

Universität Stuttgart

Institute of Parallel and Distributed Systems (IPVS)

Institute of Architecture of Application Systems (IAAS)

Universitätsstraße 38 D-70569 Stuttgart

Towards Ensuring High Availability in Collective Adaptive Systems

David Richard Schäfer, Santiago Gómez Sáez, <u>Thomas Bach</u>, Vasilios Andrikopoulos, Muhammad Adnan Tariq

Monday, September 8, 2014

BPCAS 2014

1st International Workshop on Business Processes in Collective Adaptive Systems September 8, 2014, Eindhoven, Netherlands

Overview

- Introduction
- Motivation
- Vison
 - Workflow Replication
 - Service Selection and Execution
 - Dynamic Compensation
- Conclusion

ALLOW Ensembles

• Highly distributed system where high availability is critical

Why High Availability Matters

Why Availability Matters – Example

- Adam gets a call from his boss that he needs to attend a meeting in a different part of the city in half an hour
 - He specifies this goal and receives the following flow from the system:

Replicated Workflow Execution

Replicated Workflow Execution

IPVS

→ Synchronize replicas and schedule accordingly

Embedding into Existing Architecture

Service Selection and Execution

- Ensure a timely execution / maintain deadlines
- Minimize Cost
- Find appropirate sub-deadlines
- Execute several (backup) services over time

Parallel vs. Sequential Service Execution

Common strategies to acces several services

IPVS

Search Space Between Parallel and Sequential

 \Rightarrow Find the perfect start time for backup services

Goals

- Obeying probabilistic deadlines
- Minimize overall cost

Compensation cannot be always avoided

Embedding into Existing Architecture

Workflow Technology - Compensation Handling

- Native support for compensation capabilities
- Usage of *Compensation Scopes* comprising one or multiple activities
- Compensation Handlers are used to reverse the work already completed within a scope

Workflow Technology - Compensation Handling

Dynamic Compensation Handling

Conclusion

- Promising approaches to ensure high availability
 - Workflow replication
 - Service Selection and Execution
- Embedding concepts into existing architecture by extending
 - Execution Engine
 - Enterprise Service Bus
- Manage Dynamic Compensation
 - Injection of process fragments

Thank you for your attention

Contact:

IPVS University of Stuttgart

Thomas Bach

Institute of Parallel and Distributed Systems (IPVS)

E-mail: thomas.bach@ipvs.uni-stuttgart.de

