Conservation of First Integrals and Projection Methods

CASA

Fengnan Gao

Industrial and Applied Mathematics
Eindhoven University of Technology

13.10.2010
Outline

Conservation of First Integrals

Quadratic Invariants

Projection Methods

Numerical Examples of Projection Methods

Conclusion
Intuition

- ODEs often conserve certain quantities
- Numerical solutions also should
- How to design such a numerical method?
Definition of First Integrals

- Consider differential equation

\[\dot{y} = f(y). \]
Consider differential equation
\[\dot{y} = f(y). \]

A non-constant function \(I(y) \) is called a \textit{first integral} if
\[I'(y)f(y) = 0 \quad \text{for all } y. \]
Consider differential equation
\[\dot{y} = f(y). \]

A non-constant function \(I(y) \) is called a first integral if
\[I'(y) f(y) = 0 \quad \text{for all } y. \]

This implies
\[I(y(t)) = I(y_0) = \text{Const.} \]
for any solution \(y(t) \).
Example: Conservation of the Total Energy

- The Hamiltonian systems of the form

\[\dot{p} = -H_q(p, q), \quad \dot{q} = H_p(p, q), \]

- \(H_q = \nabla_q H = \left(\frac{\partial H}{\partial q} \right)^T \) and \(H_p = \nabla_p H = \left(\frac{\partial H}{\partial p} \right)^T \)

- The Hamilton function \(H(p, q) \) is a first integral

\[\frac{\partial H}{\partial p} \left(- \frac{\partial H}{\partial q} \right)^T + \frac{\partial H}{\partial q} \left(\frac{\partial H}{\partial p} \right)^T = 0. \]
Background: Explicit Runge-Kutta Methods

1. Given initial value problem \(y' = f(t, y), \ y(t_0) = y_0 \)
2. Given the current step \(y_n \) and \(t_n \)
3. Runge-Kutta methods are given by:

\[
\begin{align*}
 k_1 &= f(t_n, y_n), \\
 k_2 &= f(t_n + c_2 h, y_n + a_{21} h k_1), \\
 k_3 &= f(t_n + c_3 h, y_n + a_{31} h k_1 + a_{32} h k_2), \\
 \cdots \\
 \cdots \\
 k_s &= f(t_n + c_s h, y_n + a_{s1} h k_1 + a_{s2} h k_2 + \cdots + a_{s,s-1} h k_{s-1}), \\
 y_{n+1} &= y_n + h \sum_{i=1}^{s} b_i k_i,
\end{align*}
\]

4. \(y_{n+1} \) and \(t_{n+1} \) are the new step
Background: Runge-Kutta Method of Order 4

1. Given initial value problem $y' = f(t, y), y(t_0) = y_0$
2. Given the current step y_n and t_n
3. Runge-Kutta method is given by:

 \[
 k_1 = f(t_n, y_n)
 \]

 \[
 k_2 = f(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1)
 \]

 \[
 k_3 = f(t_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_2)
 \]

 \[
 k_4 = f(t_n + h, y_n + hk_3)
 \]

 \[
 y_{n+1} = y_n + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4)
 \]

4. y_{n+1} and t_{n+1} are the new step
Background: Runge-Kutta Method of Order 2

1. Given initial value problem \(y' = f(t, y) \), \(y(t_0) = y_0 \)
2. Given the last step \(y_n \) and \(t_n \)
3. Runge-Kutta method is given by:

\[
\begin{align*}
 k_1 &= f(t_n, y_n) \\
 k_2 &= f(t_n + h, y_n + hk_1) \\
 y_{n+1} &= y_n + \frac{1}{2}h(k_1 + k_2)
\end{align*}
\]

4. \(y_{n+1} \) and \(t_{n+1} \) are the new step
Theorem

All explicit and implicit Runge-Kutta methods conserve linear invariants.
A Quadratic Invariant

Theorem

Consider ODE of the form

$$\dot{Y} = A(Y)Y,$$

if \(A(Y)\) is skew-symmetric for all \(Y\) (i.e., \(A^T = -A\)), then the quadratic function

\(I(Y) = Y^T Y\) is an invariant.
Consider ODE $\dot{y} = f(y)$ and quadratic functions

$$Q(y) = y^T Cy,$$

$Q(y)$ is an invariant if $y^T Cf(y) = 0$ for all y.
If the coefficients of a Runge-Kutta method satisfy
\[b_i a_{ij} + b_j a_{ji} = b_i b_j \quad \text{for all } i, j = 1, \ldots, s, \]
then it conserves quadratic invariants.
Suppose an \((n - m)\)-dimensional sub-manifold of \(\mathbb{R}^n\),

\[M = \{ y; g(y) = 0 \} \quad (1) \]

\((g : \mathbb{R}^n \to \mathbb{R}^m)\),

And a differential equation \(\dot{y} = f(y)\) with the property that

\[y_0 \in M \implies y(t) \in M \quad \text{for all } t. \]

It holds if \(g'(y)f(y) = 0\) for \(y \in M\).

We call \(g(y)\) a weak invariant.
Here the Standard Projection Methods are proposed as following:

Algorithm

Assume that $y_n \in \mathcal{M}$. One step $y_n \rightarrow y_{n+1}$ is defined as follows:

1. Compute $\tilde{y}_{n+1} = h(y_n)$, where h is an arbitrary one-step method applied to $\dot{y} = f(y)$;
2. Project the value \tilde{y}_{n+1} onto the manifold \mathcal{M} to obtain $y_{n+1} \in \mathcal{M}$.

Algorithm of Projection Methods

Here the Standard Projection Methods are proposed as following:

Algorithm

Assume that \(y_n \in M \). One step \(y_n \rightarrow y_{n+1} \) is defined as follows:

1. Compute \(\tilde{y}_{n+1} = \Phi_h(y_n) \), where \(\Phi_h \) is an arbitrary one-step method applied to \(\dot{y} = f(y) \);
Here the Standard Projection Methods are proposed as following:

Algorithm

Assume that $y_n \in M$. One step $y_n \rightarrow y_{n+1}$ is defined as follows:

1. *Compute $\tilde{y}_{n+1} = \Phi_h(y_n)$, where Φ_h is an arbitrary one-step method applied to $\dot{y} = f(y)$;*

2. *project the value \tilde{y}_{n+1} onto the manifold M to obtain $y_{n+1} \in M$.***
Given a function $f(x)$ and its derivative $f'(x)$

Want to solve an equation $f(x) = 0$

Repeat

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

until sufficiently accurate
In order to project \tilde{y}_{n+1} onto \mathcal{M} to obtain y_{n+1}, one needs to

- Solve the constrained minimization problem

\[
\| y_{n+1} - \tilde{y}_{n+1} \|_{L^2} \rightarrow \min \quad \text{subject to } g(y_{n+1}) = 0.
\]
A Minimization Problem

In order to project \tilde{y}_{n+1} onto \mathcal{M} to obtain y_{n+1}, one needs to

- Solve the constrained minimization problem

$$\|y_{n+1} - \tilde{y}_{n+1}\|_{L^2} \rightarrow \min \text{ subject to } g(y_{n+1}) = 0.$$

- Introduce Lagrange multipliers $\lambda = (\lambda_1, \ldots, \lambda_m)^T$, and the Langrange function

$$\mathcal{L}(y_{n+1}, \lambda) = \|y_{n+1} - \tilde{y}_{n+1}\|^2 / 2 - g(y_{n+1})^T \lambda.$$
The necessary condition leads to the system

\[y_{n+1} = \tilde{y}_{n+1} + g'(\tilde{y}_{n+1})^T \lambda \]
\[0 = g(y_{n+1}). \]

Inserting the first equation into the second gives

\[g(\tilde{y}_{n+1} + g'(\tilde{y}_{n+1})^T \lambda) = 0 \]

Solve the equation for \(\lambda \) with simplified Newton Method:

\[\Delta \lambda_i = -\left(g'(\tilde{y}_{n+1})g'(\tilde{y}_{n+1})^T\right)^{-1}g(\tilde{y}_{n+1} + g'(\tilde{y}_{n+1})^T \lambda_i), \]

with \(\lambda_{i+1} = \lambda_i + \Delta \lambda_i \).
Consider the perturbed Kepler problem

\[\dot{p} = -H_q(p, q), \quad \dot{q} = H_p(p, q), \]

with the Hamilton function

\[H(p, q) = \frac{1}{2}(p_1^2 + p_2^2) - \frac{1}{\sqrt{q_1^2 + q_2^2}} - \frac{0.005}{2\sqrt{(q_1^2 + q_2^2)^3}} \]

Initial values: \(q_1(0) = 1 - e, q_2(0) = 0, p_2(0) = \sqrt{(1 + e)/(1 - e)} \), \(p_1(0) = 0 \) (\(e = 0.6 \) as the eccentricity)

Two known first integrals:
- the Hamilton function \(H(p, q) \)
- the angular momentum \(L(p, q) = q_1 p_2 - q_2 p_1 \)
Explicit Euler

(a) Without Projection

(b) With Projection onto H

(c) With Projection onto H and L

Figure: Explicit euler, $h = 0.03$
Runge-Kutta of Order 2

(a) Without Projection

(b) With Projection onto H

(c) With Projection onto H and L

Figure: RK2, $h = 0.03$
Runge-Kutta of Order 4

Figure: RK4, $h = 0.03$
Concluding Remarks

- A lot of ODEs have the property to conserve the *First Integrals*
- Certain numerical methods conserve the first integrals automatically
- If not, apply projection methods to conserve it manually
- Projection methods improve the numerical results
- Projections are especially effective for low order methods
Questions?
Thanks for your attention.