

Bidimensional Process Discovery for Mining BPMN Models

DeMiMoP 2014, Haifa Eindhoven

- Jochen De Weerdt, KU Leuven (@jochendw)
- Seppe vanden Broucke, KU Leuven (@macuyiko) (presenter)
- Filip Caron, KU Leuven

Jochen.deweerdt@kuleuven.be

- Introduction
- Rationale and Relevance
- Bidimensional Process Discovery
- Conclusions

- ✓ Introduction
- Rationale and Relevance
- Bidimensional Process Discovery
- Conclusions

Introduction

- Process mining: knowledge discovery from event logs
- Process discovery: discovery of some representational model for control-flow, social aspect, performance, etc.
- Many techniques proposed to mine: Petri nets, Heuristic Nets, Causal nets, EPCs, Declarative models

Where is the BPMN miner?

Introduction (2)

BPMN miner would be beneficial:

- Intuitive
- Known by many practitioners
- Easy to use and extend
- Comparison with as-is models

- ✓ Introduction
- ✓ Rationale and Relevance
- Bidimensional Process Discovery
- Conclusions

Relevance

Relevance for practitioners:

- BPMN as the de facto standard
- Widely adopted
- Used for documenting, improving, simulating and implementing business processes

Availability of BPMN miner could aid in:

- Automated process identification
- Facilitating the process re-engineering cycle
- Improved communication of process mining results

Relevance (2)

Relevance for education:

- Courses and text books often give BPMN a great deal of attention
- Later on, process mining is brought up, but requires introduction of new modeling standards (mostly Petri nets and Causal nets)
- Tools to mine BPMN is likely to lower effort required by educators to incorporate process mining in their units

Relevance (3)

Relevance for research:

- Process mining key contributions have mostly been technical in nature
- Opportunity for research on ease of use, user acceptance, etc. of process mining
- Process discovery technique with BPMN would lower barriers to conducting such studies

Comparison

Modeling Notation	Ease of Interpretation	Suitability Rep. Bias Proc. Disc.	${f Popularity}\ ({f Modeling})$	Popularity (Mining)
Petri net	●●○○○	••000	•0000	••••
Heuristic net	●●●○○		00000	••••
Fuzzy model	••••		00000	••••
Causal net	•0000		00000	●●○○○
EPC	••••	•0000	••••	••000
BPMN	••••	●●○○○	•••••	00000

- ✓ Introduction
- ✓ Rationale and Relevance
- ✓ Bidimensional Process Discovery
- Conclusions

Preliminaries

- Event log *L*: multiset of traces
- Trace $\sigma \in L$: finite sequence of events
- *O_L*: set of originators
- *T_L*: set of activities
- $a: L \rightarrow T_L$: function returning activity for given event
- $o: L \rightarrow O_L$: function returning originator for given event

$$\sigma = \langle start^{alice}, register^{bob}, \dots \rangle$$

Control-flow Discovery

- BPMN construct assumed to be known:
 - Flow objects
 - Connecting objects
 - Artifacts
 - Swim lanes
- Our approach (currently) considers:
 - Gateways (XOR, AND)
 - Tasks
 - Sequence flow
 - Start and end events
 - Swim lanes
- Other works illustrate that only small subset of BPMN is used in most real-life environments

Control-flow Discovery (2)

- Control-flow discovery similar as Heuristics Miner algorithm:
 - Dependency information is derived to construct dependency graph $D = \{(a, b) | a \in T_L \land b \in T_L \land \exists \sigma \in L: [\exists \sigma_i \in \sigma: [a(\sigma_i) = a \land a(\sigma_{i+1}) = b]]\}$
 - Next, split and join information is derived. E.g. $\{(a, b), (a, c), (a, d)\}$ ⊂ *D*: investigate whether *b*, *c*, *d*, occur in parallel, independently or a mixture of both. This is done by iterating over all traces and investigating succession and precedence relations $I: T_L \rightarrow P(P(T_L))$ and $O: T_L \rightarrow P(P(T_L))$
 - BPMN model constructed: add start and end events, construct BPMN graph with XOR and AND gateways, tasks and sequence flows
 - Simplification step: removal of all gateways which only contain single entry/exit and merging all AND gateways with the same outgoing activities and a single incoming activity (with additional XOR to connect incoming activities)

Filtering and Abstraction

- Dealing with variability and noise:
 - Standard Heuristics Miner dependency thresholds
 - Split/join threshold implement to select split/join patterns
 - For event logs with many low-frequent activities: filter/merging possibility

Bidimensional Discovery

- Combine control-flow with other perspective: originator information
 - Using the swimlane construct of BPMN
 - Each swimlane represents a "worker pool", or "role"
 - For each activity $a \in T_L$ a swimlane pool $S_i = \{a\}$ is constructed. Next, swimlanes S_i and S_j are merged so long iff $\exists o \in O_L$, $a_i \in S_i$, $a_j \in S_j$, $\sigma_i \in L$, $\sigma_j \in L$: $[a(\sigma_i) = a_i \land a(\sigma_j) = a_j \land o(\sigma_i) = o(\sigma_j) = o]$
 - Leads to set of merged swimlanes such that each swimlane represents a role (group of originators) responsible for a set of activities

Conformance Analysis and Exporting

- Add ability to replay an event log over a discovered BPMN model (using token-based execution semantics) to derive fitness metric
 - Highlight conformance issues on activity-level
- Exporting to XPLD
 - Use in Aris, Bizagi, Signavio, Activity

Illustrations

Illustrations (2)

Illustrations (3)

Illustrations (4)

Bidimensional Process Discovery for Mining BPMN Models

- ✓ Introduction
- ✓ Rationale and Relevance
- ✓ Bidimensional Process Discovery
- ✓ Conclusions

Conclusions

Summary:

- BPMN miner presented
- Combines control-flow with social/originator data
- Conformance checking, exporting, filtering functionality
- Hope to lower adoption barrier of process mining

Future work:

- Discover exceptions
- Discover sub-processes
- Discover data-flows
- Discover decision gateways (additional data attributes in event log required)
- Discover hierarchical process structures

Questions and Answers

