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Abstract

This paper reports on findings resulting from our research conducted
for the 2014 Business Process Intelligence (BPI) Challenge. The goal of
this year’s challenge was to identify predictive patterns in the data, pro-
vided by Rabobank’s ICT operations unit, that could be used to determine
whether service calls and incidents were likely to increase or decrease as
a result of any change implemented in their systems. We took two ap-
proaches: a macro approach where conclusions were drawn via analysis
of aggregated data from the entire set, and a micro approach where se-
quence classification was used to uncover predictive patterns in the data
for individual configuration items. Each approach addresses the challenge
questions from different levels, and offers insight on the findings from each
point of view that can be applied to improve company business processes
and decision making in the future.

1 Introduction

The Business Process Intelligence Challenge, held in conjunction with the Busi-
ness Process Intelligence (BPI) Workshop, and the International Conference
on Business Process Management (BPM), is an annual competition targeted
toward business process mining researchers and practitioners. Each year, a
real-life data set is anonymized and made available to the participants, as well
as some general challenge questions or goals intended to motivate the analysis.
This year, data sets were provided by the ICT operations unit for Rabobank,
a banking and financial services institution headquartered in the Netherlands.
The goal of this year’s challenge was to identify predictive patterns in the data
that could be used to determine whether service calls and incidents, initiated
by users with technical difficulties, were likely to increase or decrease as a result
of any change implemented in their systems.

We looked at the data from two different points of view. First, a high-
level aggregated approach to the analysis was taken in order to discover an
overall view of the business process and to identify any general trends in the



data. Rabobank’s challenge questions were addressed taking this overall view
and conclusions that are widely generally applicable are drawn. Second, a more
microscopic approach is taken where we analyze trends and patterns in events
and activities relevant to each of the more heavily utilized configuration items.
The methodology here employed techniques from sequential pattern mining and
sequence classification to discover sequential patterns in the data that were
shown to be predictive and thus useful in answering the challenge questions
from a lower level.

The paper is organized as follows. After providing some more in-depth back-
ground on the challenge itself, including specifics on this year’s data and chal-
lenge questions, we explore the challenge questions from the high-level, holistic
point of view. This study is then followed by a lower-level analysis, where tech-
niques from sequence mining are introduced and subsequently utilized to answer
the challenge questions for specific configuration items. Finally, we conclude
with some closing remarks.

2 Business Process Intelligence Challenge

2.1 Background

This paper is an entry into the fourth annual Business Process Intelligence (BPI)
Challenge. The goal of the challenge is to promote the field of process mining
and to “give both researchers and practitioners the opportunity to do process
mining analyses on real-life data” [3]. Each year, participants are provided with
a real-life anonymized data set and are given the opportunity to analyze it and
provide insight into the underlying business process. Competition entries are
submitted in the form of a paper manuscript, and a winner is selected by a panel
of judges.

2.2 Data

The Rabobank financial institution provided the data [7] for the 2014 challenge.
This particular data was generated from its ICT operations, where their ap-
proach to responding to calls and technical support issues is rooted in change
management. Thus when Rabobank discovers that a higher than usual num-
ber of calls are being reported for a specific service component, a change is
scheduled for the offending service component(s), which is expected to rectify
the underlying issue. Changes are recorded in the database and linked to the
service component in question.

In contrast to previous years where data was often given in one large event
log, data in the 2014 challenge was given in four separate tables: A table of
interactions with calls to the service desk, a table of incidents which contains
records of those interactions that could not be resolved by the first contact and
thus had to be assigned to a service team, a table of incident activities, which
simply contains a log of those activities performed by the service team(s) to



resolve the particular incident, and a table of changes.

2.3 Challenge Questions
Rabobank posed the following questions, as taken from [8]:

Identification of Impact-patterns: We expect there to be a correlation be-
tween the implementation of a change and the workload in the Service
Desk (SD) and/or IT Operations (ITO), i.e. increased/decreased volume
of Closed Interactions and/or increased/decreased volume of Closed In-
cidents. Rabobank Group ICT is interested in identifying any patterns
that may be visible in the log for various service components to which a
configuration item is related, in order to predict the workload at the SD
and/or ITO after future changes.

Parameters for every Impact-pattern: In order to be able to use the results of
prior changes to predict the workload for the Service Desk directly after
the implementation of future changes, we are interested in the following
parameters for every impact-pattern investigated in sub question 1:

1. What is the average period to return to a steady state?

2. What is the average increase/decrease of Closed Interactions once a
new steady state is reached?

Change in Average Steps to Resolution: Since project managers are expected to
deliver the same or better service levels after each change implementation,
Rabobank Group ICT is looking for confirmation that this challenge is
indeed being met for all or many Service Components.

Creativity challenge: Finally, we challenge the creative minds, to surprise
Rabobank Group ICT with new insights on the provided data to help
change implementation teams to continuously improve their Standard Op-
eration Procedures.

3 High Level Holistic View

3.1 Data Preprocessing
3.1.1 Restricting the data to the Rabobank selection criteria.

The original Rabobank data was contained in 4 comma-separated values files.
These files were read by a computer program in order to integrate all records in
a common event structure holding references to a event unique identifier, open
time, close time, case identifier (configuration item name), and all other data
fields and values in a list of associated feature key-value pairs. In the case of in-
cident activities records, the missing configuration name and configuration type
information was recovered by looking up those values in either the interaction
or incident events referred to in the incident activity record.



Changes | Interactions | Incidents IIIC.I d.e]{lt Events | Cases (CI)
Activities
All data 30,273 147,004 46,606 466,737 | 690,620 14,144
In time | o0 o 145,478 | 45,456 | 449,568 | 666,478 12,327
window
Table 1: Number of data records.
Changes Interactions | Incidents | Incident Activities
Change.record | Open.Time .
Open Date Open. Time First. Touch Open.Time DateStamp
Closed Date Change.@cord Close.Time | Close.Time DateStamp
Close.Time

Table 2: Selected fields for open and close dates

The data used for the analysis was then reduced to the time window of
October 1st 2013 to March 31st 2014. This decision was made to avoid having
events in the analysis that either were initiated before October 1st 2013, or
that were not closed by March 31st 2014. So all event records in the analysis
had to have both their open and close dates within that date interval. Table 1
summarizes the number of records from the original data, those fitting the time
window for each event types, and their indexation using the configuration item
names. Table 2 indicates what original data fields were used to assign the open
and close times for each event types. All the event time stamps used the close
time values in the holistic analysis.

3.1.2 Large item sets analysis.

Given that the challenge questions were mostly focused on the impact-pattern
related to various service components related to the workload of the workload
of the Service Desk and/or IT Operations, we selected a subset of features to
reduce the number of feature combinations. For all event types, we used the
configuration item name type (CL.Type.aff) and subtype (CIL.Subtype.aff) as
a means to look at the various service components. In addition, we included
the category field (Category), thinking that because of its values (Request for
information, or Incident), it could be a good indicator of the impact of a change
from interactions and incidents following that change.

The a priori algorithm was applied to the challenge data in an incremental
manner to identify the large item sets meeting a frequency minimum support.
The item sets were defined as sets of feature key-value pairs. The analysis started
at 1% support with increments of 1%. The total number of cases (CI.Name.aff)
was 12,327, indexing 666,478 events.

Table 3 presents the number of large item sets that were generated to meet
the 1% baseline minimum support. The algorithm reached the largest item
sets for the minimum support baseline after 10 iterations. Then 7 additional
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Iteration | Nb of sets | Min support | Set composition (set-size count)
1 36 1% ((1 36))
2 85 1% ((2 85))
3 54 1% ((2 6) (348))
4 38 1% ((26) (321) (411))
5 38 1% ((26) (321) (4 11))
6 24 2% ((21)(314) (4 9))
7 13 3% ((38) (45))
8 12 4% ((37) (45))
9 6 5% ((33) (43))
10 4 6% ((32) (42))
11 4 7% ((32) (42))
12 1 8% ((31))
17 0 13% 0

Table 3: Incremental minimum support analysis using the apriori algorithm

iterations were necessary to reach a point were no item sets met the minimum
support (13%).

Then a hierarchical decomposition of the item sets was done to identify the
features to use in further analysis. The Figures 1, and 2 show the item set in
a hierarchical manner from the event types, to the configuration type, subtype,
and category. The leafs in the figures give the maximal support obtained by
each item set. An inspection of the item sets indicated that a 4% minimum
support would meet the criteria that the feature sets would contain the 4 main
event types (change, interaction, incident, and incident activity), but 2% would
cover more services, and the category field. However, the hierarchical decompo-
sition of item sets also shows a lack of variability in the crossing of services, and
interaction and incident category (Request for information or incident). Also
the most frequent configuration types (Application and Computer) appear to
be distributed over all event types (interaction, incident, change, and incident
activities). Therefore, the remaining analysis will proceed to answer the chal-
lenge questions using the application and computer services, as well as the four
event types, but focusing mainly on closed interactions and incidents.

3.2 The challenge questions

In order to answer the first challenge question, a set of common data analysis
procedures were use to answer all questions. Unless it is specified otherwise in
the data analysis section related to a question, these common procedures have
been applied.

3.2.1 Common data processing procedures: first closed change event.

The analysis counted the sum of closed interactions and incidents occurring
before and after the first closure of a change event in the series of events related
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Figure 3: Frequency of change events as a function of their durations in weeks

to a configuration item. We assumed that the analysis of the events following
the earliest change closure could indicate the patterns relevant to answer the
challenge questions. The first closed change event is not necessary the first
event in the series; in this case the open time of the event would be used. Even
though, most change events have a short duration between their opening and
closure, it is possible that a change event gets closed before another one that
had been initiated before. The Figure 3 shows the frequency of change event
durations.

3.2.2 Common data processing procedures: time duration between
events.

The time difference between the first closed change, and other events were
rounded up or down to the upcoming, or preceding 7 days. For example, given
that the closed change will be on day 0, all events occurring during the first
week will be counted as if they happened on day 7, and so on. The same cal-
culation was applied to events preceding the closed change event. The Figure 4
presents the sum of interaction, incident, and change events in a event sequence
containing a closed change. The incident activities were left out of the figure
because of their high frequencies, which hides the distribution patterns of the
other events. Also to notice that there are no change events before time 0. This
is the result of using only closed times as event time stamps. The figure also
shows a dip in the distribution of the frequencies, this pattern is very frequent
in other figures and happens to correspond to the Christmas Holidays.

3.2.3 Question 1: Identification of Impact-patterns.

We expect there to be a correlation between the implementation of a change
and the workload in the Service Desk (SD) and/or IT Operations (ITO), i.e.
increased/decreased volume of Closed Interactions and/or increased/decreased
volume of Closed Incidents. Rabobank Group ICT is interested in identifying
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Figure 4: Sum of interaction, incident, and change events as a function of the
time differences to the first closed change

any patterns that may be visible in the log for various service components to
which a configuration item is related, in order to predict the workload at the SD
and/or ITO after future changes.

3.2.4 Data analysis.

The common data processing procedures were applied to produce the event
frequency distributions. As outlined in the large item set analysis, we focused
the analysis by comparing the application and computer services in terms of the
distribution of closed interactions and incidents. Figure 5 presents the sum of
data records for each services, while Figure 6 show respectively the correlation
between interaction frequencies, and incident frequencies.

3.2.5 Discussion/Answer to the question.

The distribution of closed interactions and incidents events shows clearly a rapid
increase of interactions and to a lesser extend incidents, preceding the closure
of a change event. This pattern is similar when inspecting all services or the
specific application and computer service components. However, the distribu-
tions seems to have different patterns when comparing the application to the
computer services (Figure 5). The application service component shows a rapid
increase followed by a constant decrease. On the other hand, the computer ser-
vice indicates a constant increase during the 26 weeks period followed by a rapid
drop at the end of the period. Figure 6 show an R-squared correlation between
services interactions (0.219) and incidents (0.119). This is in sharp constrast
with the R-square values for the within service correlations between interac-
tions and incidents (Application=0.900, Computer=0.677). Therefore, the data
gives some support to the distinction of patterns between the application and
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Figure 5: Sum of closed interaction, and incident events for the application (left)
and computer (right) services as a function of the time differences to the first
closed change
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computer services both in terms of the distribution of closed interactions, and
closed incidents.

3.2.6 Question 2: Parameters for every Impact-pattern.

In order to be able to use the results of prior changes to predict the workload
for the Service Desk directly after the implementation of future changes, we are
interested in the following parameters for every impact-pattern investigated in
sub question 1:

1. What is the average period to return to a steady state?

2. What is the average increase/decrease of Closed Interactions once a new
steady state is reached?

3.2.7 Data analysis: steady state

A possible interpretation of what a steady state would be when no change is
being processed within the scope of a configuration item. The series of events in
this situation would reflect a flow of interactions and incidents with no associated
change. Figure 7 show the respective sum of events for those series for a) all
services, b) the application service, and ¢) computer service.
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Figure 7: Steady state (event series with no change) frequency distribution for
all services (top), and the application (bottom left) and computer (bottom right)
services.

10



o=INTERACTION o004 | “o=INTERACTION

=®=INTERACTION - 55 =@=INTERACTION - 5

Figure 8: Comparison of interactions and steady state interactions for the ap-
plication (left R-square=0.509) and computer (right R-square=0.041) services
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Figure 9: Comparison of incidents and steady state incidents for the application
(left R-square=0.358) and computer (right R-square=0.018) services

3.2.8 Data analysis.

In order to answer the second question, we looked at the distribution of steady
states in relation to the distributions of closed interactions and incidents when
a closed change occurs. Figure 8 compares the interactions and steady state
interactions for the application and computer services, while Figure 9, does the
same for the distribution of incidents.

3.2.9 Discussion/Answer to the question.

The inspection of the distribution of frequencies in the figures 8 and 9 suggests
that aside from the data for all services (Figure 7), the steady state for the
26 weeks shows for both services a decline in the number of interactions and
incidents over time. This pattern seems to reflect the reality that when a con-
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figuration item does not require a change, then one would expect that early
interactions and incidents should clarify the issue with a tendency to reduce the
number of events. So instead of looking at an absolute value for a number of
events as a measure of a steady state, it seems more appropriate to compare
the distribution of steady state events to the ones that are related to a change.
Essentially, a distribution of events located over the steady state line would
indicate an increase of events over what is expected from a steady state. A
distribution equal or below the steady state line, on the contrary would indicate
that the events generated by a closed change do not increase the related events
over what is expected from a steady state. In this respect, only events over
the line of the steady state should attract attention in terms of measuring the
average period to reach a steady state.

From a visual inspection and from R-squared values, it seems that only the
computer service should be of concern as to when it returns to a steady state.
So the answer to the sub-question 1 is, for closed interactions, the computer
service leaves the steady state at week 10 and returns at week 22. This would
mean 12 weeks for interactions to return to a steady state. The situation is
similar for incidents, leaving the steady state at week 11 to return at week 22.
The answer to the sub-question 2 is that for all services the pattern is a sharp
decline of interactions and incidents after coming back to a steady state.

3.3 Question 3: Change in Average Steps to Resolution.

Change in Average Steps to Resolution: Since project managers are exrpected
to deliver the same or better service levels after each change implementation,
Rabobank Group ICT is looking for confirmation that this challenge is indeed
being met for all or many Service Components.

3.3.1 Data analysis.

Similar to the previous question where the notion of a steady state was left to
interpretation, the reference to levels of service was not provided. We decided to
measure the number of incidents (from the field NB.Related.Incidents) occuring
for each closed changes within the same configuration items as a measure of
service level. The reasoning being that if managers deliver better (or worst)
services, the number of related incidents should go up (or down) over time.
Figure 10 shows the frequency distribution of those incidents as a function
of when a closed item occurred during the 26 weeks period (right) and the
comparison of incidents and steady state incidents for all events.

3.3.2 Discussion/Answer to the question.

Figure 10 (left) suggests an even distribution over time of incidents events re-
lated to changes. Even with the two data points that are higher than the other
ones, one might conclude that there is no improvement or deterioration of man-
agement intervention effects over time. Figure 10 (right) is congruent with this

12
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Figure 10: Distribution of related incidents to a change as a function of time
(left) and comparison incidents and steady state incidents for all events (right).

interpretation because the incidents and steady state incidents do not indicate
any major difference in their patterns, pointing to good management practice.

4 Low Level Analysis

Before conducting the low-level analysis and addressing the challenge questions,
some background on sequence mining is provided.

4.1 Sequence Mining

Throughout this section, consider I to be a set of items and T to be a set of trans-
actions containing itemsets from I. Also, for the sake of illustration, consider a
running example where I = {a, b, c,d, e, f,g,h} and T = {{a, b}, {c,d,e},{c,e, [},
{a}, {d, f},{c}.{e,9,n}.{f,9,n}}.

4.1.1 Association Rule Mining

The goal of association rule mining [1, 10] is to find items that appear together
with sufficient frequency in itemsets in 7. The frequency in which items appear
together is represented in terms of support. The support supp(i) of an itemset
i is equal to |{t € T|i C t}|/|T|, or the proportion of transactions that contain
i. An association rule X — Y for itemsets X and Y with X NY = ¢ indicates
that, whenever any transaction ¢ contains the items in X, ¢ will also contain
Y. The support of X — Y reflects the number of positive instances of the rule,
and is given by supp(X UY'), while the confidence of X — Y indicates the
percentage of transactions containing X for which the rule is true, and thus Y
is also present, and is computed by supp(X UY)/supp(X). It is typically the
goal in association rule mining to identify such rules that meet or exceed some
prespecified minimum thresholds for rule support and confidence.
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Consider the values given for I and T in the running example, as well as the
association rule {c¢} — {e}. The support of {c} — {e} is supp({c,e}) = 0.25,
while the confidence of {¢} — {e} is supp({c,e})/supp({c}) = 0.67

4.1.2 Sequential Pattern Mining

While association rule mining aims to discover ¢ntra-transactional patterns, se-
quential pattern mining [2, 6] aims to discover inter-transactional patterns. Con-
sider the above model, with the additions that each transaction has (1) a time
attribute, which produces a total order over T, and (2) a case attribute, which
gives a partition over T. As a result, T" becomes a set S of ordered lists of
itemsets, referred to as sequences, which are henceforth written as (t1ts...¢,).

A sequence (ajas . ..ay) is contained in another sequence (b1bs . .. by,) if there
exist integers i1, 9, ..., i, such that a; C b;,, a2 C b;,,...,a, C b;,. A sequence
s € S supports a sequence s’ if s’ is contained in s. The support for a sequence
s’ is then |{s € S|s supports s'}|/|S|, which is the fraction of sequences in S
that support s’. The goal of sequential pattern mining is to find the set of
mazximal sequences whose support meets or exceeds some prespecified minimum
threshold, where a sequence is maximal in a set if it is not contained in any
other member in the set.

Referring back to the example, suppose transactions in the set T are tem-
porally ordered and divided into three cases, resulting in the sequences S =
{({a.b}e.d.eHeve, 1), {ak{d, FHe}) , e, g, hH S, 9, A1) }. The sequence ({a}{dHe})
is supported by both the first and second sequences, and thus has support 2/3.
Given a minimum threshold of 0.6, sequences ({e}{f}) (support = 2/3) and
({f}) (support = 1) meet the minimum threshold, however ({f}) is not deemed
maximal as it is contained in ({e}{f}).

4.1.3 Sequence Classification

Sequence classification [4, 5, 9] is the field of study that attempts to classify se-
quences in S by using frequent sequential patters as features in the classification.
Consider the above model with the addition of a set L of class labels, where each
s € S is labeled with an element of L. S is now a set of ezamples, where each
example s € S can be represented by a set of feature-value pairs using features
from the set S’ of frequent sequential patterns and boolean values. A feature
f thus holds the value “true” if s contains f, and “false” otherwise. For ex-

ample, consider features f1 = ({a}{d}{c}), fo = {e}{[f}), fs = {e}{g}). The
sequence ({a,b}{c,d,e}{c,e, f}) could then be represented by the feature-value

pairs (f1,true), (fo, true), (fs, false).
The goal of sequence classification is to identify sequences for the feature set

that have the following properties:

e Features should be frequent

e Features should be distinctive of at least one class
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e Feature sets should not contain redundant features

For a more detailed example, consider the feature set F' = {{{a,b}{c,d,e}{c, e, f}),
{a}{d, f}H{c}), {e,g,h}{f,9,h})}. Each sequence in S can be described in
terms of boolean feature-value pairs as follows:

({at{d}) | {eH{sf}) | (g, hHg, h}) | {a}{f}) | Sequence Label
1 1 0 1 {a,b}{c,d,e}{c,e, f}) c1

1 0 0 1 ({a}{d, fi{c}) C2

0 1 1 0 <{evgvh}{fag7h}> C1

If the sequences in S are labeled as in the above graphic (i.e. s; and s3 as
c1 and sg as ¢y), then the feature ({e}{f}) appears to conform to these desired
properties, and as a result plays a dominant role in distinguishing between the
two classes (true implies ¢y, false implies ¢2).

The typical methodology for sequence classification involves two phases: (1)
sequential pattern mining to discover the frequent sequences that potentially will
make good feature candidates, and (2) some sort of assessment of features (e.g.
using an ”interestingness” measure) to select the best candidates. From there,
standard statistical classification methods are used to label future instances.
The key problem that is faced in this domain of research is the vast space of
potential features. Most research efforts appear to be centered on mitigating
this problem.

4.2 Analysis
4.2.1 Linking the Data

While each record in the Incidents table relates to a particular interaction,
and each record in the Incident Activities table relates to a particular incident,
there is no explicit relation of incidents and interactions to changes, other than
a very small number (536/46606) of incident records that are known to have
been caused by a particular change. In this case, the incidents refer directly
to the changes from which they are proven to have resulted. Thus any effort
to measure an increase/decrease in ICT operations workload after a change is
implemented cannot rely on any specific reference between changes and inter-
actions, incidents and activities. Moreover, neither can any attempt to discover
patterns in relevant interactions, incidents and activities before the change is
implemented that might be used to predict workload after the change.
Instead, each record in every table (interactions, incidents and changes ex-
plicitly, incident activities via their relevant incidents) refers to a “Configuration
Item” (CI), which is linked to a specific service component. Thus one needs to
examine the events that are relevant to the CI affected by a change in order to
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Figure 11: Links amongst the four tables, centered around a change

find predictive patterns of activities that occur before a change, and to measure
any changes in workload that result after a change.

Figure 11 depicts the links available in the various tables, centered around a
particular change. The events in the upper right represent the small number of
consequential events that proven to be caused by the change, while the events
in the lower left and right represent the events relevant to the CI before the
change occurs (shown as CI-) and the CI after the change occurs (shown as
CI+), respectively. As further explained in more detail in the next section, the
expectation is that the number of events associated with CI4+ should be lower
than that associated with CI-.

While each interaction is associated with an affected CI, each incident and,
by association, each incident activity, is associated with both an affected CI and
a "caused-by” CI, meaning the CI that actually caused the problem as opposed
to the CI that was affected by the problem. Since each incident points to an
interaction, the caused-by CI can thus be determined for many interactions.
However almost 2/3 of interactions are resolved at the service desk and have no
associated incident, meaning that a majority of interactions are only associated
with an affected CI. The BPI 2014 ”Quick Reference” guide specifies that a
change may be scheduled “if particular service disruptions reoccur more often
than usual” [8], and that this change occurs on the caused-by CI. Thus the
expectation is that there should be a rise in the number of relevant events before
a change (leading up to the ”Actual Start” time), and a decrease afterwards
(following the ” Actual End” time). Figure 12 verifies that this pattern does
indeed occur with the number of incidents caused by the CI, with trend lines
indicating that the number of incidents increases by about 11% over the 20-day
period before a change, and decreases by about 25% after a change.

The question is whether this pattern is apparent in the number of inter-
actions, considering that we only know the caused-by CI for roughly 1/3 of
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Figure 12: Average number of incidents per change, caused by the change’s
affected CI, for 20 days preceding the actual start of a change and 20 days
following the actual end
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Figure 13: Average number of interactions per change, where affected CI
matches change’s affected CI when caused-by CI is not available, for 20 days
preceding the actual start of a change and 20 days following the actual end

them, and must then match the affected CI with the change’s affected CI to
find the relevant interactions amongst the other 2/3. Figure 13 shows that
the expected pattern is still present, but not as pronounced, with trend lines
indicating approximately a 4% increase and a 9% decrease before and after a
change, respectively.

4.2.2 Average Time to Steady State and Subsequent Increase/Decrease
in Workload

The key goal in the change management model is to implement changes that will
improve the level of performance or success of the business unit. For Rabobank
ICT, the key is to improve the reliability of the technical services that they
oversee, which can be measured in terms of the workload experienced at the
service desk and or IT operations. Thus the expectation is that a change imple-
mented for a particular CI, perhaps after an initial spike in service calls, should
eventually result in a reduced workload for that CI. Daily workload after imple-
mentation of a change might thus follow something similar to the left curve in
Figure 14. Simple inspection of this particular graph might lead one to believe
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Figure 14: Typical curve plotting workload before and after a change without
noise from other changes (left) and with noise from other changes (right)

that the steady state is reached where the line begins to flatten. In reality,
however, determining the time to steady state is not quite so simple, due to
the fact that multiple changes might be occurring continuously for a particular
CI, creating noise. In that case, one might find a curve resembling the right
of Figure 14. Since there are multiple spikes after the change, it is difficult to
know exactly what portion of the daily workload is attributable to the change
in question, and thus where the steady state is reached.

Since the average time to steady state thus cannot be found by examining
workload around individual CI, we attempted an approach that aggregates the
results and finds correlations between daily workload and the number of recent
changes. The hypothesis was that the higher the number of recent changes
that were implemented, the higher the workload should be. The approach was
to vary the size of the window in which to sum the number of changes, and
find which size window gives a daily number of recent changes that correlates
maximally with workload

Figure 15 depicts the number of incidents opened each day during Oct 1/13-
Mar 31/14, as well as the number of changes implemented each day (according to
the ” Actual End” date), for CI SBA000263. The goal is thus to locate the spike
in workload attributable to each change. Manual inspection of this particular
graph is likely to be fruitless. However, as we expand the window in which we
sum the most recent changes, for example by graphing the number of changes
occurring in the previous 10 days (as depicted in Figure 16), a correlation with
the number of incidents starts to emerge.

Figure 17 depicts the correlation between the number of daily incidents
and the number of changes in each day, the number of changes the last two
days, three days, and so on, up to twenty. The second line (held constant at
0.195) shows the minimum level required to achieve statistical significance at
the p = 0.05 level given the number of points. Thus this indicates that there
is a significant positive correlation between the number of incidents in a day
and the number of changes made in the previous 9 days, as well as the number
of changes made in the previous 10 days, all the way up to 20. Thus we can
conclude that there is a relationship between a change and a subsequent rise in
workload, for CI SBA000263.
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Figure 16: Number of incidents each day and number of changes in previous 1,
2, 3 and 10 days during Oct 1/13-Mar 31/14 for configuration item SBA00263
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Figure 17: Correlation between the number of daily incidents and the number
of recent changes, from the previous 1 day to the previous 20 days
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More interestingly, this graph also contains information that can be used
to estimate the average time to steady state. Referring back to Figure 17, we
see that there is basically 0 correlation between the number of changes in a
day and the number of incidents. However, looking at the number for changes
in the previous two days increases the correlation to about 0.07, which means
that there is more of a relationship between the number of changes in the last
two days and the number of incidents. This increase generally continues until
the peak is reached at 14, finally decreasing for good at 15 days. Since the
correlation between the number of incidents in a day and the number of changes
in the previous 15 days is lower than that in the previous 14 days, this implies
that considering any changes that occurred 15 days ago will not add to the
correlation, and thus there must be no (significant) relationship between the
number of incidents in a particular day and any changes that occurred 15 days
prior. This implies that the new steady state is reached.

We computed the correlation between the number of incidents and the num-
ber of changes using windows from 1 to 20 days for the 11 configuration items
that caused at least 250 incidents and were affected by at least 10 changes
opened and closed during the Oct 1/13-Mar 31/14 period. Figure 18 depicts
those graphs for the remaining 10 configuration items. Table 4 then indicates
the average number of days to steady state for each CI (where significant positive
correlation occurs) using the approach outlined above.

To answer the question of average increase/decrease in the number of closed
interactions, we used the average time to steady state for each of the nine con-
figuration items mentioned in the previous section that experienced a significant
correlation between the number of changes and workload, and computed:

1. The average increase in the number of daily interactions experienced dur-
ing the spike in workload after a change (i.e. the period between the
” Actual End” of the change and the return to steady state

2. The average decrease in the number of daily interactions in the steady
state after the change

Fach of these was measured against the average daily interactions experi-
enced in the 10 days before the ” Actual Start” time of the change. In the case
of the average decrease measurement, the daily interactions in the 5 days after
the return to steady state were used. Figures for each of the 9 configuration
items that experienced significant correlation are given in Table 4.

4.3 Identifying Predictive Patterns

The final step is to identify any patterns in the data occurring before a change
that may help predict workload after a change, both during the immediately
following spike as well as in the new steady state. To accomplish this, we em-
ployed the use of sequence classification on ordered lists of events that appear
before a given change is initiated. In the case of trying to predict whether there
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Figure 18: Correlation between the number of daily incidents and the number
of recent changes, from the previous 1 day to the previous 20 days, for all CI
(other than SBA000263, shown in Figure 17) that caused at least 250 incidents

and were affected by at least 10 changes



CI Days to Avg Before | Avg After Change | Avg Steady | % Decrease
Steady State Change before Steady State State
SBA000263 12 274 25.5 21.0 23%
WBA000133 10 58.7 56.5 55.4 6%
WBAO000011 10 16.9 18.4 18.1 -™%
DTA000616 n/a n/a n/a n/a n/a
SUB000113 n/a n/a n/a n/a n/a
SBA000759 15 4.9 4.9 4.6 6%
SBA000439 17 44.5 40.4 37.4 16%
WBAO000018 17 10.0 6.2 6.7 33%
APP000005 17 19.3 18.9 18.3 5%
WBA000124 17 7.9 8.4 8.3 -5%
SBA000698 17 6.5 3.7 2.9 55%
Average 15 25.5 24.0 22.7 11%

Table 4: Average number of days to steady state

would be a decrease in workload (in this case, defined as the number of inter-
actions opened for the change’s affected CI) after the steady state is reached,
the set of changes (affecting the same 9 configuration items studied above) were
partitioned according to whether or not the steady state workload following the
change experienced a larger-than-average decrease. For each change, a sequence
of “lead-up” events was mined, consisting of the incidents that were caused by
the change’s CI in 5 days prior to the actual start of the change. Each inci-
dent was represented by its “Closure Code” in the sequence. To consider the
effect of having multiple recent changes, we also included any other changes that
were implemented in the prior 5 days, where each change was represented by
its “Change Type”. Thus there were two sets, or “classes” of sequences: those
associated with changes that led to higher than average decreases in workload,
and those associated with changes that did not. Sequence classification was
then performed to mine the representative susbsequences from each class that
could be used to classify future “lead-up” sequences, which could then be used
to predict whether the change being considered would likely result in decreased
workload at the service desk.

Similarly, changes were also partitioned as to whether or not an immediate
increase, or a “spike”, in workload was experienced in the first 3 days following
the implementation of a change. Sequence mining was again used to find pat-
terns in the lead-up events that could be used to predict whether future changes
are likely to cause short, immediate increases in workload.

We employed a naive Bayes classifier that mined 10 subsequences as fea-
tures for each class. Representative subsequences where confined to include no
more than 4 events. The results of the classification for the first test, predicting
higher-than-average decrease in workload at steady state, are given in the first
row of Table 4.3. The 10 selected features for each class, as well as their pre-
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Prediction True Pct | Precision | Recall
High decrease in steady state 51% 60% 98%
High dec in steady state no changes 51% 60% 98%
Immediate increase after change 55% 61% 95%

Table 5: Performance of three predictive sequence classifiers

Sequence PPV | NPV
Standard Change Type 06, No error - works as designed, Data, Other 0.941 | 0.525
Standard Change Type 06, Other, Software, Data 0.933 | 0.520
Other, Standard Change Type 06, Data, Software 0.929 | 0.518
Other, Standard Change Type 06, User manual not used, Other 0.929 | 0.518
Software, User manual not used, Standard Change Type 06 0.929 | 0.518
Software, Standard Change Type 06, User manual not used, Other 0.929 | 0.518
No error - works as designed, Inquiry, Other, Other 0.929 | 0.518
Standard Change Type 06, User manual not used, Other 0.929 | 0.518
Standard Change Type 06, Standard Change Type 06, Other, Other 0.929 | 0.518
Standard Change Type 06, Standard Change Type 06, Software, Other | 0.929 | 0.518

Table 6: Sequences most predictive of higher-than-average decrease in workload
after change at steady state

dictive power in terms of positive predicted value (PPV), which measures how
well the sequence predicts the class it represents, and negative predictive value
(NPV), which measures how well the sequence does not predict the wrong class,
are given in Tables 4.3 and 4.3.

Two interesting observations can be made here. First note how sequences
indicative of low decrease tend to include incidents coded as “User error”, “Op-
erator error”, “No error”, etc. This makes sense since, if there is really no
error to fix, changes are not as likely to help bring down the number of future
calls than, say, a user awareness/education program. The second interesting
piece of information is that sequences indicative of high decrease tend to in-
clude changes of type “Standard Change Type 06”. This gives the indication
then that changes occurring soon after this type of change tend to be more effec-
tive. To complement this finding and further study the effectiveness of including
previous changes, we ran the same test using only incidents in the lead-up se-
quences. The second row of Table 4.3 shows the results are exactly the same
with or without changes. Thus, while we found that the presence of “Standard
Change Type 06” changes indicates that future changes will be more effective,
in general, including changes did not help prediction. Tables 4.3 and 4.3 give
the most predictive sequences when changes are not included. In this case, more
sequences that predict high decrease tend to include software-based incidents,
which are more likely to offer the potential to improve operation and thus reduce
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Sequence PPV | NPV
Software, Operator error, User error, Other 1.000 | 0.557
Unknown, Software, User error, No error - works as designed 1.000 | 0.557
Operator error, User error, Other 0.913 | 0.553
Other, Operator error, User error, Other 1.000 | 0.778
Software, Operator error, User error, No error - works as designed | 1.000 | 0.555
User error, Unknown, Software, No error - works as designed 1.000 | 0.555
Unknown, Other, User error, No error - works as designed 1.000 | 0.555
Operator error, User error, No error - works as designed 0.952 | 0.553
Other, User error, No error - works as designed, User error 0.552 | 0.553
Software, Unknown, User error, No error - works as designed 0.552 | 0.553

Table 7: Sequences most predictive of lower-than-average decrease in workload
after change at steady states

future problems.

The third row gives results of classification of sequences that predict an in-
crease in workload in the three days immediately after a change is implemented.
Tables 4.3 and 4.3 give the sequences that predict increase and those that predict
no increase, respectively.

5 Conclusion

This paper presented results and findings from our research conducted for the
2014 Business Process Intelligence (BPI) Challenge, using data sets provided
by Rabobank’s ICT operations. We tackled Rabobank’s proposed challenge
quesions using two approaches: a macro approach where conclusions were drawn
via analysis of aggregated data from the entire set, and a micro approach where
sequence classification was used to uncover predictive patterns in the data for
individual configuration items. Each approach addressed the challenge questions
from different levels, and offered insight on the findings from each point of view
that can be applied to improve company business processes and decision making
in the future.
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