
DecSerFlow: Towards a Truly Declarative
Service Flow Language

W.M.P. van der Aalst and M. Pesic

Department of Information Systems, Eindhoven University of Technology, P.O.Box
513, NL-5600 MB, Eindhoven, The Netherlands.
w.m.p.v.d.aalst@tm.tue.nl,m.pesic@tm.tue.nl

Abstract. The need for process support in the context of web services
has triggered the development of many languages, systems, and stan-
dards. Industry has been developing software solutions and proposing
standards such as BPEL, while researchers have been advocating the
use of formal methods such as Petri nets and π-calculus. The languages
developed for service flows, i.e., process specification languages for web
services, have adopted many concepts from classical workflow manage-
ment systems. As a result, these languages are rather procedural and
this does not fit well with the autonomous nature of services. Therefore,
we propose DecSerFlow as a Declarative Service Flow Language. Dec-
SerFlow can be used to specify, enact, and monitor service flows. The
language is extendible (i.e., constructs can be added without changing
the engine or semantical basis) and can be used to enforce or to check the
conformance of service flows. Although the language has an appealing
graphical representation, it is grounded in temporal logic.

Key words: Service flows, web services, workflow management, flexibility, temporal

logic.

1 Introduction

The Business Process Execution Language for Web Services (BPEL4WS, or
BPEL for short) has become the de-facto standard for implementing processes
based on web services [7]. Systems such as Oracle BPEL Process Manager,
IBM WebSphere Application Server Enterprise, IBM WebSphere Studio Appli-
cation Developer Integration Edition, and Microsoft BizTalk Server 2004 support
BPEL, thus illustrating the practical relevance of this language. Although in-
tended as a language for connecting web services, its application is not limited
to cross-organizational processes. It is expected that in the near future a wide
variety of process-aware information systems [8] will be realized using BPEL.
Whilst being a powerful language, BPEL is of a procedural nature and not very
different from classical workflow languages e.g., the languages used by systems
such as Staffware, COSA, SAP Workflow, and IBM WebSphere MQ Workflow
(formerly know as FlowMark). Also other languages proposed in the context of

Dagstuhl Seminar Proceedings 06291
The Role of Business Processes in Service Oriented Architectures
http://drops.dagstuhl.de/opus/volltexte/2006/829

WVDAALST
Note
Note that this paper appeared earlier as a technical report. See: W.M.P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative Service Flow Language. BPM Center Report BPM-06-21, BPMcenter.org, 2006.

web services are of a procedural nature, e.g., the Web Services Choreography
Description Language (WS-CDL) [16]. In this paper, we will not discuss these
languages in detail. The interested reader is referred to [2, 3, 20] for a critical
review of languages like BPEL. Instead, we will demonstrate that it is possible
to use a more declarative style of specification by introducing DecSerFlow : a
Declarative Service Flow Language.

To explain the difference between a procedural style and a declarative style
of modeling, we use a simple example. Suppose that there are two activities
A and B. Both can be executed multiple times but they exclude each other,
i.e., after the first occurrence of A it is not allowed to do B anymore and after
the first occurrence of B it is not allowed to do A. The following execution
sequences are possible based on this verbal description: [] (the empty execution
sequence), [A], [B], [A,A], [B,B], etc. In a procedural language it is difficult to
specify the above process without implicitly introducing additional assumptions
and constraints. In a procedural language one typically needs to make a choice
with respect to whether no activities are to be executed, only A activities are to
be executed, or only B activities are to be executed. Moreover, the number of
times A or B needs to be executed also has to be decided. This means that one
or more decision activities need to be executed before the execution of “real”
activities can start. (Note that this is related to the Deferred Choice pattern
described in [4].) The introduction of these decision activities typically leads
to an over-specification of the process. Designers may be tempted to make this
decision before the actual execution of the first A or B. This triggers the following
two questions: (1) “How is this decision made?” and (2) “When is this decision
made?”. The designer may even remove the choice altogether and simply state
that one can only do A activities. Using a more declarative style can avoid this
over-specification. For example, in Linear Temporal Logic (LTL) [11–13] one can
write ¬(3A ∧ 3B). This means that it cannot be the case that eventually A is
executed and that eventually B is executed. This shows that a very compact LTL
expression (¬(3A ∧ 3B)) can describe exactly what is needed without forcing
the designer to specify more than strictly needed. Unfortunately, languages like
LTL are difficult to use for non-experts. Therefore, we have developed a graphical
language (DecSerFlow) that allows for the easy specification of processes in a
declarative manner. DecSerFlow is mapped onto LTL. The innovative aspects of
our approach based on DecSerFlow are:

– DecSerFlow allows for a declarative style of modeling which is highly relevant
in the context of service flows (unlike languages like BPEL).

– Through the graphical representation of DecSerFlow this language is easy
to use and we avoid the problems of textual languages like LTL.

– We use LTL not only for the verification of model properties: we also use
the LTL formulas generated by DecSerFlow to dynamically monitor services
and to realize an enactment engine.

– DecSerFlow is an extendible language (i.e., we supply an editor to extend the
language with user-defined graphical constructs without the need to modify
any part of the system).

2

– DecSerFlow can be used to specify two types of constraints: hard constraints
and soft constraints. Hard constraints are enforced by the engine while soft
constraints are only used to warn before the violation takes place and to
monitor observed violations.

A

C

B

D

DecSerFlow
model containing

four activities

hard constraint
(response)

hard constraint
(not co-existence)

soft constraint
(responded

existence)

[](A -> <>C)

not(<>A and <>B)

<>D -> <>B

hard LTL
constraints

...

...

soft LTL
constraints

enactment
engine

monitoring
tool

web
services/

SOAP
messages

offer
enable
disable

start
complete

warn

register

design-time mapping run-time

instance data
and states

Fig. 1. Overview of the role played by DecSerFlow in supporting services flows.

Figure 1 provides an overview of the way we envision DecSerFlow to be
used. At design-time, a graphical model is made using the DecSerFlow notation.
(Note that at design-time users can also add new modeling elements - types of
constraints.) The left-hand side of Figure 1 shows a process composed of four
activities, A, B, C, and D. Moreover, three constraints are shown. The connec-
tion between A and C means that any occurrence of A should eventually be
followed by at least one occurrence of C (i.e., 2(A → 3C) in LTL terms). The
connection between A and B means that it cannot be the case that eventually A
is executed and that eventually B is executed. This is the constraint described
before, i.e., ¬(3A ∧ 3B) in LTL terms. The last constraint connecting D and
B is a soft constraint. This constraint states that any occurrence of D implies
also the occurrence of B (before or after the occurrence of D), e.g., [B,D,D,D,D],
[D,D,D,B], and [B,B,B] are valid executions. The LTL formulation of this con-
straint is 3D → 3B.

As Figure 1 shows, it is possible to automatically map the graphical model
onto LTL formulas. These formulas can be used by the enactment engine to
control the service flow, e.g., on the basis of hard constraints the engine can
allow or prohibit certain activities and on the basis of soft constraints warnings
can be issued. The soft constraints can also be used by the monitoring tool to
detect and analyze violations.

3

Currently, we have implemented a graphical editor and the mapping of the
editor to LTL. This editor supports user-defined notations as described before.
We are currently investigating different ways to enact LTL formulas and in this
paper we described our current efforts. Although we do not elaborate this this in
this paper, our implementation will also incorporate data as is show in Figure 1.
Data is used for routing purposes by making constraints data dependent, i.e., a
constraint only applies if its guard evaluates to true. Moreover, in the context of
the ProM (Process Mining) framework [6, 18] we have developed an LTL checker
[1] to compare actual behavior with specified behavior. The actual behavior can
be recorded by a dedicated process engine. However, it can also be obtained by
monitoring SOAP messages as described in [3].

The approach described in Figure 1 is not limited to service flows. It can
be applied in any context where autonomous entities are executing activities.
These autonomous entities can be other organizations but also people or groups
of people. This is the reason that DecSerFlow has a “sister language” named
ConDec which aims at supporting teamwork and workflow flexibility [17]. Both
languages/applications share the same concepts and tools.

The remainder of this paper is organized as follows. Section 2 introduces
the DecSerFlow language. Then, a non-trivial example is given in Section 3.
Section 4 discusses different ways to construct an enactment (and monitoring)
engine based on DecSerFlow. Finally, Section 5 concludes the paper by discussing
different research directions.

2 DecSerFlow: A Declarative Service Flow Language

Languages such as Linear Temporal Logic (LTL) [11–13] allow for the a more
declarative style of modeling. These languages include temporal operators such
as next-time (©F), eventually (3F), always (2F), and until (F tG). However,
such languages are difficult to read. Therefore, we define an extendible graphical
syntax for some typical constraints encountered in service flows. The combina-
tion of this graphical language and the mapping of this graphical language to
LTL forms the Declarative Service Flow (DecSerFlow) Language . We propose
DecSerFlow for the specification of a single service, simple service compositions,
and more complex choreographies.

Developing a model in DecSerFlow starts with creating activities. The no-
tion of an activity is like in any other workflow-like language, i.e., an activity
is atomic and corresponds to a logical unit of work. However, the nature of the
relations between activities in DecSerFlow can be quite different than in tradi-
tional procedural workflow languages (like Petri nets and BPEL). For example,
places between activities in a Petri net describe causal dependencies and can
be used to specify sequential, parallel, alternative, and iterative routing. Using
such mechanisms it is both possible and necessary to strictly define how the
flow will be executed. We refer to relations between activities in DecSerFlow as
constraints. Each of the constraints represents a policy (or a business rule). At
any point in time during the execution of a service, each constraint evaluates to

4

true or false. This value can change during the execution. If a constraint has the
value true, the referring policy is fulfilled. If a constraint has the value false, the
policy is violated. The execution of a service is correct (according to the Dec-
SerFlow model) at some point in time if all constraints (from the DecSerFlow
model) evaluate to true. Similarly, a service has completed correctly if at the end
of the execution all constraints evaluate to true. The goal of the execution of
any DecSerFlow model is not to keep the values of all constraints true at all
times during the execution. A constraint which has the value false during the
execution is not considered an error. Consider for example the LTL expression
2(A −→ 3B) where A and B are activities, i.e., each execution of A is eventually
followed by B. Initially (before any activity is executed), this LTL expression
evaluates to true. After executing A the LTL expression evaluates to false and
this value remains false until B is executed. This illustrates that a constraint
may be temporarily violated. However, the goal is to end the service execution
in a state where all constraints evaluate to true.

To create constraints in DecSerFlow we use constraint templates. Each con-
straint template consists of a formula written in LTL and a graphical represen-
tation of the formula. An example is the “response constraint”, which is denoted
by a special arc connecting two activities A and B. The semantics of such an arc
connecting A and B are given by the LTL expression 2(A −→ 3B), i.e., any
execution of A is eventually followed by (at least one) execution of B. We have
developed a starting set of constraint templates and we will use these templates
to create a DecSerFlow model. This set of templates is inspired by a collection
of specification patterns for model checking and other finite-state verification
tools [9]. Constraint templates define various types of dependencies between ac-
tivities at an abstract level. Once defined, a template can be reused to specify
constraints between activities in various DecSerFlow models. It is fairly easy
to change, remove and add templates, which makes DecSerFlow an “open lan-
guage” that can evolve and be extended according to the demands from different
domains.1 In the initial set of constraint templates we distinguish three groups:
(1) “existence”, (2) “relation”, and (3) “negation” templates. Because a tem-
plate assigns a graphical representation to an LTL formula, we will refer to such
a template as a formula.

Before giving an overview of the initial set of formulas and their notation,
we give a small example explaining the basic idea. Figure 2 shows a DecSerFlow
model consisting of four activities: A, B, C, and D. Each activity is tagged with a
constraint describing the number of times the activity should be executed, these
are the so-called “existence formulas”. The arc between A and B is an example
of a “relation formula” and corresponds to the LTL expression discussed before:
2(A −→ 3 B). The connection between C and D denotes another “relation
formula”: 3 D −→ 3 C, i.e., if D is executed at least once, C is also executed
at least once. The connection between B and C denotes a “negation formula”

1 Note that we have developed a graphical editor for DecSerFlow that supports the
creation of user defined templates, i.e., the user can define the graphical representa-
tion of a generic constraint and give its corresponding semantics in terms of LTL.

5

A B

C

 [](A -> <> B),
i.e., every A is

eventually
followed by B

D

1..*

20..*

0..*

B is executed
twice

<> D, i.e., D is
executed at least

once

<D> -> <>C, i.e.,
if D is executed
at least once, C
is also executed

at least once.
if A is executed
at least once, C

is never
executed and

vice versa.

A can be
executed an

arbitrary number
of times

Fig. 2. A DecSerFlow model showing some example notations.

(the LTL expression is not show here). Note that it is not easy to provide a clas-
sical procedural model (e.g., a Petri net) that allows for all behaviour modeled
Figure 2.

Existence formulas. Figure 3 shows the so-called “existence formulas”. These
formulas define the possible number of executions (cardinality) of an activity.
For example, the first formula is called existence. The name and the formula
heading are shown in the first column. From this, we can see that it takes one
parameter (A), which is the name of an activity. The body of the formula is
written in LTL and can be seen in the second column. In this case the LTL
expression 3(activity == A) ensures that the activity given as the parameter
A will execute at least once. Note that we write 3(activity == A) rather than
3(A). The reason is that in a state we also want to access other properties, i.e.,
not just the activity name but also information on data, time, and resources.
Therefore, we need to use a slightly more verbose notation (activity == A). The
diagram in the third column is the graphical representation of the formula, which
is assigned to the template. Parameter A is an activity and it is represented
as a square with the name of the activity. The constraint is represented by a
cardinality annotation above the square. In this case the cardinality is at least
one, which is represented by 1..*. The first group of existence formulas are of
the cardinality “N or more”, denoted by N..*. Next, the formula absence ensures
that the activity should never execute in the service. The group of formulas with
names absence N uses negations of existence N to specify that an activity can
be executed at most N-1 times. The last group of existence formulas defines an
exact number of executions of an activity. For example, if a constraint is defined
based on the formula exactly 2, the referring activity has to be executed exactly
two times in the service.

Relation formulas. Figure 4 shows the so-called “relations formulas”. While an
“existence formula” describes the cardinality of one activity, a “relation formula”
defines relation(s) (dependencies) between two activities. All relation formulas

6

I)
 E

X
IS

T
E

N
C

E
 F

O
R

M
U

LA
S

2.
 A

B
S

E
N

C
E

fo

rm
ul

a
ab

se
nc

e_
A

(
A

: a
ct

iv
ity

)

[](
 a

ct
iv

ity
 !=

 A
)

;

1.
 E

X
IS

T
E

N
C

E

fo
rm

ul
a

ex
is

te
nc

e(
 A

: a
ct

iv
ity

)

<
>

(a
ct

iv
ity

 =
=

 A
);

1.
a.

 E
X

IS
T

E
N

C
E

_2

fo
rm

ul
a

ex
is

te
nc

e2
(

A
: a

ct
iv

ity
)

<

>
(

(
ac

tiv
ity

 =
=

 A
 /\

 _
O

(
ex

is
te

nc
e(

A
)

)
)

);

0 A

2.
.*

A

1.
b.

 E
X

IS
T

E
N

C
E

_3

fo
rm

ul
a

ex
is

te
nc

e3
(

A
: a

ct
iv

ity
)

<

>
(

(
ac

tiv
ity

 =
=

 A
 /\

 _
O

(
ex

is
te

nc
e2

(A
)

)
)

);

3.
.*

A

N
..*

A

1.
c.

 E
X

IS
T

E
N

C
E

_N

fo
rm

ul
a

ex
is

te
nc

eN
(

A
: a

ct
iv

ity
)

<

>
(

(
ac

tiv
ity

 =
=

 A
 /\

 _
O

(
ex

is
te

nc
e_

N
-1

(A
)

)
)

);

3.
a.

 A
B

S
E

N
C

E
_2

fo

rm
ul

a
ab

se
nc

e2
(

A
: a

ct
iv

ity
)

!(

 e
xi

st
en

ce
2(

A
)

);

3.
b.

 A
B

S
E

N
C

E
_3

fo

rm
ul

a
ab

se
nc

e3
(

A
: a

ct
iv

ity
)

!(

 e
xi

st
en

ce
3(

A
)

);

0.
.2

A

0.
.N

A

3.
c.

 A
B

S
E

N
C

E
_N

fo

rm
ul

a
ab

se
nc

eN
(

A
: a

ct
iv

ity
)

!(

 e
xi

st
en

ce
N

+
1(

A
)

);

0.
.1

A

2 A

N
 A

1 A

4.
a.

 E
X

A
C

T
LY

_1

fo
rm

ul
a

ex
ac

tly
1(

 A
: a

ct
iv

ity
)

(

ex
is

te
nc

e(
A

)
/\

[](
 (

 a
ct

iv
ity

 =
=

 A
 -

>
 _

O
(

ab
se

nc
e(

A
)

)
)

)
);

(
ex

is
te

nc
e(

A
)

/\
(

ac
tiv

ity
 !=

 A
 _

U
(

ac
tiv

ity
 =

=
 A

 /\
 _

O
(

ex
ac

tly
1(

A
)

)
)

)
);

(
ex

is
te

nc
e(

A
)

/\
(

ac
tiv

ity
 !=

 A
 _

U
(

ac
tiv

ity
 =

=
 A

 /\
 _

O
(

ex
ac

tly
N

-1
(A

)
)

)
)

);

4.
b.

 E
X

A
C

T
LY

_2

fo
rm

ul
a

ex
ac

tly
2(

 A
: a

ct
iv

ity
)

4.
c.

 E
X

A
C

T
LY

_N

fo
rm

ul
a

ex
ac

tly
N

(
A

: a
ct

iv
ity

)

N
..*

A

0.
.N

A

N
 A

A

1.
.*

F
ig

.
3
.
N

o
ta

ti
o
n
s

fo
r

th
e

“
ex

is
te

n
ce

fo
rm

u
la

s”
.

7

II) R
E

LA
T

IO
N

 B
E

T
W

E
E

N
 E

V
E

N
T

S
 F

O
R

M
U

LA
S

3. R
E

S
P

O
N

S
E

form
ula A

_response_B
(A

: activity, B
: activity)

 []((activity =
=

 A
 ->

 existence(B
)));

4. P
R

E
C

E
D

E
N

C
E

form
ula A

_precedence
_B

(A
: activity, B

: activity)
(existence_A

(B
) ->

 (!(activity =
= B

) _U
 activity =

=
 A

));

5. S
U

C
C

E
S

S
IO

N
form

ula A
_succession_B

(A
: activity, B

: activity)
(A

_response_B
(A

,B
) /\ A

_precedence
_B

(A
,B

));

9. C
H

A
IN

 R
E

S
P

O
N

S
E

form
ula chain_A

_response_B
(A

: activity, B
: activity)

A
_response_B

(A
,B

) /\ []((activity =
=

 A
 ->

 _O
(activity =

=
 B

)));

10. C
H

A
IN

 P
R

E
C

E
D

E
N

C
E

form
ula chain_A

_precedence
_B

(A
: activity, B

: activity)
 (A

_precedence_B
(A

,B
) /\ []((_O

(activity =
= B

) ->
 activity =

=
 A

)));

11. C
H

A
IN

 S
U

C
C

E
S

S
IO

N
form

ula chain_A
_succession_B

(A
: activity, B

: activity)
(chain_A

_response_B
(A

,B
) /\ chain_A

_precedence_B
(A

,B
));

1. R
E

S
P

O
N

D
E

D
 E

X
IS

T
E

N
C

E
form

ula existence_A
_response_B

(A
: activity, B

: activity)
(existence_A

(A
) ->

 existenceA
(B

));

2. C
O

-E
X

IS
T

E
N

C
E

form
ula co_existence_A

_and_B
(A

: activity, B
: activity)

(existence(A
) <

-> existence(B
));

6. A
LT

E
R

N
A

T
E

 R
E

S
P

O
N

S
E

form
ula A

_alternate_response_B
(A

: activity, B
: activity)

(A
_response_B

(A
,B

) /\ B
_alw

ays_betw
een_A

(A
,B

)*);

7. A
LT

E
R

N
A

T
E

 P
R

E
C

E
D

E
N

C
E

form
ula A

_alternate_precedence
_B

(A
: activity, B

: activity)
(A

_precedence
_B

(A
,B

) /\ B
_alw

ays_betw
een_A

(B
,A

)*);

A
B

A
B

A
B

A
B

A
B

A
B

A
B

A
B

8. A
LT

E
R

N
A

T
E

 S
U

C
C

E
S

S
IO

N
form

ula A
_alternate_succession

_B
(A

: activity, B
: activity)

 (A
_alternate_precedence

_B
(A

,B
) /\ A

_alternate_response
_B

(A
,B

));

A
B

A
B

A
B

* subform
ula B

_alw
ays_betw

een_A
(A

: activity, B
: activity)

[]((activity ==
 A

 ->
 _O

(A
_precedence_B

(B
,A

))));

F
ig

.
4
.
N

o
ta

tio
n
s

fo
r

th
e

“
rela

tio
n

fo
rm

u
la

s”
.

8

have two activities as parameters and two activities in the graphical representa-
tion. The line between the two activities in the graphical representation should
be unique for the formula, and reflect the semantics of the relation. The re-
sponded existence formula specifies that if activity A is executed, activity B also
has to be executed either before or after the activity A. According to the co-
existence formula, if one of the activities A or B is executed, the other one has
to be executed also.

While the previous formulas do not consider the order of activities, formulas
response, precedence and succession do consider the ordering of activities. For-
mula response requires that every time activity A executes, activity B has to be
executed after it. Note that this is a very relaxed relation of response, because B
does not have to execute immediately after A, and another A can be executed
between the first A and the subsequent B. For example, the execution sequence
[B,A,A,A,C,B] satisfies the formula response. The formula precedence requires
that activity B is preceded by activity A. i.e., it specifies that if activity B was
executed, it could not have been executed until the activity A was executed.
According to this formula, the execution sequence [A,C,B,B,A] is correct. The
combination of the response and precedence formulas defines a bi-directional ex-
ecution order of two activities and is called succession. In this formula, both
response and precedence relations have to hold between the activities A and B.
Thus, this formula specifies that every activity A has to be followed by an ac-
tivity B and there has to be an activity A before every activity B. For example,
the execution sequence [A,C,A,B,B] satisfies the succession formula.

Formulas alternate response, alternate precedence and alternate succession
strengthen the response, precedence and succession formulas, respectively. If ac-
tivity B is alternate response of the activity A, then after the execution of an
activity A activity B has to be executed and between the execution of each two
activities A at least one activity B has to be executed. In other words, after
activity A there must be an activity B, and before that activity B there can not
be another activity A. The execution sequence [B,A,C,B,A,B] satisfies the al-
ternate response. Similarly, in the alternate precedence every instance of activity
B has to be preceded by an instance of activity A and the next instance of ac-
tivity B can not be executed before the next instance of activity A is executed.
According to the alternate precedence, the execution sequence [A,C,B,A,B,A]
is correct. The alternate succession is a combination of the alternate response
and alternate precedence and the sequence [A,C,B,A,B,A,B] would satisfy this
formula.

Even more strict ordering relations formulas are chain response, chain prece-
dence and chain succession, which require that the executions of the two activ-
ities (A and B) are next to each other. In the chain response the next activity
after the activity A has to be activity B and the execution [B,A,B,C,A,B] would
be correct. The chain precedence formula requires that the activity A is the first
preceding activity before B and, hence, the sequence [A,B,C,A,B,A] is correct.
Since the chain succession formula is the combination of the chain response and
chain precedence formulas, it requires that activities A and B are always exe-

9

cuted next to each other. The execution sequence [A,B,C,A,B,A,B] is correct
with respect to this formula.

Negation formulas. Figure 5 shows the “negation formulas”, which are the
negated versions of the “relation formulas”. The first two formulas negate the
responded existence and co-existence formulas. The responded absence formula
specifies that if activity A is executed activity B must never be executed (not
before nor after the activity A). The not co-existence formula applies responded
absence from A to B and from B to A. However, if we look at the responded
absence formula we can see that if existence of A implies the absence of B and
we first execute activity B, it will not be possible to execute activity A anymore
because the formula will become permanently incorrect. This means that the for-
mula responded absence is symmetric with respect to the input, i.e., we can swap
the roles of A and B without changing the outcome. Therefore formula responded
absence will be skipped and we will use only the not co-existence formula. The
graphical representation is a modified representation of the co-existence formula
with the negation symbol in the middle of the line. An example of a correct exe-
cution sequence for the formula not co-existence is [A,C,A,A], while the sequence
[A,C,A,A,B] would not be correct.

The negation response formula specifies that after the execution of activity
A, activity B can not be executed. According to the formula negation precedence
activity B can not be preceded by activity A. These two formulas have the same
effect because if it is not possible to have activity B executed after activity
A, then it is not possible to have activity A executed before activity B. Since
the formula negation succession combines these two formulas, it also has the
same effect and we will use only the negation succession formula. The graphical
representation of this formula is a modified representation of the succession
formula with a negation symbol in the middle of the line. The execution sequence
[B,B,C,A,C,A,A] is an example of a correct sequence, while [A,C,B] would be
an incorrect execution.

Formulas negation alternate response, negation alternate precedence and nega-
tion alternate succession are easy to understand. The formula negation alternate
response specifies that the activity B can not be executed between the two sub-
sequent executions of the activity A. According to this formula the execution
sequence [B,A,C,A,B] is correct. In the case of the negation alternate prece-
dence activity A can not be executed between two subsequent executions of the
activity B. The execution sequence [A,B,C,B,A] is correct for negation alternate
precedence. The formula negation alternate succession requires both negation al-
ternate response and negation alternate precedence to be satisfied. An example
of a correct execution sequence for the negation alternate succession formula
is [B,C,B,A,C,A]. Graphical representations of these three formulas are similar
to the representations of alternate response, alternate precedence and alternate
succession with the negation symbol in the middle of the line.

The last three formulas are negations of formulas chain response, chain prece-
dence and chain succession. According to the formula negation chain response,
activity B can not be executed directly after the activity A. Formula negation

10

III
)

N
E

G
A

T
IO

N
 R

E
LA

T
IO

N
 B

E
T

W
E

E
N

 E
V

E
N

T
S

 F
O

R
M

U
LA

S

13
.c

. N
E

G
A

T
IO

N
 S

U
C

C
E

S
S

IO
N

fo
rm

ul
a

no
tA

_s
uc

ce
ss

io
n_

no
tB

(
A

: a
ct

iv
ity

, B
: a

ct
iv

ity
)

(
A

_r
es

po
ns

e_
no

tB
(A

,B
)

/\
no

tA
_p

re
ce

de
nc

e_
B

(A
,B

)
);

12
.b

. N
O

T
 C

O
_E

X
IS

T
E

N
C

E
fo

rm
ul

a
ex

is
te

nc
e_

A
_r

es
po

ns
e_

no
tB

(
A

: a
ct

iv
ity

, B
: a

ct
iv

ity
)

(
ex

is
te

nc
e_

A
_r

es
po

ns
e_

no
tB

(A
,B

)
/\

ex
is

te
nc

e_
A

_r
es

po
ns

e_
no

tB
(B

,A
)

);
A

B

A
B

17
.c

. N
E

G
A

T
IO

N
 C

H
A

IN
 S

U
C

C
E

S
S

IO
N

fo
rm

ul
a

ch
ai

n_
A

_n
ot

su
cc

es
si

on
_B

(
A

: a
ct

iv
ity

, B
: a

ct
iv

ity
)

(
ch

ai
n_

A
_r

es
po

ns
e

_n
ot

B
(A

,B
)

/\
ch

ai
n_

no
tA

_p
re

ce
de

nc
e

_B
(A

,B
)

);
A

B

12
.a

. R
E

S
P

O
N

D
E

D
 A

B
S

E
N

C
E

fo
rm

ul
a

ex
is

te
nc

e_
A

_r
es

po
ns

e_
no

tB
(

A
: a

ct
iv

ity
, B

: a
ct

iv
ity

)

(
ex

is
te

nc
e_

A
(A

)
->

 a
bs

en
ce

(B
)

);

13
.a

. N
E

G
A

T
IO

N
 R

E
S

P
O

N
S

E
fo

rm
ul

a
A

_r
es

po
ns

e_
no

tB
(

A
: a

ct
iv

ity
, B

: a
ct

iv
ity

)
[](

 (
 a

ct
iv

ity
 =

=
 A

 -
>

 a
bs

en
ce

(B
)

)
);

13
.b

. N
E

G
A

T
IO

N
 P

R
E

C
E

D
E

N
C

E
fo

rm
ul

a
no

tA
_p

re
ce

de
nc

e_
B

(
A

: a
ct

iv
ity

, B
: a

ct
iv

ity
)

[](

 (
 e

xi
st

en
ce

(B
)

->
 a

ct
iv

ity
 !=

 A
)

)
;

A
B

A
B

A
B

A
B

A
B

14
. N

E
G

A
T

IO
N

 A
LT

E
R

N
A

T
E

 R
E

P
O

N
S

E
fo

rm
ul

a
A

_n
ot

_a
lte

rn
at

e_
re

sp
on

se
_B

(
A

: a
ct

iv
ity

, B
: a

ct
iv

ity
)

B
_n

ev
er

_b
et

w
ee

n_
A

(A
,B

)*
*;

15
. N

E
G

A
T

IO
N

 A
LT

E
R

N
A

T
E

 P
R

E
C

E
D

E
N

C
E

fo
rm

ul
a

A
_n

ot
_a

lte
rn

at
e_

pr
ec

ed
en

ce
_B

(
A

: a
ct

iv
ity

, B
: a

ct
iv

ity
)

B
_n

ev
er

_b
et

w
ee

n_
A

(B
,A

)*
*;

16
. N

E
G

A
T

IO
N

 A
LT

E
R

N
A

T
E

 S
U

C
C

E
S

S
IO

N
A

_n
ot

_a
lte

rn
at

e_
su

cc
es

si
on

_B
(

A
: a

ct
iv

ity
, B

: a
ct

iv
ity

)
(

A
_n

ot
_a

lte
rn

at
e_

pr
ec

ed
en

ce
_B

(A
,B

)
/\

A
_n

ot
_a

lte
rn

at
e_

re
sp

on
se

_B
(A

,B
)

);

A
B

A
B

A
B

17
.a

..
N

E
G

A
T

IO
N

 C
H

A
IN

 R
E

S
P

O
N

S
E

fo
rm

ul
a

ch
ai

n_
A

_r
es

po
ns

e_
no

tB
(

A
: a

ct
iv

ity
, B

: a
ct

iv
ity

)
[](

 (
 a

ct
iv

ity
 =

=
 A

 -
>

 _
O

(
ac

tiv
ity

 !=
 B

)
)

)
;

17
.b

. N
E

G
A

T
IO

N
 C

H
A

IN
 P

R
E

C
E

D
E

N
C

E
fo

rm
ul

a
ch

ai
n_

no
tA

_p
re

ce
de

nc
e

_B
(

A
: a

ct
iv

ity
, B

: a
ct

iv
ity

)
[](

 (
 _

O
(

ac
tiv

ity
 =

=
 B

)
 -

>
 a

ct
iv

ity
 !=

 A
)

)
;

A
B

A
B

A
B

**
 s

ub
fo

rm
ul

a
B

_n
ev

er
_b

et
w

ee
n_

A
(

A
: a

ct
iv

ity
, B

: a
ct

iv
ity

)

[](
 (

 a
ct

iv
ity

 =
=

 A
 -

>
 _

O
(

(
<>

(
ac

tiv
ity

 =
=

A
)

 -
>

 (
 a

ct
iv

ity
 !=

 B
 _

U
 a

ct
iv

ity
 =

=
 A

)
)

)
)

)
;

F
ig

.
5
.
N

o
ta

ti
o
n
s

fo
r

th
e

“
n
eg

a
ti

o
n
s

fo
rm

u
la

s”
.

11

chain precedence specifies that activity B can never be directly preceded by
activity A. These two formulas have the same effect because they forbid the
activities A and B to be executed directly next to each other. Since the formula
negation chain succession requires both negation chain response and negation
chain precedence to be executed, these three formulas all have the same effect and
we will use only negation chain succession. The graphical representation of this
formula is a modified version of the representation of the chain succession for-
mula with the negation symbol in the middle of the line. The execution sequence
[B,A,C,B,A] is correct according to the negation chain succession formula, while
the sequence [B,A,B,A] would not be correct.

Figures 4 and 5 only show binary relationships. However, these can easily
be extended to deal with more activities. Consider for example the response
relationship, i.e., 2(A −→ 3B). We will allow multiple arcs to start from the
same dot, e.g., an arc to B, C, and D. The meaning is 2(A −→ 3(B ∨C ∨D)),
i.e., every occurrence of A is eventually followed by an occurrence of B, C, or D.
Moreover, as indicated before, the set of formulas is not fixed and we also aim
at supporting data. In fact, we have defined more formulas than the ones shown
in figures 3, 4, and 5. For example, the mutual substitution relation formula
specifies that at least one of two activities should occur (i.e., 3(A ∨B)).

After this introduction to DecSerFlow we specify a concrete example. The
interested reader is referred to a technical report with more information about
DecSerFlow [5]. Moreover, for more information on ConDec, the sister language
of DecSerFlow aiming a teamwork and workflow flexibility, we refer to [17].

3 Modelling Services With DecSerFlow: The Acme
Travel Example

In this section we use the “Acme Travel Company case” to illustrate DecSerFlow.
The description of the business process of the Acme Travel service is adopted
from [19] is as follows:

1. Acme Travel receives an itinerary from Karla, the customer.
2. After checking the itinerary for errors, the process determines which

reservations to make, sending simultaneous requests to the appropri-
ate airline and hotel agencies to make the appropriate reservations 2.

3. If any of the reservation activities fails, the itinerary is cancelled by
performing the “compensate” activity and Karla is notified of the
problem.

4. Acme Travel waits for confirmation of the two reservation requests.
5. Upon receipt of confirmation, Acme Travel notifies Karla of the suc-

cessful completion of the process and sends her the reservation con-
firmation numbers and the final itinerary details.

2 The original Acme Travel service business process consists of three possible book-
ings: airline, hotel and vehicle. However, for the simplicity, we consider only the
possibilities to book airline and hotel.

12

6. Once Karla is notified of either the success or failure of her requested
itinerary, she may submit another travel request.

Fig. 6. DecSerFlow - Acme Travel Company

Figure 6 shows the DecSerFlow model of the Acme business process. We first
define the possible activities within the service to model the business process of
Acme. In this case, we define eleven activities:

receive - A request for booking is received from the customer;
airline - A request for booking is sent to an airline reservation service;
hotel - A request for booking is sent to a hotel reservation service;
booked hotel - A hotel reservation service sends a positive response for a re-

quested booking, i.e., the hotel can be booked;
failed hotel - A hotel reservation service sends a negative response for a re-

quested booking, i.e., the hotel cannot be booked;
booked airline - An airline reservation service sends a positive response for a

requested booking, i.e., the airline can be booked;

13

failed airline - An airline reservation service sends a negative response for a
requested booking, i.e., the airline cannot be booked;

compensation - The whole booking has failed;
notify failure - Notify the customer that the booking has failed;
credit card - Register and charge a successful booking; and
notify booked - Notify the customer that the booking was successful.

In principle, a DecSerFlow model consisting only of a set of activities is a correct
model. If a DecSerFlow model consisting only of eleven activities would be im-
plemented in the Acme service, it would be possible that the service executes any
of the eleven activities, an arbitrary number of times, in an arbitrary order. It
would also be possible not to execute any activity. To prevent such an “chaotic”
behavior of the service, we can add constraints to the service process model. A
constraint in service represents a rule that the service execution has to fulfill.
The Acme DecSerFlow model shown in Figure 6 uses two of the three types of
constraint formulas mentioned before: “existence” and “relation” constraints.

In Section 2, we presented several standard “existence” constraints. These
constraints define the possible number of executions of an activity in a service.
We refer to the possible number of executions of an activity in a service as the
cardinality of that activity. Without any constraints in the service model, an
activity can be executed an arbitrary number of times - the activity has the
cardinality of (0..*). The “existence” constraints are graphically represented as
cardinalities above activities (cf. Figure 6). Activity receive has the constraint
exactly 1 (cf. Section 2), and specifies that this activity will be executed exactly
once in one instance (per one customer request) of the Acme service. Because the
booking request can succeed or fail, but not both, activities compensation, notify
failure, credit card, and notify booking have the constraint “absence 2”, which
specifies that each of these activities will be executed at most once. We do not
define any “existence” constraints on activities hotel and airline and thus allow
these two activities to execute an arbitrary number of times in the Acme service.
If the customer does not wish to book a hotel or an airline, the Acme service will
not execute the corresponding activity. In case that a booking of a hotel or an
airline is requested, the booking request might be sent multiple times until the
booking succeeds or fails. A booking of a hotel or an airline will be followed with
a positive activity (i.e., booked hotel or booked airline) or a negative activity (i.e.,
failed hotel or failed airline). Therefore, activities booked hotel, booked airline,
failed hotel and failed airline also can be executed an arbitrary number of times
in the service.

The Acme DecSerFlow model as defined so far - only consisting of a set of
activities and “existence” constraints - is a correct model. If this model would
be implemented in the Acme service, the service could execute its activities in
an arbitrary order, complying with the execution cardinality of each activity, as
defined with “existence” constraints.

To define relations between activities in the service (and implicitly their
possible order) we use the so-called “relation” constraints as defined in Section 2.
Unlike “existence” constraints that were defined for single activities (unary),

14

“relation” constraints define relations between two or more activities (e.g., a
binary relationship).

After receiving the booking request from the customer, the request is checked.
The customer can request to book a hotel and an airline for a destination, or
only one of these. The constraint response from the activity receive is a so-called
branched constraint. It has two branches: one to the activity hotel and the other
to the activity airline. This branched response specifies that after the activity
receive is executed, eventually there will be at least one execution of one of the
activities hotel and airline. It is still possible that both of the activities hotel
and airline execute an arbitrary number of times, as long as at least one of them
executes after the activity receive. However, since it would not be desirable to
execute any of the activities hotel and airline before the activity receive, we
add two precedence constraints: (1) the precedence constraint between activities
receive and hotel specifies that the activity hotel cannot execute before the activ-
ity receive executes, and (2) the precedence constraint between activities receive
and airline specifies that the activity airline cannot execute before the activity
receive executes. The branched constraint response and the two precedence con-
straints between activities receive, hotel and airline specify that activities hotel
and airline will not execute until the activity receive executes, and that after
the activity receive executes, at least one of the activities hotel an airline will
execute. Activities hotel and airline can an arbitrary number of times and in an
arbitrary order.

Activities booked hotel and failed hotel handle the possible responses of a
hotel reservation service on the request of Acme service to book a hotel (which is
sent when the activity hotel is executed). With the branched response constraint
from the activity hotel we specify that after every execution of this activity, at
least one of the activities booked hotel and failed hotel will execute. Note that,
due to errors, this constraint allows for some requests for the hotel reservation to
remain without response. Logically, with the two precedence constraints between
the activity hotel and activities booked hotel and failed hotel we prevent that
either of the activities booked hotel and failed hotel execute before the activity
hotel executes. This is necessary, since the response from the hotel reservation
service can not arrive before a reservation request is sent. The same constraints
are added between activities airline, booked airline and failed airline, because
the communication of the Acme service with the airline service is the same like
the communication with the hotel reservation service.

Only after receiving at least one of the two negative responses (activities
failed hotel and failed airline), the Acme service can cancel the whole booking
by executing the activity compensation. This is specified by the branched prece-
dence constraint between the activity compensation and activities failed hotel
and failed booking. After the compensation activity is executed, activities hotel
and airline can not execute again in the service, because the whole booking is
cancelled. The two not-response constraints between the activity compensation
and activities hotel and airline, make sure that after the activity compensation
executes, none of the activities hotel and airline can execute. The precedence

15

constraint between activities notify failure and compensation specifies that the
activity notify failure cannot execute before the activity compensate. Note that
after the activity compensation executes, there might still be some responses
arriving from the reservation services. If an satisfactory booking response ar-
rives after the activity compensate is executed, the Acme service can still decide
to accept the booking. This is why the activity notify failure does not always
necessarily execute after the activity compensate.

After at least one positive reservation response arrives, the Acme service
can decide to accept and finalize the whole booking. This is specified with the
branched precedence constraint between the activity credit card and activities
booked hotel and booked airline. After the booking is charged, the new requests
will not be sent to the hotel and airline reservation services, i.e., the activities ho-
tel and airline cannot execute after the activity credit card. This is achieved with
the two not-response constraints between the activity credit card and activities
hotel and airline. Only and always after the booking is charged, the customer
will be notified about the successful booking. The succession constraint between
activities credit card and notify booked specifies that the activity notify booked
cannot execute before the activity credit card and that it will have to execute
after the activity credit card.

To conclude the booking of a customer, the Acme service will either accept
or decline the requested booking. This means that in the service either one of the
taks notify failure and credit card will execute. Note that even after the activity
compensation, Acme can still receive an positive reservation response and accept
the booking. The not co-existence constraint between activities credit card and
notify failure specifies that only one of these two activities can execute in the
service because it is not possible to both charge the booking and notify the
customer about failure. However, eventually one of the activities credit card or
notify failure will execute, as specified with the mutual substitution constraint
between these two activities.

Note that the Acme service model in Figure 6 allows for many alternative
executions of the service. For example, it is possible to handle the both late and
lost reposes of reservation services. It is also possible to send requests to different
reservation services regardless the order of the reception of responses. Even after
the cancellation has started by executing the activity consumption, it is still
possible to receive a positive response and successfully finalize the requested
booking.

It is important to note that Figure 6 uses a declarative style of modelling. The
DecSerFlow model allows for much more variability than a typical procedural
process model (e.g., a BPEL specification). However, because the language is
extendible it is possible to add constructs one can find in traditional languages,
e.g., it is relatively easy to add the “place concept” from Petri nets or the
“sequence concept” from BPEL. As a result, DecSerFlow can be applied using
different styles ranging from highly procedural to highly declarative.

16

4 Enacting DecSerFlow Models of Web Services

Every DecSerFlow model consists of a set of activities and constraints. Con-
straints define rules that the service has to fulfill. At the end of the service
execution all constraints should be fulfilled. The semantics of a constraint is
defined with the LTL formula that is assigned to it. We use these LTL formu-
las to execute a DecSerFlow model. Every LTL formula can be translated into
an Buchi automaton [10]. There are several algorithms for translating LTL ex-
pressions into Buchi automata. Different algorithms have been studied in the
field of model checking [15]. The SPIN tool [14] is one of the most widely used
tools for model checking. Using SPIN, one can develop a model of a system in
Promela (PROcess MEta LAnguage) [14]. To check the model with respect to
some requirements, we can write these requirements as LTL expressions. SPIN
can automatically verify the correctness of the specified LTL requirements in the
developed Promela model. For verification purposes, SPIN uses an algorithm for
translating LTL expressions to Buchi automata [10].

A DecSerFlow model typically has multiple constraints. All of the constraints
need to be taken into account at any moment of the service execution. For this
purpose we can take one of the two strategies: (1) we can construct an automaton
for each of the LTL expressions and then execute these automatons in parallel, or
(2) construct and execute a single automaton for the whole model (i.e., construct
an automaton for the conjunction of all LTL expressions).

When executing a service by executing referring Buchi automaton(s), we have
to deal with two problems. First, the standard algorithms (e.g., the one presented
in [10]) construct a non-deterministic finite automaton. A nondeterministic finite
automaton is a finite state machine where for each pair (state, input symbol)
there may be several possible next states. This means that for each pair (state
of a DecSerFlow model, executed activity) there may be several possible next
states of the DecSerFlow model. This is a problem because, given a execution
history, it is not always possible to pinpoint the current state in the automaton.
Second, algorithms such as the one presented in [10] construct a finite automaton
for infinite words. Because we assume that a service will eventually finish with
the execution, we have to use an automaton that can read finite words.

4.1 Executing a Non-Deterministic Automaton

In this section we describe a simple algorithm that can be used to successfully
execute a non-deterministic automaton in the context of the execution of a Dec-
SerFlow model. We use a simple example of a model with three activities, as
shown in Figure 7(a). This model consists of activities curse, pray, and bless
and a constraint response between activities curse and pray. All three activities
can be executed an arbitrary number of times because there are no “existence”
constraints to specify cardinalities of activities. Constraint response between ac-
tivities curse and pray specifies that, every time a person curses, (s)he should
eventually pray after this.

17

(a) model (b) automaton

p2p1 p2

!curse

pray pray

true true

curse pray

bless

response

Fig. 7. A simple DecSerFlow model.

For this model we construct the automaton [10], as shown in Figure 7(b).
This automaton consists of two states: p1 (accepting and initial state) and p2.
In the beginning we assume the automaton to be in the initial state p1. There
are three transitions possible from this state: (1) transition with the label pray is
applied when the activity pray is executed, (2) transition with the label !curse is
applied when activities pray or bless are executed, and (3) transition true leads
to the state p2 and is applied when any of the activities is executed. In the state
p2 two transitions are possible: (1) transition with the label true is applied when
any of the three activities are executed and (2) transition pray leads to the state
p1 and is applied when the activity pray executes.

In a simplified case of a deterministic automaton, we would execute the
model by checking at which state the automaton currently is, i.e., we would
constantly store the information about the current state of the automaton. If
the automaton is in an accepting state, the constraint(s) are fulfilled and vice
versa. When executing an activity, the automaton would simply move to the
next state by a transition that can be applied for that activity. When executing
an activity in the case of a non-deterministic automaton, there can be multiple
possible next states to move to. The automaton shown in Figure 7(b) is a non-
deterministic automaton. Take, for example, the situation when the automaton
is in the state p1 and the activity pray executes. In this case (at the state p1),
we could apply any of the transitions pray (the automaton remains in the state
p1), !curse (the automaton remains in the state p1), or true (the automaton
changes the state to p2) - this is a non-deterministic situation. Because we use
the current state of the automaton to determine if the constraint(s) are fulfilled
or not and the next possible activities, the information about the current state
of the automaton is important.

A simple solution for the execution of a non-deterministic automaton is to
consider a set of possible current states3 instead of a single current state. In
the situation described above (when the activity pray is executed in the state
p1) we would consider the automaton to transfer to the set of possible states
{p1,p2}. We take the optimistic approach and consider an automaton to be in
an accepting state if any of the states in the set of current possible states is an
accepting state of the automaton. Figure 8 shows the algorithm for the execution
of a non-deterministic automaton. We use two data types: (1) state consists
3 This set can have at most all states of the automaton.

18

of an array of incoming transitions and an array of outgoing transitions and
(2) transition has a label (e.g., !curse), source state and target state. Function
nextState generates an array of states (a set of possible next states) given the
array (set) of current possible states and the activity name. This function loops
through the array of current states. For each current state it loops through all
the outgoing transitions. For each of the outgoing transitions it checks is the
label of the transition complies with the activity name. If (1) the activity is
accepted by the transition label and (2) the target state of the transition is not
in the array of the next states, the target state of the transition is added to the
array of the next states.

1 State[] nextState(State[] current, String activity){
2 State[] next;
3 for i = 0 to current.length - 1 do{ // Look at all current possible states.
4 State curr = current[i]; // For every current state
5 for j = 0 to curr.out.length - 1 { // look at all out-transitions.
6 Transition out = curr.out[j]; // For every out-transition,
7 if (out.label parses activity) // if the out-transition suits the activity,
8 then if (out.target not in next) // if the target state is not already in the set of new possible states
9 then next = next + out.target; // add the target state to the set of new possible states.
10 }
11 }
12 return next;
13 }

Transition{
 String label;
 State source;
 State target;
}

State {
 Transition[] in;
 Transition[] out;
}

Fig. 8. Execution of a non-deterministic automaton.

Table 1 shows the execution of the automaton shown in Figure 7 (b). At the
beginning, the set of possible states contains all initial states, which is in this
case {p1}. For example, if activity bless is executed in the initial state, then
the automaton could apply transition !curse (and stay in the state p1) or it
could apply transition true (and move to the state p2). Thus, if the activity
bless is executed when the automaton is in a state in {p1} (i.e., the initial set
of possible states), the automaton can move to any state in the the set of new
possible states {p1,p2}. If the automaton is, for example, in the set of possible
states {p1,p2} and activity bless is executed, the automaton transfers to the
set of possible states {p1,p2} that is formed as intersection of sets of possible
states for each of the starting states p1 ({p1,p2}) and p2 ({p2}). Since p1 is
the accepting state of the automaton in Figure 7 (b), we consider the execution
of the DecSerFlow model from Figure 7 (a) to be correct (i.e., all constraints
are fulfilled) if the set of current possible states contains the state p1. Thus, we
consider the model to be executed correctly, if the set of current possible states
of the automaton is either {p1} or {p1,p2}.

19

Table 1. Execution of the non-deterministic automaton in Figure 7

automaton automaton

possible states possible states

nr. from activity to

1 {p1} bless {p1,p2}
2 {p1} curse {p2}
3 {p1} pray {p1,p2}
4 {p2} bless {p2}
5 {p2} curse {p2}
6 {p2} pray {p1}
7 {p1,p2} bless {p1,p2}
8 {p1,p2} curse {p2}
9 {p1,p2} pray {p1,p2}

4.2 Executing Finite Traces

The algorithm presented in [10] is originally dedicated for model checking of con-
current systems. Because these systems are not designed to halt during normal
execution, the resulting automaton is an automaton over infinite words (traces,
runs). An infinite trace is accepted by the automaton [10] iff it visits an accept-
ing state infinitely often. This type of acceptance cannot be applied for the case
of service execution, because we require that such an execution will eventually
complete.

There are two strategies that can enable checking of the acceptance of an
finite trace in an automaton generated by [10]: (1) we can introduce special
invisible “end” activity and constraint in a DecSerFlow model before the au-
tomaton is created or (2) we can adopt a modified version of this algorithm,
which reads finite words (traces, runs) [11].

In the first strategy we use the original algorithm for the generation of au-
tomata, but we slightly change the DecSerFlow model before creating the au-
tomaton. To be able to check if a finite trace is accepting, we add one “invisible”
activity and one “invisible” constraint to every DecSerFlow model and then
construct the automaton. With this we specify that each execution of the model
will eventually end. We introduce an “invisible” activity e, which represents
the ending activity in the model. We use this activity to specify that the ser-
vice will end - the termination constraint. This constraint has the LTL formula
3e ∧ (2(e −→ ©e)), and it specifies that: (1) the service will eventually end -
the “invisible” activity e will eventually be executed, and (2) after this activity,
no other activity will be executed but the activity e itself, infinitely often. Take,
for example, a simple DecSerFlow model with one constraint existence(receive),
(i.e., 3receive), which specifies that the activity receive will execute at least
once. To execute this model we first add the termination constraint and con-
sider a conjunction of these two constraints: 3receive ∧ 3e ∧ (2(e −→ ©e)).
This conjunction ensures that the trace will have the prefix required by the
original DecSerFlow model and an infinite suffix containing only the “ending”

20

activity e. The whole conjunction is then translated into an automaton using the
original algorithm [10]. We check the acceptance of the finite trace (prefix) of
the original DecSerFlow model by checking if the automaton is in a so-called end
state: (1) if the automaton is in an accepting state and (2) if from this moment
an accepting state can be visited infinitely often only by executing the “ending”
activity e. To prevent deadlocks, the automaton is purged (before the execution)
from the states from which none of the end states is reachable.

As the second strategy, we can use a modification of the original algorithm.
The original algorithm for translating LTL formulas to Buchi automatons [10] is
modified to be used for verification of finite executions of software programs [11].
The algorithm for translating LTL formulas into automatons over finite words
introduces a change into the acceptance criteria of the original algorithm [11].
However, this algorithm assumes that any program would have to start exe-
cuting, i.e., it does not consider empty traces. Therefore, an initial state is not
accepting in some cases where it should be accenting for an empty trace. How-
ever, we assume that an “empty” execution of a DecSerFlow model (that does
not violate any constraint) is in principle an accepting execution. Therefore, we
introduce an “invisible” initial activity init. Using LTL we require this to be the
first activity. Moreover, to any execution sequence we add a prefix containing
one init activity, i.e., before the service can start, activity init is automatically
executed. After this, it is possible to determine if the state where no activities
have been executed (empty trace) is in an accepting state or not.

After completing the DecSerFlow editor, we are currently experimenting with
different ways in which we can build useful automatons for enactment. Since we
are using LTL not just for analysis but as the care technology for the engine, we
also have to address issues such as performance and reliability.

5 Conclusion

This paper advocated a more declarative style of modeling in the context of web
services. Therefore, we proposed a new, more declarative language: DecSerFlow.
Although DecSerFlow is graphical, it is grounded in temporal logic. It can be
used for the enactment of processes, but it is also suited for the specification of
a single service or a complete choreography.

Besides being declarative, the language is also extendible, i.e., it is possible to
add new constructs without changing the core of the language. We have devel-
oped a graphical editor to support DecSerFlow. This editor allows users to spec-
ify service flows. Moreover, the user can add user-defined constraint templates
by simply selecting a graphical representation and providing parameterized se-
mantics in terms of LTL. Currently, we are working on an engine that is able to
support enactment and monitoring. If a constraint is used for enactment, it is
impossible to permanently violate a constraint because the system will not allow
activities that violate this constraint. If a constraint is used for monitoring, the
system will allow the violation of this constraint. However, the engine will issue
a warning and log the violation. The automatic construction of an automaton

21

suitable for enactment and on-the-fly monitoring is far from trivial as shown in
Section 4.

There is also a very interesting link between DecSerFlow and process mining
[6]. In [3] we showed that it is possible to translate abstract BPEL into Petri
nets and SOAP messages exchanged between services into event logs represented
using our MXML format (i.e., the format used by ProM www.processmining.
org). As a result, we could compare the modeled behavior (in terms of a Petri
net) and the observed behavior (in some event log) using the conformance checker
[18]. A similar approach can be followed by using the LTL checker in ProM [1].
Using the LTL checker it is possible to check LTL formulas over event logs (e.g.,
monitored SOAP messages). In principle it is possible to use the LTL formulas
generated based on the DecSerFlow specification and load them into the LTL
checker in ProM. This allows the users of ProM to specify constraints graphically
rather than using the textual language that is used now.

References

1. W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process Mining and
Verification of Properties: An Approach based on Temporal Logic. In R. Meers-
man and Z. Tari et al., editors, On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,
CoopIS, DOA, and ODBASE 2005, volume 3760 of Lecture Notes in Computer Sci-
ence, pages 130–147. Springer-Verlag, Berlin, 2005.

2. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, H.M.W. Ver-
beek, and P. Wohed. Life After BPEL? In M. Bravetti, L. Kloul, and G. Zavattaro,
editors, WS-FM 2005, volume 3670 of Lecture Notes in Computer Science, pages
35–50. Springer-Verlag, Berlin, 2005.

3. W.M.P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H.M.W. Verbeek.
Choreography Conformance Checking: An Approach based on BPEL and Petri
Nets (extended version). BPM Center Report BPM-05-25, BPMcenter.org, 2005.

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

5. W.M.P. van der Aalst and M. Pesic. Specifying, Discovering, and
Monitoring Service Flows: Making Web Services Process-Aware.
BPM Center Report BPM-06-09, BPM Center, BPMcenter.org, 2006.
http://www.BPMcenter.org/reports/2006/BPM-06-09.pdf.

6. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

7. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Standards proposal by BEA
Systems, International Business Machines Corporation, and Microsoft Corpora-
tion, 2003.

8. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

22

9. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in Property Specifications
for Finite-State Verification. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 411–420, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

10. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-The-Fly Automatic
Verification of Linear Temporal Logic. In Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification XV,
pages 3–18, London, UK, 1996. Chapman & Hall, Ltd.

11. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE’01), pages 412–416. IEEE
Computer Society Press, Providence, 2001.

12. K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Proceedings
of the 16th IEEE International Conference on Automated Software Engineering
(ASE’01), pages 135–143. IEEE Computer Society Press, Providence, 2001.

13. K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Pro-
ceedings of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2002), volume 2280 of Lecture Notes
in Computer Science, pages 342–356. Springer-Verlag, Berlin, 2002.

14. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, Massachusetts, USA, 2003.

15. E.M. Clarke Jr., O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts and London, UK, 1999.

16. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Services
Choreography Description Language, Version 1.0. W3C Working Draft 17-12-04,
2004.

17. M. Pesic and W.M.P. van der Aalst. A Declarative Approach for Flexible Business
Processes Management. In BPM 2006 Workshops: International Workshop on
Dynamic Process Management (DPM 2006), Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2006.

18. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin,
2006.

19. J. Snell. Automating business processes and transactions in Web services: An
introduction to BPELWS, WS-Coordination, and WS-Transaction. http://www-
128.ibm.com/developerworks/webservices/library/ws-autobp/, June 2006.

20. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of
Web Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W.
Liddle, T.W. Ling, and P. Scheuermann, editors, 22nd International Conference
on Conceptual Modeling (ER 2003), volume 2813 of Lecture Notes in Computer
Science, pages 200–215. Springer-Verlag, Berlin, 2003.

23

