AUT

Department of Mathematics
University of Technology
Eindhoven, The Netherlands
tel 040-472775

RELATIONAL SEMANTICS IN AN INTEGRATED SYSTEM

BY

R.M.A, Wieringa

0.ABSTRACT.

This paper contains the description of a system for handling semantics
of computerprograms. The methodology used for the description of semantics
is the relational semantics: =~ possibly incomplete - information about
programs is represented by binary relatioms.

For the description we use the language AUTOMATH in which logic,
mathematics, syntax and semantics are integrated. Moreover, the correctness
of texts written in AUTOMATH can be checked mechanically by a computer,

We consider an ALGOL60-1like programming language. The axiomatic basis
nf it is kept small, but it is large enough to make the definition of
many ALGOL constructs possible, In the basis are included assignment,
hinary selection, concatenation, block structures and recursive parameterless
nrocedures.,

for these basic constructs semantics is presented, and some examples are

g#lven how new program constructs can be described in terms of these basic

tes .

o

INTRODUCTION,

We shall present a formalism for the description of syntax and
semantics of programs in an ALGOL-60-like programming language (i.e. a
hlock-structured programming language with variables of various kinds,
assignment to these variables, binary selection, recursion, etc.). An
essential point is that program correctness proofs have to be subjected
to an automatic verification system. So we have to deal with

a. the organisation of the variables, the so called state space,

b. the description of the syntax of the language: what kind of

programs do we consider,

c. the description of the semantics of the programs: what information

do we state about the programs.
The method we shall use to describe semantics will be relational semantics

with strong emphasis on dealing with incomplete information about the

relation between initial and final state.
A system for verification of the correctness of programs has to be
able to cope with mathematical theories (e.g. number theory) and to keep
track of the mathematical interpretation of values of state space variables,
In practice, the verification of the correctness of a program appears
tn be long and tedious, since it consists of very many elementary steps.
fecl the need for a mechanical verification,
So alltogether, we need a language in which various formal systems
‘o.g. semantics, logic, mathematics) are integrated, and the correctness
what Is written in the language should be decidable by a computer,
AUTOMATH ([1,7]) is such a wide-scope language. In an AUTOMATH book
weo can express all primitives we need about logic, mathematics, programming
language, semantics, and on the basis of these primitives we can define

vt icular pregrams and derive truths about their semantics.,

“Jeouse the folliwing notation for some of the essentials of AUTOMATH.
Typingis denoted by colons (P:Q means P has type Q). Abstraction is written
as § x:A 8, denoting the function with domain A and values B (this B may
contain x), Application is written as (A,B (i,e. the value of the function B

the point A). We use Q:type for saying that Q is a type, and R:prop for
-aying that R represents a proposition (if S:R then S is a proof of that

soposition) .

The semantical framework described here is essentially based on various
proposals by N,G de Bruijn. [3,4]. In the present form it is used by the
author ofkhis paper for the development of an operational system intended to

be useful for proving correctness of big programs.

THE STATE SPACE,

Since programs act on variables, we have to pay some attention to
these variables and their possible values; in other words, to the state
space. Roughly speaking a state is a set of wariables each of a certain
type (think e.g. on the types integer, boolean etc in ALGOL60) and having
a value corresponding to that type. So we introduce the notion datatype,

and several datatypes, like

datatype : type
bool : datatype

int : datatype

For each datatype dt the type of the corresponding values will be denoted by

elts(dt) : type
Since our programming language has an ALGOL-like block structure,

we put our variables on stacks: one for each datatype. For simplicity we
45 not assume the stacks to have a bottom. The places in each stack are
indexed by 0, 1, 2, ...; the O refers to the top of the stack. In the stack

“rresponding to dt the values have type elts(dt), Each pair (dt,i) of

datatype and an index now identifies a program variable: we do not talk
hooat names of variables,

So we define (writlen in AUTOMATH)
State :={ dr:datatypelliinatlelts(dt) : type

“oere rat 1s the type of the naturals). For a visual interpretation

see flg. 2.1,
0.,
1.
fig 2.1. .
A state gpace i r7///""_'\\\
4.

/1

el

There are several operations on states. Let us fix a state o,
By value(o,dt,i) we denote the value in o of the variable (dt,i);
it has type elts(dt).
Furthermore there are some operations transforming states into states:
a. adapt(o,dt,i,v) is the state that is obtained from ¢ by replacing the
value of (dt,1) by a new value v,
b, extend(o,dt,v) 1is the state we get when in 0 we push an element with
value v on the stack corresponding to dt, So, when o'=extend(c,dt,v)
we have value(oc',dt,0)=v, value(oc',dt,i+l)=value(o,dt,i),
value(o',t,i)=value(o,t,i) when t#dt;
. restrict(o,dt) 1is the state we get when in 0 we remove the top element
of the stack corresponding to dt. So when o'=restrict(c,dt) we have

valne(o',dt,i)=value(ag,dt,i+1), value(uv',t,1)=value(ov,t,i) when t#dt.

Having defined these operations on states, we can prove properties

sbout them, e.g.

value(extend(o,dt,v),dt,i+1) = value(o,dt,1i)

restrict(extend(o,dt,v),dt) = o
and write these in our AUTOMATH book.

In order to deal with nontermination, abortion because of thing like
"devide by zero', indexing outside array bounds etc.,, we add an extra

datatype ref (standing for refuser). The variables belonging to ref are

[R>S

quasi-variables, i.e., they do not appear in a program itself but only in

"4 semantics., There are two values connected to refusers: ON and OFF, ON
“waning "'there 1s something wrong'., The datatype ref plays an exceptional

ruie in our discussions. Im most cases we shall stipulate that datatypes

are ¥ ref,
UNTAX,
kind of proarams do we consider? It is our intention to have a rich
lase of programs with a set of primitives that is as small as possible.
Theretore we do not consider expressions of complex shape in our primitive
programs. The folloving programs are primitive (the word '"Program” will

¢ uscd as the tyope ofall programs).

I~

i

1f dt:datatype, u:dtgref (i.e. u proves dt#ref), i:nat, v:elts(dt),

we have

Const_ass(dt,u,i,v) : Program

corresponding to "x:=v'" in ALGOL (where x corresponds to (dt,i) and

v 1s a constant of type dt).

If dt:datatype, u:dt#ref, il:nat, i2:nat, we have
Var_ass(dt,u,il,i2) : Program

corresponding to "x:=y" in ALGOL, y being a variable,

if b:nat, 7ml:Program, w2:Program, we have
Bin select(b,nl,n2) : Program

corresponding to '"if b then =l else w2".

If vl:Program, n2:Program, we have
Concat(ml, n2) : Program

corresponding to "mnl;m2".

1f dt:datatype, u:dt#¥ref, w:Program, we have
Block(dt,u,n) : Program

corresponding to 'begin dt x; m end” (where dt is one of the types

in ALGOL),
'f dr:datatype, u:dt#ref, mn:Program, we have
Injection(dt,u,w) : Program

In ALGOL there is no construction corresponding to this, It intends

the following: Program 7 acts on a state space., When we want to use

" in a situation where thal state space has been extended with a variable
gt Jaratype dt, m has to act on that extended state space., for formal

reasons this program has to get a new name.,

if p:Program -> Program (i.e. ¢ is a function from programs to programs)

we have
Recurs(¢) : Program

more or less corresponding to "procedure p; <p>¢"

(x4

The idea behind this approach is the following: ALGOL uses in recursive

procedures a kind of circular definition: in the specification of
procedure p, p itself may appear: p:=<p>¢. The essential part of the
procedure is ¢, the program—program function. by the formula

p i< Recurs(¢) we turn ¢ into a program.

The above list of primitive programs is a reasonable basis for a

programming language. We do not state it to be complete; if desirable we

can add further primitives later, e.g. primitives about array assignnenﬁ,

and operations on records (as in PASCAL). And users of the system, handling

special algorithms requiring special datatypes can add primitive notions

for private use.

By means of the seven primitive program constructs given above we

can build other program constructs. Once they have been written in our

AUTOMATH book they are available for later use, just like the primitive

mes. We give some examples.

To the boolean assignment "bl:=b2vb3"” in ALGOL (where bl,b2 and b3 are

variables) corresponds the statement "if b2 then bl:=true eclse bl:=b3",

It is written in AUTOMATH as follows: if bl:nat, b2:nat, b3:nat, we
define
fool_or_ass(b1,b2,b3) := Bin_select(b2,Const_ass(bool,boolnotref,bl,T),

Var_ass(bool,boclnotref,bl,b3)) : Program
(where boolnotref states bool#ref, and T:elts(bool) denotes the value true).
The empty statement in ALGOL%an be mimicked as follows:
Dummy := Yar ass(bool,boolnotref,0,0) : Program
so "b:=b" in ALGOL where b corresponds to (bool,0).

Tr the statement "if bIVb2 then ' corresponds the block

"begin boolean b; bi=hlvb2; if b thenn else end". If bl:nat,b2:nat,

mProgram, we describe it by

Or_cond(bi,b2y) := Block(bool,boolnotref,Concat(Bool or ass(0,

bl+l,b2+1),Bin_select(l,Injection(bool,boolnotref I Y,

Dunmy))) : Program.

Notice the cticet of the introduction of a new boolean. It transforms

bi, b2 and "into bLi+l, b2+1 resp. Injection(bool,boolnotref, M,

1. To the while statement "while b do y' corresponds the recursive

procedure 'procedure p; if b then begin 5 p end else". If b:nat,

wmProgram, we describe it by

While(b, n) := Recurs(lnl:Program]Bin_select(b,Concat(q, 11),

Dummy)} : Program.

134 n

We did not yet discuss integers and assignments like "a:=b+c'. We can
define the integers as sequences of bits 0 and 1 and write programs for
addition, multiplication etc. It is a long way to go, but whatever we

produce is available for ever.

CSEMANTICS.

Semantics as we describe it is closely related to the methodology of

denotational semantics with one of its central ideas the presentation of

meaning of a program as a function from states to states (cf[5]). We take
a4 different point of view: we do not consider functions from states to
states but binary relations over the state space. This is called relational
semaqgigi (cfr 67).

When discussing semantics of a program in a particular situation
v s, iortunately, often sufficient to deal with incomplete information,
Some parts of the program may have semantic- properties which are partly
srreievant for the properties of the program as a whole, Such incomplete
information has the form of a binary relation, and can be trated in our
system.

As an extra adventage we mention that we do not have the slightest

‘rouble with non~deterministic programs.

We connect relations to programs by stating that a relation p

vresents information about a program 7, In our AUTOMATH book we take this

sjoetion to be primitive, but we can give the following interpretation from

executional point of view: For every pair ol:State, o2:State where
0 and 2L are initial and final state of some execution of 7, the
relation pholds., Because of the possible incompleteness of the information,
v converse (i.e. whenp holds for ol and @2, can transform Ol into @)
eed not be true, In the jargon of AUTOMATH, a relation is a function that

adds to every ol:State and «:State a proposition. So the type of all

relatlons 1is

Reln :=[ol:Statell 02:Statelprop
So given p:Reln, ol:State, o2:S5tate, "p holds for ol and 02" is expressed
by <e2><l1>p ., Further we write, given 7:Program, p:Reln, the primitive

notion

info(m,p) : prop
The interpretation of info(m,0) is the proposition "p presents information

about ",
The basic properties embodied in this interpretation are given by

the following axioms (where m:Program, pl:Reln, p2:Reln)

. info(n,pl "and' p2) 'eqv' (infolr ,pi) 'and' info\m,p2))

L r

. (pt "imp' 02) 'imp' (info(m,p1) 'imp' infofmyp2))

(We use 'and', 'imp', 'eqv' for the connectives A, =>, = of ordinary

rropositional calculus).
The relations ¢ we claim by axiom to present information about the
seven primitive programs in section 3., all have a standard form, viz,
{ol:State7EOZ:State] if Some_ref on(ol) then oleo2 else P(01,02)
wheve I'(51,72) is o proposition, and
Some_ref on(o) := dr:nat(value(o,ref,r)=0N).

The motivation for this Is the following: Once a refuser is in ON position
(hrcanse of things like nontermination, abortion), we do not want to
“execute” the rest of the program anymore; in other words: this rest is

equivalent to a skip, for which we present the information ol=02,

50 to each primitive program 7 we have a relation ¢ in standard form
and an axiom stating info(m,p). In this paper we do not give the relstions
in standard form , but only the essential part, i.e. the proposition

P(gl,=2) in the else part,

i, To Const assidt,u,1,v) 1s connected the proposition (playing the role

of P(e«l,72}

a2 = adapt (vl,dt,1,v)}

To Var_pss(dt,u,il,iZ) is connected
@ = adapt(%l,dt,1il,value(%l,dt,12))

Given pl:Reln, g2:Reln, info(ql,pl), info(ﬂ2,02), to Bin_select(b, 4!, 2)

is connected
Af value(cl,bool,b)=T then <02>0cl>! elge< g2><ot>p2

Given pl:Reln, p2:Reln, info(yl,,l), info(72,p2), to Concat(wl,n2)

is connected

3 giState (wpl 'and' <2< p2)

.Given p:Reln, info(m,p), to Block(dt,u,m) is connected

Fritelts(dt) Jv2:elts(dt) (extend(c2,dt,v2)l<extend(gl,dt,vl) n).

Since 0l and ¢2 are states belonging to the state space outside the
block and P is a relation between states inside the block,we have
to extend ¢l and @ with appropriate values when connecting them
with p. They are extended with vl and v2, representing the initial

and final value of the variable local in the block.
Given p:Reln, info(w,p), to Injection(dt,u,m) 1is connected
~restrict(o?,dt) sgestrict(ul,dt) p 'and' value(og2,dt,0)=value(gl,dt,0)

Now o acts on a "smaller” state space than the one gl and g2 belong
to, o we have tu restrict o) and 02. The second part of 'and' states

that the value of the added variable does not change.

'n order to describe information on the recursive program Recurs(y),
we: have to consider a sequence of relations with special properties,
Given

Seq : nat —> Reln, with

VOl :State ¥ ®R:State (<2><9]>QP>Seq 'eqv'
if Some_ref on(gl) then 02=0]

else value(u2,ref,nonterm)=0N))
¥kinat ¥mProgram (info(w,<k>Seq) 'imp' info(< m>¢, <k+1>Seq))

to Recure(y) is connected

¥n:nat Jk:nat (k 'gtr' n 'and' <02>k>Seq)

The interpretation is'as follows: We start from a programm O to which we
connect the proposition value(oc2,ref,nonterm)=0N, (w0 can be considered

as a non—-terminating program), We now build the programs <w0>¢0:=ﬂ0,

< ﬂ0>¢]:=<n0>¢, <WO>¢2:=<<HO>¢>¢,... . For every k, <k>Seq is a relatiom

that presents information on‘<w0>¢k, by induction: < 0>Seq presents information
about m0, and for any k and 7 holds info(wg< k>Seq) 'imp' info& m>¢,< k+1>Seq).
The information presented on Recurs(¢) is now the least upperbound of the
sequence Seq :

[o1:State]{ 02:State] ¥ninat Fk:inat (k 'gtr' n 'and' <g2><gl><k>Seq)

Starting from our semantics of the seven primitive programs, we can
defibe relations for higher-level constructs and prove that these relations
present Iinformation . Especially the while statement deserves some attention,

"a:=b+e',

and the programs that effect the arithmetic operations, such as
Once all such standard programs have been written in our book, we gradually
can start to write more complex programs and to present information about
them. This set-up is completely parallel to the situation in mathematics
where we start from very simple primitives, and gradually learn to say
everything we want.

Much of the work we have to do when writing programs and proving
semantics about them, is more or less standard, All the time we deal with
complex expressions in terms of the operations on states (as given in
seetion 2.). Those can be simplified by application of the rules we have
nentioned: at the end of 2,, applying elementary logic and elimination
41 if-then-else constructs. At this moment we feel the need for a (limited)
automatlc simplifier. Given a complex expression in terms of extend,
adapt, restrict etc. such a simplifier is supposed to deliver a simpler
equivaient form of this expression (and writtem in AUTOMATH a proof of

this cqulvalence). Occasionally, some human interaction might be helpful.

REFERENCES

™~
-

N.G., de Bruijn. The mathematical language AUTOMATH, its usage and

some of its extensions., Symposium on Automatic Demonstration (Versailles,
Dec,1978), Lecture Notes in Mathematics, Vol. 125, pp.29-61.

Springer Verlag 1970.

Proceedings Symposium APLASM (Dec. 1973) ed. P. Braffort. Fasciculel,
The AUTOMATH mathematics checking project. Contributions by

L.S., van Benthem Jutting, N.G, de Bruijn, D.T. van Daalen, I. Zandleven.

N.G. de Bruijn. A system for handling syntax and semantics of
computer programs in terms of the mathematical language AUTOMATH.

Report, Department of Mathematics, Technologilal University, Eindhoven 1973

N.G. de Bruijn. The use of the language AUTOMATH for syntax and
semantics of programming languages. Report, Department of Mathematics,
Technological University, Eindhoven. 1976,

Scott & Strachey, Towards a formal semantics for computer languages,
in Proceedings Symposium on Computers and Automates,

Polytechnic Inst of Brooklim, (1971)

£, lichecock & D. Park, Induction rules ad termination proofs,
in Automata, Languages and Programming, (ed M., Nivat) North Holland,

1573, p.225-252

