Numerical Simulation of Acoustic Effects of Engine Installation for New Concepts of Aircrafts

Eric MANOHA, Stéphane REDONNET, Ronan GUENANFF
Department of Computational Fluid Dynamics and Aeroacoustics

Xavier JUVIGNY
Department of Modeling and Information Processing

ONERA

CEAS – X² NOISE Workshop
“Aeroacoustics of New Aircraft & Engine Configurations”
November 11–12, 2004, Budapest (Hungary)
Context

- Future aircraft projects
- Engine noise shielding by airframe
- Numerical simulation
Tools for numerical simulation of acoustic shielding effects

Noise source modeling
- Engine noise sources (fan, jet) are very complex
- Interesting results can be obtained by using **simplified source**: distribution of monopoles

Noise prediction

Acoustic propagation simulation
May include effects of:
- **Scattering** on complex solid bodies
- **Refraction** through non-uniform mean flows
In-house solvers developed at ONERA

<table>
<thead>
<tr>
<th></th>
<th>BEMUSE</th>
<th>sAbrinA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solved equation(s)</td>
<td>Helmholtz</td>
<td>Euler (in pertubation form)</td>
</tr>
<tr>
<td>Numerical method</td>
<td>Boundary Element Method</td>
<td>Finite difference, high order</td>
</tr>
<tr>
<td></td>
<td>Variational formulation</td>
<td>spatial schemes and filter</td>
</tr>
<tr>
<td>Grid</td>
<td>Body surface</td>
<td>Fluid</td>
</tr>
<tr>
<td></td>
<td>Unstructured</td>
<td>Structured</td>
</tr>
<tr>
<td>Scattering effect on rigid</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>bodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refraction effects through</td>
<td>No flow (uniform flow under</td>
<td>Yes</td>
</tr>
<tr>
<td>non uniform flow</td>
<td>progress)</td>
<td></td>
</tr>
</tbody>
</table>

ONERA
In-house solvers developed at ONERA

Part I : BEMUSE code
BEMUSE solver: Context of design

European Project ROSAS (Research On Silent Aircraft concepts)

ONERA’s objectives in task 3.3.3 (« Numerical work »):
* Fuselage, wing and empennage shielding effects assessment*
* Acoustic scattering from distribution of point sources*
* Geometry: ROSAS aircraft, scale 1:1 Model with up to 100,000 Degrees Of Freedom (DOF)*
* Frequency: up to fan blade passing frequency (BPF)*
* Running on parallel PC Cluster (powerful / cheap)*

Code design:
* Parallel BEM (Boundary Element Method) code*
* Built from existing BEM modules (electromagnetism)*
* Computer: ONERA’s PC Cluster: 32 biprocessor PCs*
Boundary Element Method

Helmholtz equation \(\Delta p(x) + k^2 p(x) = 0 \) \(\left(k = \frac{\omega}{c} \right) \)

Rigid boundary condition on \(\Sigma \) \(\frac{\partial p}{\partial n} = 0, \quad x \in \Sigma \)

Sommerfeld radiation condition on \(\Lambda \)

Integral solution using a free-space Green function

\[
\int_{\Sigma} \left[p(y) \frac{\partial G(x, y)}{\partial n} - \frac{\partial p}{\partial n} (y) G(x, y) \right] dy = \begin{cases} p(x) & x \in \Omega_e \\ \frac{1}{2} p(x) & x \in \Sigma \\ 0 & x \in \Omega_i \end{cases} \quad G(x, y) = \frac{e^{-ik\|x-y\|}}{4\pi\|x-y\|}
\]

Discretization using a shape function \([N]\) to interpolate \(p \) and its derivative on \(n \) DOF on \(\Sigma \)

\[
\frac{1}{2} p(x) = \sum_{i=1}^{n} \int_{\Sigma} \frac{\partial G(x, y)}{\partial n} [N] dy \{ p(x_i) \} - \sum_{i=1}^{n} \int_{\Sigma} G(x, y) [N] dy \left\{ \frac{\partial p}{\partial n} (x_i) \right\}
\]

Set of \(n \) linear equations : \([H][p] = -[G] \left\{ \frac{\partial p}{\partial n} \right\} \) \([H]\) and \([G]\) are \(n \times n \) symmetric plain matrices
BEMUSE validation
Acoustic scattering on a rigid sphere : $r = 1$
Incident spherical wave : frequency $= 600$ Hz
Normalized frequency $kr = 11$

BEM computations
1) BEMUSE code on PC (1 node)
2) SYSNOISE code on UNIX workstation

Unstructured grid:
2562 DOF

Analytical solution

$$ (r, \theta, \varphi) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{+l} v_l^m h_l^{(1)}(kr) \frac{1}{k} \frac{\partial}{\partial r} h_l^{(1)}(kr) Y_l^m(\theta, \varphi) $$
Grid construction

- ROSAS aircraft UWN, OWN, RFN
- Up to 110,000 DOF
- Simplified but realistic shape
 - Analytical sections
 - Direct junction wing/fuselage

Reference configuration:
Under Wing Nacelle (UWN)
Results

Pressure distribution at aircraft surface
* Incident, scattered, total fields

Directivity diagrams
* Circles in XY, XZ and YZ planes
* Centered at fuselage center X = 25 m
* Mid-field: R = 50 m (one fuselage length)
Results: Pressure distribution at aircraft surface

Incident field Scattered field Total field
Results: Directivity diagrams in the ZX plane ($r =$ one fuselage length)

Not corrected from the distance source-observer

Corrected from the distance source-observer
Results: Tentative of comparison with CEPRA 19 experiments (ROSAS campaign)

<table>
<thead>
<tr>
<th></th>
<th>BEM computation</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft</td>
<td>ROSAS Aircraft</td>
<td>Airbus aircraft</td>
</tr>
<tr>
<td>Scale</td>
<td>1:1</td>
<td>1:11 (1:16 w.r.t. ROSAS A/C)</td>
</tr>
<tr>
<td>Source</td>
<td>Monopole (at the engine inlet)</td>
<td>TPS (certainly not spherical)</td>
</tr>
<tr>
<td>Frequency</td>
<td>150 Hz (→ 2.4 kHz at 1:16)</td>
<td>6 kHz</td>
</tr>
<tr>
<td>Observer</td>
<td>R = 50 m (one fuselage length)</td>
<td>R = 6 m (two fuselage lengths)</td>
</tr>
</tbody>
</table>

BEMUSE (ZX plane)

10° - band integrated directivity

5950 Hz - 0 m/s
Application of BEMUSE to installation effects studies: Next steps

- Computations on larger grids (110,000 DOF) and at higher frequencies (under progress)

- Grids: - half-grids (aircraft symmetry), under progress
 - more realistic grids (from aircraft CAD files)

- Improve the fan source model, derive a jet noise source model

- Implement and test a convected wave equation (propagation in uniform flow)

- Go to higher frequencies: Develop Fast Multipole Method (FMM) (under progress)
In-house solvers developed at ONERA

Part II : sAbrinA code
sAbrinA
(Solver for Aeroacoustics BRoadband INteractions from Aerodynamics): a 3D multi purposes CFD / CAA code

FLU3M
Industrial CFD software, structured, finite volume, multidomain

E3P
Acoustic propagation via Euler perturbation equations, finite difference, high order schemes, monodomain

PEGASE
Unsteady CFD: LES/DNS, NLDE

- Navier-Stokes or non linear Euler equations, in their conservative form
- Complete or Splitted (mean flow / perturbations) variables
- (Explicit, centered) 2nd order Finite Volumes or 6th order Finite Differences space schemes
- (Explicit) 3rd order or (Implicit) 2nd order time marching scheme
- (Explicit) 10th order filter schemes
- Curvilinear, multi-domains meshes
- Specific (rigid wall, symmetry, periodicity, exit) boundary conditions
CCA tasks: formulation

Conservative Euler equations

\[\partial_t \mathbf{u} + \nabla \cdot \mathbf{F} = \mathbf{S} \]

Assuming perfect gas state law and neglecting remote massic forces:

\[
\mathbf{u} = \begin{cases}
\rho \\
\rho \mathbf{v} \\
\rho \frac{\mathbf{v}^2}{2} + \frac{1}{\gamma-1} p
\end{cases}
\]

\[
\mathbf{F} = \begin{bmatrix}
\rho \mathbf{v} \\
\rho \mathbf{v} \otimes \mathbf{v} + p \mathbf{I} \\
\left(\frac{\rho \mathbf{v}^2}{2} + \frac{\gamma}{\gamma-1} p \right) \mathbf{v}
\end{bmatrix}
\]

\[\mathbf{S} = \text{external sources} \]

Mean flow / perturbation splitting:

\[\mathbf{u} = \mathbf{u}_p + \mathbf{u}_0 \]

Full (non-linearized) conservative Euler equations in perturbation formulation:

\[\partial_t \mathbf{u}_p + \nabla \cdot \left[\mathbf{F} \left(\mathbf{u}_p + \mathbf{u}_0 \right) - \mathbf{F} \left(\mathbf{u}_0 \right) \right] = \mathbf{S} \]
Validation of sAbrinA on CAA complex test cases

Harmonic source & uniform flow

Harmonic source, Joukowsky profile

Ducted mode & uniform flow

Aeolian tone noise

Harmonic source & multiple obstacles

Harmonic source & supersonic shear layer

Trailing edge noise

Rotor/stator interaction noise

Downstream fan noise
Application:
2D acoustic scattering from a point source located in the vicinity of a high-lift wing immersed in a **non-uniform flow**

CAA computation strategy
- Build a homogeneous CAA grid
- Interpolate the mean flow from CFD to CAA grid
- Perform 2D CAA computations
 * without mean flow (validation vs. BEM)
 * with non-uniform mean flow

RANS viscous mean flow grid topology and results (0° & 4° incidence)
• Grid adapted up to 30 kHz
• Mean flow interpolation from the CFD to the CAA grid: use of TECPLOT routine
Early computations (in the context of airframe noise characterization)
Monopole located inside the slat cove
(1/2) Propagation in a quiescent medium (no flow), and validation against BEM

FD, 6th order, RK3
\[f = 8 \text{ kHz} \]
\[\Delta t = 5 \times 10^{-7} \text{ s} \ (= \frac{T_{\text{source}}}{250}), \quad \text{CFL} = 0.8 \]

Source at 8 kHz

\[\frac{1}{2} \text{Propagation in a quiescent medium (no flow), and validation against BEM} \]
Early computations (in the context of airframe noise characterization)
Monopole located inside the slat cove
(2/2) Propagation through the non-uniform (RANS) mean flow

\[p_{RMS}(\theta) \sqrt{r} = f(\theta) \]

(WITHOUT MEAN FLOW) (WITH NON-UNIFORM MEAN FLOW) (WITH AND WITHOUT NON-UNIFORM MEAN FLOW)

(R. Guénanff, E. Manoha)
Application in the context of installation effects
Monopole located above the suction side
Propagation in the non-uniform (RANS) mean flow

Source
Chord / $\lambda = 54$

$f = 21 \text{ kHz}$

$f = 16 \text{ kHz}$

sAbrinA code

PIANO code (Roland EWERT, DLR)
ROSAS benchmark (TCD / DLR / IST)

(R. Guénanff)
Application of sAbrina to installation effects studies: Next steps

- Develop innovative techniques to facilitate complex meshes design (2D, 3D)
 - Non-conformal interface (R. Guénanff PhD thesis)
 - Curvilinear/Cartesian interface (G. Desquesnes PhD thesis)

- Study installation effects on 3D realistic aircraft geometry

- Extend the sAbrina capabilities to the treatment of other installation effect configurations
Other Installation effects study with sAbrinA

Numerical Simulation of the Downstream Fan Noise of a Coaxial Jet with a Shielding Surface

by Stéphane REDONNET, Eric MANOHA (ONERA)
and Owen KENNING (QinetiQ)

Friday 12 November, 11:25

Coming soon…