
 Flexible Business Process Modelling
via Dynamic Condition Response

Graphs

Morten Marquard and Tijs Slaats

Joint work with
Thomas Hildebrandt, Soren Debois and Raghava Rao

Mukkamala

Overview of Tutorial

• Background
• Introduction to DCR Graphs
• Hands-on Modelling Exercise

• Questionnaire

• Discussion

Exformatics

• Small Danish company (15 employees)

• Founded in 2003

• Provides software solutions for a large (40+)
customer base, including:
– Intellectual property, legal

– Sales and delivery processes

• Develops IT systems for knowledge workers

Knowledge Workers need
Flexible Workflow Systems

• Knowledge Workers:
– Solve diverse problems

– Are experts at what they do

– Require freedom to make their own decisions

• However, rules do exist:
– Laws

– Business practices

State-of-the-Art

• Current Workflow systems:

– Solve tasks in given order

– The system is in control,

 not the user

Knowledge Workers need
Flexible Workflow Systems

• Flexible Workflow Systems:
– Based on describing rules directly instead of

describing the flow of work

– Offers users all possible choices that follow the
rules, while still advising on best-practice

– Are more easily adapted to change (new laws,
changing business practices)

– Require flexible workflow notations

DCR Graphs

• Such a declarative workflow notation

• Consists of events (tasks) and constraints
(rules) between events

• Unconstrained events can happen at any time

• State represented as a marking consisting of
executed, pending and included events

DCR Graphs by Example

We consider a basic expense claim example, with:
• 4 main activities:

– Create Expense Claim
– Approve Expense Claim
– Reject Expense Claim
– Payout Expense Claim

• And three roles:
– Employee, can create an expense claim.
– Manager, can approve or reject an expense claim.
– Finance Department, can reject and payout an expense

claim.

DCR Graphs by Example

● A claim should be created before it can be approved or
rejected.

● A claim should be approved before it can be paid out.
● A claim should only be created once. (Every run of the

workflow handles a single claim.)
● Once a claim has been rejected, it should not be paid out,

unless it is approved again at some later point in time.
● If a claim is created, it should eventually be paid out,

unless it is rejected.
● Payout should end the process.

Questions?

Hands-on Assignments

Discussion

