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Abstract. The given BPI Challenge 2017 provides a case study based on a real-

life event log from the financial industry. In the present report we explore the 

applicability of diverse process mining and predictive analytics techniques and 

tools in the context of a loan application process in order to provide insightful 

information to the process owner. These techniques include process discovery, 

process similarity measures, a novel approach for clustering process data to get 

process fragments, deep learning based approaches for predictive process 

monitoring, feature correlation and ranking analysis. For each technique, we 

describe the general approach, experimental settings and a reporting on the 

results. These results are then used to answer and discuss the specific questions 

asked in BPI Challenge 2017. 

Keywords: process mining, process analysis, artificial intelligence, log 

clustering, deep learning 

1 Introduction 

Today’s business processes are becoming increasingly complex in both structure and 

case volume. Due to the advancing digitalization of processes, there are nowadays 

terabytes of collected process data available, typically in the form of event logs. This 

data can be extremely valuable for the executing organization, as it allows constantly 

monitoring, analyzing, and improving the underlying process, enabling reduced cost 

or improved quality.  

Process Mining provides the means to conquer this complexity. It uses the 

generated event data to discover process models, check their compliance, analyze 

potential bottlenecks, and suggest improvements [1]. Well-established process mining 

tools such as Disco, minit, or Celonis are capable of structuring even large process 

logs and bringing them into a form that is easily understandable by humans. This way, 

process owners are able to take a first step towards a better understanding and 

management of their increasing complex processes.  
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In addition to the existing tools that are specifically tailored towards process logs, 

there exist various other techniques for data analysis, which can just as well be 

adapted to be used on process logs. Research fields such as Data Mining or Machine 

Learning, which can be summarized under “Artificial Intelligence” (AI), provide 

powerful means for all kinds of data analysis. By applying new and innovative BPM 

techniques based on current AI research onto process data and combining the results 

with established process mining tools, we are provided with a plethora of possibilities 

to make new discoveries and gain valuable insights into all kinds of processes. 

Demonstrating some of these in the context of the 2017 BPI challenge is the objective 

of this report. The yearly BPI challenge provides an excellent opportunity for 

researchers to demonstrate the feasibility of newly developed approaches in a real-life 

setting by simultaneously helping the involved organizations to better understand and 

improve their process. This year’s challenge provides us with a log from a Dutch 

financial institute, describing the loan application process. More specifically, the data 

consists of two logs, describing all events related to either loan applications initiated 

by the customer or loan offers made by the bank. For each offer, there is a 

corresponding application. If an offer exists for an application, it is referenced in the 

log. What is special about this challenge is that the same process was already 

considered in the BPI Challenge 20121, giving us the opportunity to directly compare 

the process of today and the process from five years ago. Since the process was first 

analyzed in 2012, the financial institute has implemented a new workflow system and 

realized some of the advice that they received during the last challenge. Also, due to 

the financial crisis, the case volume of the process has risen considerably. According 

to the statement formulated in this year’s BPI challenge, the financial institute is 

particularly interested in the following questions:   

1. What are the throughput times per part of the process, in particular the difference 

between the time spent in the company's systems waiting for processing by a user 

and the time spent waiting on input from the applicant? This is currently unclear. 

2. What is the influence on the frequency of incompleteness to the final outcome? 

The hypothesis here is that if applicants are confronted with more requests for 

completion, they are more likely to not accept the final offer. 

3. How many customers ask for more than one offer (where it matters if these offers 

are asked for in a single conversation or in multiple conversations)? How does the 

conversion compare between applicants for whom a single offer is made and 

applicants for whom multiple offers are made? 

4. Any other interesting trends, dependencies 

The objective of this report is to provide as much insights into the given data as 

possible, combining established process mining tools and techniques with innovative 

approaches to process analysis. These include for example clustering process data to 

identify subprocesses and training a convolutional neural network to predict following 

process steps. This report is organized as follows. After this introduction, Section 2 

provides a brief overview of the datasets and the analysis tools used throughout this 

                                                           
1 http://www.win.tue.nl/bpi/2012/challenge 
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paper. Section 3 reports on the results from a descriptive process analysis. Afterwards, 

Section 4 shows the comparison of the process models from the dataset_2102 and 

dataset_2107. Section 5 then reports on the identification of clustered subprocesses 

and also a clustering approach for business process model similarity. In order to 

identify certain dependent variables within the dataset, Section 6 provides the results 

of a Chi-Square-Test. Section 7 describes a novel application of a convolutional 

neural networks for predictive process monitoring before section 8 concludes the 

paper.  

2 Data Description & Tools 

The dataset used in this year’s edition of the Business Process Intelligence 

Challenge (BPIC’17) describes the loan application process in a Dutch Financial 

Institute and, furthermore, represents the same process that already constituted the 

dataset for the BPIC’12 five years ago.2 It comprises two different datasets containing 

event log data for both the application process and the offer creation processes.  

Tab. 1 provides an overview of the individual datasets along with a brief 

description and some basic statistics. All data files were provided in standard xes 

format. XES is an acronym for eXtensible Event Stream and builds on the XML file 

format. Thus, it provides clear structure, can be easily parsed and generated and is 

flexible enough to capture detailed event log data as well as rich additional process 

information. Compared to plain text event log, like for instance the widely used .csv 

format, XES provides a much richer presentation of process instance data and 

additional attributes that can be easily processed by standard process mining tools 

(e. g. ProM, Disco). The dataset contains event log data from the period between 

2016/01/01 and 2017/02/01. 

Furthermore, for both event logs there exists an additional unique ID, i. e. each 

event can be uniquely identified not only in its own event log but also between the 

logs. For the analyses described hereafter, a variety of both commercial and open-

source tools have been used as well as software tools developed specifically for 

reference model analysis at DFKI (German Research Center for Artificial 

Intelligence)3. Regarding descriptive analytics, standard process mining tools have 

been applied while customized software components were used for predictive 

analytics using Deep Learning techniques. The following table provides a summary of 

the software frameworks and tools that have been applied for data preprocessing and 

analysis. 

 

 

 

                                                           
2 http://www.win.tue.nl/bpi/doku.php?id=2012:challenge 
3 http://refmod-miner.dfki.de 
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Tab. 1. Event log files provided in the context of BPIC’17. 

Name Description 

Applicati

on event 

log 

The event log contains all events related to the loan application process as well as 

additional information for the individual instances. Within the log, different types 

of events resulting from different subprocesses or applications can be 

distinguished: A-type events (marked by the prefix A in the event description) 

refer to the subprocess of application handling, O-type events describe the 

subprocess of offer creation and subsequent activities while W-type events refer 

to workflow activities.  

In total, the log contains 561,671 events from 31,509 individual loan applications 

(i. e. process instances or cases). For every instance, 15 additional attributes exist 

besides the unique case ID, timestamp and event description. Attributes 

comprise, for example, the requested loan amount (value in the currency Euro), 

the applicant’s credit score (integer rating), the reason the loan was applied for 

(categorical data), and, the number of terms for an application (integer number).  

Offer 

event log 

The offer event log contains all events related to the process of offer creation and 

handling these results from incoming loan applications.  

There is a total of 193,849 events recorded in the log, corresponding to 42,995 

offers. Besides the case ID, timestamp and event description, there are 14 more 

attributes in the log, describing for instance the amount that was offered to the 

applicant and the initial withdrawal amount (both amounts in currency Euro), the 

number of agreed payback terms (integer value), and the monthly costs (amount 

in Euro). 

Tab. 2. Software frameworks and tools employed for data preprocessing and analysis. 

Framework/Tool Application purpose 

Aris Process visualization and modelling 

Disco Process mining, process discovery, behavior analysis 

ProM 5.2 Sequence clustering, data conversion 

Python  Data preprocessing, data querying, data conversion 

R and RStudio Data discovery, descriptive analysis, data manipulation, graphs 

RefMod-Miner Model comparison, reference model mining 

Tensorflow Deep Learning 

Weka Machine Learning, regression analysis 

3 Descriptive Process Analysis 

3.1 Description of the BPI2017 Process 

The global loan application and handling process consists of the three subprocesses 

(i. e. the application, offer, and workflow subprocess) containing a total of 26 

activities (cf. Fig. 1). From a high-level perspective, the global process can be 
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described as follows: the process starts with the creation and submission of a new 

application. After that, some internal preparatory steps are performed to run automatic 

checks on the application and set up a new workflow to handle the leads. In some 

cases, additional information is requested from the applicant before the application 

can be further processed. Afterwards, the complete application is validated, which 

may result in three outcomes: the application can immediately be declined (e. g. due 

to formal issues), directly be accepted (called “shortened completion”) or be validated 

in more detail. In the first case, the application will be canceled and the process will 

be terminated. In the second case, an offer is created, sent to the customer (by mail or 

online only) and discussed with them on the phone. In the third case, an in-depth 

analysis is carried out, which encompasses fraud detection and optional requests for 

possibly incomplete application files. As a result, an offer can be created when the 

validation is passed or the application can be declined when the validation fails. 

 

Fig. 1. Process model of the overall process visualized in Disco (parameters: 100% 

activities, 0% paths). 
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3.2 Description of the BPI 2012 process 

In order to investigate differences between the current dataset and the previous 

implementation of the processes in 2012, we compare the BPI2017 event logs against 

the BPI2012 dataset. To lay the foundation for the comparison, the 2012 version of 

the process is briefly summarized in the following. It consists of 36 activities and is 

also composed out of three subprocesses (cf. Fig. 2). 

 

Fig. 2: Process model of the overall 2012 process visualized in Disco (parameters: 

100% activities, 0% paths). 
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The process starts by the submission of a loan application that is followed by initial 

automatic checks as well as fraud detection activities. In case of missing information, 

the applicant is contacted in order to complete the application. Once an application is 

complete and it is not declined for formal issues or for not passing automatic checks, 

an offer is created and presented to the applicant. Afterwards, customers are called for 

discussing the offer. Finally, the application is assessed and a decision on its approval 

or dismissal is made. 

3.3 Process Comparison: Differences and Similarities 

Subsequent to the individual descriptive analyses of the BPIC 2012 and BPIC 2017 

event logs, a detailed comparison between the two datasets was performed. To get a 

first impression on their similarities and differences, some basic metrics like the 

average number of events per case and the medium/average durations of cases were 

therefore extracted. Tab. 3 summarizes the metrics for both datasets where 

dataset_2012 denotes the event log from BPIC 2012 and dataset_2017 denotes the 

application event log from this year’s BPIC.  

Tab. 3. Comparison of process log metrics. 

 Dataset 2012 Dataset 2017 (application log) 

Events 262,200 561,671 

Cases 13,087 31,509 

Events per case 20,0 17,8 

Activities 36 26 

Median case duration 19.4 hrs 19.1 d 

Mean case duration 8.6 d 21.9 d 

Time period  5.5 months 13 months 

Cases per month 2,380 2,420 

 

Number of events per case. The table clearly shows that dataset_2017 contains 

slightly more than twice as much events compared to dataset_2012 (factor 2,14) while 

the number of cases increased by a larger factor of 2,4. As a consequence the average 

number of events declines from 20 in dataset_2012 to about 17,8 in dataset_2017. 

This is remarkable since at the same time, the number of “short cases” (containing 

6 or less activities) tremendously declined. In dataset_2012, the following two short 

variants had a large share of the total set of cases: variant 1 (containing 3 events, 

contributing 26,2% of cases) and variant 2 (containing 6 events, contributing 14,3% 

of cases) alone had a joint share of 40,5% of all cases. From a business perspective, 

those variants subsume loan applications that very immediately (variant 1) or after 

basic checks (variant 2) were declined. Regarding the remaining 59,5% of cases, there 

are a lot of “long cases” containing much more than 20 events, which results in the 

average of 20 events per case. To sum up, in dataset_2012 there is a large amount of 

both “short” and “long” cases regarding the number of events per case. For 

dataset_2017 the situation is very different: the most frequent variant contains 12 
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events and only has a share of 11,6% of all cases while the second most frequent 

variant contains 19 events and has a share of 4,61%. Thus, the share of “short” or 

“long” cases is much less substantial than in dataset_2012, which means that the 

number of events is much more evenly distributed over the log. The business 

perspective again shows that indeed there are much less cases in dataset_2017 where 

applications were almost immediately declined.  

One possible explanation of the observed issue could be a structural or regulatory 

change in the initial checks within the application process. For instance, the policy on 

how incoming applications are checked for feasibility and may have changed in such 

a way that applications are nowadays investigated in more detail – possibly always by 

employees instead of automatisms – before they can be declined.  

 

Case duration. When comparing on-average case durations between dataset_2012 

and dataset_2017, great differences become evident. While the mean case duration 

varies between 8,5 days and 21,9 days (dataset_2012 vs. dataset_2017) – which 

corresponds to a factor of 2,6 – the difference in the median case duration is much 

higher: 19.4 hours compared to 19.1 days (factor 23,6). Fig. 3 and 4 also demonstrate 

this issue by showing the frequency distribution of case durations in histogram plots.  

 

Fig. 3. Frequency Distribution of case durations in dataset_2012. 

 

Fig. 4. Frequency Distribution of case duration in dataset_2017. 

In Fig. 3, an accumulation of short case durations (high bar on the left side of the 

histogram) followed by several minor amplitudes can be observed. Long-running 

cases barely exist. On the other hand, Fig. 4 shows a very different picture: although 

the histogram also shows an accumulation within the first third of the x-axis, values 

are distributed in a more heterogeneous way. Overall, there are many cases with 

higher duration times compared to dataset_2012, which in turn explains the large 

difference in median case durations and the (relatively) small difference in mean case 

durations. 

Related to the analysis on the number of events per case, a similar explanation for 

this behavior seems plausible. As already mentioned, dataset_2017 does not contain 

many cases where an application is immediately declined by automatic checks 

running the application system. Instead, there seem to be very few cases where a 
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decision on whether to approve or decline an application is determined so quickly but 

cases tend to be more time-consuming on average. The left part of the frequency 

distribution in Fig. 4 also resembles the shape of a normal distribution, indicating that 

there are some cases with short durations, increasingly more cases with longer 

durations and then again fewer cases with even longer durations. There is one 

additional peak in the histogram which also yields the highest frequency of all 

durations but very quickly drops back to lower levels and eventually approaches the 

x-axis. From a business perspective, this peak is interesting since it clearly marks a 

relatively large set of long-running cases that are likely to be connected in some way. 

 

Conspicuous process patterns. Furthermore, as we generate the process graph from 

both datasets and compare the process flow to get some insights regarding the most 

time-consuming process fragments, we see some differences between the 

dataset_2012 and the dataset_2017. As we already mentioned, the process step to 

cancel an application process took much more time in the process of 2017 than in the 

process from 2012. In addition, we can see some inefficiency within the process of 

the dataset_2012. For example, the mean duration in the process step from assessing 

the application to filling in the information for an application took about 30.7 days to 

execute the process step (cf. Fig. 5). This could mean, that in the past the check of the 

application took much more time, because there were a lot of manual process steps as 

the application process was not digitalized and not supported by an online form.  

 

Fig. 5. Dataset_2012, mean duration, 100% activities, 0% paths. 

As can be seen in Fig. 6, the maximum of the duration in this process step was 14.7 

weeks. Regarding the customer satisfaction this could be a very misleading process 

behavior, if we assume that the customer is waiting for a feedback on the application. 

On the other hand, the process execution of the 2017 dataset contains some very time-

consuming process steps like the process of canceling an application.  

 

Fig. 6. Dataset 2012 max duration, 100% activities, 0% paths. 
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In Fig. 7 the mean duration of the cancellation process step took about 27 days. 

Furthermore, this process step is executed in total 8,004 times. This could be also a 

problem regarding the customer satisfaction, because this time-consuming step leads 

also to a delay of the customer communication.  

 

Fig. 7. Dataset_2017, mean duration, 100% activities, 0% paths 

4 Compare the Process Models form 2012 and 2017 

4.1 General Approach 

The objective of this chapter is to compare the given event log with the event log 

provided in the BPI Challenge 20124, which described the same process five years 

prior. By using state-of-the-art process similarity and comparison techniques, we get 

the chance to point out similarities and differences between the processes and confirm 

or reject the usefulness of implemented changes. Therefore, we mine a process model 

from each log, define a matching between them, and use different similarity measures 

to assess their differences and commonalities. 

The basis for each comparison is a manual matching between the process activities. 

To increase its validity, matchings were made by two researchers independently. The 

results were discussed and then merged into the final matching. In order to achieve 

the best results, we had to rely on a manual matching between the activities instead of 

using one of the many automated matching approaches [2] implemented in the 

RefMod-Miner. The main reason is that some events are equivalent but would not be 

matched automatically without having any contextual information, e. g. the nodes 

“A_Concept” and “A_PREACCEPTED”. On the other hand, there are activities 

which would be matched because of their similarity but describe different events, e. g. 

“A_Accepted” and “A_PREACCEPTED”. Based on the mined models and this 

matching, we assess their similarity by  calculating the percentage of common nodes, 

percentage of common nodes and edges, graph edit distance, causal footprints as 

described in [3], and model similarity based on behavioral profiles [4]. The first two 

measures are rather straightforward, when taking the defined matching into account. 

The graph edit distance is a heuristic measure estimating the editing steps that are 

necessary to transform one process model into the other. Causal footprints denote 

precedence relations between activities, whereas behavioral profiles analyze the 

relations between activities on a more concrete level. 

                                                           
4 http://www.win.tue.nl/bpi/2012/challenge 
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4.2 Experimental Settings 

First of all, since most similarity measures are defined on process models, we 

discovered a process model for both logs, using the state-of-the-art Inductive Miner 

algorithm (IMi), with standard settings [5]. Since the RefMod-Miner does not handle 

Petri Nets, the results were manually transformed into Event-driven Process Chains 

(EPC) using ARIS5. For the creation of the mapping as well as the computation of the 

similarity measures, we used RefMod-Miner functionalities, such as a Mapping 

Editor and several implementations of similarity measures. 

4.3 Results 

Fig. 8 shows the discovered process models for each log, 2012 on the left and 2017 on 

the right. The matching between the activities is displayed in Tab. 4. The calculated 

similarity measures are listed in the following Tab. 5. 

Tab. 4: Matching between Activities of BPI 2017 and BPI 2012 

Activity 2017 Activity 2012 Activity 2017 Activity 2012 

A_CreateApplication --- O_Accepted O_ACCEPTED 

A_Submitted A_SUBMITTED A_Pending --- 

A_Concept A_PREACCEPTED A_Denied A_DECLINED 

W_Complete 

application 

W_Completeren 

aanvraag 

W_Personal 

Loan 

collection 

--- 

A_Accepted A_ACCEPTED O_Cancelled O_CANCELLED 

O_Create Offer O_SELECTED W_Handle 

leads 

W_Afhandelen leads 

O_Created O_CREATED A_Cancelled A_CANCELLED 

O_Sent (mail and 

online) 

O_SENT W_Assess 

potential fraud 

W_Beoordelen fraude 

W_Call after offers W_Nabellen 

offertes 

O_Sent (online 

only) 

O_SENT 

A_Complete A_FINALIZED O_Refused O_DECLINED 

W_Validate 

application 

W_Valideren 

aanvraag 

W_Shortened 

completion 

--- 

A_Validating --- --- A_REGISTERED 

O_Returned O_SENT_BACK --- A_APPROVED 

W_Call incomplete 

files 

W_Nabellen 

incomplete dossiers 

--- A_PARTLYSUBMITTED 

A_Incomplete --- --- A_ACTIVATED 

                                                           
5 http://www2.softwareag.com/corporate/products/bis/default.aspx 
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Tab. 5. Similarity measures for BPI 2017 and BPI 2012 

Similarity Measure Value 

Percentage of common nodes 80% 

Percentage of common nodes and edges 49% 

Graph edit distance 64% 

Causal footprints 87% 

Behavioral profile similarity 34% 

 

The first two similarity measures describe the correlation of nodes and edges in the 

two process models. While the percentage of common nodes is relatively high, the 

percentage of common nodes and edges is only about 50%. This means that the 

models share a lot of identical or similar nodes but the process structure has 

considerably changed since 2012. This finding also explains the average value for the 

graph edit distance as more edges than nodes had to be altered to get from one model 

to the other. The high number of causal footprints can be explained by the fact, that 

both process models also have a high number of loops and back-edges. Therefore, a 

lot of nodes are not followed by a single but by multiple other nodes which results in 

a higher number of causal dependencies compared to a sequential model. The 

behavioral profiles, on the other hand, have a low similarity value, indicating a lower 

degree of conformance regarding the individual activity relations in the model. This 

can also be explained by the changed structure.  

The calculated similarity measures indicate that the process content, i.e. the 

executed activities, has not significantly changed since 2012, but the process structure 

has. This correlates with the information that the process has been re-implemented 

using a new workflow system, realizing advice from the previous challenge. By going 

deeper into the process models, we can identify and assess some of the implemented 

changes. First of all, the 2017 model has 26 activities, whereas the 2012 model has 

24. As we see from the matching, 20 activities can be matched. Four activities 

(A_REGISTERED, A_APPROVED, A_PARTLYSUBMITTED, A_ACTIVATED) 

have been removed from the process, most likely because they were obsolete or 

duplicate. On the other hand, six new activities were included in the process. Two of 

them (W_Personal loan collection, W_Shortened completion) are workflow items, i.e. 

manual process steps, while four are application states (A_Create application, 

A_Validating, A_Incomplete, A_Pending). Each state represents a certain application 

condition, where it is necessary to take action, which is why they are all immediately 

followed by another state or a workflow item.  

Another important difference is the position of some activities in the process. For 

example, in the 2012 model, applications are checked for fraud immediately after 

submission, with a mean duration of about ten minutes. This step is executed in about 

0.8% of all cases, but has to be repeated up to nine times. In the 2017 model, this 

check appears much later, only after an offer is rejected, but it has a mean duration of 

three days. It is executed in about 1.3% of all cases, but only has to be repeated three 

times at most. This indicates that the nature of the check has changed. It is now only 

executed, once there are substantial clues. Due to the position later in the process, 
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more evidence for a potential fraud can be considered. Also, the execution times and 

repetitions indicate that the step is now executed manually and more thorough.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Mined models for the process logs of 2012 (left) and 2017 (right) 

5 Identification and Analysis of Subprocesses 

5.1 General Approach 

In order to gain a deeper understanding of the business process underlying the 

challenge data set, we analyze it using the RefMod-Miner research prototype. This 

prototype is designed to enable process model analysis and reference model mining 

and, for this purpose, contains a variety of different helpful techniques. In particular, 

we use the RefMod-Miner to apply a clustering approach in order to mine reference 

model components from the log. Reference model components are small and 
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structured process fragments that can be identified within a log. The idea is that 

particularly large process logs, such as the challenge data set, are often too complex to 

mine a single meaningful process model. Especially non-robust mining approaches 

will result in highly unstructured “Spaghetti-models”, which are hard to read and offer 

little to no analytical value. This problem is often addressed by dividing the log 

horizontally, clustering cases into subsets based on similarity [6]. Here, we use a 

different approach and divide the log vertically. By separating it into shorter 

sequences, we are able to mine smaller and more structured subprocesses, which 

allow to analyze the process on a higher level of detail. 

To identify the components, we also employ a clustering approach. However, the 

clustering is applied to the set of activities contained in the log instead of the set of 

traces. Activities are clustered based on their distance in the log, following the idea 

that activities which often appear in close proximity to each other form a logical unit 

and thus follow a somewhat clear structure. For determining the distance between two 

activities, we first select the set of traces containing both activities at least once. For 

each trace, the distance measure is calculated by counting the number of steps 

between the two activities, dividing it by the length of the trace to get a normalized 

value and deducting the result from 1 to get a similarity value. If the activities appear 

multiple times within one trace, the average distance is calculated. The distance 

between two activities is then defined as the normalized arithmetic mean across all 

traces. If two activities do not have a common trace, the similarity value is 0. Distance 

values are computed for all pairs of activities, resulting in a similarity matrix. This 

matrix is used as input for a clustering algorithm, resulting in several activity clusters. 

For each cluster, we mine a reference model component containing only the specified 

activities. Since these components are smaller, we are able to inspect them 

individually and more closely, while avoiding “Spaghetti-like” process models. This 

enables us to analyze the throughput times for each process part individually.  

5.2 Experimental Settings 

For clustering the activities, we use the k-means clustering algorithm, using the 

Hartigan-Wong variant and not specifying the expected number of clusters [7]. An 

efficient implementation is available in R and called directly from the RefMod-Miner. 

The reference model components are mined using the Disco filters, which remove all 

other activities from the log, reducing it to the specified cluster, for which a process 

model can be mined using the regular Disco functionality.  

5.3 Results 

Fig. 9 shows the result of clustering the activities of the challenge log based on their 

distance. The colors indicate similarity values; green stands for high, red for low 

values of similarity between activities. The values are arranged in a matrix and 

ordered by the result of the clustering, resulting in a heatmap. The k-means algorithm 

returned seven clusters for the given set of activities, which are fairly easily 

discernible in the heatmap. 
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Fig. 9. Heatmap obtained from clustering activities based on distance 

Cluster 1 consists of four activities. They form the first subprocess, where a loan 

application is created (A_Create Application), submitted (A_Submitted), and pre-

checked automatically (A_Concept, W_Handle Lead). As we can see from the mined 

component in Fig. 10, there is a clear structure among the activities with little 

variance. Cluster 2 contains three activities, namely A_Cancelled, O_Cancelled, and 

O_Sent (online only). One can see from the heatmap, that the latter activity has a 

lower distance similarity, so this cluster assignment may not be optimal. This is also 

visible from the mined component in Fig. 10, which contains a lot of variance and no 

clear structure between the activities, although typically A_Cancelled precedes 

O_Cancelled. This component describes the part of the process where either 

applications or offers are cancelled, leading to the cancellation of related items. 

Fig. 10.  Subprocesses mined for Cluster 1 and Cluster 2 

Cluster 3 is also a small subprocess with a clear and simple structure, as seen on 

the left of Fig. 11. It describes that, after an offer is accepted (O_Accepted), the 

corresponding application is set as pending (A_Pending), meaning that the accepted 

offer is waiting for confirmation by the bank in order to be confirmed and closed. 

Cluster 4 is the largest of the subprocesses with eight activities in total, depicted on 

the left of Fig. 11. It describes the core part of the process, where after an application 

is completed (W_Complete application) and initially accepted (A_Accepted), an offer 

is created by the bank (O_Create offer, O_Created) and sent to the customer (O_Sent 

(mail and online)). If a customer doesn’t answer, the offer is called after (W_Call 

after offers), until it is complete (A_Complete). In a few cases, the completion can be 

shortened (W_Shortened completion). These activities are usually executed in a 
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defined order with only one possible loop, when a new order is created after an 

application is completed. Cluster 5, shown in the middle of Fig. 11 is the smallest of 

all clusters, containing only one activity (W_Personal loan collection). However, 

since this activity is only executed four times in total, this assignment makes sense.  

 

Fig. 11. Subprocesses mined for clusters 3 (left), 5 (middle), and 7 (right) 

Cluster 6 describes the subprocess for completing an incomplete application, 

which is also clearly structured. After validating an application manually and 

automatically (W_Validate application, A_Validating), the offer is returned 

(O_Returned), assumedly due to incomplete files, which are then called for (W_Call 

incomplete files). A is considered incomplete (A_Incomplete) and the subprocess is 

started over. In few cases, the application is checked for potential fraud after the offer 

is returned (W_Assess potential fraud). Cluster 7 is another small cluster with two 

activities, which describes the final subprocess. If the loan is denied (A_Denied), the 

offer is refused. 

 

Fig. 12. Subprocesses mined for clusters 4 (left) and 6 (right) 

This identification of reference model components allows for two insights. First of 

all, it is possible to identify subprocesses by simply clustering activities based on their 

distance. The subprocesses not only exhibit a clearer structure in itself than in the 

complete model, they can also easily be distinguished by their function in the 

complete process. Therefore, it is possible to analyze throughput times for each 

subprocess individually, allowing for better insights of bottlenecks and other 

difficulties. For each subprocess, Tab. 6 shows the minimum, maximum, median, and 
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mean duration and gives a first hint towards the more or less time-intensive process 

parts. Unsurprisingly, the smaller and more automated subprocesses mined from 

clusters 3, 5, and 7 take very little time and can be neglected. Subprocess 1 is also not 

a top priority, as it has reasonable mean and median durations, although we could 

look into what caused a five-day delay in the maximum cases. Subprocess 2 appears 

to be quite volatile in its durations, which is most likely caused by the high variability 

in the process. The high difference between mean and median indicate that there are 

only few outliers with a really long duration, giving this subprocess a lower priority as 

well. This leaves time-intensive subprocesses 4 and 6 to be analyzed. 

Inspecting the activities of subprocess 4, we see that W_Complete application and 

W_Call after offers take the most time. For subprocess 6, W_Assess potential fraud 

has the highest median, but is executed very infrequently. Besides that, W_Validate 

application and W_Call incomplete files have the highest durations.  

Tab. 6. Analysis of durations per subprocess 

Subprocess 
Durations 

Minimum Maximum Median Mean 

Cluster 1 1ms 5d 33m 49s 43m 54s 

Cluster 2 0ms 134d 1h 27ms 52h 42m 

Cluster 3 2ms 2s 258ms 4ms 8ms 

Cluster 4 26s 381ms 129d 4h 2h 12m 71h 48m 

Cluster 5 2s 841ms 6s 390ms 4s 600ms 4s 600ms 

Cluster 6 0ms 167d 20h 70h 5d 3h 

Cluster 7 0ms 1m 39s  35ms 75ms 

6 Analysis of Interdependence between Process Attributes and 

Outcome 

6.1 General Approach 

The questions 2 and 3 of the BPI Challenge 2017 require investigating various 

relationships between the process characteristics and application process outcomes. 

Particularly, the process owners ask the participants to investigate the association 

between: 

─ incompleteness and the outcome of the application process (Question 2) 

─ the number of offers and the outcome of application process (Question 3) 

In order to address both questions, we provide a descriptive analysis of the required 

variables and conduct non-parametric tests to check whether the association between 

them is statistically significant. Since we aim to answer the question if two categorical 

variables are interrelated based on distribution of the cases, we adopt a popular 

technique, the Chi-square (χ2) test of independence also known as Pearson Chi-square 

test [8]. The main advantage of a Chi-square (χ2) test over existing alternatives is that 

it cannot only identify the relationship between variables statistically but also 
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provides information about the source and direction of the detected association [9]. 

There are at least four approaches available to investigate further a statistically 

significant omnibus chi-square test result: calculating residuals, comparing cells, 

ransacking, and partitioning [9]. In the present report we use the “comparing cell” 

approach to further investigate the details of the association [10], [11].  

Furthermore, due to its non-parametric nature, the Chi-square (χ2) technique is 

suitable for the analysis of the underlying BPI Challenge 2017 data, since the sample 

size of the study groups is differing and cannot be handled by parametric test 

methods, which require equal or approximately equal size. 

The Chi-square (χ2) starts with the statement of the hypothesis based on the 

formulated business question. The null-hypothesis suggests that there is no 

relationship between the variables. If the test results reject the null-hypothesis then 

there is a relationship between the variables. The formula for calculating the Chi-

square (χ2) statistic is as follows: 

 ∑ χ2
(i-j) = (O-E)2 / E (1) 

 

O is the observed cell total, E is the expected cell totals, i-j represents all the cells 

from the first cell (i) to the last cell (j). The expected values E is calculated as follows: 

 E = MR * MC / n (2) 

MR is row marginal for the cell; MC is the column marginal for the cell; n is the 

total sample size. After calculating the χ2-value, we calculate the degrees of freedom 

by using the formula: 

 Df = (Number of rows – 1) * (Number of columns – 1) (3) 

At the final stage, the Chi-square (χ2) distribution table is used to match the 

degrees of freedom and pre-defined probability level to find out the corresponding 

probability at the identified χ2-value. If it is smaller to the accepted significance level 

(which is 0.05 in most studies), the null-hypothesis is rejected, otherwise it is 

accepted. In the following subsections, we provide a descriptive analysis of the test 

variables which will be followed by the statistical tests. 

6.2 Experimental Settings 

Distribution of Process Outcomes. Since in our test one of the nominal variables is 

the process outcome, we provide detailed information about the possible endpoints. In 

the BPI Challenge 2017 dataset, the application processes have three possible 

outcomes, A_Pending (positive), A_Cancelled (negative) and A_Denied (negative). 

There are also some application process instances, which do not have information 

about the final status. Those were categorized under “Unresolved”. Tab. 7 provides an 

overview to the definition of these process endpoints. 
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Tab. 7. Description of potential process endpoints 

 Definition 

A_Pending If all documents are received and the assessment is positive, 

the loan is final and the customer is payed. 
A_Cancelled If the customer never sends in his documents or calls to tell 

he doesn't need the loan, the application is cancelled. 
A_Denied If somewhere in the process the loan cannot be offered to 

the customer, because the application doesn't fit 

the acceptance criteria, the application is declined, which 

results in the status 'denied'. 
Unresolved The process has not ended yet. 

 

Fig. 13 provides an overview to the distribution of the application process 

outcomes in the BPI Challenge 2017 data. As depicted in Fig. 13, out of 31,509 total 

applications 17,228 applications ended with the event “A_Pending”. This information 

suggests that slightly more than half of the applications (55%) ended with the desired 

outcome where the customer was paid. 33% of customers (10,431) did not 

accept/reply the loan offered by the bank so the bank had to cancel the applications 

(“A_Cancelled”). 12% of the applications by customers did not fit the acceptance 

criteria of the bank. The bank denied granting the loan (“A_Denied”). Less than 1% 

of the applications have not yet ended so we don’t have any information about the 

final outcome (“Unresolved”). 

 

 

Fig. 13. Outcome Distribution of the Application Processes 

Incompleteness in Application Processes. Before answering question 2 about the 

influence of incompleteness to the final process outcomes, we provide some 

descriptive information about their associative distribution. The BPIC 2017 forum 

manager defines the term “incompleteness” in the BPI Challenge 2017 forum as 

follows: “Incompleteness means how many times an application gets the status 

'incomplete'”.  

Therefore, in order to test the relationship between incompleteness and process 

outcomes, we filter the BPI Challenge 2017 data to find out how many applications 

have at least one “A_Incomplete” status and what proportion doesn’t have any 

“A_Incomplete” status at all. We have identified that 15,003 unique applications 

(48% of total 31,509) have at least one “A_Incomplete” status, whereas in 16,506 

(52%) applications this status was not observed. Moreover, by using the join 

functions we identify the distribution of existence “A_Incomplete” and absence of 
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“A_Incomplete” in terms of each individual process outcomes, namely “A_Pending”, 

“A_Cancelled”, “A_Denied” and “Unresolved”. Fig. 14 provides a detailed overview 

to this distribution. 

 

Fig. 14. Distribution of existence and absence of “A_Incomplete” status in terms of 
process outcomes, “A_Pending”, “A_Cancelled”, “A_Denied” and “Unresloved” 

From Fig. 14 we can visually inspect the relationship between incompleteness and 

application process outcome. 73% of the applications (12,647 out of 17,228) with the 

endpoint “A_Pending” have at least one “A_Incomplete” event whereas this number 

is only 9% for the applications in which customers did not accept the loan offer 

(“A_Cancelled”). 955 application processes out of total 10,431 processes with the 

outcome “A_Cancelled” have at least one “A_Incomplete” status whereas 9,476 of 

them have no incompleteness. Among the application processes with outcome 

“A_Denied”, 2,396 unique applications have at least one incompleteness, whereas 

1,357 are free of incompleteness. For unresolved cases, the distribution is balanced. 

First impressions from the visual analysis suggest that there is a positive relationship 

between existence of incompleteness and positive process outcomes. In the next 

section, we will investigate the relationship with statistical tests. 

Single Offer and Multiple Offers. The question 3 requires to conduct both 

descriptive statistics about the applications where single and multiple offers are 

required by the customers or offered by the bank and statistical analysis between the 

number of offers and process outcomes. Fig. 15 provides an insight to each 

application which has single offer, two offers, three offers, four offers and five and 

more offers. From this figure, we can easily infer that the majority of applications 

receive the single offers. 72% of the applications contain only a single offer. The 

decreasing trend is observed for multiple offers. The number of applications 

decreases, when the number of offers increases. 
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Fig. 15. The number of unique applications with one, two, three, four, five or more 
offers. 

For offers, we also conducted an analysis by matching its categories (single vs. 

multiple offers) to the application process outcomes. As depicted in Fig. 16 almost 

30% of the applications which ended positively (“A_Pending”) – 5,050 out of 17,228 

– have multiple offers attached. This number is about 24% for applications which 

ended with negative outcomes, both for “A_Cancelled” and “A_Denied”. From 

descriptive analysis we can propose that applications with multiple offers tend to end 

with positive outcome. However, in order to check the validity of this hypothesis we 

conducted the non-parametric test which should check whether the association 

between the number of offers and outcome of applications is statistically significant. 

 

Fig. 16. Distribution of single offers and multiple offers in terms of process 

outcomes, “A_Pending”, “A_Cancelled”, “A_Denied” and “Unresloved” 

6.3 Results 

Association between Incompleteness and Process Outcomes.  We begin 

interpreting the relationship between the variables by discussing the overall chi-

square tests result which should suggest that whether there is an association between 

incompleteness and application process outcomes. The null hypotheses in our case 

states that the incompleteness doesn’t have any association with the outcome of the 

application process which also means that the variables are independent. The 
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alternative hypothesis in contrast suggests that that the information about 

incompleteness can help us to predict the process outcomes: 

─ H0: Incompleteness and Process Outcome are independent.  

─ Ha: Incompleteness and Process are not independent. 

The main purpose of the Chi-square (χ2) analysis is to examine whether the null 

hypothesis is accepted or rejected. In our analysis we defined the significance level as 

0.05 as in the state-of-the-art applications. By using the Chi-square (χ2) test for 

independence we calculated the expected frequency counts, degrees of freedom and 

chi-square test statistics. Based on the values of the latter two we compute the p-

value. The obtained Chi-square (χ2) statistic is 10,978.9316. The p-value is < 

0.00001. Since the result is significant at p < 0.05, this confirms that there is a 

statistically significant relationship between the incompleteness and the application 

process outcomes. The null-hypothesis is rejected. We reveal that both variables are 

not independent.  

Tab. 8. Observed values, expected values in () and cell Chi-square (χ2) values in [] 

 A_Incomplete No A_Incomplete Total 

A_Pending 12,647  (8,203.11)  [2407.40] 4,581  (9,024.89)  [2,188.19] 17,228 

A_Cancelled 955      (4,966.72)  [3240.34] 9,476  (5,464.28)  [2,945.29] 10,431 

A_Denied 1,357    (1,786.99)  [103.47] 2,396  (1,966.01)  [94.04] 3,753 

Unresolved 44        (46.19)      [0.10] 53      (50.81)      [0.09] 97 

Column Total 15,003 16,506 31,509 

 

The results of the conducted statistical analysis revealed the dependency between 

variables, but we still have to investigate the results in the cell level in order to figure 

out whether the direction (causality) of the assumption by process owners is right or 

not. As mentioned above, the process owners suggest that the existence of 

incompleteness activities leads to negative results.  

The results presented in Tab. 8 suggest that the number of observed applications 

with positive outcome, “A_Pending”, which contains at least one “A_Incomplete” 

activity is 12,647. However, the expected value for this category was only 8,203.  The 

χ2 is 2,407. This implies that the number of applications with positive outcomes 

(“A_Pending”) containing the incompleteness (at least one “A_Incomplete”) is 

significantly greater than expected. In other words, the existence of the 

incompleteness increases the chance that the application will have positive outcome, 

“A_Pending”. 

The second cell also obtains a high χ2-value with 2,188. This cell provides an 

overview to each application with positive outcome and without incompleteness. 

However, a closer look suggests that the number of observed cases (4,581) was 

significantly lower than the expected value (9,024). This result suggests that a 

significantly lower number of applications reached the positive outcome 

(“A_Pending”) when there was no incompleteness. In other words, the absence of 

incompleteness reduces the chance of applications to get positive outcome, 

“A_Pending”. We can make the similar cell-based analysis for the processes with the 
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“A_Cancelled” outcomes.  The results suggest that the number of observed cases for 

“A_Cancelled” with “A_Incomplete” was significantly lower than the expected 

values (955 vs. 4,966). At the same time the number of the observed cases 

“A_Cancelled” without “A_Incomplete” is significantly higher than it was expected. 

This result suggests that a significantly lower number of applications reached the 

negative outcome (“A_Cancelled”) when there was incompleteness. Or formulated 

differently, the existence of incompleteness decreases the chances to get negative 

outcome significantly. The results for the applications with “A_Denied” outcome are 

similar to the ones with “A_Cancelled”. Statistically significantly lower number of 

applications ended with the “A_Denied” where there was an incompleteness. Also, 

significantly higher number of applications ended with outcome “A_Denied” where 

there was no incompleteness.  In summary, the analysis of the individual cells of the 

conducted non-parametric test suggests that the existence of the status 

“A_Incomplete” increases the chances that the applications will end up with positive 

outcome, “A_Pending” and decreases the chances the application will end up with 

one of negative outcomes, “A_Cancelled” or “A_Denied”. On these grounds, we can 

argue that the hypothesis by process owners about the relationship between 

incompleteness and application process outcomes is wrong.  

Association between Number of Offers and Process Outcomes. Similarly, we 

conduct another Chi-square (χ2) test to check whether there is an association between 

number of offers and application process outcomes. The null hypotheses in that case 

states that the number of offers doesn’t have any association with the outcome of the 

application process and the alternative hypothesis suggests that the information about 

the number of offers can be used to predict the process outcomes: 

─ H0: Number of Offers and Process Outcome are independent.  

─ Ha: Number of Offers and Process Outcome are not independent. 

Again, we define the significance level as 0.05. The results of the Chi-square (χ2) 

are shown in Tab. 9. In this case, the Chi-square (χ2) statistic is 118.6509, the p-value 

is < 0.00001 and the result is significant at p < 0.05. So, we can confirm that there is 

also a statistically significant relationship between the number of offers and the 

application process outcomes. Therefore, the null-hypothesis is rejected because 

process outcome is not independent of number of offers. 

Tab. 9. Observed values, expected values in () and cell Chi-square (χ2) values in [] 

 Single Offer Multiple Offers Total 

A_Pending 12,178  (12548.24) [10.92] 5050 (4679.76)   [29.29] 17228 

A_Cancelled 7,875    (7597.56)   [10.13] 2556 (2833.44)   [27.17] 10431 

A_Denied 2847    (2732.82)   [4.77] 905   (1019.18)  [12.79] 3752 

Unresolved 50        (71.38)       [6.40] 48     (26.62)       [17.17] 98 

Column Total 22950 8559 31509 
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In order to investigate the details of the association between the number of offers 

and the process outcomes, we conduct the cell comparison as well. The results 

presented in Tab. 9 suggest that the number of actual applications with positive 

outcome (“A_Pending”) which contains “Single Offer” is 12,178. However, the 

expected value for this category was more than observed ones namely 12,548. The 

Chi-square (χ2) is 10.92. This result suggests that number of applications with 

positive outcome (“A_Pending”) containing “Single offers” is significantly lower than 

expected. In other words, making single offers reduces the chances to end up with 

positive outcomes. In contrast the information presented in the second cell suggests 

that the number of applications with the positive outcome, “A_Pending”, which 

contains “Multiple Offers” is significantly higher than expected (5,050 vs. 4,679). 

Summarizing, the analysis of these two cells suggest that the applications with 

multiple offers tend to end up with positive results. Let’s now analyze the cells of 

negative outcomes. The results suggest that the number of actual applications with 

process outcome (“A_Cancelled”) which contains only “Single Offer” is 7,875. 

However, the expected value for this category was more than observed ones, 7,597. 

This result implies that the applications with single offers tend to end up with 

“A_Cancelled” more than expected.  In contrast the number of applications with the 

process outcome “A_Cancelled” which contains “Multiple Offers” is significantly 

lower than expected (5,050 vs. 4,679). This in turn suggests that making multiple 

offers reduces the chances to get negative outcomes. The same trend as in 

“A_Cancelled” can be observed for the second negative outcome category, 

“A_Denied”. Making multiple offers reduces the probability ending up with the 

process outcome “A_Denied”. Whereas, sticking to single offers increases the odds 

that the application process will have the outcome “A_Denied”. In summary, the 

analysis of the individual cells of the conducted non-parametric test suggests that 

making multiple offers increase the chances that the applications will end up with 

positive outcome, “A_Pending” and at the same time decreases the chances the 

application will end up with one of negative outcomes, “A_Cancelled” or 

“A_Denied”. 

7 Process Prediction Using Convolutional Neural Networks 

7.1 General Approach 

Deep Learning has recently been used to predict process activities in business process 

execution. In [12, 13] the authors employ Long Short-Term Memory (LSTM) Neural 

Networks, which are trained using sequences of process execution steps. The 

evaluated performance of 0.76 accuracy on the 2012 BPI challenge dataset shows that 

deep learning already yields remarkable results in predicting process events. 

However, training and validating their neural network requires process sequences of 

fixed length.  
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Fig. 17. Concatenation of Different Process Cases to Generate Training Input. 

In [12] the authors concatenate events of different process traces, preserving the 

chronological order. Based on the concatenation, sub sequences of fixed lengths are 

for training and prediction. However, the resulting training data is likely to exhibit 

sequences containing events of different process cases as depicted in Fig. 17. 

Contrary to the application of LSTMs in Natural Language Processing (NLP), 

consecutive process cases of an event log exhibit a different relation than sentences in 

natural language texts. Another approach used in [13] extends sequences exhibiting a 

shorter length than the maximum length within the given dataset. To obtain sequences 

of equal length, they extend sequences shorter than the maximum length by adding 

zero values. Nevertheless, this approach is not able to process sequences that exceed 

the maximum sequence length in the training dataset. Therefore, we aim at providing 

a deep learning approach, which is capable of handling sequences of different lengths 

in prediction scenarios, without having trained several neural networks. 

 

Training Data. To avoid feeding overlapping cases into the neural network, we use a 

sliding window approach to generate the training data for each case individually. We 

also use a one-hot encoding as proposed in [13]. Fig. 18 depicts the generation of the 

training data for a single case. Given a process case containing the chronologically 

ordered events (e1,e2, … ,en) and a window size k. Equation 1 describes the 

generation of the input as well as the corresponding labeled output for i<n-k. 

 ⋃i {((ei, ei+1, … , ei+k-1), ei+k)} (4) 

case 

19 24 17 3 34 4 48 48 12 23 1 77 

19 24 17 3 34 4 48 48 12 23 1 77 

19 24 17 3 34 4 48 48 12 23 1 77 

. .  . .  . .  . .  . .  . .  

19 24 17 3 34 4 48 48 12 23 1 77 

Fig. 18. Sliding window approach with k=5 

Network Architecture. Convolutional Neural Networks (CNNs) are Feedforward 

Neural Networks (FNN). In contrast to LSTMs, there is no recurrent flow of data 

within the FNN. A FNN that incorporates at least one convolutional layer in its 

architecture is a CNN. CNNs are specialized for processing data that exhibits a grid-

like structure. Examples include time-series data like reading a sensor value over time 

that can be thought of as one-dimensional vector. CNNs have also been used to 
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classify DNA sequences [14]. Convolution incorporates three substantial concepts 

that can help improving a machine learning system: sparse weights, parameter sharing 

and equivariance [15]. Furthermore, convolution has properties that allow variable 

input size.  In FNNs, all outputs are connected to all inputs of the consecutive layer. 

This leads to huge matrix multiplications during the forward run and the training of 

such a network. A CNN has sparse connectivity between the outputs of a layer and 

the inputs of its consecutive layer. Since the connections in a feedforward neural 

network are weights, this is also termed as sparse weights. Sparse weights are 

obtained by using convolutions with filters that are smaller than the data that is fed 

into a layer. In general, a sequence can have thousands of elements. In most cases, it 

is enough to build features from small regions of these elements, since cycles can 

occur in these sequences. A filter capturing less than five elements is likely to encode 

important and meaningful features in a sequence. This improves the computational 

efficiency of such models tremendously. Using the same weights more than once in a 

function is called weight-sharing. In a FNN, each weight is used exactly once to 

compute the forward path. Contrary, a CNN learns a set of weights that is used for 

entire sequences. This does not speed up the training process, but decreases the size of 

the network architecture, which makes it less demanding in terms of memory. 

Equivariance of a function f to a transformation T is defined as follows:  

 f(T(x)) = T(f(x)).  (5) 

CNNs are equivariant to translation of the input. Intuitively, when the input changes 

in some way the output changes in the same. This must not be confused with 

invariance that is achieved by:  

 f(T(x)) = f(x).   (6) 

To achieve translation invariance, it is common to build units of convolutional layers 

followed by max-pooling layers. We propose a CNN that uses two consecutive units 

followed by a convolutional layer with filter size 1 and a softmax layer to predict the 

next process step. Fig. 17 shows the architecture of our network.  

Tab. 10. Network Architecture 

Index Type Filter Size 
Number of 

Filters 
Stride Padding 

1 Conv 9 32 1 keep-size 

2 ReLU     

3 MaxPooling 2  1  

4 Conv 3 64 1 keep-size 

4 ReLU     

4 MaxPooling 2  1  

5 Conv 1 

Number of 

distinct 

process steps 

 keep-size 

6 Softmax     
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Convolutional layer can process variable length inputs due to parameter sharing. In 

contrast, fully connected layers have a fixed number of inputs and thus a fixed 

number of weights. Therefore, these models have to be trained on a specific sequence 

length. As we are using explicitly no fully connected layers and only convolutional 

and max pooling layers, our network can process sequences of any length.  

7.2 Experimental Settings 

We used the 2012 and the 2017 BPI challenge datasets to evaluate our novel 

approach. In order to compare our approach to [13] we used the proposed data 

selection consisting of the workflow events with status complete. We implemented 

our proposed convolutional neural network using Tensorflow. Furthermore, we 

implemented the proposed network architecture of [13] excluding the parts handling 

the time prediction. We generated our training data using the case-based sliding 

window approach. For evaluating the prediction performance of both approaches, we 

fixed the training and prediction sequences to lengths of 2, 5 and 10. Since the 2017 

dataset does not contain sequences of length 11, we are not able to measure the 

performance for sequences of length 10. We apply a 10-fold cross validation to 

measure the performance on the proposed datasets. The training and evaluation is 

conducted using a Titan X GPU. 

7.3 Results 

Tab. 11 shows the performance of the LSTM architecture in comparison to our 

convolutional neural network. We were able to achieve at least state of the art 

performance but using a much lighter and thus computationally much more efficient 

architecture. As a reference the architecture proposed in [13] incorporates 124,206 

trainable parameters. Our architecture incorporates only 6% (8,358) trainable 

parameters in comparison to the LSTM architecture.  

A further advantage of the proposed CNN architecture is its computational 

efficiency. As a reference we trained both architectures with a batch size of 16 over 

16 epochs. We observed that the loss-function started to converge in each case at least 

after 16 epochs. The training of the LSTM took 301 seconds while the training of the 

CNN took 47 seconds using the BPI 2012 dataset.  

Tab. 11. Results of the experimental evaluation 

 BPI 2012 (W complete)  BPI 2017 (W complete) 

sequence 2 5 10  2 5 10 

LSTM 0.82 0.85 0.86  0.71 0.63 - 

CNN 0.82 0.84 0.84  0.72 0.63 - 
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8 Answering the Process Owners’ Questions 

Question 1: The first question is concerned with the throughput times per part of the 

process. In our analysis, we have identified the two subprocesses that take the most 

time out of the overall process duration. First, a lot of time is required to complete the 

application and create corresponding offers, which indicates improvement potentials 

on the side of the bank. Second, it takes particularly long to collect documents for 

incomplete applications, which is more likely caused by delays on the customer’s 

side. More details are found in Section 5.3. 

 

Question 2: The second question targets the relationship between the incompleteness 

of an application and the likelihood with which the corresponding offer is rejected. 

The process owner stated the initial hypothesis, that customers are more likely to 

reject an offer if they are confronted with multiple requests for completion. 

Interestingly, our statistical analysis disproved this hypothesis and revealed that 

customers are actually significantly more likely to accept the ensuing offer, if their 

application was originally incomplete. At the same time, the absence of 

incompleteness leads to negative process outcomes. Section 6.3 describes the details 

of this analysis. 

 

Question 3: The third question asks how many customers ask for more than one offer 

and how this influences their likelihood of acceptance. We assessed this question 

similar to the previous one and found out that there is also a statistically significant 

association between these variables. Customers who ask for more than one offer are 

more likely to accept it in the long run. Making multiple offers increases the chances 

that the applications will end up with the positive process outcome and at the same 

time decreases the chances that the application will get a negative outcome. Details 

are also found in Section 6.3. 

9 Conclusion 

In this report, we relied on combining existing well-established process mining tools 

and statistical techniques with innovative methods and approaches for process 

analysis based on artificial intelligence and data mining in order to provide a holistic 

overview on the provided process data. We wanted to give the process owners an idea 

of the plethora of opportunities and potentials their data offers to current BPM 

research. While we used the initial question as an orientation to guide the direction of 

our analysis, we did not limit ourselves to simply providing answers, but also showed 

additional results of our available techniques in order to paint a more conclusive 

picture of the underlying process.  

After describing the data provided for this challenge and the tools we used, we 

have structured this report based on the techniques we have used in each section. We 

start by analyzing the data using Disco and provide a conclusive analysis based on the 

capabilities of state-of-the-art process mining tools. In this analysis, we also compare 
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this year’s log with the process data of the 2012 BPI challenge. In the following 

chapter, we compare the two logs using our own tool for Business Process Analysis, 

the RefMod-Miner, which is able to complement the results of the previous chapter. 

By clustering the process data vertically based on activity distance, we identify 

subprocesses in the log, which can be used to further narrow down the time-intensive 

process parts, which are promising starting points for future optimizations. Analyzing 

the interdependence of process attributes and outcomes by means of a Chi-square 

(χ2), we find out that the loan application process tend to end up with positive 

outcome if it gets at least one incompleteness status and also that applications are 

slightly more likely to end up with positive outcome when multiple offers are made. 

To be able to predict the next events for a running process instance and thus enable 

managing process cases at runtime, we train a convolutional neural network, 

achieving a simpler network architecture as well as promising values of accuracy.  

Although we did not limit ourselves to the original questions, we are able to 

provide new insights to the process owners. We identify those subprocesses in the 

data that are the most time-intensive, disprove the original hypothesis that customers 

are more likely to accept an offer if they are confronted with more requests for 

completing their data. Furthermore, we proved statistically that making multiple 

offers leads to positive process outcomes. In addition, we identify differences and 

commonalities between today’s process and the one of 2012 and predict the next 

process steps using a new approach to process prediction, which is able to handle 

variable trace lengths, is a considerable improvement over the state-of-the-art. We are 

convinced that our approach in this BPI challenge to combine existing process mining 

techniques with data mining and machine learning offers valuable benefits to the 

process owners and can assist them in further understanding and improving their 

process. We would like to express our gratitude and appreciation to the Dutch 

financial institute for providing their process data for research yet another time and to 

the BPI committee for once again organizing this unique event. Acknowledgment. 

We gratefully acknowledge the support of NVIDIA for the donation of the GPUs used 

for this research. 
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