Boundary Layer - Acoustic Liner Instabilities

Mirela Darau

28 October 2009
Outline

1. Where It All Started..
2. The Model
3. Stability Analysis
4. Piecewise Linear Shear Layer
5. Current and Future Work
Outline

1. Where It All Started..
2. The Model
3. Stability Analysis
4. Piecewise Linear Shear Layer
5. Current and Future Work
Turbofan Aircraft Engines

- aircraft certification includes complying to noise regulation → aircraft cannot be sold if they make too much noise
- principal noise source in an aircraft: the engine
- significant noise sources: interaction noise of the fan via the rotor-stator interaction (dominant with landing), the exhaust jet (dominant at take off), and the compressor and turbine of the core engine
- methods of noise suppression: by basic design and by use of acoustically absorbent linings
Turbofan Aircraft Engines

- aircraft certification includes complying to noise regulation → aircraft cannot be sold if they make too much noise
- principal noise source in an aircraft: the engine
- significant noise sources: interaction noise of the fan via the rotor-stator interaction (dominant with landing), the exhaust jet (dominant at take off), and the compressor and turbine of the core engine
- methods of noise suppression: by basic design and by use of acoustically absorbent linings
Where It All Started.. The Model Stability Analysis Piecewise Linear Shear Layer Current and Future Work

Turbofan Aircraft Engines

- aircraft certification includes complying to noise regulation → aircraft cannot be sold if they make too much noise
- principal noise source in an aircraft: the engine
- significant noise sources: interaction noise of the fan via the rotor-stator interaction (dominant with landing), the exhaust jet (dominant at take off), and the compressor and turbine of the core engine
- methods of noise suppression: by basic design and by use of acoustically absorbent linings
Turbofan Aircraft Engines

- aircraft certification includes complying to noise regulation → aircraft cannot be sold if they make too much noise
- principal noise source in an aircraft: the engine
- significant noise sources: interaction noise of the fan via the rotor-stator interaction (dominant with landing), the exhaust jet (dominant at take off), and the compressor and turbine of the core engine
- methods of noise suppression: by basic design and by use of acoustically absorbent linings
The Acoustic Liner
Where It All Started.. The Model Stability Analysis Piecewise Linear Shear Layer Current and Future Work

Mass-Spring-Damper

- assumptions: wall behaves like a mass-spring-damper
- so at \(y = 0 \):
 \[
 m \frac{\partial^2 v}{\partial t^2} + R \frac{\partial v}{\partial t} + Kv = -\frac{\partial p}{\partial t}
 \]
- for time-harmonic motion \((\sim e^{i\omega t}) \)
 \[
 \frac{\hat{p}}{-\hat{v}} = i\omega m + R + \frac{K}{i\omega} =: Z(\omega).
 \]
assumptions: wall behaves like a mass-spring-damper

so at $y = 0$:

$$m \frac{\partial^2 v}{\partial t^2} + R \frac{\partial v}{\partial t} + Kv = -\frac{\partial p}{\partial t}$$

for time-harmonic motion ($\sim e^{i\omega t}$)

$$\hat{p} + \hat{v} = i\omega m + R + \frac{K}{i\omega} =: Z(\omega).$$
Mass-Spring-Damper

- assumptions: wall behaves like a mass-spring-damper
- so at $y = 0$:

\[
\frac{m}{\partial t^2} \frac{\partial^2 v}{\partial t} + R \frac{\partial v}{\partial t} + Kv = -\frac{\partial p}{\partial t}
\]

- for time-harmonic motion ($\sim e^{i\omega t}$)

\[
\hat{p} - \hat{\nu} = i\omega m + R + \frac{K}{i\omega} =: Z(\omega).
\]
Ingard-Myers Boundary Condition

- for the **mean flow** the wall is solid: \(((U_0, 0) \cdot n) = 0\) at \(y = 0\)
- for the **acoustic field** the wall is soft
- at the wall:

\[\hat{p} = Z((\hat{u}, \hat{v}) \cdot n), \quad Z \in \mathbb{C}. \]

- the limit \(h \downarrow 0\) is usually taken for a point near the wall but still (just) inside the mean flow

\[(i\omega + (U_0, 0) \cdot \nabla)\hat{p} = i\omega Z((\hat{u}, \hat{v}) \cdot n), \quad \text{at} \quad y = 0^{+}. \]
Ingard-Myers Boundary Condition

- for the **mean flow** the wall is solid: $(U_0, 0) \cdot n = 0$ at $y = 0$
- for the **acoustic field** the wall is soft
- at the wall:
 $$\hat{p} = Z((\hat{u}, \hat{v}) \cdot n), \quad Z \in \mathbb{C}.$$

- the limit $h \downarrow 0$ is usually taken for a point near the wall but still (just) inside the mean flow
 $$\left(i\omega + (U_0, 0) \cdot \nabla\right)\hat{p} = i\omega Z((\hat{u}, \hat{v}) \cdot n), \quad \text{at} \quad y = 0^+.$$
Ingard-Myers Boundary Condition

- for the **mean flow** the wall is solid: \(((U_0, 0) \cdot n) = 0 \) at \(y = 0 \)
- for the **acoustic field** the wall is soft
- at the wall:

\[
\hat{p} = Z((\hat{u}, \hat{v}) \cdot n), \quad Z \in \mathbb{C}.
\]

- the limit \(h \downarrow 0 \) is usually taken for a point near the wall but still (just) inside the mean flow

\[
(i\omega + (U_0, 0) \cdot \nabla)\hat{p} = i\omega Z((\hat{u}, \hat{v}) \cdot n), \quad \text{at} \quad y = 0^+.
\]
Ingard-Myers Boundary Condition

- for the **mean flow** the wall is solid: \(((U_0, 0) \cdot \mathbf{n}) = 0 \text{ at } y = 0\)
- for the **acoustic field** the wall is soft
- at the wall:

\[
\hat{p} = Z((\hat{u}, \hat{v}) \cdot \mathbf{n}), \quad Z \in \mathbb{C}.
\]

- the limit \(h \downarrow 0\) is usually taken for a point near the wall but still (just) inside the mean flow

\[
(i \omega + (U_0, 0) \cdot \nabla)\hat{p} = i \omega Z((\hat{u}, \hat{v}) \cdot \mathbf{n}), \quad \text{at } y = 0^+.
\]
The Problem: Instability in the Model
Conclusions and Conjectures

- no instabilities seen in practice (except for two isolated cases: Auregan, Ronneberger)
- conjecture: the flow - stable for small but finite h
- the critical h depends on the impedance Z, since there is no other length scale in the problem
- we scale h versus $\frac{B}{\rho_0 U}$, $\frac{m}{\rho_0}$, $\frac{\rho_0 U^2}{K}$,

\[Z(\omega) = i\omega m + R + \frac{K}{i\omega} \]
Conclusions and Conjectures

- no instabilities seen in practice (except for two isolated cases: Auregan, Ronneberger)
- **conjecture**: the flow - stable for small but finite h
- the critical h depends on the impedance Z, since there is no other length scale in the problem
- we scale h versus $\frac{R}{\rho_0 U}$, $\frac{m}{\rho_0}$, $\frac{\rho_0 U^2}{K}$,

\[
Z(\omega) = i\omega m + R + \frac{K}{i\omega}
\]
Conclusions and Conjectures

- no instabilities seen in practice (except for two isolated cases: Auregan, Ronneberger)
- **conjecture**: the flow is stable for small but finite h
- the critical h depends on the impedance Z, since there is no other length scale in the problem

\[Z(\omega) = i\omega m + R + \frac{K}{i\omega} \]

we scale h versus $\frac{R}{\rho_0 U}$, $\frac{m}{\rho_0}$, $\frac{\rho_0 U^2}{K}$,
Conclusions and Conjectures

- no instabilities seen in practice (except for two isolated cases: Auregan, Ronneberger)
- **conjecture**: the flow - stable for *small* but *finite* h
- the critical h depends on the impedance Z, since there is no other length scale in the problem
- we scale h versus $\frac{R}{\rho_0 U}$, $\frac{m}{\rho_0}$, $\frac{\rho_0 U^2}{K}$, $\frac{K}{i\omega}$

\[
Z(\omega) = i\omega m + R + \frac{K}{i\omega}
\]
Outline

1. Where It All Started..
2. The Model
3. Stability Analysis
4. Piecewise Linear Shear Layer
5. Current and Future Work
Euler Equations

The governing model equations:

\[
\rho \left(\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial y} + u \frac{\partial u}{\partial x} \right) + \frac{\partial p}{\partial x} = 0
\]

\[
\rho \left(\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial y} + u \frac{\partial v}{\partial x} \right) + \frac{\partial p}{\partial y} = 0
\]

\[
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial y} + \frac{\partial (\rho u)}{\partial x} = 0.
\]

Assume a mean flow with small perturbations:

\[
u(x, y, t) = U_0(y) + \tilde{u}(x, y, t)
\]

\[
v(x, y, t) = \tilde{v}(x, y, t)
\]

\[
p(x, y, t) = p_0 + \tilde{p}(x, y, t)
\]

\[
\rho(x, y, t) = \rho_0 + \tilde{\rho}(x, y, t),
\]
Linearized Euler Equations

Assumptions: perfect gas with constant heat capacities C_p and C_v; inviscid, non-heat conducting, with a uniform mean flow entropy $\Rightarrow \frac{d}{dt} \tilde{\rho} = c_0^2 \frac{d}{dt} \tilde{\rho}$.

Linearizing around $(U_0(y), 0, \rho_0, \rho_0)$ and eliminating $\tilde{\rho}$:

\[
\frac{1}{\rho_0 c_0^2} \left(\frac{\partial \tilde{p}}{\partial t} + U_0 \frac{\partial \tilde{p}}{\partial x} \right) + \frac{\partial \tilde{u}}{\partial x} + \frac{\partial \tilde{v}}{\partial y} = 0
\]

\[
\frac{\partial \tilde{u}}{\partial t} + U_0 \frac{\partial \tilde{u}}{\partial x} + \tilde{v} U_0 + \frac{1}{\rho_0} \frac{\partial \tilde{p}}{\partial x} = 0
\]

\[
\frac{\partial \tilde{v}}{\partial t} + U_0 \frac{\partial \tilde{v}}{\partial x} + \frac{1}{\rho_0} \frac{\partial \tilde{p}}{\partial y} = 0.
\]
Modes

We consider waves of the type:

\[\tilde{p} = e^{i\omega t - i\alpha x} \hat{p}(y), \quad \tilde{u} = e^{i\omega t - i\alpha x} \hat{u}(y), \quad \tilde{v} = e^{i\omega t - i\alpha x} \hat{v}(y). \]

The equations reduce to:

\[\frac{i(\omega - \alpha U_0)\hat{p}}{\rho_0 c_0^2} - i\alpha \hat{u} + \frac{d\hat{v}}{dy} = 0 \]

\[i(\omega - \alpha U_0)\hat{u} + U_0' \hat{v} - \frac{i\alpha}{\rho_0} \hat{p} = 0 \]

\[i(\omega - \alpha U_0)\hat{v} + \frac{1}{\rho_0} \frac{d\hat{p}}{dy} = 0. \]

Substituting \(\hat{v} \) and \(\hat{u} \) we come to:

\[\frac{d^2\hat{p}}{dy^2} + \frac{2\alpha U_0'}{\omega - \alpha U_0} \frac{d\hat{p}}{dy} + \left[\frac{(\omega - \alpha U_0)^2}{c_0^2} - \alpha^2 \right] \hat{p} = 0. \]
Modes

Substituting \hat{v} and \hat{u}:

$$
\frac{d^2 \hat{p}}{dy^2} + \frac{2\alpha U'_0}{\omega - \alpha U_0} \frac{d\hat{p}}{dy} + \left[\frac{(\omega - \alpha U_0)^2}{c_0^2} - \alpha^2 \right] \hat{p} = 0.
$$

Boundary conditions:
- exponential decay for $y \to \infty$
- impedance boundary condition at $y = 0$:

$$
- \frac{\hat{p}(0)}{\hat{v}(0)} = Z(\omega).
$$
Outline

1. Where It All Started..
2. The Model
3. Stability Analysis
4. Piecewise Linear Shear Layer
5. Current and Future Work
Spatio-Temporal Instabilities

- **absolute instability**: affects the whole flow
- **convective instability**: observed only when traveling with a certain velocity along the flow
The Impulse Response

Impulse response of the system - a ω-α integral:

$$\Psi(x, y, t) = \frac{1}{(2\pi)^2} \int_{F_\alpha} \int_{L_\omega} \frac{\varphi(y)}{D(\alpha, \omega)} e^{i\omega t - i\alpha x} d\omega d\alpha,$$

Integration contours:

- in domains of absolute convergence in the complex ω- and α-planes
- for the Fourier integral: a strip along the real axis
- for the Laplace integral: a part of the lower half-plane.
Integration Contours

Paths of integration: in the complex-frequency (ω) and in the complex-wavenumber (α) plane.
Summary

IDEA: to lift the integration contour in the ω-plane such that all the poles move to the upper half plane.

METHOD:

- find $\omega_{min} = \min_{\alpha \in \mathbb{R}}(\omega_i)$; if
 - $\omega_{imin} > 0$ then the flow is stable;
 - $\omega_{imin} < 0$ then the flow is unstable \rightarrow continue

- find the lines of constant ω_i, starting with ω_{imin} and plot them in the α-plane: as ω_i is increased, the α^+ and α^- (corresponding to different α-half-planes) approach each other, and eventually collide $\rightarrow \alpha^*$, where the F_{α}-integration contour is pinched, and allows no further deformations

- if $\text{Im}(\omega(\alpha^*)) < 0$ then the instability is absolute
- if $\text{Im}(\omega(\alpha^*)) > 0$ then the instability is convective
Summary

IDEA: to lift the integration contour in the ω-plane such that all the poles move to the upper half plane.

METHOD:

- find $\omega_{\text{min}} = \min_{\alpha \in \mathbb{R}} (\omega_i)$; if
 - $\omega_{\text{imin}} > 0$ then the flow is stable;
 - $\omega_{\text{imin}} < 0$ then the flow is unstable \rightarrow continue

- find the lines of constant ω_i, starting with ω_{imin} and plot them in the α-plane: as ω_i is increased, the α^+ and α^- (corresponding to different α-half-planes) approach each other, and eventually collide $\rightarrow \alpha^*$, where the F_α-integration contour is pinched, and allows no further deformations

- if $\text{Im}(\omega(\alpha^*)) < 0$ then the instability is absolute
- if $\text{Im}(\omega(\alpha^*)) > 0$ then the instability is convective
Summary

IDEA: to lift the integration contour in the ω-plane such that all the poles move to the upper half plane.

METHOD:

- find $\omega_{\text{min}} = \min_{\alpha \in \mathbb{R}} (\omega_i)$; if
 - $\omega_{\text{imin}} > 0$ then the flow is stable;
 - $\omega_{\text{imin}} < 0$ then the flow is unstable \rightarrow continue

- find the lines of constant ω_i, starting with ω_{imin} and plot them in the α-plane: as ω_i is increased, the α^+ and α^- (corresponding to different α-half-planes) approach each other, and eventually collide $\rightarrow \alpha^*$, where the F_α-integration contour is pinched, and allows no further deformations

- if $\text{Im}(\omega(\alpha^*)) < 0$ then the instability is absolute
- if $\text{Im}(\omega(\alpha^*)) > 0$ then the instability is convective
Summary

IDEA: to lift the integration contour in the ω-plane such that all the poles move to the upper half plane.

METHOD:

- find $\omega_{min} = \min_{\alpha \in \mathbb{R}} (\omega_i)$; if
 - $\omega_{imin} > 0$ then the flow is stable;
 - $\omega_{imin} < 0$ then the flow is unstable → continue

- find the lines of constant ω_i, starting with ω_{imin} and plot them in the α-plane: as ω_i is increased, the α^+ and α^- (corresponding to different α-half-planes) approach each other, and eventually collide $\rightarrow \alpha^*$, where the F_α-integration contour is pinched, and allows no further deformations

 - if $\text{Im}(\omega(\alpha^*)) < 0$ then the instability is absolute
 - if $\text{Im}(\omega(\alpha^*)) > 0$ then the instability is convective
Outline

1. Where It All Started..
2. The Model
3. Stability Analysis
4. Piecewise Linear Shear Layer
5. Current and Future Work
The Model Equations

Incompressible limit: Mach number $M_0 = U_\infty / c_0$ is much smaller than unity.

The system reduces to:

$$\frac{d^2 \hat{p}}{dy^2} + \frac{2\alpha U_0'}{\omega - \alpha U_0} \frac{d\hat{p}}{dy} - \alpha^2 \hat{p} = 0.$$

A piecewise linear velocity profile:

$$U_0(y) = \begin{cases}
0 & \text{for } -\infty < y \leq 0 \\
\frac{y}{h} U_\infty & \text{for } 0 \leq y \leq h \\
U_\infty & \text{for } h \leq y < \infty
\end{cases}$$
The Dispersion Relation

The solution for $y \geq h$ (assuming exponential decay at $+\infty$):

$$\hat{\rho} = Ae^{-\alpha y}, \text{ assuming } \text{Re}(\alpha) > 0.$$

The solution in the shear layer region $(0, h)$ (due to Rayleigh):

$$\hat{\rho}(y) = C_1 e^{\alpha y} (h\omega - \alpha y U_\infty + U_\infty) + C_2 e^{-\alpha y} (h\omega - \alpha y U_\infty - U_\infty)$$

$$\hat{u}(y) = \frac{\alpha h}{\rho_0} (C_1 e^{\alpha y} + C_2 e^{-\alpha y})$$

$$\hat{v}(y) = \frac{i\alpha h}{\rho_0} (C_1 e^{\alpha y} - C_2 e^{-\alpha y}).$$
The Dispersion Relation

- at the interface \(y = h \): continuity of pressure and particle displacement

- continuity + boundary condition at \(y = 0 \) \(\Rightarrow \) the dispersion relation \(D(\alpha, \omega) \):

\[
Z(\omega) - \frac{e^{\alpha h}(2\omega h - 2\alpha hU_\infty + U_\infty)(\omega h - U_\infty) + e^{-\alpha h}(\omega h + U_\infty)}{i\alpha h(e^{\alpha h}(2\omega h - 2\alpha hU_\infty + U_\infty) - e^{-\alpha h})} = 0
\]
A Briggs-Bers Analysis Example

The impedance:

$$Z(\omega) = \rho_0 U_\infty \left(i \frac{\omega m}{\rho_0 U_\infty} + \frac{R}{\rho_0 U_\infty} - i \frac{K}{\omega \rho_0 U_\infty} \right)$$

We choose $h = \frac{1}{2}$, $\frac{m}{\rho_0} = \frac{\rho_0 U_\infty^2}{K} = 1$ and $\frac{R}{\rho_0 U_\infty} = 0.015$:

The flow is absolutely unstable!
A Parameter Study

Table 1: A Parameter Study

<table>
<thead>
<tr>
<th>h</th>
<th>m/ρ_0</th>
<th>0.01</th>
<th>0.1</th>
<th>0.4</th>
<th>0.8</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0.10</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0.20</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0.83</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1.00</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>1.20</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>1.50</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Table 2: A Parameter Study

<table>
<thead>
<tr>
<th>h</th>
<th>$R/\rho_0 U_\infty$</th>
<th>0.015</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0.10</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>0.20</td>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>0.50</td>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>0.83</td>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>0.91</td>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>1.00</td>
<td>A</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Table 3: A Parameter Study

<table>
<thead>
<tr>
<th>h</th>
<th>$\rho_0 U_\infty^2 / K$</th>
<th>0.01</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0.10</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0.20</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0.50</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1.00</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1.20</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>1.30</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>1.50</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Table 4: A Parameter Study

<table>
<thead>
<tr>
<th>h</th>
<th>$\rho_0 U_\infty^2 / K$</th>
<th>0.01</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>0.50</td>
<td>C</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1.00</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>1.50</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>2.00</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

The critical height h_c is estimated by:

$$h_c \approx -0.76 \frac{R}{\rho_0 U_\infty} + 0.52 \frac{m}{\rho_0} + 0.32 \frac{\rho_0 U_\infty^2}{K}.$$
Outline

1. Where It All Started..
2. The Model
3. Stability Analysis
4. Piecewise Linear Shear Layer
5. Current and Future Work
Current and Future Work

- investigation of the instability of the incompressible flow for a more general velocity profile using numerical tools
- instability analysis for compressible flows
- an improvement to the Ingard Myers boundary condition leaving the flow stable
Thank you for your attention!