Numerical integration in more dimensions – part 2

Remo Minero
Outline

The role of a mapping function in multidimensional integration

Gauss approach in more dimensions and quadrature rules

Critical analysis of acceptability of a given quadrature rule
Problem definition

- We have \(f : \Omega \subset \mathbb{R}^n \rightarrow \mathbb{R} \) and we want to compute \(I \):

 \[
 I = \int_\Omega f \, dx
 \]

- We want to implement some numerical method, which ought to be (as usual) **accurate** and **cheap** (e.g. small number of operations)
Covering

Step 1: covering of the domain with replicas of a basic geometry

\[\int_{\Omega} f(x)dx \approx \sum_{1}^{n} \int_{e_1} f(x)dx \]

Error 1: covering error
Mapping function

- Step 2: introduction of a mapping function F
 - Example 1: squares

$$F_1 \left(\begin{array}{c} \hat{x} \\ \hat{y} \end{array} \right) = \left[\begin{array}{c} v_{1}^{(1)} - v_{0}^{(1)} \\ v_{2}^{(1)} - v_{0}^{(1)} \end{array} \right] \left[\begin{array}{c} \hat{x} \\ \hat{y} \end{array} \right] + v_{0}^{(1)}$$

$$= A_1 \hat{x} + b_1$$
Mapping function

- example 2: triangles

\[
F_1 \left(\begin{array}{c} \hat{x} \\ \hat{y} \end{array} \right) = \left[\begin{array}{c} v_1^{(1)} - v_0^{(1)} \\ v_2^{(1)} - v_0^{(1)} \end{array} \right] \left[\begin{array}{c} \hat{x} \\ \hat{y} \end{array} \right] + v_0^{(1)}
= A_1 \hat{x} + b_1
\]
Properties of the mapping function F

- F_1 is affine: $F_1(\hat{\mathbf{x}}) = A_1 \hat{\mathbf{x}} + \mathbf{b}_1$

F maps affine combinations

$$\sum_i \alpha_i x_i, \quad \sum_i \alpha_i = 1$$

to affine combinations

…that is, triangles are mapped to triangles, rectangles to parallelograms, etc.
The role of the mapping function

- **Step 1:** \[\int_{\Omega} f(x) \, dx \equiv \sum_{i} \int_{e_i} f(x) \, dx \]

- **Step 2:**
 \[\int_{e_1} f(x) \, dx = \int f(F_1(\hat{x})) \left| det(\partial F_1) \right| d\hat{x} = \]
 \[= \left| det(A_1) \right| \int f(F_1(\hat{x})) d\hat{x} \]
Step 3: integration over the basic geometry

\[\int_{\hat{e}} f(\hat{F}(\hat{x})) d\hat{x} = \int_{\hat{e}} g(\hat{x}) d\hat{x} \approx \sum_{i} w_i g(\hat{x}_i) \]

Error 2: quadrature error
Integration over a surface

- Suppose we have a function defined over a surface
- Thanks to the properties of the mapping function, we can use the same approach:

\[
F_1 \left(\begin{array}{c} \hat{x} \\ \hat{y} \end{array} \right) = \left[\begin{array}{c} v_1^{(1)} - v_0^{(1)} \\ v_2^{(1)} - v_0^{(1)} \end{array} \right] \left[\begin{array}{c} \hat{x} \\ \hat{y} \end{array} \right] + v_0^{(1)} = A_1 \hat{x} + b_1
\]

...simply \(v^{(1)} \) given in a suitable reference system...
How can one reduce errors?

Covering error

Quadrature error

- More accurate formulas
- Smaller volumes (where necessary, depending on f)
Open problem

Given a basic geometry, find the least amount of points and weights such that

\[\int g(\hat{x})d\hat{x} \approx \sum_i w_i g(\hat{x}) \]

is exact for all monomials of degree \(d \) and lower

- Let’s look at some examples…
d=1 in the square

3 equations \Rightarrow 1 point, 1 weight

Mathematical problem - Physical interpretation

\[
\begin{align*}
\int_{\hat{\mathbf{e}}} 1 \, dx \, dy &= 1 = w_1 \\
\int_{\hat{\mathbf{e}}} x \, dx \, dy &= \frac{1}{2} = w_1 \hat{x}_1 \\
\int_{\hat{\mathbf{e}}} y \, dx \, dy &= \frac{1}{2} = w_1 \hat{y}_1
\end{align*}
\]
d=1 in the triangle

3 equations \rightarrow 1 point, 1 weight

Mathematical problem - Physical interpretation

\[
\begin{align*}
\int_{\hat{e}} 1 \, dx \, dy &= \frac{1}{2} = w_1 \\
\int_{\hat{e}} x \, dx \, dy &= \frac{1}{6} = w_1 \hat{x}_1 \\
\int_{\hat{e}} y \, dx \, dy &= \frac{1}{6} = w_1 \hat{y}_1
\end{align*}
\]

$\hat{w}_1 = \frac{1}{2}$
d=2 in the square

6 equations → 2 points, 2 weights

Mathematical problem - Physical interpretation

\[\int_0^1 dx \int_0^1 dy = 1 = w_1 + w_2 \]
\[\int_0^1 dx \int_0^1 dy = \frac{1}{2} = w_1 \hat{x}_1 + w_2 \hat{x}_2 \]
\[\int_0^1 dx \int_0^1 dy = \frac{1}{2} = w_1 \hat{y}_1 + w_2 \hat{y}_2 \]
\[\int_0^1 dx \int_0^1 dy = \frac{1}{3} = w_1 \hat{x}_1^2 + w_2 \hat{x}_2^2 \]
\[\int_0^1 dx \int_0^1 dy = \frac{1}{3} = w_1 \hat{y}_1^2 + w_2 \hat{y}_2^2 \]
\[\int_0^1 dx \int_0^1 dy = \frac{1}{4} = w_1 \hat{x}_1 \hat{y}_1 + w_2 \hat{x}_2 \hat{y}_2 \]

...no Mathematica solution...

16/10/2002 Seminar: Numerical Integration in more dimensions
d=3 (e.g. in the triangle)

<table>
<thead>
<tr>
<th>Equations</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>too many</td>
</tr>
<tr>
<td>4</td>
<td>not enough</td>
</tr>
</tbody>
</table>

\[
x - y \\
x^2 - xy - y^2 \\
x^3 - x^2y - xy^2 - y^3
\]
Let’s choose two monomials $p(x)$ and $q(y)$ and let them be of degree d at most.

If we choose $d=3$.

16 equations \rightarrow 4 points, 4 weights

...no Mathematica solution (in a reasonable time)
Cross product Gauss

Gauss 1D in [0,1]

Gauss 2D in [0,1]^2

- only for domains like [a,b]^n

\[\iint g(x, y) \, dx \, dy = \int \sum_i w_i g(\hat{x}_i, y) \, dy = \sum_i w_i \int g(\hat{x}_i, y) \, dy = \sum_i \sum_j w_i w_j g(\hat{x}_i, \hat{x}_j) \]
Higher degree formulas

- Many of them in the literature

 - Example 1:
 degree 6 in the triangle with 12 points

 - Example 2:
 degree 20 in the triangle with 79 points!

A.H. Stroud & D. Secrest, GAUSSIAN QUADRATURE FORMULA, Prentice-Hall, 1966
Summary

Do the number of the unknowns correspond to the number of the equations?

Does the non-linear system have a solution?

Is the found solution acceptable?

Condition 1: Are all the points \hat{x}_i inside the element?
Condition 2: Are all the weights w_i positive?

WE HAVE AN ACCEPTABLE QUADRATURE METHOD!
Condition 1: \(\hat{X}_i \in \hat{e} \ \forall i \)

What is the value of \(f(F(\hat{x}_4)) \) if \(F(\hat{x}_4) \) does not belong to \(\Omega \)?
Condition 2: $w_i \geq 0, \forall i$

- To always have non-negative integrals for non-negative functions

Exact solution: $\int_a^b f(x) \, dx > 0$

Approximation: $\sum_{i=1}^{7} w_i f(x_i) < 0$ if $w_2 < 0$

- Finite Elements Methods (FEM)
Why weights always ≥ 0 in FEM

- Stiffness matrix A is positive definite

$$u^T Au = \sum_i \sum_j u_i a_{ij} u_j = \ldots = \int |\nabla u|^2 + u^2 > 0 \quad \text{if } u > 0$$

- Positive definite property is needed for the iterative solvers of Krylov type (all fast iterative solvers)

- Negative weights might cause positive definite property to be lost
Do we really get negative weights?

- Newton-Cotes approach in \([-1,1]\):

<table>
<thead>
<tr>
<th>n</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(A_4)</th>
<th>(A_5)</th>
<th>(A_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1/3</td>
<td>4/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>989/3</td>
<td>5888/3</td>
<td>-928/3</td>
<td>10496/3</td>
<td>-4540/3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14175/4</td>
<td>14175/4</td>
<td>-14175/4</td>
<td>14175/4</td>
<td>-14175/4</td>
<td>14175/4</td>
</tr>
<tr>
<td></td>
<td>16067/6</td>
<td>106300/6</td>
<td>-48525/6</td>
<td>272400/6</td>
<td>-260550/6</td>
<td>427368/6</td>
</tr>
<tr>
<td></td>
<td>299376/11</td>
<td>299376/11</td>
<td>-299376/11</td>
<td>299376/11</td>
<td>-299376/11</td>
<td>299376/11</td>
</tr>
</tbody>
</table>

- Negative weights also in many formula using with Gauss approach
Covering

- Example 2: triangles → more flexible