- 76 -

FORMALIZATION OF CONSTRUCTIVITY IN AUTOMATH
by

N.G. de Bruijn

Dedicated to J.J. Seldel on the occasion of his 65th binthday.

INTRODUCTION

There are various systems in which a large part of mathematical activity is
formalized. The general effect of the activity of putting mathematics into

such a system is what one might call the unification of mathematics: diffe-
rent parts of mathematics which used to be cultivated separately get united,

and methods avallable in one part get an influence in other parts.

Very typical for twentieth century mathematics is the unifying force of ghe
concepts of set theory. And today one might say that the language of mathe-
matics is the one of the theory of sets combined with predicate logic, even
though one might disagree about the exact foundation one should give to these

two.

Not everyone thinks of set theory and logic as being parts of a single for-
mal system. Set theory deals with objects, and logic deals with proofs, and
these two are usually considered as of a different nature. Nevertheless,

there are possibilities to treat these two different things in a common

- 77 -

system in a way that handles analogous situations analogously indeed.

A system that goes very far in treating objects and proofs alike, is the
AUTOMATH system (see [1]). In AUTOMATH there are expressions on three dif-
ferent levels, called degrees. Each expression of degree 3 has a "type"
that is of degree 2, and each expression of degree 2has a type of degree 1.
Expressions of degree 1 do not have a type. There are two basic expressions
of degree 1, viz. type and prop. The underlined word type should not be
confused with the word type used more ore less colloquially when saying

that each expression of degree 2 or 3 has a type.

We denote typing by a semicolon. If A has B as its type, we write A :B.

SO0 we can have

A : B : type (1)
and also
C : D : prop. (2)

The interpretation of (1) is that A is the name of an object (like the num-
ber 3), and that B is the name of the class from which that object is taken
(it might be a symbol for the set of integers). The interpretation of (2)

is that C is a name for a proof, and that D somehow represents the statement

that is proved by C.

The main profit we have from this way of describing proofs and okjects ic

the matter of substitutivity. If we have described an object depending on a

number of parameters, that description can be used under different circum-~
stances by means of substitution: we replace the formal parameters by expli-
cit expressions. The same technique is applicable to theorems: a theorem is
intended for many applications, and such applications can be effectuated by
substitution. The conditions of the theorem are modified by these substitu-
tions too. If we study the matter more closely, we see that some of the para-
meters are object-like, and others are proof-like. The substitution machinery

is the same for both. All this is effectively implemented in the AUTOMATH

system.

ORIENTATION ON GEOMETRICAL CONSTRUCTIONS

On the fringe of mathematics there are mathematical activities which seem to
be of a kind that does not fit into the pattern of objects and proofs. One
such thing is the matter of geometrical constructions, a subject that goes
back to Greek mathematics. A construction is neither an object nor a proof,
but constructions are discussed along with geometrical objects, and along
with proofs that show that the constructions construct indeed what is claimed

to be constructed.

Since these geometrical constructions can also admit substitution for formal
parameters, there is a case for creating facilities which handle a new kind
of things along with objects and proofs. So we can think of a system that
handles objects, proofs and geometrical constructions in more or less the

same way.

If we think of geometrical constructions, there is a peculiarity that may
not arise easily with other kinds of constructions: it is the matter of ob-
servability. Let us study a particular example in order to stress this point.
Let there be given four points A, B, C and D in the plane. We assume that A,
B and C are not on a line. Let M be the centre of the circle through A, B
and C. We wish to construct the point P that is defined as follows. P is
obtained from D by multiplication, with M as the multiplication center, and
multiplication factor 1, 2 or 3. The factor is 1 if D lies inside the circle,
2 if D lies on the circle, and 3 if D lies outside the circle. If we want to
carry out the construction of P, we have to know whether we are allowed to
observe what the position of D with respect to the circle is. In particular
this problem comes up for the practical question what should happen if there

is insufficient precision for concluding whether D is inside or outside.

If we think of a construction with actual physical means like paper, pencil,
ruler and compass, then the case of D lying exactly on the circle is, of

course, undecidable.

The above construction problem may seem to be very artificial, but yet its
main characteristic turns up in very many geometrical constructions: it is
the fact that, at some point of the construction the result of some observa-
tion will decide the further course of the construction. An example where
this will happen is the case of geometrical constructions that have to be

carried out inside a given finite part of the plane.

The naive approach to observability may be formulated as the slogan "truth is
observable" (see Section 4). Other possibilities will be sketched in Section

8-10.

A further thing one might like to formalize is selectability: one wants to
be able to select an object from a set of objects one has constructed. For
example, a construction of the intersection of two circles may produce two
points, and we may wish to be able to "take one of them". In this case such
a selection principle is not indispensable: one might describe the effect
of the construction of the intersection as giving a labelled "first point"
and a labelled "second point". But there is a stronger reason for implemen-
ting a selection principle: so often we have to "take an arbitrary point"
at some stage of a construction. It should be noted that in such cases the
final result of the entire construction does not depend on the particular
point that was taken. In Section 5 we come back to this, in particular to

the matter of the difference between "giving” and "taking" arbitrary points,

A description of all these features is possible in AUTOMATH. We have various

options for doing it. The way we present this matter is necessarily arbitrary.

It is certainly not the intention of this note to give a particular basis for
geometrical construction theory. The only thing that will be attempted is to

provide a framework into which such a basis might be placed.

If we formalize a thing like constructability we of course dislike to do it
in the style of classical logic. We do not want to consider constructability
of a point as a proposition in the ordinary sense. We do not want to admit

arguments where we get a contradiction from the assumption that £he point P
is not constructable, and then conclude the constructability of P. Therefore

we want to put constructability (and the same thing might apply to observ-

ability and selectability) in a framework of positive logic, where we have no
negation at all. In fact we can be even more restrictive, and refrain from
introducing the ordinary logical connectives (like A, Vv, =) for this logic.
The only thing we want to do is to register statements about constructability,
observability and selectability (possibly provided with a number of parame-

ters), and to keep them available for later use.

We can provide facilities for such a positive logic in AUTOMATH by adding a
new expression of degree 1, to be called pprop (the first p stands for
"positive“f. For this pprop we shall not proclaim any logical axioms, and we
shall not introduce the notion of negation. Moreover, we do not feel the need
to have abstraction in the world of pprop. That is, if u : pprop we shall

not take abstractors [x :ul] like we would have in cases with prop or type.

Accordingly, we shall not consider application <..> ... either in this pprop

world. That means: we take pprop entirely in the style of PAL (see [11]).

There is a case for doing something similar in the world of type. Let us
create a new expression of degree 1, to be called ctype (the 'c' stands for
'construction', since we intend to use it in the world of constructions).
The difference between ctype and type is similar to the difference between

pprop en prop. In ctype we intend to be free from all the agsumptions that

might have been made about type. In particular we shall not necessarily im-
plement set-theoretical notions. And we shall not even introduce the notion
of equality. That is, if a : C : ctype and b : C : ctype, then we will not
introduce the equality of a and b aé a proposition. Moreover, we shall treat

Ctype entirely in the style of [P/AL: no application and no abstraction.

For a description of AUTOMATH versions where various sets of rules apply to

various expressions of degree 1, we refer to [2].

It has to be admitted that geometry is not the easiest example for the study
of constructions. It is not so much the fact that the geometrical universes
like planes, spaces, are uncountable., It is neither the most troublesome
thing that in the geometrical plane there is no fixed origin and that there
are no fixed directions. The real course of trouble is that there are so
many situations where we have to except some of the cases. If we want to say
that points p and g have just one connecting line we have to exclude the
case p = g. Such things cause a steady flow of exceptions, which even has
distorted the meaning of the word "arbitrary”. In past centuries the word
"arbitrary" often had the meaning: "arbitrary, but avoiding some obvious
exceptions”, and these exceptions where usuaily unspecified. If one took an
arbitrary point and an arbitrary line then the point should not be so arbi-

trary to lie accidentally on the line!

A full description of all these exceptions has the tendency to make geometri-
cal construction theory unattractive. Yet there is still another source of
irritation: so often we have to split into cases (two circles may have 0, |
or 2 points of intersection), and these situations might pile up to an

entangled mess.

Nevertheless we may be grateful to geometry for having confronted us with the
notion of constructability. What we have learned from geometry might be ap-

plied to other areas. Computer science might be one of them.

Observability, as a formal element in geometrical construction theory, was
considered by D. Kijne [3]}. That paper also attempts a formal treatment of
selectability (with selection from finite sets only), and considers "giving

arbitrary points® by means of a kind of algebraical adjunction operation.

THE BASIS OF FORMAL GEOMETRY

Before we discuss a formal basis for geometrical constructions we have to say
what "formal geometry" or more generally, formal mathematics is. Here we are
not concerned about the contents of formal geometry, but just about the spi-
rit in which it is written. It is written in an AUTOMATH book, using the full
power of typed lambda calculus. And it is written in a setting of logic and
set theory, the details of which are still open to discussion. One might or
might not take the rules of classical logic (e.g. in the form of the double
negation law), and we might differ in taking or not taking a thing like the
axiom of choice. Such distinctions hardly influence the spirit in which geo-
metry is presented. They might influence the content, i.e. the set of all
provable geometrical statements (but it should be remarked that there are
areas of mathematics which are much more susceptible to foundational differ-
enars than classical geometry seems to be). Just to give an idea of the spi-
rit, we give a =smiull piece of Hilbert's axiomatization of geometry. Hilbert
starts with: there are things we call points and there are things we call
lines (in Hilbert's system the notion of a line is not presented as a special
kind of point set). In AUTOMATH we say this by creating primitive types "liiic"

and "point". These types are undefined, just introduced as primitive notions

- 84 -~

(PN's). As a primitive we also have the notion “incidence” of a point and a
line. Next we can express axioms like: if two points are different, then
there is exactly one line incident to both points. Something should be said
ahout “different”. We take it that our geometry text is written in a mathe-
matics book in which for any two chjects a, b of type A there is a proposi-
tion that expresses equality of a and b, and that for any proposition we can
form the negation. In this way the fact that a and b are different can be
expressed in AUTOMATH as NOT(IS(A,a,b)). But in order to keep this paper

readable we shall just write a # b instead of this.

We now give a piece of AUTOMATH text that can be considered as the start of

a Hilbert-style geometry book:

point := PN : type

line := PN : type

?-————‘—"“'__-}
o+ point !
———————
m line |
r____—_—_____—.'
incident := PN : prop
lo} coint !
i
assl: p # q
conn := PN : line
axl := PN: incident(p,conn)
ax2 := PN: incident{g,conn)
m : line
1
ass2 : incident(p,m)
i
ass3 : incident(g,m)
zx3 := PN : m = conn

- 85 -

so if p,q are points, and m is a line, then incident(p,m) is a proposition;

if pr is a proof of p # q then conn(p,q,pr) is the connecting line of p and g.
In axioms 1 and 2 we have expressed that this line is incident to p and q,

in axiom 3 it is stated that if a line m is incident to both p and g then m

is equal to the connecting line.

Although the above fragment is still a meagre piece of geometry it is hoped

that it shows the spirit of a formalization. We shall refer to such a presen-

tation of geometry as G.

A NAIVE APPROACH TO OBSERVABILITY

What we shall call the naive approach is expressed by the slogan "Truth is

Observable". Let us explain what this means by mentioning two cases.

In the first case we use knowledge obtained from geometrical theory G in order
to prove that some object we have to construct is already in our possession.
We do not bother whether that proof is "constructive" or not: truth is just
truth. One might find this a poor example, since within the scope of usual
geometrical theories and usual constructions it seems that *"non-constructive"
proofs can always be replaced by very constructive ones, but it is easy to

imagine fields where the situation is different.

In the second case we have a construction that started from a point that was
chosen arbitrarily. At some stage of the construction we have a point P and
a circle ¢, and subsequently our course of actions is depending on whether P

lies inside ¢, outside c or on c. The naive point of view says that on the

- 86 -

basis of the theory in G we have exactly one of the three alternatives.

We can observe wich one of the three occurs, and we act accordingly.

In Sections 6 and 7 we offer two different implementations for the naive

point of view.

TAKING ARBITRARY OBJECTS

Before going on, we have to make it clear that there are two entirely diffe-
rent situations where in traditional geometry it was said that an arbitrary
object (like a point) was taken. Let us call these situations D and S, (these
letters abbreviate "data" and "selection"). If we think of a problem where a
teacher requires a pupil to construct something, then D is the case where the
data have been chosen arbitrarily by the teacher. On the other hand, S is the
case where the pupil, in the course of the construction, selects some point
arbitrarily. Quite often the final result does not depend on the particular
point that was chosen, but there may be other cases. It may happen that the
final result itself has a kind of arbitrariness. An example: given points A,
B and C, not on a line, construct a point inside the triangle formed by A, B

and C.

In the opinion of the pupil, the points taken in situation D are not called
"arbitrary": they are called "given", or possibly "arbitrarily given". The
pupil has no freedom in case D. In the S-case, however, the pupil is complete-

ly free, and the teacher has no say in the matter.

In a formal presentation like in AUTOMATH the difference between D and S is

very pronounced. D is effectuated by means of the introduction of a new

- 87 -

variable, S is implemented by means of a primitive notion (PN). We shall

show this in detail in Sections 6 and 7.

There is something about the PN-implementation of the S-situation that

might be felt as strange. If we describe a construction by such a PN, then
we select exactly the same point if we are requested to do the construction
a second time. If the second time we would insist on selecting a point that
is actually different from the one chosen the first time, then we have to

do this on the basis of some new selection principle, of course. But if we
just want to take a point again, without any restriction as to its being
different from or equal to the first one, our PN provides us with the same
point we had before. This means that we get more information than we intend-

ed to have. Nevertheless, such information cannot possibly do any harm.

What shall we do about this weirdness of the PN-implementation? Shall we
invent impopular remedies in order to cure a completely harmless disease?
Let us not prescribe a definite attitude in this, and admit that there are
several ways to live with the situation. Either we leave the harmless
disease for what it is, or we take one of the remedies. Let us mention two
remedies. The first one is to take a notion of time t, and adhere a value
of t to every construction step. The arbitrarily selected points will de-
pend on t. If we have to repeat the construction some other day, t has a
different value, so nothing is known about the selected point in comparison

to the one selected the previous day.

As a second remedy we suggest to implement arbitrary selection not by an

axiom but by some axiom scheme. The scheme proclaims the right to create as

many copies of the axiom as one might wish, each time with a different

identifier.

We leave it at these scanty remarks. The author's opinion is that unless
we invent a much simpler cure, we'd better learn to live with the harm-

less disease.

FIRST IMPLEMENTATION OF THE NAIVE POINT OF VIEW

We have to express in some way or other that some of our mathematical ob-
jects have been constructed. This can be thought of as a property of those
objects, but for reasons sketched in Section 2 we prefer to take this pro-
perty as a pprop rather than as a prop. We shall create, for every type X
and for every x of type X, the expression have(X,x) with have(X,x): pprop.
In particular we can abbreviate have(point,x) to havep(x) and have(line,x)
to havel{x). (Since we use "have" for points and lines only, one might
think of taking just "havep" and "havel" as primitives, without taking

"have" for general types.)

We now give some AUTOMATH text. It is supposed to be added to a book that
contains geometrical theory G (see Section 3) already. First we introduce

"have", and abbreviations "havep" and "havel".

(We display our AUTOMATH texts in a flag-and-flagpole format: the block
openers are written on flags, and the poles indicate their range of valid-

ity.)

- 89 -

have := PN : pprop

u : point

havep := have(point,u) : pprop
v : line
havel := have(line,v) : pprop

Next we display how we take an arbitrary object in the sense of the
D-situation of Section 5 (“given objects"). In order to talk about a given
point we need two block openers, expressing (i) that u is a point and (ii)
that havep(u) holds; inside that context the point u can be considered as
given. We shall now express: if u and v are given points and if u # v then
we can construct the line connecting u and v. According to our naive point
of view the condition that u and v are different is simply expressed in

the terminology cf G.

u : point

assll : havep(u)

v : point

asst2 : havep(v)

assll3 : u #v

ax1l := PN : havel(conn(u,v,asst3))

Next we describe a case of "taking arbitrary points” in the S-situation

gf Section 5. We express that if m is a given line then we are able to
take a point not on m (we use the identifier "ap" to suggest "arbitrary

point").

m : Line I
| P

assi4 : havel (ni}

ap :=PN : pouint

ax12 := PN : NOT{incident(ap,m))

ax13 := PN : havep(ap)

These pieces of text display the form in which the basic constructions are
introduced. If we want to describe a more complicated construction, we

mention the relevant objects one by one, in the order of the construction,
and each time we express that we "have" them. We give a (still very simple)

example.

P oopULint

assld havep(p)J

3 : poinni

—_—_——

ass!S : havep{q) ‘

asslé : p # q i
—_ ——t
Ll = conn(g,q,assl6! : line
H! = axllip,assld,q,assl5,a5516) ; havel(Ll)
P! :x ap(Ll,Hl) : point
Ni! s axlZiLl,H1) ; NOT({incident (Pl,L}))}

HY = axli{li,H)) : havepi{Pl)

- 91 -

Here L1 is an abbreviation for the line connecting p and gq; H! can be used
as a reference for the fact that we actually have that line. Pl is the re-
sult of the construction, Nil assures us that P! does not lie on L}, and

H2 assures us that we actually have Pl. Altogethe; the text lines with
identifier P1, Nil, Hl1 represent the “derived construction" expressing that
if p and q are given different points then we can take a point Pl such that
p, 9, Pl are not on one line. This derived construction can be applied later
without referring to how it came about. It can be considered as a kind of

"subroutine".

The example of a derived construction we gave here is ridiculously simple,
of course. Yet the pattern is the same as in more complicated cases. It
shows the old idea of subroutines, which existed in constructive geometry

many centuries before it came up in computer programming.

SECOND IMPLEMENTATION OF THE NAIVE POINT OF VIEW

In the second implementation we take a construction plane which we conceive
as being different from the geometrical plane. We might think of the origi-
nal geometrical plane as abstract, and the constructive plane as concrete,
consisting of a piece of paper we can draw on. But, of course, our construct-
ion plane is still abstract: it is a mathematical model of a concrete planc.

The objets in the constructioln piane will be called cpoints and clines.

In the pack of ocur mind we think ol A cne-to-one mapping betwecen the two

planes: every cpoint has a point as its companion, and every cline has a

- 97 -

line as its companion. Yet we shall not express all of this in our mathe-
matical formalism. We shall just talk about a mapping (to be called semp)

of cpoints to points and a mapping (to be called seml) of clines to lines.
The reason for this reticence lies in the interpretation. If pl is a point,
and if we are able to name a cpoint cpl that is mapped to pl in our mapping,
then for us this means that we "have" pl. We do not want to say that every
point in the geometrical plane is a point we "have" just by being able to
express that point mathematically. Therefore we do not want to be able te

express the inverse mapping.

Related to this reticence is the fact that we do not want to be able to dis-
cuss equality of two cpoints. Such equality has to be discussed for the
companion points in the geometricai plane. And we do not want to admit as
mathamatical objects things like "the set of all cpoints" with some pre-
scribed property. We achieve these restrictions by putting "cpoint” and
"cline" into ctype, which is a world without equality, without set theory,
without quantification. As a conseguence we do not have constructability
questions in our theory. A statement: "the point P is not constructable with
ruler and compass'" will not be a proposition in our AUTOMATH book. 1f we
would be able to quantify over the construction plane we would be able to
express that "there is no cpoint that is mapped onto P" and that would ex-
press the non-existence of the construction. Constructability questions be-
long to the meta-theory. They express that something “cannot be obtained

on the basis of the PN's displayed thus far", and we cannot say such thinqé

in AUTOMATH itself.

- 93 -

What we call our second implementation starts with the introduction of
cpoint, cline and the mappings semp and semf. The latter abbreviations sug-
gest the word "semantics": we might say that the geometrical plane forms
the semantics of the construction plane. If P is a cpoint then semp(P) is

its semantics. Off we go:

cpoint := PN : ctype

cline := PN : ctype

cp : point

semp := PN : point
cl : cline

seml := PN : line

In order to take an arbitrary point in the construction plane, a single block
opener "x:cpoint" plays the role of the pair "u:point", "ass 1ll:havep(u)"
of the first implementation. We show this with the fundamental construction

that connects two points:

X : cpoint

y : cpoint

ass?21 : semp(x) # semp(y) !

cconn := PN : cline

ax21 := PN : seml(cconn) = conn(semp(x),semp(y),ass?2l)

- 94 -

The fact that cconn is the line we are looking for, is expressed (in ax2t)

by means of equality in G.

If we have to take an arbitrary point in the S-situation we again get one
PN less than in the corresponding case of Section 6. In order to express

that we can take a point outside a line, we write

cm : cline

acp PN : cpoint

ax22

PN : NOT(incident(semp{acp),hseml(cm)))

We also show the text corresponding to the one with P1, Nil, H2 in Section 6:

p : cpoint

q : cpoint

ass 22 : semp(p) # semp(q)
CLl1 := cconn(p,q,ass22) : cline
CPl := acp(CLl) : cpoint
Ni2 := ax22(CL1) : NOT{incident(semp(CP1),seml(CL1)))
Ni3 := “es : NOT(incident(semp(CPl),

conn(semp (p) ,semp(q) ,ass22)))

We have not displayed the proof Ni3. It will depend on applying general

axioms about equality, and will make use of Ni2 and ax21.

- 95 -

Passages like the one from Ni2 to Ni3 might be superfluous in many cases,
since it is practical to keep the discussion in the construction plane as
long as possible. To that end we might copy notions from G to the construct-

ion plane. The simplest example is

X : cpoint

y : cline

cincident := incident(semp(x),seml(y)) : prop

RESTRICTED OBSERVABILITY

In Sections 4, 6, 7 we described the naive point of view, where every truth
in the geometrical theory is considered to be "observable'. Observability
has its meaning in the process of taking decisions about the course of our

constructions.

Let us describe two different motives for restricting observability. One is
practical, the other one is fundamentalistic. We shall discuss these in

Sections 9 and 10, respectively.

PRACTICAL RESTRICTIONS ON OBSERVABILITY

The practical point of view is connected to questions of precision. This can
be compared to the matter of rounding off errors in numerical analysis. If
in a construction two points turn out to be so close together that our con-

struction precision does not guarantee that they are different, then we can

- 96 -

not claim to be able to connect them by a line. And even if the points are

different, the line will be ill-defined.

Although these practical matters give rise to quite complicated considera-
tions, we cannot say that they are necessarily essentially different from
what we did in Sections 6 and 7. Once can still go on the basis that truth
is observable: the question is just a matter of which propositions we con-
sider the truth of. Instead of claiming the possibility to connect two
points p, q if p # q in the geometrical world G, we take a thing like

d(p,q) > 1 (distance exceeds unity) as our criterion.

Nevertheless we can make things a little livelier than this. Let us start
from what we developed in the beginning of Section 7: just the four PN's
that were called cpoint, cline, semp and seml. We now introduce a primitive

notion "obsdif" ("observationally different") in the construction plane:

p : cpoint

q : cpoint

And now instead of introducing the cconn, ax21, etc. of Section 7, we go on

like this:

X : Ccpoint

y ;. cpoint

ass31 : obsdif(x,y)

cconnl := PN : cline

ax 31 := PN : seml(cconnl) = conn (semp(x),semp(y),ass31)

- 97 -

Knowledge about obsdif can come from different sources. In the first place
we can axiomatize things like: if d(semp(x), semp(y)) > 1 then x and y are
observationally different. A second source arises if we axiomatize in the

construction plane, in some situations, that if cpoints u and v are obser-
vationally different, then the cpoints X andy, derived from u and v in one
way or other, are observationally different. A very simple case of this is

an axiom stating that obsdif(x,y) implies obsdif (y,x).

It will be clear that this subject will become very complicated without

being very rewarding. Therefore it seems definitely unattractive.

10. FUNDAMENTALISTIC RESTRICTIONS ON OBSERVABILITY

In Section 9 we still had the uncritical acceptance of all truth that can
be obtained in the geometrical world. There is a clear reason for restrict-
ion. If we have to use geometrical propositions for taking decisions in the
world of constructions, it is reasonable to require that we also have a
"constructive" way for actually deciding whether such propositions hold or

do not hold.

We can implement such restrictions in AUTOMATH by selecting some "“con-
structive” basis for logic and mathematics, like intuitionistic mathematics,
and building our geometry G according to these principles. We might even
mix a constructive kind of mathematics with the ordinary kind, using pprop
and ctype for the constructive kind. In particular it seems to be reasonable

to take the "obsdif" we had in Section 9 as a pprop rather than as a prop.

11.

- 98 -

The latter remark suggests that it might be simpler to shift life entirely
to the constructive plane, and to forget G altogether. But this is not what
we usually want. Let us imagine that we want to describe the theory of
Mascheroni constructions (constructions with compass but without ruler).

The subject matter concerns both circles and straight lines, the construct-
ions deal with circles only. This difference can be implemented by discus-
sing both circles and straight lines in G, but just "“cpoints" and "ccircles"

in the construction plane.

COMPARISON WITH COMPUTER PROGRAM SEMANTICS

It is very natural to compare the field of geometrical constructions with
the one of computer programming. In both cases there is a number of actions
that produce one or more objects, and in both cases it is very essential
that it is proved that these objects satisfy the problem specification that

was given beforehand.

In a computer program we usually think of a "state space"; the input is an
element of that state space and the output is again such an element. In the
case of geometrical constructions one would say that the input is (vaquely
speaking) the given figure, and the output is the required figure. Let us
admit different spaces for input space and output space, and try to describe
at least the specification of a geometrical construction in terms of input
and output. As an example we take the following (trivial) construction pro-
blem. Given two different points P, Q and a line m. Construct a line q that

intersects m, passes through P but not through Q.

- 99 -

Let us talk in the style of Section 7, and let us moreover decide to intro-
duce a name R for a cpoint of intersection of g and m (otherwise we would
need existential quantification). An element of the input space is a triple
(P,Q,m) where P : cpoint, Q : cpoint, m : cline, and where we have semp(P) #
semp(Q). An element of the output space is a pair (q,R) where g : cline and
R : cpoint. The problem specification is given by the conditions that seml(q)

is incident with semp(P) and semp(R) but not with semp(Q).

This kind of problem specification is entirely in the style of what is cal-

led "relational semantics" in computing science.

If we deal with geometrical constructions, the role of "subroutines" is more
or less the same as in computer programming. In particular we can say that

descriptive geometry consists of a large body of subroutines.

In computer programs we can have loops. Sometimes pieces of a program have
to be repeated until some condition is satisfied. The geometrical construct-
ions we discussed in the previous sections have no such loops. This shows

an essential restriction on the class of constructions we can describe in
the various systems that were suggested in these sections. An example of a
different nature is the following one. Let A, B, C be given points on a
given line, B between A and C. It is required to construct a point D on that
line, such that C is between B and D, and such that the length of the line seg-
ment BD is an integral multiple of the length of the segment AB. This con-

struction requires a loop.

Our treatment of geometrical constructions in Sections 3-10 might be called

"operational" or anyway "functional". All the time uniquely determined out-

- 100 -

puts are obtained step by step, and in the slightly more sophisticated
case of the use of subroutines the only thing we actually do is taking
segquences of steps together and considering them as a single step. The
reason is that the treatment is based on what we shall call the tntcrior
approach. In the interior approach we talk in terms of the constructed
objects. The constructed objects are treated in the same style as ordi-
nary mathematical objects and (but this is a typical AUTOMATH feature)
proofs. In our AUTOMATH book we discuss the objects, but the action of

construction is felt as subject matter of some metalanguage.

An entirely different way to deal with constructions is that we consider
constructions as objects, seemingly more abstract than the ordinary ob-
jects, but nevertheless on the same linguistic level. Let us call this
the exterior approach. (The name is suggested by the fact that if we
work in the interior approach then the metalinguistic discussion of con-

struction is felt as being something at the outside).

With the exterior approach we can get rid of the limitations of our
"functional style” of construction description. Anyway we can remove the
last differences there might be between geometrical construction and com-

puter programming.

We might try to start the exterior treatment with the introduction of a

primitive notion "construction”, like:
construction := PN : ctype

but it has to be more complicated than this. The notion of construction has
to depend on the input space and the output space as parameters, and this

is not so easy to describe.

- 101 -

REFERENCES

{1] de Bruijn, N.G., A survey of the project AUTOMATH. To H.B. Curry:
Essays in combinatory logic, lambda calculus and formalism
(editors: J.P. Seldin and J.R. Hindley) pp. 579-606. Academic

Press, 1980.

[2] de Bruijn, N.G., A framework for the description of a number of
members of the AUTOMATH family. Internal report, Department of

Mathematics, T.H. Eindhoven, June 1974.

[3] Kijne, D., Construction geometries and construction fields.
In: Algebraical and Topological Foundations of Geometry.
Proceedings of a Colloguium held in Utrecht, August 1959.

Pergamon Press, 1962.

