f?%iv{“ﬁfjf’j_

AY
In: "To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism". Edited by J.P. Seldin and J.R. Hindley.

Academic Press, 1980.

A SURVEY Of THE PROJECT AUTOMATH
N.G. de Bruijn

Depaviment of Mathematics,
i ndtovon University of Tectmology
.0 Box blE, LEOOMB Eindhoven
The Netherlands

Dedicatod Lo H.B. Curyy on the occaston of his 80th Birthday

I. PURPOSE OF THIS SURVEY

Thus far, much about AUTOMATH was written in separate reports.
Most of this work has been made available upon request, but only
a small part was published in journals, conference proceedings,
ete. Unfortunately, a general survey in the form of a book is
still Tacking. A short survey was given in de Bruijn {(1973), but
the present one will be much more extensive. Naturally, this sur-—
vey will report about work that has been done, is going on, oris
planned for the future. But it will also be used to explain how
various parts of the project are related. Moreover we shall try
to clarify a few points which many outsiders consider as uncom-
mon or even weird. In particular we spend quite some attention

"propositions as types"

to our concept of types and the matter of
(section 14)., Finally the survey will be used to ventilate opin-
ions and views in mathematics which are not easily set down 1in
more technical reporecs.

Some further material of a general nature can be found e.g. in
de Bruijn (1968b), Jutting (1977). For those who have not read
anything about the project, this survey cannot pretend to give
more than a vague idea of the languages. For getting a better
idea, de Bruijn (1971b), van Daalen (1973) may be recommended;
van Daalen (1973) gives a very precise definition af AUT-QE, one

of the most prominent members of the family (see sections 9,13).

o

2. PURPOSES OF THE PROJECT AUTOMATH

The project was conceived in 19663 the first report was de
Bruijn (1968a). The idea was to develop a system of writing en-
tire mathematical theories in such a precise fashion that verifi-
cation of the correctness can be carried out by formal opera-
tions on the text. Here "formal" means: without "understanding"
the "meaning", and therefore it has to be possible to instruct
computers how to check the correctness. Indeed, the fact that we
do have computers will be one of the reasons why our generation
has better chances than those who tried to have similar claimsgﬁ
in the past, like Leibniz, Peano and Hilbert. Even if we do not
actually use computers, they are there to set the standard of
what 1s "formal" verification.

In the next three sections we discuss motivations for the
project: checking, understanding and processing. The first two
motives seem to favour the choice of a system of a very general
nature, not necessarily tied to today's ideas of formalizing

mathematics in terms of classical logic and set theory.

3. CHECKING

Most mathematicians can very well check themselves what they
read and write. Nevertheless only a small portion of mathemat-—
tecal literature is absolutely flawless. Moreover, human checking
seems to be a social affair too: mathematicians put trust 1in
something since they think or know that other mathematicians
have checked it.

Very meticulous checking 1s definitely unpopular. The thing
we have 1in wmind puts quite a burden on those who write the math-
ematics to be checked. They have to justify every little step
extensively. 1t is only after this that a computer can do the
[Minal checking and guarantee the correctness.

We mention two cases were checking may be important. The first
one is for things which are very hard and condensed, and where

there is little intultive or experimental support. The second

one is for long and tedious proofs which form very long chains
of very clementary steps. Such things may occur incombinatorial
arguments, bul, more important, in the large amount of work that
has to be done to check the semantic correctness of large com-—
puler programs or machine designs,

Checking may actually be carried out in man-machine coopera-
tion, This may alsomean that, at least temporarily, parts of the
checking may be omitted if they refer to things we are absolutely
sure of,

Many errors in mathematics are made at the interfaces between
theorics. Therefore, we want to do the checking in a system that
embraces all the theories involved. For example, if we want to
check that the regular 17-gon can be constructed by ruler and
compass, we have to be able to formulate the rules of geometric

constructions into our system.

4. UNDERSTANDTNG

Formal systems help us to understand mathematics already by
the mere fact that they force us to subdivide mathematical dis-
cussion into (1) Tanguage (i1) metalanguage and (iii) interpreta—
tion. The role of the latter is often underestimated. Those who
say that mathematics ¢ set theory, usually disregard the fact
that they handle an extensive system of interpretation which 1is
almost completely intuitive. Quite often it is just the interpre-—
tation that means "understanding' mathematics. Therefore we want
a system that checks as much as possible of what we can actually
say. (This is as far as we can go: we cannot expect a machine or
a person to check what 1s in the back of our minds). Our system
should check a kind of language that comes as close as possible
to what we write in ordinary mathematics.

If we want to understand mathematics we also have to get in-
sight into the roles of axioms, definitions, proofs, thecorems.
We cannot expect to get such an insight from a basic theory that

has been built up itself with axioms, definitions, proofs and

theorems. It is much better to have a foundation that is nothing
but a set of rules for manipulating language. On such a founda-
tion we can build logic and mathematics, possibly with the use
of axioms, There is nothing against axioms, but we should be free
to accept them or to reject them. Axioms should not be tied to
the fundamentals of our system,

Another thing that a good language may help us to understand
is the structure or the complexity of an argument. The text may
reveal analogies in the structure of arguments, and classifica-
tion of their inherent difficulty. As to the classification of
difficulty we mention that a very useful borderline between
"elementary" and "higher" mathematics 1s that elementary mathe-
matics is the part of mathematics that can be expressed without
lambda calculus. In other words: "elementary” is what can be said

in PAL (see section 11).

5. PROCESSING

The fact that a machine can read, check and store the mathe-—
matics we produce, can have several advantages. One of these 1is
that we can be absolutely sure that two mathematicians use the
same theorem with exactly the same conditions, But a machine can
also process its contents for answering questions. Examples: (1)
produce a glossary of a text, (ii) find out in a given argument
whether a given axiom does or does not play a (direct or indirect)
role, (1ii) print all notions and arguments that are nceded to
understand a given theorem, omit everything that is irrelevant to
it.

6. WHAT KIND OF MATHEMATICS CAN WE DO?

The AUTOMATH system 1s like a big restaurant that serves all
sorts of food: vegetarian, kosher, or anything else the customer
wants. The Tanguages are not tied to any logical system: hardly
any togic has been built in. Admittedly there are basic notions

ol functionality and typing, but these need not be used the way

they seem to be intended for. Those who want to say that a

function is a subsct in a certain cartesian product, can say it
in AUTOMATH, but the restaurant also caters for those who want to
describe mathematical functions by means of the functionality
available in the language itself. Those who reject the axiom of
cholce or the excluded middle can use the system, as well as
adepts in "New Math'" and those who see "truth'" as a matter of
checking zeros and ones in truth tables.

Nevertheless some customers are better served than others,

The best-served are those who try to keep close to the way mathe-
maticians actually talk and think. They can use the types for
doing typed set theory, the context structure to represent their
ordinary way of reasoning (natural deduction), and the built-in
functionality for describing their functions.

For typed set theory and natural deduction in relation to
AUTOMATH, sce de Bruijn (1975a), Nederpelt (1977). Formal Zermelo-
Frankel sect theory was written in AUT-68 (c¢f. section 9) by van
baalen (1970). For a large piece of mathematics described in the
"natural' style, we refer to the Landau translation (see sections

20 and 25).

7. BOOKS AND CONTEXTS

We write our mathematics in books, consisting of sequences of
lines. Each line is written in some context.

We usc the word 'context' in a restricted sense. At each point
of a mathematical discussion we can consider

(i) The scet of assumptions which are considered to be valid
at that point.

(11) The sct of variables which are "alive" at that point.

(111) The set of all notions that have been developed previ-
ously (either by definitions or by taking them as primitives).
Many people will say that the context is (i)+(1ii), and disre-
gard (ii) (their idea is that there is an infinite pool of vari-
ables which are always available).

We shall use the word context differently, taking it to be

described by (i)+(ii). There 1s no reason for us to specify (iii),
since it follows from the given order of the lines in the book.
This is not true for (i): assumptions can be both introduced and
discarded. And as to (1i): our point to take this as part of the
context, is the fact that the variables will be typed. These
types may be expressed by means of "older" variables but their
construction may also depend on the fact that the assumptions of
the context are valid (i.e. the types may be defined by expres-—
sions containing things that were defined only under these
aésumptions).

Similarly, the assumptions may be expressed in terms of vari-
ables belonging to the context. In this respect assumptions and
variables play the same rvole in the context. They can appear in

any order. Let us give an informal example of a context:

"Let n be a natural number. Let P be a point of Rn'

Let Q be a point of Rn. Assume d(P,Q) > n."

This context contains three variables n,P,Q and one assump-
tion. We say that this context has length 4. Things of the kind
(111) are "natural number'", "point of Rn”’ g, s,

In a mathematics book we can indicate the context of every
line. There 1s a special kind of lines that serve to define new
contexts (these lines are called block openers), Examples: "Let
n be a natural number". "Assume d(P,Q) > n". Block openers are
placed in a context too.

A context can be seen as a sequence of block openers, arranged
in the order in which they appear in the book. If these context
ey A

tines are labeled A ..,0 , then the context of A 1sA
n n

17 1’ n—T

Therefore the context Al,...,An is adequately described by men-
tioning An only: looking up line An in the book will reveal An—l’
etc.

The word "block opener' suggests the usual situation that
assumptions are taken to be valid during a sequence of consecu-

tive lines, and that validity regions of assumptions are nested

intervals. These things will not be generally assumed however. A

context can shrink for a while, and be picked up later.

8. DEFINITIONAL LINES AND PN-LINES

What kind of material can be written in a context (apart from
block openers that cxtend the context)? Tt will turn out that we
can get away with two things: definitional lines and PN-lines. In
the first case we have a new identifier (symbol or word), and an
expression (in terms of old Identifiers and material from the
context); the line is interpreted as the definition of the new
identifier. In a PN-line, however, no expression is given, but
the symbol PN is written instead, The interpretation is that the
identifier is introduced as a primitive symbol. In section 14 it
will be explained how some of the definitional lines can be inter

preted as theorems with proofs and some of the PN-lines as axioms.

9. THE LANGUAGLE TAMTLY

As basic language we take SEMIPAL. It is not able to handle
mathemat ics, but just intended to give a record of how things
are expressed 1n terms of others, The contexts in SEMIPAL are
sequences of untyped variables. Apart from the block openers there
arc definitional lines and PN-lines. The expressions are composed
of identifiers and variables. If the context is KpserosX oo the

new identifier 1s p, then the line is written as something like

(9.1) XpoeeesX, * p = f(g(xl,a),h(xl)).

On the right we have an example of an expression. In order to
explain what we intend with this line, it 1s better to write

p(x. ,...,%x) instead of p; the interpretation 1s that p is intro-
n

I
duced as a function of n variables. The expression on the right
is assumed to be correct, i.e. (i) each non-variable identifier
has been introduced previously in the book, with a context length
cqual to the number of subexpressions 1t has in (9.1), (ii) the
variables occurring in (9.1) all belong to the contextx],...,xn.
SEMIPAL can be extended in two ways.

e

H

(1) by admitting lambda expressions (A=SEMIPAL).

(i) by attaching a type Lo every expression, taken from a
fixed finite sct of types. Let us call this PAL-FT (PAL with
fixed types).

We can go beyond (ii):

(111) by admitting the introduction of type variables and of
primitive types. This will be called PAL ("Primitive Automath
Language') .

The combination of PAL and A-SEMIPAL leads to AUT-68 (for a
long time this was called AUTOMATH), and, a little beyond it, AUT-
QE. Let us write A < B if every correct book in language A is also
correct in language B. Then we have PAL < AUT-68 < AUT-QE.

A different extension of PAL is J.Zucker's AUT-PI (see section
22).

The Tanguage AUT-SI (single line AUT, see de Bruijn (1971a),
Nederpelt (1973) has been created mainly in order to get a stream-
lined language theory. It is a very general higher-order language,
obtained by giving up all restrictions on abstraction, and ad-
mitting all numbers 0,1,2,... as degrees (see section 11). Once
this has been done, we can write PN's as block openers (cf. sec -
tion.16), climinate all definitional Tines, and thus obtain a

complete book in the form of a single line.

10. ABBREVIATION SYSTEM

In SEMIPAL we have a simple abbreviation system that can be
maintained throughout the language family. If p was introduced
by (9.1), say, then In later expressions p is allowed to have
fewer than n subexpressions. The missing subexpressions are just
supplied by adding X sX,, ... ON the left, For example: if

I E are expressions, then p(EB,...,E) is an abbreviation
n

B o,...
377y’ >h

for p(xl,xq,EB,...,H”). (So p(E .,En) can only be used in a

3o
context containing the first two variables of the context of

(9.1)).

Quite a different kind of abbreviation, (again for all lan-

guages of the family) lies in the paragraph custem (for a des-
cription see Jutting (1977). [t has the practical advantage that
names for identifiers (¢.g. common letters like x,a,...) can be
used over and over again. The book is divided into sections, sub-
sections, sub-subscctions,... (all called paragraphs). If we men-—
tion an identifier we mean the one that was introduced in the
smallest surrounding paragraph; if we want to refer to a differ-
ent identifier with the same name, we have to mention its para-

graph number.

11. TYPING AND DEGREES

We begin with a lTanguage with fixed types. Let us call it PAL-
FT. We start from SEMIPAL, and we attach a type (taken from the
given sct) to every variable, to every identifier and to every
expression. The rules are obvious: if we form an expression by

substituting expressions E ,...,E for x yeees X inp(xl,...,xn),
n

] 1
then for each i1 the type of Ei should equal the one of X s and
p(Hl,...,En) gets the same type as p. The type can be written
at the end of each line of the book (including block openers). As
a seperation mark we can use the semicolon (we also write p : T
in the metalangvage in order to say that p has the type 1).

et us pass to PAL. We introduce a new symbol type, and say
that 1 : type for every type we had thus far. lLet us admit this
new kind of typing for block openers as well as for PN-lines.
Then by obvious extensions of our rules, we can get the new types

in the definitional lines too. We do not need the collection of

fixed types anymore: the same effect can be obtained with PN-

lines "t := PN : type'",
Since PN-lines can be written inside a context, we can get big
expressions typed by type (i.e. we get types depending on a num-
ber of parameters).
Let us say that type 1s an expression of degree 1; if E @ type

we say that [ohas degree 2; if F : E and E : type we say that F

has degrece 3.

In the languages mentioned in scction Y the degrees are re-
stricted to 1,2,3, There would not be any harm in admitting
higher degrees, but the description of present-day mathematics
does not scem Lo require more than three degrees. There is a
suppestion ol using deygree 4 in de Bruijn (1974b), but what is
done with 1t might also be done with lower degrees by slight
modifications of the language.

The typing rule of PAL-IFT is to be modified in PAL: the type
of p(Hl,...,Hn) i1s to be what we get if in the type of
p(xl,...,x”) we substitute B

for xl,...,E for X - And we require
1

1
that the type of I, is "definitionally equal” (see scction 18)
i

n

to the one we get by that same substitution in the type of x,
. ; ;

(the latter type does not contaln XX ,...,xn).

141
12, ADDING THE LAMBDA CALCULUS

In scction 9 we announced X-SEMIPAL as what we get from PAL
by admitting A-expressions as expressions. (This language has
never been used or studied In the project; it is only mentioned
here as a resting-point in the discussion). If E is anexpression
containing the variable x, then AXE is an cxpression in which %
is no longer a variable but a dummy. The passage from E to XXE
is called abstractson. The interpretation is that AXE is a func-
tion, which at any point p has as its valuce the expression we
pet If In I we replace x by p (the result of this substitution
1s written in the metalanguage as [x lp TE).

The counterpart of abstraction is called application. We write
p{f} for the thing that is interpreted as the value of the func-
tion t at the point p. (The usual way of writing fp or f(p) is
inconvenient since abstraction 18 written on the left, and it
happens so often that abstractions and applications are tied to-
gother 1n pairs.

A crucial role in the metalanguage is played by p-roeduciion.
This means reducing {pt A E to [x [p JE, in accordance with the

x

interpretation. Less important 1s n-reduction, reducing A {x}E
X

/2

/f

to £ in cases where E does not contaln x.

In A\=SEMIPAL we have two different wavs to deseribe the rela-
tion between a lunction t, a value p of the varitable, and the
value of the tunction at that point. One way is the application
{p)lf, the other one is by means of what we shall call dneiantia-
tion, 11 £ 1s an identificer introducced 1n the context x (either
by a definitional line or by a PN-line or by a block opener) then
we can use the expression {(p) In later lines. This feature of
the language has disadvantages (two ways of writing, with the
same Interpretation) and hardly any advantage: instantiation does
not do what applicaticn cannot do. This will be different in typ-
ed languages: the scopes of instantiation and application overlap,

but none of the two scopes 18 contained in the other.

13. ADDING TYPED LAMBDA CALCULUS TO PAL

We first say that the word "typed" in the title does not refer
to fixed types lTike in PAL=VT of scction 11, We shall admit type
variables, and ltambda cxpressions as types. Therefore we get
bevond what is usually called typed lambda calculus.

The typed lambda expressions we want to add to PAL are ot the
1knm\AX:AB. The B may contain x as a variable, and 1t has to be
a legitimate expression under the assumption that the type of x

is A. In the metalanguage we speak of "abstraction over A" or
"abstraction of B over A",

The subscripted notation) is hard to print in the many

u:tU
cases where U is an expression containing further A's. Therefore
we always write [u : U] instead of Au'U'

There arce various possibilities to.play the game. For a survey
we refer to de Bruijn (1974a), In particular we have to decide
whait degrees tor A and B we admit. Both in AUT-68 and AUT-QE we
admit abstraction over A's of degree 2 only. In AUT-68 the ab-
stracted expression B can have degree 2 or 3, in AUT-QE B can

have degree 1,2 or 3. The typing rule for \-expressions in AUT-QE

is roughly this: if in the context y extended by x:A we have

B(x):C(x), then in the context ¥ we have Fx:AIBGO :Tx:AIC(x). In
AUT=68 this is difterent if B has degree 2. 1f B(x) : type then
AUT=-68 obtains [x:AIB(x) = tvpe.

In AUT-QE the "quasi-expressions' (like [x:Altype) scem
strange, but once one gets accustomed to them they turn out to
be quite natural and enjoyable, They allow applications {a }f 1if
we Kknow f:P,P:[x:A][)!EL:nuJ azA.

There 1s a rute in AUT-QI that increases the power of the lan-
guage. The rule is called type incelusion. If we have a typing
Tike T ¢ [Tu:UTv:Vitype we say that the typing T : [u:Ultype and
T : type are also acceptable (acceptable in the sense of the
rules for instantiation and application). Expressed superficially:
¢verythingwe say for arbitrary types can be used for function
Lypes too.

Actually we can take three decisions about type inclusion. It
can be forbidden (like In AUT-SL), allowed (like in AUT-QE) or
prescribed (like in AUT-68). Prescribing type inclusion means
that the abstractions in front of type have to be skipped.

[n AUT-68 typings are unique in the following sense. Tf in
some context both /\:Bl and 1\:152 are correct, then B] and 82 turn
out to be definitionally equal (sece section 18). In AUT-QE this
holds with the oxzop(ion of type inclusion. But this is just a
matter of phrasing the language definition. We can also say that
typing is unique but that the typing rule is liberalized (cf.
"mock typing" in de-Bruijn (1974a)).

If A : type and B : type we are able to say "let f be a map-
ping of A to B" by means of a block opener "f : [x : A]B". This
shows that in the typed language the lambda calculus can do what
tnstant iation cannot do (¢f. section 12). On the other hand, by
Instantiation we are able to handle block openers like "A : typé)
and the functional relationships expressed in this context cannot
he expressed by abstraction, at least not in languages (like

AUT-68, AUT-QE) that forbid abstraction over cxpressions of degree

I (e.y. ovvrrgyuc).

Td. USE OF TYPING FOR REASONING

The fact that PAL and its descendants AUT-68 and AUT-QE can be
used for mathematical reasoning depends on the idea of proposi-
{/0ne s lupes. Roughly it means that if p is a proof for a prop-
osition, we write it as a typing p:P. This principle goes back to
Curry and LFeys (1958), and was elaborated by loward (1969), Pra-
witz(1971), Girard (1972), Martin Lof (1973). Completely indepen-—
dently of thesce developments it appeared in de Bruijn (1968a,b).

Treating propositions as types 1s definitely not in the way of
thinking of the ordinary mathematician, yet it is very close to
what he actually does. We shall try to explain this presently.

Assume that our book contains the following theorem (described

informally), for some given functions é,y¢:

"Theorem 1. T.et x be a real number. Assume y(x) > 1.

. n
Let n be an integer. Assumce ¢(x) > x . Then y(x) > n'".

We want to apply this later, with x=¢, n=5, and want to conclude
v{q) > 5. We have to convince ourselves that the conditions are
satisfied. To this end we write a proof for y(q) > 1 and label
this result as (1). And we write a proof for ¢(q) > q5 and label
that result as (2). Now we claim to apply the theorem, providing
in this order q, (1), 5, (2). So the (1) and (2) are treated on
a par with the names (of "objects") q and 5. Is (1) to be consid-
ered as a name for the proposition y(q) > 1? No, the application
of the theorem is not legitimate because of the existence of the
proposition ¢(q) - I, but because of its being proved. So consider
the reference (1) as a reference to a proof of w(q) » 1. Let us
try to explatn our application to a machine that knows Theorem 1.
The machine wants to cheek (i) that g is a real number, (11) that
(1Y is a statement that &(q) ~ 1 has been proved, (iii) that 5 is
an inteper, {(iv) that (2) refers to a proof of ¢(q) - qS. We only
need Lo change a few words in order to get: q is a real number,

(1) 1s a proof of §(g) > 1, 5 is an integer, (2) is a proof of

-

¢(q)‘-q). AlT togethier, we have a proof of w(q) > 5.
The parallelism between proofs and "ordinary' mathematical ob-
jeots gets cven stronger if we realize that many objects are de-
fined conditionally only. I{ we define a function f for x real,
x >~ | then the use of the value of the function at a point re-
quires (i) that point (a real number), (11) a proof that the real
number is ~1. Now the value of the function is an object, and it
depends on an object and a proof. So proofs may depend on objects
and objects may depend on proofs. One might say that we have been
confusing "proofs" with "references to proofs'" or "names of
prootfs". But in Informal talk we make the same switchings from
"objects" to "names of objects". There is not much of a point in
arguing whether proofs are as real or more real than objects,
Quoting Wittgenstein's "bon't ask for the meaning, ask for the
use', we must say that as far as the use is concerned, the par-
allelism is complete.

In the above example, the proof of ¢(gq) » 5 is a single-step

proof. In PAL it is ecxpressed in a line
Theorem 2 := Theorem 1{(q, (1), 5, (2)) : P

where Poin some way represents the proposition $(q) > 5 (or rather
the type of proofs of that proposition). The term "single-step
proof' means that we only have to quote. It would become a multi-
step proof 1f (1) was not available directly in the book, but (1)
had to be constructed on the spot, again by substituting things

in the name of the proof of a theorem, like "lemma 3(q,q)" in
Theorem 1{q, ltemma 3(q,q), 5, (2)) : P.

In this way arguments of several steps can be condensed in a
single tine.

let us illustrate the principle "propositions as types'" by how
it works for implications. Let p and q be propositions. Having a
sroof of the 1mplication p » g can be interpreted as this: we

have a procedure by which we are able to give a proof of q for

every customer who might present us a proof of p. That is, our
procedure is a function that maps the set of all proofs of p into

proofs of g. Using our terminology of context, we can say that in

the context "x : proof(p)" (representing "let x be a proof of p")
we can write a line
I := ... : prool(y).

By the abstraction rule of AUT-68 or AUT-QE we get, outside

the x-context (see section 13 for the notation),
[t : proof(p)] £(t) : [t : proof(p)] proof(q).

Hence [t @ proof(p)] proof(q) acts as the proof type of the im-—

plication.
15, USING TWO EXPRESSTIONS OF DEGREE 1.

For various reasons 1t 1is attractive to introduce a symbol
prop of degree 1 that behaves exactly like type, but withdiffer-
ent interpretation. If A : B, B 3 type then A is the name of an
object of type B, and if C : D, D : prop then C is the name of a
proof for the proposition cxpressed by the proof type D.

One reason to make the distinction between type and prop is to

give an casier insight into the interpretations, but there are
also more essential reasons for making the difference, One of the
forms of the logical double negation axiom, written by means of
"prop'", turns into the axiom about Hilbert's e-operator if we re-

place prop by type. So if we want to do classical logic and do

not want to accept the axiom of choice, we neced some distinction.
It should be mentioned, however, that introduction of prop is not
the only way out of this difficulty. (Another way is to create a
primitive type called "bool" (for boolean) and for every boolean
b a primitive type "proof type of b').

Another suggestion to profit by treating type and prop differ—
ently, Is "proof irrelevance' (section 24).

We can now give a survey of the various kinds of lines involy-

ing prop. First, block openers "x : prop'" introduce propesitional

variables. PN lines "p := PN : prop" introduce primitive proposi-
tions. A definitional line "b := ... : prop" introduces an abbre-
viation for a more complex coxpression representing a proposition.

Next we take some P with P ¢ prop. This P is interpreted as the
proot type of a proposition. Now the block opener x : P states
the proposition as an assumption, The PN-line u := PN : P is in-
terpreted as stating the propositions as an axiom. The definition
al linc v := E : P states the proposition as theorem. The expres-—
sion E represents the proof, and v is a name for the proof. The
theorems themselves do not get names. In order to quote a theorem
it suffices to quote a name for the proof.

Contexts arc scquences of block openers like

At the places where /\i : prop the interpretation is that x, isthe
name of the assumpcioﬁ, at places where Aj ! type the x. is a
variable. And, of course, there can be places where Aj = type or
A.l = prop.

\ Especially in AUT-QE it is attractive to talk "prop-stvle} i.e.
to suppress all propositions and talk about their proof typesonly.
It turns out that there ts hardly ever a necessity to talk about
the propositions any more (talking about propositions is called
"bool=style"). The example at the end of section 14 shows how this
works: we can just fef7re the proof type of the implication asso-
ciated with the proof tvpes P and Q by [t : PIQ.

The more often one does this kind of thing, the casier one for-

gets the original usce of the word "proposition"”, This may explain
why the AUTOMATH workers began to say prop instead of proof type.

A consequence is that if P : prop they do not pronounce p : P as

LAl "

p is a P" but as "p proves P",

16. AXLOMS vs. ASSUMPTTIONS
It we have a PN=Tine In an empty context there i1s no harm in
replacing it by an assumption. The name of the assumption will be

a part of every context in the sequel., Taking 1t as an assumption

pives more flexibility, since axioms are things we can never get
rid of (unless we start a new book) and assumptions can be dis-—
carded 1f we wish.

If & PN-line i1s written in a non-empty context we can sometimes,
but not always, replace it by an equivalent axiom in the empty
context (and next replace it by an assumption). Whether this is
possible depends on the degrees involved in the context as well
as on the degree of the type of the PN-line, both in connection
with the abstraction rules of the language. In AUT-SL, the most
liberal language of the family, all PN's can be eliminated this

way.

17. DERIVATION RULES

In the AUTOMATH family there is no essential difference between
Toyic and mathematics. Logical connectives can be taken as PN's
or as defined notions, inference rules can be taken as axioms or
as derived rules, and later applications of such rules have the
same form as applications of mathematical theorems.

As an example we present the double negation law. Somehow we
have an expression CON with CON @ prop. It has the following inter-
pretation: it in some context we have an expression p with p : CON,
then "we have a contradiction"” (one can even say that p 7¢ a con-
tradiction). In the context P prop we next define NON(P) (by
means of a definitional iine) as {x : PJCON. The '"double negation

Taw" can now be written as follows:
[P : propl [y : NON(NON(P))] = dbng := PN : P,

To the lefr of the asterisk the context is Indicated: "let P be
a prop, let y be a proof of the double negation"”. In this context
we postulate the truth of P. The identifier "dbng" is chosen as

the name of the law.
18, TWO KINDS OF EQUALITY
There is (already in SEMIPAL) a notion of definitional equality

between expressions. The notion plays a central role in language

theory. Tn typed languapes it is essential already in the lan-
guage definition (sce the end of section 11). befinitional equal-
ity 1s penerated by S-reductions (§-reduction means elimination

of some previously defined identifier, replacing it by its defi-
nition given in the definitional line) and the f— and n~reductions
of the lambda calculus.

In our languages no facilities have been provided for talking
in the book about definitional equality. Tt is hardly necessary,
for if A and B arc definitionally equivalent then at every place
in the book A may be replaced by B without any argumentation. The
kind of equality mathematicians do talk about is what we call
book equality. 1t may be introduced by means of a PN (but there
are also possibilities to def7rne book equality), and its basic

properties can be covered by axioms or theorems.

19. LANGUACGE THEQRY

Language theory is about reductions (the §—,$- and p-reductions
mentioned in section 18), normal forms (i.e. expressions which
do not admit reductions) and about the relation between correct
expressions and their types ("correct" means: acceptable in the
book). Important parts of the language theory were obtained in
Jutting (1971), van Daalen (1973), Nederpelt (1973), de Vrijer
(1975). The forthcoming Ph.D. thesis by D.T. van Daalen will
cover all aspects of the language theory at least for AUT-68,
AUT-QE and AUT-SL. The essential results are (in a rough formu-
jation)
(1) The Church-Rosser theorem: If A and B are definitionally
cquivalent then there 1s an expression C such that both A and B
can be reduced to € by segquences of reductions.
(i1) The normal tform theorem: For every A there is a normal form
N to which A c¢an be reduced by a sequence of reductions; N is
uniquely determined.
(i11) The strong normal form theorem: Every reduction sequence

terminates (and for ¢very A there is an upper bound to the length

of the reduction scquences starting at A).
(iv) The closure theorem: [f A is correct and if A reduces to B
then B 1s correct.

We note that (i1) is not true for untyped lambda calculus. 1t
is true, however, for the untyped language SEMIPAL (which has no

lambdas) .

20. VERIFICATTION

One of the most important things in the project is that we ex—
pect machines to check the correctness of what humans have written.
This would be an easy programming job if the language would re-—
quirc of the writer that cvery little application of the rules
of the language should be indicated in the text. But this is out
of the question: from experience we know that i1t would require
texts which are hundreds of times longer than they are in our pre-
sent system. We expect the machine to do much of the checking on
its own Initiative, not necessarily in the same way the text-
writer might have had i1n mind,

The machine has to find out whether there 1s a sequence of
applications of the language rules that motivates the correctness
of a line of the book, once all previous lines have been checked.
The results of language theory show (at least for SEMIPAL, PAL,
AUT-68, AUT-QE, AUT-SL) that this is automatically decidable. Def-
initional equivalence of two expressions can be established by
reducing both to their normal form and checking whether these are
the same. But already in short books this may turn out to give a
prohibitive amount of work (in particular it will duplicate much
of the work done in checking previous lines). What we really want
is a good sirateqy by which the machine can try to find a shorter
way from one expression to the other, about as short as what may
have been in the writer's mind.

The computer programs whose execution effectuate the verifi-
cation of a book, are called verifZers or checkers. For AUT-68

and AUT-QF the verifiers operate satisfactorily. The checkings

can be done on-line from a teleprinter. In some cases where the
program's strategy seems to run into very much work, the machine
may ask whether the writer really wants it. In most cases it turns
out that the writer has made a mistake. It would not be sensible
to require that the machine proves that a line is incorrect:

such a proof might rcequire evaluation of normal forms. Therefore,
it is better to let the machine report if it has a serious diffi-
culty. And on some rare occasions we may let the machine ask for
a hint in what direction to scarch. Sometimes it may help the
machine if we write a few extra lines in the book, just as if

we are cexplaining mathematics to human readers. In general, if

we condense two lines into one, then checking the condensed line
may require more work then checking the seperate lines one by one.

Most of the work on verifilers was done by 1.Zandleven (c¢f.
zandleven (1973) in the years 1971-1976. Later this work was con-—
tinued by A.Kornaat and L.S. van Benthem Jutting. A very large
part of the cffort is just caused by the limitations of today's
computer technology. The amount of information involved in han-
dling moderate amounts of mathematics is so big that 1t has to be
distributed efficiently over the various kinds of fast and slow
memory, and checking a single line may require consultation of
many remote parts of the book. The paragraph svstem (see section
10) plays a role in coping with these difficulties.

In handling substitution in lambda calculus it is often nec—
essary to re-name dummles in substitution operations, in order to
avoid "name clashes". In order to simplify this, namefree lambda
calculus was developed de Bruijn (1972b), (1978a), where refer-—
ences to dummies arce not indicated by name but by reference depth.
This system lies at the root of today's verifiers.

As 1t was said betore, the problem of how to handle large
amounts of mathematics requires considerable effort in the design
of the verifiers, but the matter of strategies 1s more assential.
it 1s, of course, closely related to language theory. The closure

theorem (section 19) Is important: it saves much work, e.g. it

N

saves chiecking types when doing g-reduction.

The essential difficulty of verification is also the essential
difficulty of language theory. It is the fact that definitionally
cqual expressions are connected by chains AI’A2""’An in which

the reductions go cither way: sometimes Ai reduces to Ai some—

+17

times A, reduces to A..
it i

+ 1
Jutting (1977) gives some details about experiences with the
checking of a relatively large text (viz. the translation of Lan-

dau's "Crundlagen'™, Landau (1930)). The coded version (Jutting
(1976)) consists of about 5.107 bits. This may seem very large
{(may be 10 to 50 times as large as a direct encoding of the words
and symbols Landau wrote himself), but it is still of the order

of what a single cassette tape can contain.

21, AUTOMATIC THEOREM PROVING

Automatic theorem proving is a very hard subject. In order to
be efficient it certainly requires clever adaption to the kind of
problems it is applied to. Therefore it is very questionable
whether it would profit much {rom AUTOMATH, with its claims for
peneral ity and adaptivity to human reasoning. Admittedly, our
verifiers do automatic scarching, and may establish definitional
cqualitics the writer has not bothered to see through, but this
is not the level of what is usually called automatic theorem
proving.

Nevertheless one may think of building "attachments' to the
verifier which tind proofs of little gaps the writer might like
to leave. This might be done completely outside the system (e.g.
by consulting the computer's arithmetic unit or by checking tauto-
logies by inspection of cases), but 1t can also be conceived that
the machine, after finding its proof, writes it in AUTOMATH and
checks 1t by its own verifier. An attachment of the latter type
was built (as a student's exercise) by R.M.A.Wieringa. Given nat-
ural pumbers p,q,r with pg=r, where p,q,r are presented in the

binary number system, his program produces an AUTOMATH text prov-—

)
1

ing pg=r. The number of lines is of the order of the number of
digits we write down with ordinary pencil-and-paper multiplica-
tion.

Attachments of the first kind, working outside the system, can
of course work very much faster, At least some of them will be
very profitable, but the AUTOMATH group never worked in this
direction. They rather did what others don't than what others do

very efficiently already.

22. FURTHER LANGUAGE EXTENSIONS

There is a number of things that mathematicians find so self-
evident that they do not see them as part of the structure of
axioms, definitions, and theorems, but more as a part of their
language. This is deceprive, of course (after all we seem to do
a lot of mathematical work subconsciously), but nevertheless one
can try to incorporate as much as possible in the language defi-
nition. To quote a few unrelated things: pairs, strings, set
theoretical operations, cquality, commutativity and associativity,
mathematical induction. Once might say that in AUT-68 and AUT-QE
only two things have been implemented: functional relationship
and typing. All the rest is left to the book-writers.

We never found much use for building mathematical induction
into the language definttion (it 1s done In some other construc—
tive systems). The reason 1s that in our system we have books to
write in, and for a thing like induction it is as easy to quote
the rule from a book as to apply a language facility. But for some
of the other subjects mentioned above, the use of language facil-
ities would be very much shorter than quoting from the book.

Every extension may seriously complicate both language theory
and verifier. It is not clear how far one should go. J. Zucker
devised AUT-P1 (Zucker (1975)) as a relatively mild adaption and
extension of AUT-68. Tt is much easier to write than AUT-68.

1

Zucker wrote an extensive manuscript "Real Analysis' directly in

AUT-PT (it is not a translation of something that was written

first in ordinary languape on scrap paper). A fow chapters were
written by A.Kornaat, who also produced some harder material in
AUT=PI, viz. the proofs of the equivalence of various forms of
the axiom of choice.

AUT=P1 uses some proper extensions (like facilities for hand -
ling pairs) and a number of things which are more in the line of
fast notation. Much of this belongs to a system called AUT-SYNT
(partly developed by [.Zandleven) which has facilities for oper-
ations on syntactic variables, strings, and telescopes (a tele-
scope is a string of block openers with types, like [Xl:Al]"'
...Fx“:An]; the name comes from hand telescopes with tubes fitting
into each other). .

The work on language theory and verifier of these languages
1s unlinished.

One way to look at AUI'-SYNT is that 1t is just an auxiliary
lTanguage (like In de Bruijn (1972a)) that helps us to prepare an
input text in a language like AUT-68 or AUT-Q, where language
theory and verifier are on prettv safe grounds. It is likely that
on the long run AUT-68 nrovided with AUT-SYNT input facilities
will not be less ndequate than some of the fancier languages, at

least for classical mathematics.

23. IS THERE A NEED FOR HIGHER ORDER LANGUAGE?

As it was said before, AUT-68 is a first order language since
thhere 1s no abstraction over expressions of degree !. Yet this
does not seem to be a serious limitation, since a few extra axioms
in the book extend the power of the language. As an example, we
mention how abstraction over prop can be mimicked. We start with
an axiom in the empty context "bool := PN : type", and from now
on ecxpressions b with b : bool are interpreted as propositions.
Next, in a context [x : bool] we take the axiom "proof := PN :

prop”. (In older publications we wrote "TRUE'" instead of
"proof™) . The effect is that for every proposition b the typing

u @ proot(b) will mean that u is a proof for b. Now we can mimic

U

abstraction over prop. Instead of saving that f(p) holds for all
p @ prop, we say that f(prootf(h)) holds for all b : bool, and the
abstraction 1s now over something of degroe 2.

The reports de Bruijn (1976), (1977), (1978b) give suggestions
how slight extensions of AUT-68, and how AUT-QE-NTI (AUT-QE with-

out tvpe inclusion) can be used for mimicking stronger languages.

24 . PROOF [RRELEVANCE

This is a feature we might add to our languages if we are in-
terested In classical mathematics only. The classical mathemati-
cian would find it e¢ven hard to understand what its counterpart
"proof relevance” is. We give an example. Tf x is a real number,

then P(x) stands for "proof of x > 0". Now we define"log" (the
logarithm) in the context [x : real]ly : P(x)], and if we want

to talk aboult log 3 we have to write log(3,p), where p is some
proof tor 3 > 0. Now the p is relevant, and we have some trouble
in saying that log(3,p) does not depend on p. This can be done by
means of the general axioms for book equality, with the effect
that in this case log(B,pI) and]og(3,p2) are book-equal 1f both
P and Py are proofs 3 > 0.

Some time and some annoyvance can be saved 1f we extend the
language by proclaiming that proofs of one and the same proposi-
tion are always definitionally equal. This extra rule was called
"

proof irrelevance"” in de Bruijn (1974b). We of course do not

want to have the similar feature for tyvpe.

25. MATHEMATICS PRODUCED TN AUTOMATH

As a test case for handling larger amounts of mathematics,
Jutting (1976) gave a line-by-lime translation of Landau's "Grund-
lagen" (Landau (1930)) into AUT-QE. His experiences are reported
in Jutting (1977). Landau's bookiwas chosen because it presents
material of different kinds in a'very constant style of presen-
tation: the steps do not get bigger towards the end of the book.
It would of course have been much easier to rewrite Landau's

book first, so as to make it casier to translate, but it was our

gy

aim to show that AUTOMATH can cope with any kind of mathematics,
not just the mathematics especially designed for it.

Another substantial picce of work is Zucker's "Real Analysis"
(mentioned in section 22). And J.T.Udding writes (in AUT-QE) a
new theory of real numbers based on an approach that avoids the
repeated troublesome embeddings Landau had to go through.

Many smaller pieces of mathematics have been done by students.
The experience is that in a period of 2 or 3 weeks a mathematics
student (without any training in logic) is able to learn AUT-QE,
produce a piece of text (possible using basic material already
known to the computer), punch it, have it checked via a teleprint-
er, correct it, and get a final AUT-QE version. For an account of
how a picce of mathematics is translated in several stages see
Jutting (1973).

The easiest things to translate are very condensed and very
abstract pileces of mathematics (Example: the proofs of equivalence
of various forms of the axiom of choice did not bhecome much longer
than the original text). Hard subjects are those where (subconsci-
ous) "experience" comes in, like in analysis and combinatorics,

A very Important thing that can be concluded from all writing
experiments 1s the coustancy of the loss factor. The loss factor
expresses what we loose in shortness when translating very metic-
ulous "ordinary'" mathematics into AUTOMATH. This factor may be
quite big, something like 10 or 20, but it iIs constant: it does
not increase if we go further in the book. It would not be too

hard to push the constant factor down by efficient abbreviations,

20. WORK IN PROGRESS
Apart from things discussed before, we mention a few sub-pro-
jects which are studied now or will be studied in the near future.
(i) Programming language semantics. This may become an important
customer for AUTOMATH. The idea is, to write in a single book:
definition of a programming language and of its semantics, the

logic and mathematics involved, particular programs, and proofs

25

for their semantics. The ideal situwation is this: a computer that
has to execute @ program, reads it directly from that book, thus

avoiding cvery kind of intcerpretation. R.M.AWiceringa 1s working

on A system proposcd in de Bruijn (1975b).

(i1) A far reaching extension of lambda calculus is presented
in de Bruljn (1978 ¢) and studied in Wieringa (1978). In ordinary
tambda calculus we can interpret substitution and p-reduction as
replacing cnd-points of trecs by branches of trees. The extension
in de Bruijn (1978 ¢) means that we can also break open some edge
and paste a segment of a tree into it. These segments might re-—
present strings or telescopes (see section 22). This kind of
lambda calculus can be expected to be helpful to simplify both
language definitions and verifiers.

(111) In the spirit of the work of the AUTOMATH project, the
project WOT was started. WOT is a dutch abbreviation and stands
for the "mathematical vernacular", i.e. the strange mixure of
words and formulas mathematicians use., The 1dea 1s to get to a
purified form of WOT that can be used as a formal system for ex-~
pressing mathematics. The foundations of mathematics have to be-
come some kind of grammar for WOT. Thus far the only reports on
WOT are in dutch, and are used 1n the training of mathematics

teachers.

REFERENCES
(Items marked AUT followed by a number, are privately distributed
reports).

de Bruijn, N.G. (1968a). AUTOMATH, a language for mathematics.
Lindhoven University of Technology, T.H.-Report 68-WSK-05.
AUT 1.

de Bruijn, N.G. (1968b). The mathematical language AUTOMATH, its
usage and some of its extensions. Symposium on Automatic De-
monstration. IRTA, Versailles, Dec. 1968. Lecture Notes in
Math., Vol. 125, pp. 29-61, Springer Verlag, 1970.

de Bruijn, N.G. (1971a). A'I=-SL, a single line version of AUTO-
MATH. AUT 20.

de Bruijn, N.G. (1971b). AUTOMATH, a language for mathematics. A
series of lectures at the Séminaire de mathématiques supéri-

r\)
~4)

eures. Université de Montré&al, June 1971. Les Presses de 1'Uni-
versité de Montréal, 1973. Lecture Notes by B.Fawcett.

de Bruijn, N.G. (1972a). Some abbreviations in the input language
for AUTOMATH. AUT 25.

de Bruijn, N.G. (1972b). Lambda calculus notation with nameless
dummics, a tool for automatic formula manipulation, with
application to the Church—-Rosser theorem. Kon.Ned.Akad.Weten-—
sch.Proc.Ser. A 75 (=Indag.Math. 34) 381-392 (1972).

de Bruijn, N.G. (1973). The AUTOMATH Mathematics Checking Project.
Proc.Symp.APLASM, Vol. I, ed.P.Braffort, Orsay, France. AUT 34,

de Bruijn, N.G. (1974a). A framework for the description of a
number of members of the AUTOMATH family. AUT 40.

de Bruijn, N.G. (1974b). Some extensions of AUTOMATH: The AUT-4
family. AUT 44..

de Bruijn, N.G. (1975a). Set theory with type restrictions. In
"Infinite and Finite Sets", ed.A.Hajnal, R.Rado, Vera T. SGs,
Vol. I, pp. 205-214, Coll.Math.Soc.Janos Bolyai 10 (1975).

de Bruijn, N.G. (1975b). The use of the language AUTOMATH for syn-
tax and semantics of programming languages. AUT 41.

de Bruijn, N.G. (1976). Modifications of the 1968 version of AUTO-
MATH. Aut 45.

de Bruijn, N.G. (1977). Some auxiliary operators in AUT-PI. AUT 51.

de Bruijn, N.G. (1978a). lLambda calculus with namefree formulas
involving symbols that represent reference transforming map -
pings. Kon.Ned.Akad.Wetensch.Proc.Ser.A 81 (=Indag.Math. 40),
348-356 (1978). o T

de Bruijn, N.G. (1978b). AUT-QE without type inclusion. AUT 56.

de Bruijn, N.G. (1978¢). A namefree lambda calculus with facili-
ties for internal definition of expressions and segments., Lind-
hoven University of Technology, T.H.-Report 78-WSK-03 (1978).

Curry, H.B. and Feys R. (1958). Combinatory Logic, Vol. 1, North
Holland Publishing Comp., Amsterdam 1958.

van Daalen, D.T. (1970). Verzamelingstheorie, de axioma's van
Zermelo-Frankel. AUT 15.

van Daalen, D.T. (1973). A description of AUTOMATH and some as-
pects of its language theory. Proc.Symp. APLASM, Vol. T, ed.P.
Braffort, Orsay, France, 1973; reprinted in Jutting (1977).

Girard, J.Y. (1972). Interprétation fonctionelle et élimination
des coupures de l'arithmétique d'ordre supérieur, Thése, Paris.

Howard, W.A. (1969)., The formulae—as-types notion of construction,
Manuscript 1969, published in this Volume.

Jutting, L.S. van Benthem (1971). On normal forms in AUTOMATH.

AUT 23. -

Jutting, L..S. van Benthem (1973). The development of a text in
AUT-QE. Proc.Symp.APLASM, Vol. I, ed.P.Braffort, Orsay, France
1973, AUl 37.

Jutting, L.S. van Benthem (1976). A translation of Landau's
"Grundlagen" in AUTOMATH, vol.1-5. AUT 60.

Jutting, L.S. van Benthem (1977)., Checking Landau's "Grundlagen"
in the AUTOMATH system. Doctorai-thesis. Eindhoven University

