On Measuring, Modeling and Analyzing Healthcare Systems (Hospitals, ..., Call Centers) in Real-Time

From Small Measurements through Big Data to Analytics

Avishai Mandelbaum

IE&M & SEELab, Technion

Lecture will be downloadable from my Technion website

http://ie.technion.ac.il/serveng

Research Partners

Students:

Aldor*, Baron Yonit*, Carmeli Boaz*, Chen Hong*, Cohen Izik*, Feldman Zohar*, Garnett*, Ghebali*, Gurvich*, Khudiakov*, Koren, Maman*, Marmor*, Reich*, Rosenshmidt*, Shaikhet*, Senderovic, Tseytlin*, Yom-Tov*, Carmeli-Yuviler, Zaied*, Zeltyn*, Zychlinski, Zohar Eti*, Zviran*

► Theory:

Atar, Jelenkovic, Massey, Reiman, Shimkin, Stolyar, Whitt, Zhang Hanqin¹

Exploratory Data Analysis, Data Sources:

He Shuangchi, Kim Song-Hee, Liberman, Liu Nan, Sim Melvyn, Tezcan, Won Chul Cha, Wu Dan, Ye Han, \ldots

Data-based Theory:

Armony, Azriel, Brown, Carmeil-Yuviler, Cohen Izik, Feigin, Goldberg, Gal, Gans, Gorfine, Gurvich, Huang Junfei, Jansen, Kaspi, van Leeuwaarden, Marmor, Mathisjen, Momcilovic, Parush, Ritov, Senderovic, Shen Haipeng, Tseytlin, Wasserkrug, Weidlich, Yom-Tov, Zeltyn, Zhao Linda, Zhang Jiheng, Zwart, ...

► Industry:

Mizrahi Bank, Fleet Bank, Rambam Hospital, IBM Research, Hapoalim Bank, Pelephone Cellular, Samsung Hospital, Alexandra Health, DayHospital ...

Technion SEE Laboratory (SEELab): Feigin; Trofimov, Nadjharov, Gavako; Lab Alumni; Research Assistants

¹In many Western countries, there is a short list of popular "first names," but countless "last names." In China, it is just the reverse. The list of last names is short, and the number of first names is in the billions (from chinapage.com/biography/lastname.html).

Research Goals

- Reality: Service Systems
 e.g. Hospitals, Call Centers, Websites,
- Models = ServNets

Simple models at the service of complex realities Q-Nets, F-Nets, D-Nets, Sim-Nets: Operations Research (Math) but also P-Nets, C-Nets, ..., as in BPM, WFM, Process Mining

Research Goals

- Reality: Service Systems
 e.g. Hospitals, Call Centers, Websites, ...
- Models = ServNets

Simple models at the service of complex realities Q-Nets, F-Nets, D-Nets, Sim-Nets: Operations Research (Math) but also P-Nets, C-Nets, . . ., as in BPM, WFM, Process Mining

Goals:

Data-based creation, validation, analysis & control

of ServNets,

on demand & automatically

Feasible? Why be Optimistic?

- e.g. Emergency-Department simulation, queueing model & analysis of a specific ED:
 - Online: create model(s) of ED on normal Monday mornings
 - Real-time: control patient-flow bottlenecks
 - Short-term: on Monday, set Tuesday's staffing levels (or next week's)
 - Design: physician protocol explore (triage) vs. exploit (discharge)

Technion IE&M research (OR/QS/IE) + SEELab technologies:

Operational recipes (control, staffing, design) via Math-Nets (Q, F, D)

Feasible? Why be Optimistic?

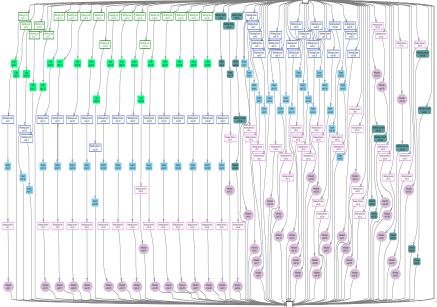
- e.g. Emergency-Department simulation, queueing model & analysis of a specific ED:
 - Online: create model(s) of ED on normal Monday mornings
 - Real-time: control patient-flow bottlenecks
 - Short-term: on Monday, set Tuesday's staffing levels (or next week's)
 - Design: physician protocol explore (triage) vs. exploit (discharge)

Technion IE&M research (OR/QS/IE) + SEELab technologies:

- Operational recipes (control, staffing, design) via Math-Nets (Q, F, D)
- Virtual realities (validation labs) via SEEnimations
- Process Mining (Discovery, Conformance) of ServNets (Started w/ A. Gal, A. Senderovic, M. Weidlich)

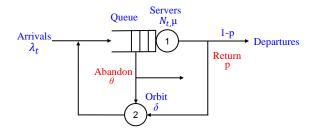
Feasible? Why be Optimistic?

- e.g. Emergency-Department simulation, queueing model & analysis of a specific ED:
 - Online: create model(s) of ED on normal Monday mornings
 - Real-time: control patient-flow bottlenecks
 - Short-term: on Monday, set Tuesday's staffing levels (or next week's)
 - Design: physician protocol explore (triage) vs. exploit (discharge)


Technion IE&M research (OR/QS/IE) + SEELab technologies:

- Operational recipes (control, staffing, design) via Math-Nets (Q, F, D)
- Virtual realities (validation labs) via SEEnimations
- Process Mining (Discovery, Conformance) of ServNets (Started w/ A. Gal, A. Senderovic, M. Weidlich)

OR/SE and BPM/PM must join forces:


- OR/SE overcomes "curse of dimensionality": Simple models at the service of BPM/PM complex realities
- BPM/PM overcomes "curse of parsimony": OR models too simple to be credible

PM CarePath = 61 Visits within 6 months (DayHospital)

OR Model Selection: As Simple as Possible but Not Simpler

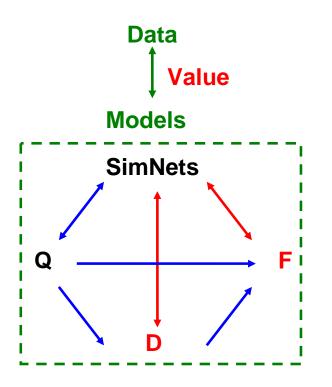
- Two-station ServNet, with customers who abandon and return
- Accommodates both EDs and call centers (w/ Massey, Reiman, Stolyar)

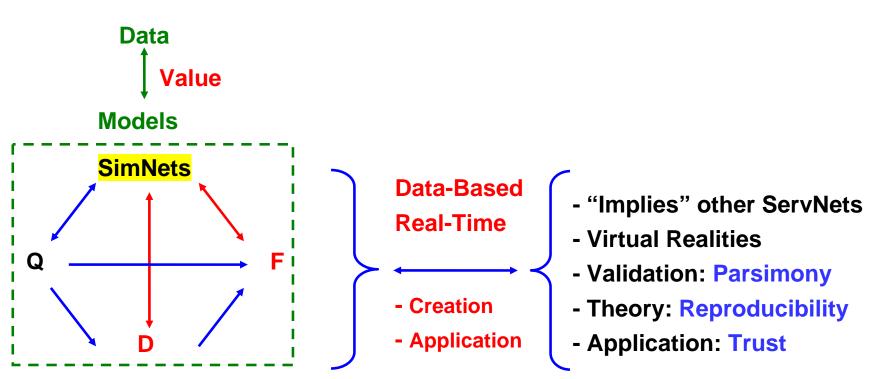
Contents

1. **Data-based research paradigm** (for me and interested colleagues): Operations Research, Industrial Engineering, Queueing Science

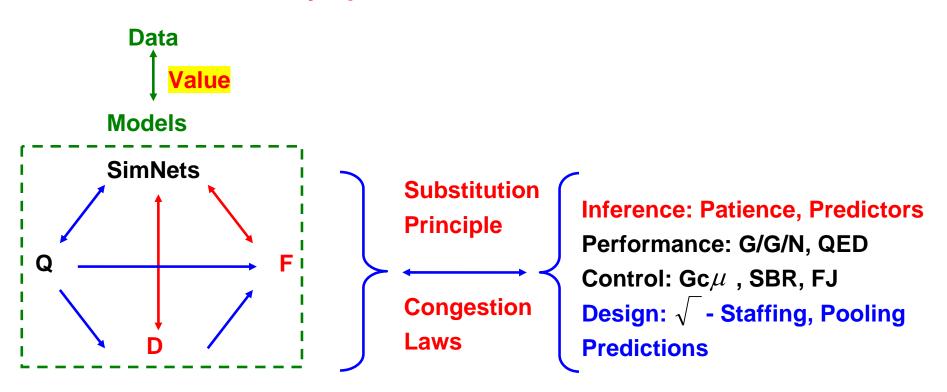
2. Two simple (parsimonious) models

- Emergency Department: Time-Varying
- Call Center: Stationary ("Fruit-Flies" of hospitals)

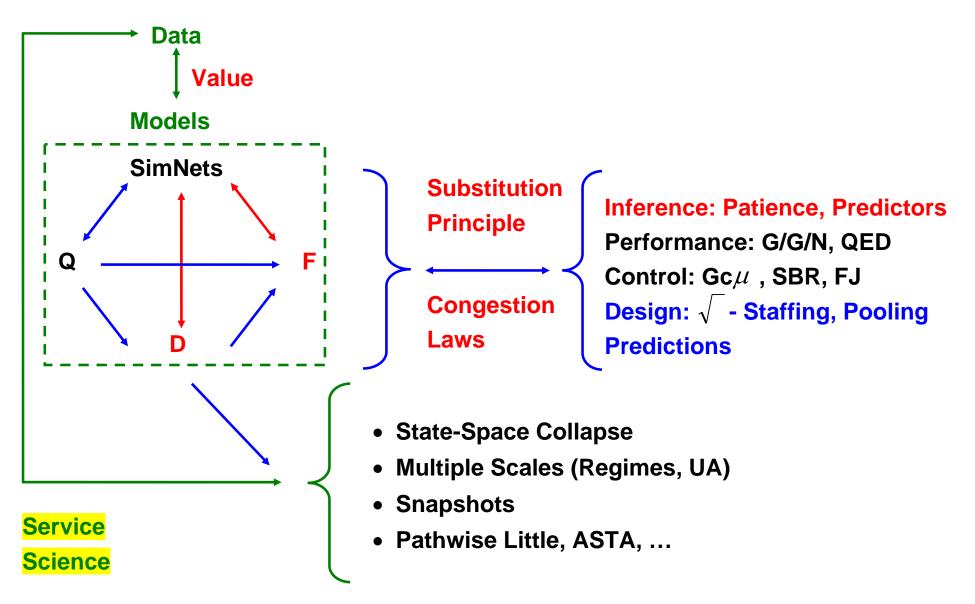

(Reconciling time-variability and stationarity: stabilizing performance)

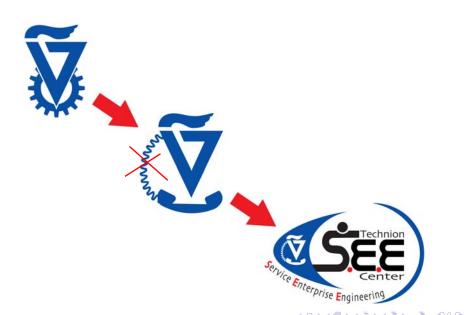

3. Empirical adventures at the Technion IE&M SEELab: Mining operational building blocks of ServNets

- Primitives
- Structure
- Protocols


4. Glance at open problems, new directions, uncharted territories

Data–Based Framework: (Almost) All Models Born Equal




Data–Based (Asymptotic) Framework: Simulation Mining

Data–Based Asymptotic Framework: Added Value

Ultimately: Automatic "Discovery, Conformance, Enhancement"

Technion SEE = Service Enterprise Engineering

SEELab: Environment for graphical EDA in real-time

- > Detailed **operational histories** (customers, servers), e.g.
 - 1. * Bank Anonymous : 1 year, 350K calls by 15 agents in 2000, which paved the way to:
 - 2. *U.S. Bank : 2.5 years, 220M calls, 40M by 1000 agents
 - 3. Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents
 - 4. Israeli Bank: from January 2010, daily-deposit at a SEESafe
 - 5. Service Engineering internet site: click-stream data (2 years)
 - 6. *Home (Rambam) Hospital : 4 years, 1000 beds, inter-ward flow
 - 7. Emergency Department (ED) patient flow:
 - 5 EDs in Israel: 1-2 years, late David Sinreich, ED arrivals & LOS
 - ED in Seoul: 2 months, K. Song-Hee & W. Cha, pilot
 - ED in XY: 2 years, pilot
 - 8. Hospital RTLS (Real-Time Location System), pilot:
 - 250K events/day: 1000 patients, 350 staff (1500 tagged entities)

Infrastructure: 900 readers (sensors), many floors

```
* Open & Free for research and teaching
```

Data Cleaning: MCE with RFID Support

		Data-base	Company	comment		
Asset id	order	Entry date	Exit date	Entry date	Exit date	
4	1	1:14:07 PM		1:14:00 PM		
6	1	12:02:02 PM	12:33:10 PM	12:02:00 PM	12:33:00 PM	
8	1	11:37:15 AM	12:40:17 PM	11:37:00 AM		exit is missing
10	1	12:23:32 PM	12:38:23 PM	12:23:00 PM		
12	1	12:12:47 PM	12:35:33 PM		12:35:00 PM	entry is missing
15	1	1:07:15 PM		1:07:00 PM		
16	1	11:18:19 AM	11:31:04 AM	11:18:00 AM	11:31:00 AM	
17	1	1:03:31 PM		1:03:00 PM		
18	1	1:07:54 PM		1:07:00 PM		
19	1	12:01:58 PM		12:01:00 PM		
20	1	11:37:21 AM	12:57:02 PM	11:37:00 AM	12:57:00 PM	
21	1	12:01:16 PM	12:37:16 PM	12:01:00 PM		
22	1	12:04:31 PM	12:20:40 PM			first customer is missing
22	2	12:27:37 PM		12:27:00 PM		Ŭ.
25	1	12:27:35 PM	1:07:28 PM	12:27:00 PM	1:07:00 PM	
27	1	12:06:53 PM		12:06:00 PM		
						exit time instea
28	1	11:21:34 AM	11:41:06 AM	11:41:00 AM	11:53:00 AM	of entry time
29	1	12:21:06 PM	12:54:29 PM	12:21:00 PM	12:54:00 PM	
31	1	11:40:54 AM	12:30:16 PM	11:40:00 AM	12:30:00 PM	
31	2	12:37:57 PM	12:54:51 PM	12:37:00 PM	12:54:00 PM	
32	1	11:27:11 AM	12:15:17 PM	11:27:00 AM	12:15:00 PM	
33	1	12:05:50 PM	12:13:12 PM	12:05:00 PM	12:15:00 PM	wrong exit time
35	1	11:31:48 AM	11:40:50 AM	11:31:00 AM	11:40:00 AM	
36	1	12:06:23 PM	12:29:30 PM	12:06:00 PM	12:29:00 PM	
37	1	11:31:50 AM	11:48:18 AM	11:31:00 AM	11:48:00 AM	
37	2	12:59:21 PM		12:59:00 PM		

- Imagine "Cleaning" 60,000+ customers per day (call centers) !

- "Psychology" of Data Trust and Transfer (e.g. 2 years till transfer)

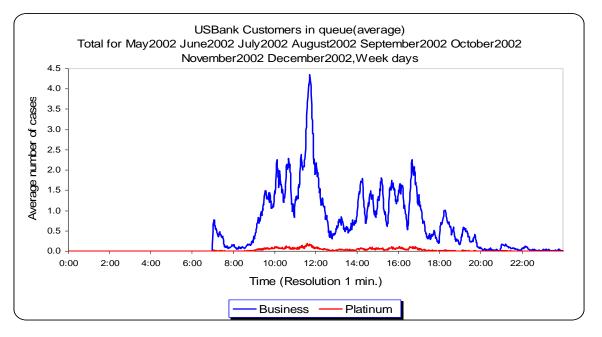
Event-Logs in a Call Center (Bank Anonymous)

A Data Sample (Excel worksheet)

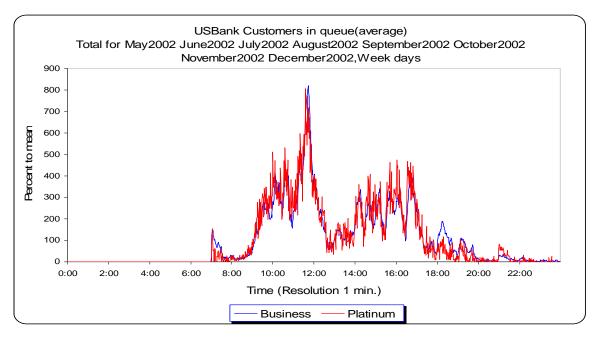
		pic (EAC														
vru+line	call_id	customer_id	priority	type	date	vru_entry	vru_exit	vru_time	q_start	q_exit	q_time	outcome	ser_start	ser_exit	ser_time	server
AA0101	44749	27644400	2	PS	990901	11:45:33	11:45:39	6	11:45:39	11:46 <mark>:58</mark>	79	AGENT	11:46 <mark>:57</mark>	11:51:00	243	DORIT
AA0101	44750	12887816	1	PS	990905	14:49:00	14:49:06	6	14:49:06	14:53 <mark>:00</mark>	234	AGENT	14:52 <mark>:59</mark>	14:54:29	90	ROTH
AA0101	44967	58660291	2	PS	990905	14:58:42	14:58:48	6	14:58:48	15:02:31	223	AGENT	15:02:31	15:04:10	99	ROTH
AA0101	44968	0	0	NW	990905	15:10:17	15:10:26	9	15:10:26	15:13:19	173	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44969	63193346	2	PS	990905	15:22:07	15:22:13	6	15:22:13	15:23 <mark>:21</mark>	68	AGENT	15:23 <mark>:20</mark>	15:25:25	125	STEREN
AA0101	44970	0	0	NW	990905	15:31:33	15:31:47	14	00:00:00	00:00:00	0	AGENT	15:31:45	15:34:16	151	STEREN
AA0101	44971	41630443	2	PS	990905	15:37:29	15:37:34	5	15:37:34	15:38:20	46	AGENT	15:38:18	15:40:56	158	TOVA
AA0101	44972	64185333	2	PS	990905	15:44:32	15:44:37	5	15:44:37	15:47:57	200	AGENT	15:47:56	15:49:02	66	TOVA
AA0101	44973	3.06E+08	1	PS	990905	15:53:05	15:53:11	6	15:53:11	15:56:39	208	AGENT	15:56:38	15:56:47	9	MORIAH
AA0101	44974	74780917	2	NE	990905	15:59:34	15:59:40	6	15:59:40	16:02:33	173	AGENT	16:02:33	16:26:04	1411	ELI
AA0101	44975	55920755	2	PS	990905	16:07:46	16:07:51	5	16:07:51	16:08:01	10	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44976	0	0	NW	990905	16:11:38	16:11:48	10	16:11:48	16:11:50	2	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44977	33689787	2	PS	990905	16:14:27	16:14:33	6	16:14:33	16:14:54	21	HANG	00:00:00	00:00:00	0	NO_SERVER
AA0101	44978	23817067	2	PS	990905	16:19:11	16:19:17	6	16:19:17	16:19:39	22	AGENT	16:19:38	16:21:57	139	TOVA
AA0101	44764	0	0	PS	990901	15:03:26	15:03:36	10	00:00:00	00:00:00	0	AGENT	15:03:35	15:06:36	181	ZOHARI
AA0101	44765	25219700	2	PS	990901	15:14:46	15:14:51	5	15:14:51	15:15:10	19	AGENT	15:15:09	15:17:00	111	SHARON
AA0101	44766	0	0	PS	990901	15:25:48	15:26:00	12	00:00:00	00:00:00	0	AGENT	15:25:59	15:28:15	136	ANAT
AA0101	44767	58859752	2	PS	990901	15:34:57	15:35:03	6	15:35:03	15:35:14	11	AGENT	15:35:13	15:35:15	2	MORIAH
AA0101	44768	0	0	PS	990901	15:46:30	15:46:39	9	00:00:00	00:00:00	0	AGENT	15:46:38	15:51:51	313	ANAT
AA0101	44769	78191137	2	PS	990901	15:56:03	15:56:09	6	15:56:09	15:56:28	19	AGENT	15:56:28	15:59:02	154	MORIAH
AA0101	44770	0	0	PS	990901	16:14:31	16:14:46	15	00:00:00	00:00:00	0	AGENT	16:14:44	16:16:02	78	BENSION
AA0101	44771	0	0	PS	990901	16:38:59	16:39:12	13	00:00:00	00:00:00	0	AGENT	16:39:11	16:43:35	264	VICKY
AA0101	44772	0	0	PS	990901	16:51:40	16:51:50	10	00:00:00	00:00:00	0	AGENT	16:51:49	16:53:52	123	ANAT
AA0101	44773	0	0	PS	990901	17:02:19	17:02:28	9	00:00:00	00:00:00	0	AGENT	17:02:28	17:07:42	314	VICKY
AA0101	44774	32387482	1	PS	990901	17:18:18	17:18:24	6	17:18:24	17:19:01	37	AGENT	17:19:00	17:19:35	35	VICKY
AA0101	44775	0	0	PS	990901	17:38:53	17:39:05	12	00:00:00	00:00:00	0	AGENT	17:39:04	17:40:43	99	TOVA

- Unsynchronized transition times, consistently

Technion - Israel Institute of Technology The William Davidson Faculty of Industrial Engineering and Management


Center for Service Enterprise Engineering (SEE) <u>http://ie.technion.ac.il/Labs/Serveng/</u>

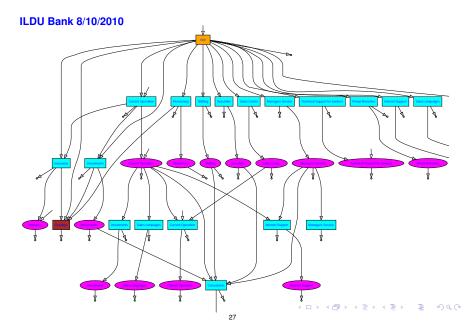
SEEStat 3.0 Tutorial


NYU, Stern IOMS, September 2011

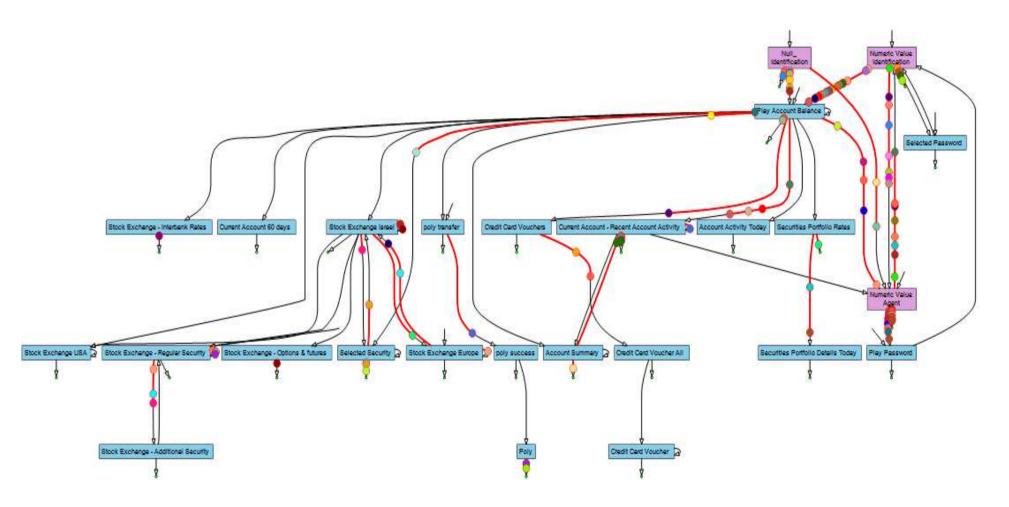
Note: This tutorial is customized to NYU Stern. To become a regular user of SEEStat, please go to <u>http://seeserver.iem.technion.ac.il/see-terminal/</u> click on "Register" (left menu), and follow the registration procedure.

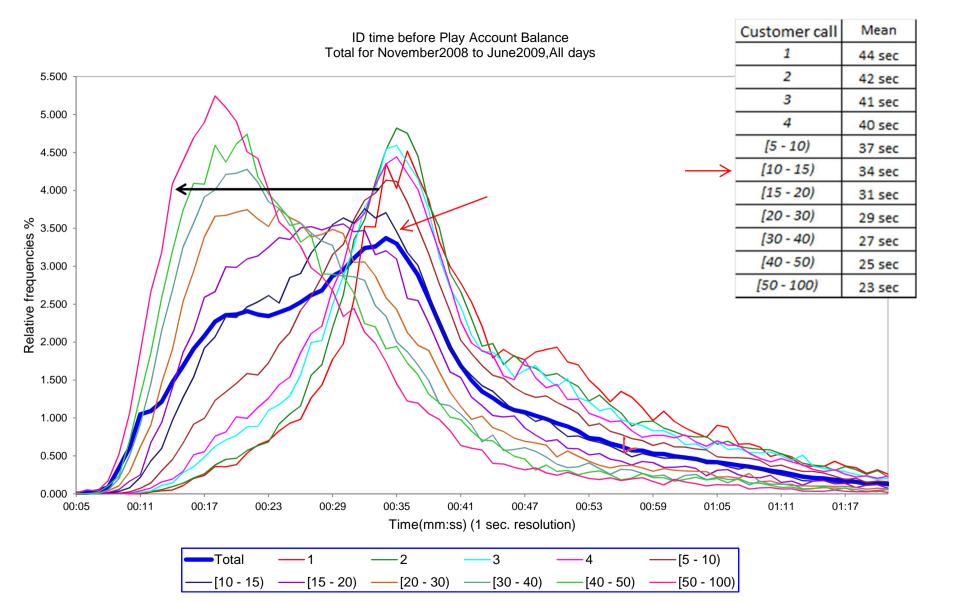
Platinum is a small-scale service. You will now normalize the chart in order to identify patters.

Click "**Output**" on the main menu and then "**Modify Tables and Charts**". Open the "**Options**" tab and select **Percent to mean**. Click "**OK**".

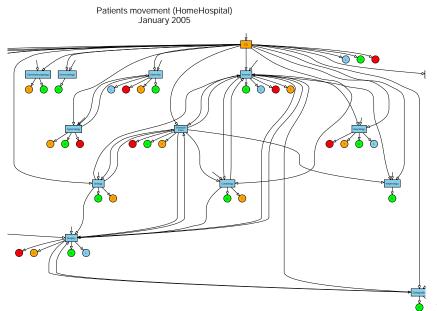

Note the essentially overlapping patterns of the queue lengths of the two customer types. (This phenomenon is predicted by asymptotic analysis of queues in heavy traffic, where it is referred to as State-Space-Collapse.)

Call-Center Environment: Service Network

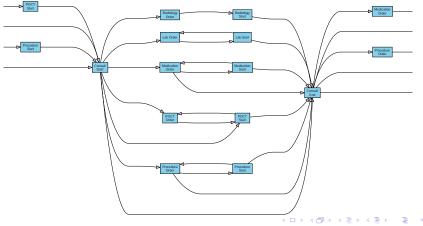

= "Fruit-flies of Hospitals": fast, low-stake, no IRB, ... yet highly relevant

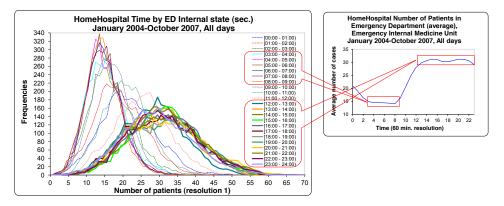


Customer Flow in Call Centers



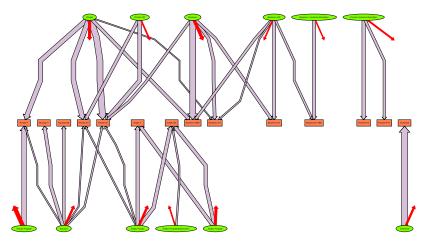
IVR flow


Hospital Network: Inter-Ward Patient Flow



Simple Models at the Service of Complex Realities: FNets

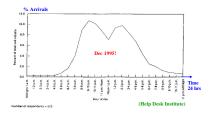
- 1. ED in Normal days (Time-Varying Periodic): Personnel Staffing (offline)
- 2. ED in Mass Casualty Event (Transient): Forecasting, Staffing (online)


Emergency Department in XYHospital, October 2012

Internal ED Occupancy histogram (left) and Average Census (right), by hour of the day

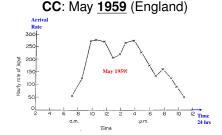
ILTelecom 9/3/2008

Empirical Adventures at the SEELab


SEELab History suggests possible guidelines for ServNet Mining:

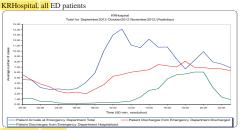
- 1. Primitives: arrivals, services, (im)patience
- 2. Structure: static process-maps
- 3. Protocols: Load Balancing, Dynamic Priority, Information

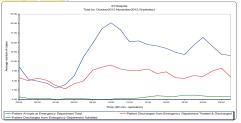
Primitives: Arrival (Rates) to Service


Why 2 Daily Peaks?

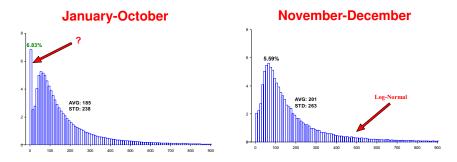
CC: Dec. 1995, (USA, 700 Helpdesks)

CC: Nov. 1999 (Israel)




ED: Jan.–July 2007 (Israel)

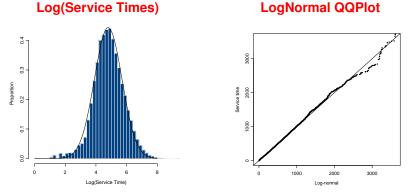
Arrival (Discharge) Rates in Korea and Singapore


XYHospital, walking patients

Primitives: Services (Durations)

Histogram of Service-Duration in an Israeli Call Center, 1999

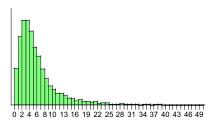
Why short services? Why LogNormal?



- ► January-October: 6.8% Short-Services (≤ 10 seconds) ?
- November-December: LogNormal durations (common) ?

イロト イポト イヨト イヨト

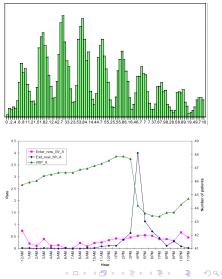
Durations: Phone Calls (2 Surprises)


Israeli Call Center, Nov–Dec, 1999

- Practically Important: (mean, std)(log) characterization
- Theoretically Intriguing: Why LogNormal ? Naturally multiplicative but, in fact, also Infinitely-Divisible (Generalized Gamma-Convolutions)

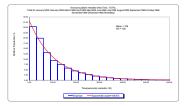
Protocols: LOS in Hospitals - Beyond LogNormal

Israeli Hospital, in Days: LN

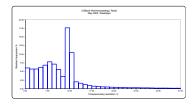


Explanation: Patients released around **3pm** (2-3 in Singapore, 2-4 in UNC Hospital)

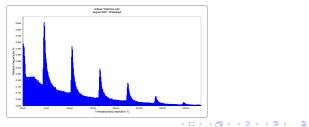
Why Bother ?


- Hourly Scale: Staffing,...
- Daily: Flow / Bed Control,...

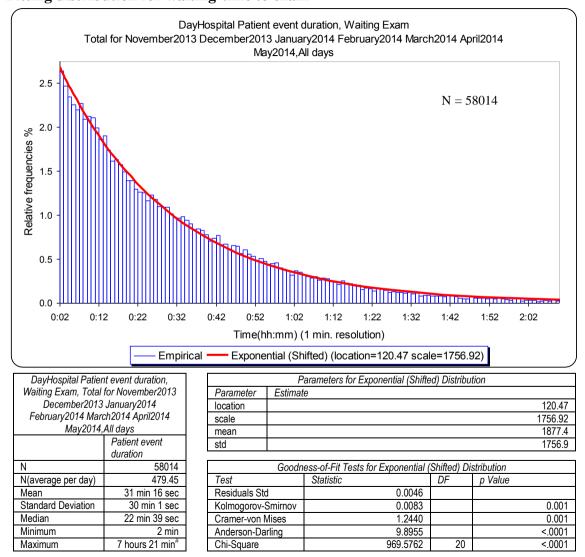
In Hours: 2 Time Scales, Mixture



Protocols: Waiting Time in a Call Center

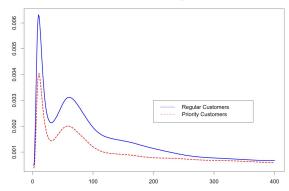

Exponential in Heavy-Traffic (min.) Small Israeli Bank

Routing via Thresholds (sec.) Large U.S. Bank



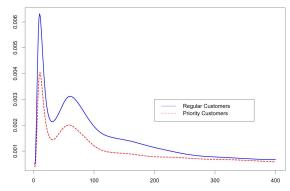
Scheduling Priorities (sec.) [compare Hospital LOS (hours)] Medium Israeli Bank

60


Exam Fitting distribution for waiting-time to exam

Protocols: (Im)Patience while Waiting (Psychology)

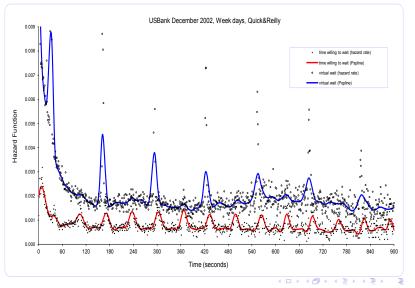
Palm: (1943–53): Irritation \propto Hazard Rate


Regular over VIP Customers: VIP more patient here (Israeli Bank)

Protocols: (Im)Patience while Waiting (Psychology)

Palm: (1943–53): Irritation \propto Hazard Rate

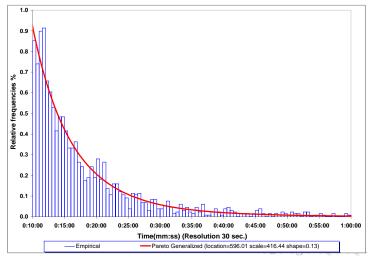
Regular over VIP Customers: VIP more patient here (Israeli Bank)



Why Peaks of abandonment? Announcement epochs

- Control abandonment w/ info: encourage, discourage
- Technical Challenges, w/ J. Huang, J. Zhang, H. Zhang
- Statistical challenges: Un-Censoring, Smoothing

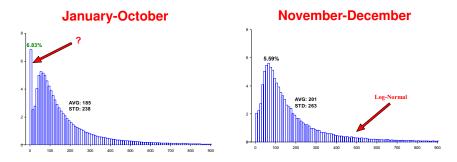
Protocols + Psychology


Patient Customers, Announcements, Priority Upgrades

Primitives: (Im)Patience

Israeli Bank: Uncensored 13,000 Customers, 24/11/2008

Patience \geq 10*min*: Why Pareto Tail?



- nac

Primitives: Services (Durations)

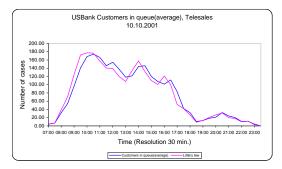
Histogram of Service-Duration in an Israeli Call Center, 1999

Why short services? Why LogNormal?

- ► January-October: 6.8% Short-Services (≤ 10 seconds) ?
- November-December: LogNormal durations (common) ?

イロト イポト イヨト イヨト

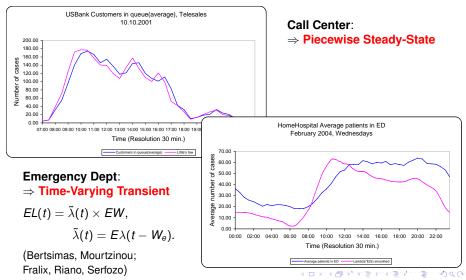
12TH INTERNATIONAL CONFERENCE ON BUSINESS PROCESS MANAGEMENT (BPM 2014)

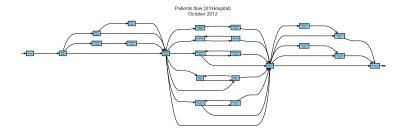

Conference Day Three: 11 Sep 2014 (Thursday)

Rooms: Before lunch:		Blauwe Zaal (Auditorium)				
	After lunch:	Kennispoort				

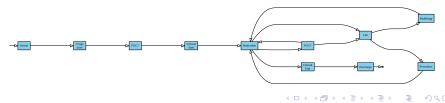
8:00 - 9:00	Registrations						
9:00 - 10:30	Session 9: Process Analytics						
	Session Chair: Jörg Desel						
	Beyond Tasks and Gateways: Discovering BPMN Models with Subprocesses, Boundary Events and Activity Markers Raffaele Conforti, Marlon Dumas, Luciano García-Bañuelos and Marcello La Rosa						
	Behavioral Comparison of Process Models Based on Canonically Reduced Event Structures Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas and Luciano García-Bañuelos						
	Where did I go wrong? - Explaining errors in business process models						
	Niels Lohmann and Dirk Fahland						
10:30 - 11:00	Morning Tea / Coffee (Auditorium)						
<mark>11:00 – 12:30</mark>	Session 10: Resource and Time Management in BPM						
	Session Chair: Jan Mendling						
	Mining Resource-Scheduling Protocols						
	Arik Senderovich, Matthias Weidlich, Avigdor Gal and Avishai Mandelbaum						
	Dealing with Changes of Time-Aware Processes Andreas Lanz and Manfred Reichert						
	Temporal Anomaly Detection in Business Processes						
	remporar Anomary Detection in Dasiness Frotesses						
	Andreas Rogge-Solti and Gjergji Kasneci						

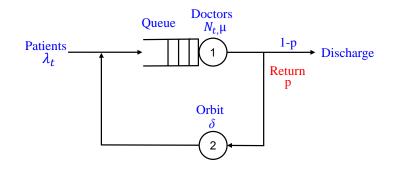
Little's Law $L = \lambda \times W$, in a Time-Varying Environment


Time-Gap: # in System lags behind Little / 30 min

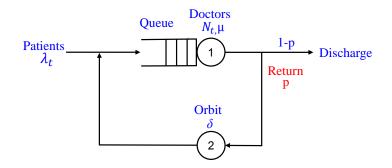

Call Center: ⇒ Piecewise Steady-State

Little's Law $L = \lambda \times W$, in a Time-Varying Environment


Time-Gap: # in System lags behind Little / 30 min


Recurrent Service Process in the ED

Capture Recurrent nature of service process: Multiple doctor visits



The Basic Service-Network Model: Erlang-R

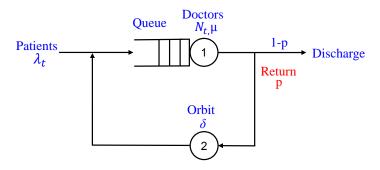
w/ G. Yom-Tov

The Basic Service-Network Model: Erlang-R

w/ G. Yom-Tov

2-station "Jackson" Network = (M/M/S, M/M/ ∞) :

- \u03c6 \u03c6 t_t Time-Varying Arrival rate
- N_t Number of Servers (Physicians, or Nurses)
- μ **Service** rate (*E*[Service] = $\frac{1}{\mu}$)
- *p* Return (ReEntrant) fraction
- δ **Orbit-to-Queue** rate (*E*[Delay]₂₀ $\frac{1}{\delta}$)

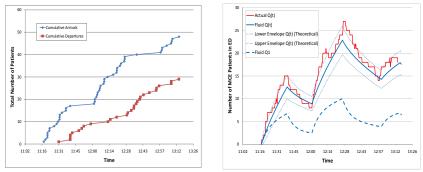

RFID-Based Data in Mass Casualty Event (Drill) Chemical MCE, Rambam Hospital (May 2010, 11:00-13:00)

Fluid Model:

- ► Predictable Variability ⇒ Time-Varying
- ► Stochastic Individualism averaged-out ⇒ Deterministic

Fluid Model ↔ (Time-Varying) Erlang-R System

Functional Strong Law of Large Numbers, for a 2-station QNet. BUT **FNet** = ODE: derived **directly** (no QNet), spreadsheet "solution"

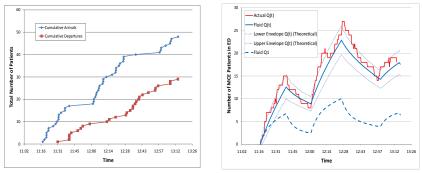

$$\frac{d}{dt}q_t^1 = \lambda_t - \mu \cdot (q_t^1 \wedge N_t) + \delta \cdot q_t^2$$

$$\frac{d}{dt}q_t^2 = p \cdot \mu \cdot (q_t^1 \wedge N_t) - \delta \cdot q_t^2$$

Erlang-R Value: FNet vs. Data

Chemical MCE Drill (Israel, May 2010, 11:00-13:00)

Arrivals & Departures (RFID)


Erlang-R (Fluid, Diffusion)

Recurrent/Repeated services in Chemical MCE: injection every 15/30/60 min

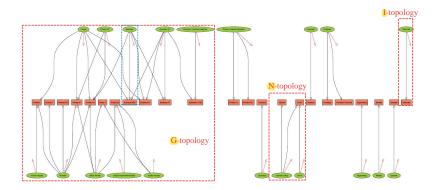
Erlang-R Value: FNet vs. Data

Chemical MCE Drill (Israel, May 2010, 11:00-13:00)

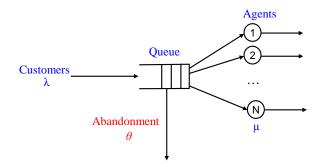
Arrivals & Departures (RFID)

Erlang-R (Fluid, Diffusion)

・ロット (母) ・ ヨ) ・ ・ ヨ)


- Recurrent/Repeated services in Chemical MCE: injection every 15/30/60 min
- Fluid = ODE
- Diffusion (confidence band), via F. Central Limit Theorem: Usefully narrow

A Data-Based Framework, or "Erlang-R in the ED"


System = e.g. Emergency Department

- QNet = Erlang-R (time-varying 2-station Jackson; w/ Yom-Tov)
- FNets = 2-dim dynamical system (Massey & Whitt)
- DNets = 2-dim Markovian Service Net (w/ Massey and Reiman)
- SimNet = Customized ED-Simulator (Marmor & Sinreich)

ILTelecom 9/3/2008

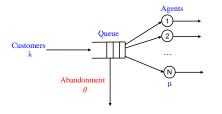
A Basic Staffing Model: Erlang-A

w/ O. Garnett

"Birth & Death" Queue = M/M/N + M (Palm 1940's):

- λ **Arrival** rate (Poisson)
- μ **Service** rate (Exponential; $E[S] = \frac{1}{\mu}$)
- θ **Patience** rate (Exponential, *E*[Patience] = $\frac{1}{\theta}$)
- ► *N* Number of **Servers** (Agents).

Asymptotic Landscape: 9 Operational Regimes, and then some Erlang-A, w/ I. Gurvich & J. Huang


Erlang-A	Conventional scaling			Many-Server scaling			NDS scaling			
$\mu \& \theta$ fixed	Sub	Critical	Over	QD	QED	ED	Sub	Critical	Over	
Offered load	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{2}$	$\frac{1}{1-\gamma}$	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{\alpha}$	1	$\frac{1}{1+\delta}$	$1 - \frac{\beta}{2}$	$\frac{1}{1-\gamma}$	
per server	1+0	1 <u>√n</u>			\sqrt{n}	$1-\gamma$		- n	,	
Arrival rate λ	$\frac{\mu}{1+\delta}$	$\mu - \frac{\beta}{\sqrt{n}}\mu$	$\frac{\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu\sqrt{n}$	$\frac{n\mu}{1-\gamma}$	$\frac{n\mu}{1+\delta}$	$n\mu - \beta\mu$	$\frac{n\mu}{1-\gamma}$	
# servers	1			n			n			
Time-scale	n			1			n			
Impatience rate		θ/n			θ			θ/n		
Staffing level	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu}(1 + \frac{\beta}{\sqrt{n}})$	$\frac{\lambda}{\mu}(1-\gamma)$	$\frac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}}$	$\frac{\lambda}{\mu}(1-\gamma)$	$\tfrac{\lambda}{\mu}(1+\delta)$	$\frac{\lambda}{\mu} + \beta$	$\frac{\lambda}{\mu}(1-\gamma)$	
Utilization	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{\hat{h}(\hat{\beta})}{\sqrt{n}}$	1	$\frac{1}{1+\delta}$	$1 - \sqrt{\frac{\theta}{\mu}} \frac{h(\hat{\beta})}{n}$	1	
$\mathbb{E}(Q)$	$\frac{1}{\delta(1+\delta)}$	$\sqrt{n}g(\hat{\beta})$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	$\frac{1}{\delta}\varrho_n$	$\sqrt{n}g(\hat{\beta})\alpha$	$\frac{n\mu\gamma}{\theta(1-\gamma)}$	o(1)	$ng(\hat{eta})$	$\frac{n^2 \mu \gamma}{\theta(1-\gamma)}$	
$\mathbb{P}(Ab)$	$\frac{1}{n} \frac{1}{\delta} \frac{\theta}{\mu}$	$\frac{\theta}{\sqrt{n\mu}}g(\hat{\beta})$	γ	$\frac{1}{n} \frac{(1+\delta)}{\delta} \frac{\theta}{\mu} \varrho_n$	$\frac{\theta}{\sqrt{n\mu}}g(\hat{\beta})\alpha$	γ	$o(\frac{1}{n^2})$	$\frac{\theta}{n\mu}g(\hat{\beta})$	γ	
$\mathbb{P}(W_q > 0)$	$\frac{1}{1+\delta}$	$\frac{1}{1+\delta}$ ≈ 1		ϱ_n	$\alpha \in (0,1)$	≈ 1	≈ 0	≈ 1		
$\mathbb{P}(W_q > T)$	$\frac{1}{1+\delta}e^{-\frac{\delta}{1+\delta}\mu T}$	$1 + O(\tfrac{1}{\sqrt{n}})$	$1+O(\tfrac{1}{n})$	≈ 0		f(T)	≈ 0	$\frac{\bar{\Phi}(\hat{\beta}+\sqrt{\theta\mu}T)}{\bar{\Phi}(\hat{\beta})}$	$1+O(\tfrac{1}{n})$	
Congestion $\frac{\mathbb{E}W_q}{\mathbb{E}S}$	$\frac{1}{\delta}$	$\sqrt{n}g(\hat{\beta})$	$n\mu\gamma/ heta$	$\frac{1}{n} \frac{(1+\delta)}{\delta} \varrho_n$	$\frac{\alpha}{\sqrt{n}}g(\hat{\beta})$	$\frac{\mu\gamma}{\theta}$	$o(\frac{1}{n})$	$g(\hat{eta})$	$n\mu\gamma/ heta$	

- Conventional: Ward & Glynn (03, G/G/1 + G)
- ► Many-Server:
 - QED: Halfin-Whitt (81), w/ Garnett & Reiman (02)
 - ED: Whitt (04)
 - NDS: Atar (12)
- "Missing": ED+QED; Hazard-rate scaling (M/M/N+G); Time-Varying, Non-Parametric; Moderate- and Large-Deviation; Networks (multi-regimes)

Asymptotic Erlang-X (Markovian Q's)

- Pre-History, 1914: Erlang (Erlang-B = M/M/n/n, Erlang-C = M/M/n)
- Pre-History, 1974: Jagerman (Erlang-B)
- History Milestone, 1981: Halfin-Whitt (Erlang-C, GI/M/n)
- Erlang-A (M/M/N+M), 2002: w/ Garnett & Reiman
- Erlang-A with General (Im)Patience (M/M/N+G), 2005: w/ Zeltyn
- Erlang-C (ED+QED), 2009: w/ Zeltyn
- Erlang-B with Retrial, 2010(3): Avram, Janssen, van Leeuwaarden
- Refined Asymptotics (Erlang A/B/C, ...), 2008-2013: Janssen, van Leeuwaarden, Zhang, Zwart
- Production Q's, 2011: Reed & Zhang
- Universal Erlang-A: w/ Gurvich & Huang
- Queueing Networks:
 - (Semi-)Closed: Nurse Staffing (Jennings & de Vericourt), CCs with IVR (w/ Khudiakov), Erlang-R (w/ Yom-Tov), Erlang-S (w/ Azriel and Feigin)
 - CCs with Abandonment and Retrials: w. Massey, Reiman, Rider, Stolyar
 - Markovian Service Networks: w/ Massey & Reiman
- Leaving out:
 - Non-Exponential Service Times: M/D/n (Erlang-D), G/Ph/n, · · · , G/GI/n+GI, Measure-Valued Diffusions
 - Dimensioning (Staffing): M/M/n, · · · , time-varying Q's, V- and Reversed-V, · · ·
 - Control: V-network, Reversed-V, · · · , SBRNets

Universal Approximations: Erlang-A (M/M/N + M)

w/ I. Gurvich & J. Huang

QNet: Birth & Death Queue, with B - D rates

$$\mathcal{F}(\boldsymbol{q}) = \lambda - \mu \cdot (\boldsymbol{q} \wedge \boldsymbol{n}) - heta \cdot (\boldsymbol{q} - \boldsymbol{n})^+, \ \ \boldsymbol{q} = \mathbf{0}, \mathbf{1}, \dots$$

- ► FNet: Dynamical (Deterministic) System ODE dx_t = F(x_t)dt, t ≥ 0
- ► **DNet**: Universal (Stochastic) Approximation SDE $dY_t = F(Y_t)dt + \sqrt{2\lambda} dB_t, t \ge 0$

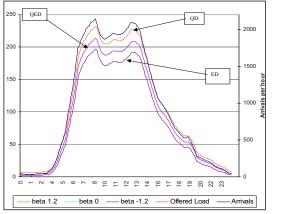
Reconciling Time-Varying and Steady-State Models

 Rigid (fixed) staffing level during a time-varying shift: Doomed to alternate between overloading and underloading

Flexible staffing:

Can design time-varying staffing that achieves, at all times, Steady-State performance

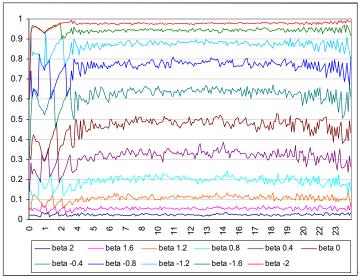
via Square-Root Staffing (Modified Offered-Load)


History:

- Jennings, M., Reiman, Whitt (1996): Emergence of the phenomenon, with infinite-server heuristics
- Feldman, M., Massey, Whitt (2008): Stabilize delay probability with QED staffing, with little theory
- Liu and Whitt (2012): Stabilize abandonment probability, with ED theory
- w/ Huang, Gurvich (ongoing): QED theory

Time-Varying Arrival Rates

Square-Root Staffing: $N(t) = R(t) + \beta \sqrt{R(t)}, -\infty < \beta < \infty.$ R(t) is the Offered-Load at time $t \quad (R(t) \neq \lambda(t) \times E[S])$


Arrivals, Offered-Load and Staffing

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ● ●

Time-Stable Performance of Time-Varying Systems

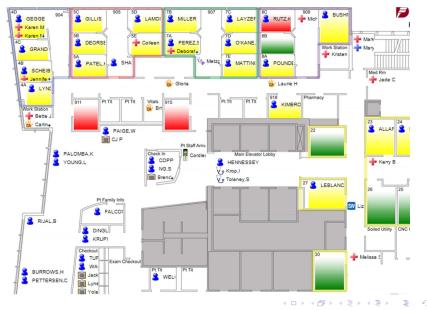
Delay Probability = as in the Stationary Erlang-A / R

🖹 ୬ବ୍ଚ

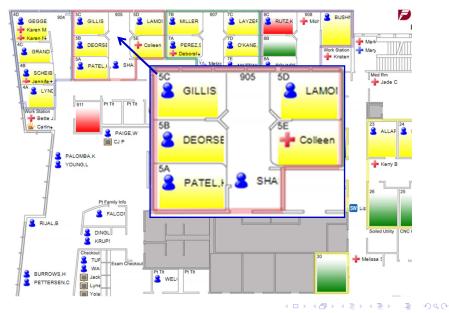
Data \Leftrightarrow Questions, Directions, Territories

Open Questions

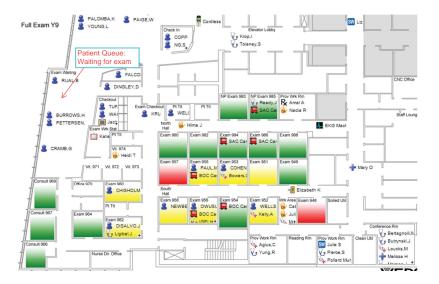
- Why are service durations Log-Normal?
- Staffing to **stabilize** time-varying performance: w/ Huang & Gurvich
- Fork-join networks (Petri Nets): w/ Atar & Zviran; Zaeid & Kaspi


New Directions

- Multi-channel design: self-service (eg. IVR, w/ Carmeli & Kaspi), tele-medicine
- Protocol Inference: w/ Liberman & Meilijson; w/ Senderovic, Weidlich, Gal
- Personalized Queueing Theory: w/ Momcilovic (LPF)
- Offered-Load/Capacity calculations: operational, cognitive, emotional; financial
- All models "born" equal: eg. inference via diffusions (w/ Pang), simulating FNets


Uncharted Territories

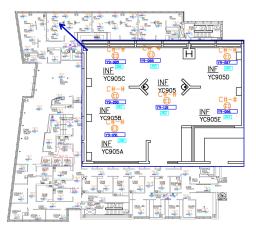
- Server Nets: w/ Armony & Momcilovic; Azriel & Feigin; Senderovic & Gal
- RTLS-based research (OR/Stat/IS, e.g. real-time control)
- (Semi)Automatic creation of SNets (OR + Process Mining)
- Integrated healthcare: from onset of symptoms through the hospital to recovery


Uncharted: Closing the Gap via RTLS (1/2 9th Floor)

5 Patients in Room 905



Queues, Exams, Conference (Second 1/2 of 9th Floor)


◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

900 RTLS Readers, 3 seconds Resolution

71

7 RTLS Readers in Room 905, out of 900 Total

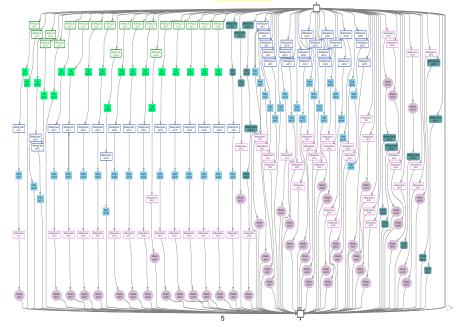
- Data: 3 sec resolution, 250,000 events/day, covering:
 - 1000 patients per day
 - 400 staff
 - Equipment

RTLS Data Challenges: Validation and Processing at the SEELab

- Many months of data-processing, still ongoing: e.g. 6000 lines of code
 - Led by Trofimov, with Gavako, Nadjharov, Senderovic
 - Extremely generous support of partner hospital !!!
- 2 data sources Appointment Schedules and RTLS Receivers: focus on latter but also use former

RTLS Data Challenges: Validation and Processing at the SEELab

- Many months of data-processing, still ongoing: e.g. 6000 lines of code
 - Led by Trofimov, with Gavako, Nadjharov, Senderovic
 - Extremely generous support of partner hospital !!!
- 2 data sources Appointment Schedules and RTLS Receivers: focus on latter but also use former
- Validation process identified noise and inconsistencies
 - Denoised best we could
 - Corrected inconsistencies only when proved as such
 - All documented


RTLS Data Challenges: Validation and Processing at the SEELab

- Many months of data-processing, still ongoing: e.g. 6000 lines of code
 - Led by Trofimov, with Gavako, Nadjharov, Senderovic
 - Extremely generous support of partner hospital !!!
- 2 data sources Appointment Schedules and RTLS Receivers: focus on latter but also use former
- Validation process identified noise and inconsistencies
 - Denoised best we could
 - Corrected inconsistencies only when proved as such
 - All documented
- Gave rise to
 - "Manual": Data description and documentation (77 pages)
 - Exploratory Data Analysis: Statistics and Animation (222 pages)

RTLS Data Challenges: Generic, Specific

- Software errors: e.g. negative duration values, few-second visits in rooms, floor-to-floor-to-back in seconds, ...
- Noncompliance of patients and medical staff: e.g leaving badges in waiting areas, exam rooms or hallways; out of 1000 exams per day, 100 to rooms "without" physician - possibly fixable via appointments
- Noisy by nature: e.g few-second room visits, removed via threshold-denoising
- > Translating locations to activities: e.g. avoiding fictitious visits
- ► Matching accurately patients with their service providers: e.g. patient arriving to exam room before MD, then examined, then leave after MD ⇒ must read both patient and MD to calculate waiting & exam duration; could arise when a provider attends to several patients simultaneously
- Planned vs. actual: e.g. more than 10% of scheduled activities not detected by receivers, e.g. due to noncompliance of patients parallel activities within a single location

CarePath = 61 Visits: Clinical + Operational

 Operational Data challenges: get, incomplete, corrupt; integrate w/ full carepath (e.g. from onset of symptoms, clinical)

- Operational Data challenges: get, incomplete, corrupt; integrate w/ full carepath (e.g. from onset of symptoms, clinical)
 - \Rightarrow Must go beyond the prevalent paradigm (in OR/IE/OM):
 - A single researcher (with a PhD student) obtaining a small data set for a single research project, with little "clinical" interaction

 \Rightarrow Unprofessional data science, no learning across generations, no sharing among researchers, irreproducible research; irrelevant

Ultimately, Research Labs will become necessary (hence must be funded!): offering universal access to data, ServNets

- Operational Data challenges: get, incomplete, corrupt; integrate w/ full carepath (e.g. from onset of symptoms, clinical)
 - \Rightarrow Must go beyond the prevalent paradigm (in OR/IE/OM):
 - A single researcher (with a PhD student) obtaining a small data set for a single research project, with little "clinical" interaction

 \Rightarrow Unprofessional data science, no learning across generations, no sharing among researchers, irreproducible research; irrelevant

- Ultimately, Research Labs will become necessary (hence must be funded!): offering universal access to data, ServNets
- Data-based Research: Tradition in Physics, Chemistry, Biology; Psychology, Transportation (Science), (Behavioral) Economics
- Natural, needed and feasible in Operations Research & Management, Service Engineering; BPM, Process Mining

- Operational Data challenges: get, incomplete, corrupt; integrate w/ full carepath (e.g. from onset of symptoms, clinical)
 - \Rightarrow Must go beyond the prevalent paradigm (in OR/IE/OM):
 - A single researcher (with a PhD student) obtaining a small data set for a single research project, with little "clinical" interaction

 \Rightarrow Unprofessional data science, no learning across generations, no sharing among researchers, irreproducible research; irrelevant

- Ultimately, Research Labs will become necessary (hence must be funded!): offering universal access to data, ServNets
- Data-based Research: Tradition in Physics, Chemistry, Biology; Psychology, Transportation (Science), (Behavioral) Economics
- Natural, needed and feasible in Operations Research & Management, Service Engineering; BPM, Process Mining

A working model for Research, Teaching & Practice Support: Technion IE&M SEELab

The Technion SEE Center / Laboratory

Data-Based Service Science / Engineering

Data-Based Creation of ServNets: some Technicalities

- ServNets = QNets, SimNets, FNets, DNets
- Graph Layout: Adapted from but significantly extends Graphviz (AT&T, 90's); eg. *edge-width*, which must be restricted to *poly-lines*, since there are "no parallel Bezier (Cubic) curves (B_n(p) = E_pF[B(n, p)], 0 ≤ p ≤ 1)
- Algorithm: Dot Layout (but with cycles), based on Sugiyama, Tagawa, Toda ('81): "Visual Understanding of Hierarchical System Structures"

Data-Based Creation of ServNets: some Technicalities

- ServNets = QNets, SimNets, FNets, DNets
- ▶ **Graph Layout**: Adapted from but significantly extends Graphviz (AT&T, 90's); eg. *edge-width*, which must be restricted to *poly-lines*, since there are "no parallel Bezier (Cubic) curves $(B_n(p) = E_p F[B(n, p)], 0 \le p \le 1)$
- Algorithm: Dot Layout (but with cycles), based on Sugiyama, Tagawa, Toda ('81): "Visual Understanding of Hierarchical System Structures"
- Draws data directly from SEELab data-bases:
 - Relational DBs (Large! eg. USBank Full Binary = 37GB, Summary Tables = 7GB)
 - Structure: Sequence of events/states, which (due to size) partitioned (yet integrated) into days (eg. call centers) or months (eg. hospitals)
 - Differs from industry DBs (in call centers, hospitals, websites)