 

and paste a segment of n tree into it. These segments might re- 

present strings or telescopes (see section 22). This kind of 

lambda calcul~~s can be cxpccted to be helpful to simplify both 

languagt, dcf initions and verifiers. 

(iii) In tlie spirit of tile work of the AUTOMATH project, the 

project W01' was started. W07' is a dutch abbreviation and stands 

for the "niathematic.;~ 1 vc~rn~cular", i. e. the strange mixure of 

words and formulas matlieruaticians use. The idea is to get to a 

purified form of WOT that can be used as a formal system for ex- 

pressing mathematics. The foundations of mathematics have to be- 

come some kind of grammar for WOT. Thus far the only reports on 

WOT are in dutcll, and are used in the training of mathematics 

teachers. 

(Items marked AUT followcd by a number, are privately distributed 
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