Using Phased Array Beamforming to Identify Broadband Noise Sources in a Turbofan Engine

Pieter Sijtsma
National Aerospace Laboratory NLR
Department of Helicopters and Aeroacoustics
PROBAND rig testing at AneCom

AneCom-AeroTest facility (near Berlin)
NLR contribution to rig tests

drooped intake

intake ring

liner

rotor

stator

bypass ring

picture by Assystem UK
Non-uniform arrays for azimuthal mode detection

array response of single azimuthal mode
Merits of azimuthal mode detection

- **Valuable for tonal noise**
 - Gives information about noise generating mechanisms:
 - Rotor alone noise
 - Rotor/stator interaction noise
 - Interaction by steady distortion
 - Gives information about liner performance

- **Less valuable for broadband noise**
 - Gives information about liner performance
 - Information about noise sources is limited
 - No detailed information about source location, e.g.:
 - rotor or stator
 - leading edge or trailing edge
 - spanwise or concentrated at the blade tips
Possible added value by phased array beamforming

- **wind tunnel measurement**
- **fly-over measurement**
- **field measurement**

- Engine outlet
- ‘Slat horn’
- Landing gear
- Nose wheel
Beamforming: stationary and rotation focus (1)

Stationary focus

Rotating focus

from [Sijtsma-2001]
Beamforming: stationary and rotation focus (2)

beamform results with intake array [sijtsma-2006]

stationary focus (stator LE) rotating focus (rotor LE)
Contents

- Introduction (7)
- Tonal and broadband noise (2)
- Details of beamforming technique (5)
- Axial resolution (2)
- Results with intake array (17)
- Results with bypass array (7)
- Possible improvement (2)
- Conclusions (1)
- References
Tonal and broadband noise (1)

- Tonal = rotor-bound (obtained with 1/rev pulse)
- “Broadband” = what remains

Typical average spectrum of bypass array at 55% shaft speed
Tonal and broadband noise (2)

- Broadband is significant at all shaft speeds
Details of beamforming technique

Beamforming

source plane

acoustic source

scan points $\vec{\xi}_j$

microphone array

Cross-Spectral Matrix: $C = \langle pp^* \rangle$
Conventional Beamforming:

Estimate source auto-power A_j in scan point $\bar{\xi}_j$ by minimising $\left\| C - A_j g_j g_j^* \right\|^2$, with $g_j =$ steering vector

(microphone pressures due to theoretical point source in $\bar{\xi}_j$)

Solution: $A_j = \frac{g_j^* C g_j}{(g_j^* g_j)^2}$.
Point source description

Steering vector: \(g_j = \begin{pmatrix} g_{1,j} \\ \vdots \\ g_{N,j} \end{pmatrix} \), \(g_{n,j} = F(\bar{x}_n, \bar{\xi}_j) \)

\(\bar{x}_n \) are microphone locations, \(F \) is the transfer function

\(F \) can be a Green's function \(G \) (monopole source assumption)

(solution of partial differential equation \(LG = -\delta(\bar{x} - \bar{\xi}) \)

+ boundary conditions)

\(F \) can also be a derivative of \(G \) (dipole source assumption)
Options for Green’s function

- **Option 1:** Free-field Green’s function in uniform flow
- **Option 2:** Green’s function in hard-walled duct and uniform flow [Lowis-2007]
- **Option 3:** Green’s function [Rienstra-2005] in soft-walled duct and uniform flow
- **Option 4:** Green’s function values calculated with CAA
- **Option 5:** Measured Green’s function values

Unknown source directivity is a critical issue for all options!
Option chosen here

- Free-field Green’s function is chosen
- To minimize effects of reflections, a liner is required
 - simulations shown in [Sijtsma-2007]
- Non-circular geometry (drooped intake) is not a problem
- Beamforming with rotating focus (ROSI) is analogous to Conventional Beamforming (CB) [Sijtsma-2001]
Lack of axial resolution (1)

- Simulation study (lined duct)

![Diagram of cylindrical duct with point source, array plane, and scan plane (rotor LE)]

- Cylindrical duct
- Array plane
- Scan plane (rotor LE)
- Point source
- M = 0.29
- 0.4 m
Lack of axial resolution (2)

- Simulation study

Conventional Beamforming

\(x,y \)-scan
Intake array (1)

CB results with intake array scan grid on stator LE 55% shaft speed

- No source details visible
Intake array (2)

CB results with intake array scan grid on stator LE 75% shaft speed

- Details visible at higher frequencies
- Best results with broadband noise
Intake array (3)

CB results with intake array (using 2 principal components of the CSM)
scan grid on stator LE
75% shaft speed

- Coherent structure visible
- Sound sources due to vibrations rather than to aero-acoustic mechanisms?
Intake array (4)

ROSI results with intake array
scan grid on rotor LE
55% shaft speed

- Blades vaguely visible
Intake array (4)

ROSI results with intake array scan grid on rotor LE 70% shaft speed

- Blades visible
- Best result with broadband noise
Intake array: rotor vs stator sources

- **Difficult to unravel rotor and stator sources:**
 - lack of axial resolution
 - application of source integration technique not useful
 - rotor sources are “spread out” in stator plane, and vice versa

- **Looking at mode spectra might be helpful**
Intake array: azimuthal modes

Azimuthal modes of intake array broadband noise 55% shaft speed

- Positive modes prevail
Why do positive modes prevail?

Possible explanations for dominance of positive modes:
1. Sources are rotor bound, and prevalence is due to source rotation
2. Sources are stator bound, and prevalence is due to source directivity
3. Sources are stator bound, and prevalence is due to rotor shielding
Option 1: Rotor source rotation (1)

Expression for rotating monopole:

\[p(\omega) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} \sigma(\omega - m\Omega) e^{-im(\theta-\phi)} \sum_{\mu=1}^{\infty} e^{i\alpha_{m\mu}(x-\xi)} \frac{D_m(\varepsilon_{m\mu})D_m(\varepsilon_{m\mu}\rho)}{iQ_{m\mu}D_m(\varepsilon_{m\mu})^2} \]

Increasing \(m \) → Decreasing \(\omega - m\Omega \) → Increasing levels
Option 1: Rotor source rotation (2)

Simulation (including intake liner)

- Not like actual results
Option 2: Stator source directivity (1)
Option 2: Stator source directivity (2)

Expression for dipole:

\[
p(\omega) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} \sigma(\omega) e^{-im(\theta-\phi)} \sum_{\mu=1}^{\infty} \left(\alpha_{m\mu} \sin(\psi) - \frac{m}{r} \cos(\psi) \right) e^{j\alpha_{m\mu}(x-\xi)} \frac{D_m(\varepsilon_{m\mu} r)D_m(\varepsilon_{m\mu} \rho)}{Q_{m\mu} D_m(\varepsilon_{m\mu})^2}
\]

asymmetric with \(m \)
Option 2: Stator source directivity (3)

Simulation, $\psi=30^\circ$ (including intake liner)

- More like actual results
Option 3: Rotor shielding (1)

Intake array

stator

rotor

transmission

shielding

sound propagation
Option 3: Rotor shielding (2)

Expression for “shielded fraction” [Schulten-1992]:

\[S_{m\mu}(\rho) = \min \left\{ 1, \frac{B}{2\pi} \left(x_{TE} - x_{LE} \right) \right\} \left| \frac{\Omega}{M} + \frac{m}{\text{Re}(\alpha_{m\mu})\rho^2} \right| \]

monopole:

\[p(\omega) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} \sigma(\omega)e^{-im(\theta-\phi)} \sum_{\mu=1}^{\infty} (1 - S_{m\mu}(\rho))e^{i\alpha_{m\mu}(x-\xi)} \frac{D_m(\varepsilon_{m\mu}r)D_m(\varepsilon_{m\mu}\rho)}{iQ_{m\mu}D_m(\varepsilon_{m\mu})^2} \]

dipole

\[p(\omega) = \frac{1}{2\pi} \sum_{m=-\infty}^{\infty} \sigma(\omega)e^{-im(\theta-\phi)} \sum_{\mu=1}^{\infty} (1 - S_{m\mu}(\rho)) \left(\alpha_{m\mu} \sin(\psi) - \frac{m}{r} \cos(\psi) \right)e^{i\alpha_{m\mu}(x-\xi)} \frac{D_m(\varepsilon_{m\mu}r)D_m(\varepsilon_{m\mu}\rho)}{Q_{m\mu}D_m(\varepsilon_{m\mu})^2} \]
Option 3: Rotor shielding (3)

Simulation monopole (including intake liner)

- Quite like actual results
Option 3: Rotor shielding (4)

Simulation dipole, $\psi=30^\circ$ (including intake liner)

- Quite like actual results (maybe even better)
Bypass array (1)

CB results with bypass array scan grid on stator TE 55% shaft speed

- Stator vanes clearly visible
Bypass array (2)

CB results with bypass array scan grid on stator TE 70% shaft speed

- Stator vanes clearly visible
Bypass array (3)

CB results with bypass array scan grid on stator TE 85% shaft speed

- Stator vanes clearly visible
Bypass array (4)

CB results with bypass array scan grid on stator TE 100% shaft speed

- Stator vanes clearly visible
Bypass array beamforming summary

- Results are remarkably good
 - Duct is annular
 - No liner between stator and array
 - Uniform flow assumption in simulations maybe not adequate

- Spanwise sources rather than tip sources
Azimuthal modes of bypass array
broadband noise
55% shaft speed

- Symmetry in modes
Bypass array: azimuthal modes (2)

- Azimuthal modes are symmetric
- Sound probably generated at trailing edges
Possible improvement: cage array (1)

“Cage” array

array (5 rings)

point source

scan plane (rotor LE)

M = 0.29

from [Sijtsma-2007]
Possible improvement: cage array (2)

- Much better axial resolution
Conclusions

- Beamforming was done using the free-field Green’s function
 - tonal sound was filtered out

- Beamforming with the intake array on the stator did not show much detail of broadband noise source locations.
 - Only at 70% and 75% shaft speed, the OGV stator vanes seemed to be visible.
 - In those cases, there appeared to be large coherent source structures, probably due to an instability.

- By beamforming with the intake array on the rotor, the blades were vaguely recognized as sound sources.

- The mode detection results seem to indicate that most noise in the intake is generated at the stator.

- By beamforming with the bypass array, sources on the stator vanes could be made clearly visible.

- The noise sources on the stator vanes seem to be distributed along the span.
 - Hence, tip noise sources seem to be of lower importance.

- The bypass mode detection results seem to indicate that the noise sources are located at the trailing edges of the stator vanes.

- Improvements in beamforming are possible with other array configurations

Dedicated to innovation in aerospace

www.nlr.nl - info@nlr.nl