
Modeling and Verification of a Protocol for

Operational Support Using Coloured Petri Nets

Michael Westergaard� and Fabrizio M. Maggi��

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

{m.westergaard,f.m.maggi}@tue.nl

Abstract. In this paper, we describe the modeling and analysis of a
protocol for operational support during workflow enactment. Operational
support provides online replies to questions such as “is my execution
valid?” and “how do I end the execution in the fastest/cheapest way?”,
and may be invoked multiple times for each execution.

Multiple applications (operational support providers) may be able to
answer such questions, so a protocol supporting this should be able to
handle multiple providers, maintain data between queries about the same
execution, and discard information when it is no longer needed.

We present a coloured Petri net model of a protocol satisfying our
requirements. The model is used both to make our requirements clear by
building a model-based prototype before implementation and to verify
that the devised protocol is correct.

We present techniques to make analysis of the large state-space of the
model possible, including modeling techniques and an improved state
representation for coloured Petri nets allowing explicit representation of
state spaces with more than 108 states on a normal PC.

We briefly describe our implementation in the process mining tool
ProM and how we have used it to improve an existing provider.

1 Introduction

In business process management, operational support [10] is the capacity to pro-
vide users with recommendations about actions to be taken in order to arrive
at a goal. In this paper, we aim at extending an existing infrastructure for ope-
rational support to allow stateful communication between a client and a set of
operational support providers. We specify our design using a coloured Petri net
model to define the protocol and to get a firm idea of our requirements. After-
ward, we use state space analysis to verify that the devised protocol is correct.
Finally, we use the model as blueprint for implementation.
� This research is supported by the Technology Foundation STW, applied science

division of NWO and the technology program of the Dutch Ministry of Economic
Affairs.

�� This research has been carried out as a part of the Poseidon project at Thales under
the responsibility of the Embedded Systems Institute (ESI). This project is partially
supported by the Dutch Ministry of Economic Affairs under the BSIK program.

L.M. Kristensen and L. Petrucci (Eds.): PETRI NETS 2011, LNCS 6709, pp. 169–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

170 M. Westergaard and F.M. Maggi

Operational support allows a number of queries: simple, compare, predict , and
recommend . A client sends a query and a partial execution trace of a workflow,
and gets a response to the query. In this paper we abstract away the actual con-
tents of the queries, so suffice to say that these four types represent increasingly
complex queries, where the simplest kind allows clients to ask diagnostics about
the current execution (such as whether the current execution is valid) and the
more complex queries allow clients to ask for an optimal strategy for a desired
goal (such as completing an execution as fast as possible).

ProM

OS Service

O
S

 P
ro

vi
d

er
 1

Client

O
S

 P
ro

vi
d

er
 n

...

O
S

 P
ro

vi
d

er
 2

Workflow
System

Fig. 1. Existing operational
support architecture

An infrastructure for operational support is al-
ready implemented in the process mining tool
ProM [9]. It is shown in Fig. 1. A Client commu-
nicates with a Workflow System and with the op-
erational support service (OS Service; OSS in the
following). The OSS forwards requests to a num-
ber of operational support providers (OS Providers;
providers in the following), which may implement
different algorithms, and sends back replies.

The major problem with this implementation
is that if a client provides the OSS with a trace
and later with an extension, it is often possible to
reuse a lot of the first computation, but as the current implementation is state-
less, this is not possible. This can be addressed by making the OSS stateful, so
the partial trace and results of any computation performed on it can be stored
in a session. Statefulness can be implemented by each provider individually but
this would be doubling a lot of effort, and we instead propose to let the OSS
handle sessions for all providers, including session management such as serializing
sessions on service shutdown and session garbage collection on client shutdown.
Our aim is to put all complexity of session handling inside the OSS, so clients
and providers remain simple (as we have more of them but only one OSS).

Our initial specification for the new operational support was as vague as “op-
erational support with sessions”. Rather than starting an implementation from
this vague definition or making a more detailed textual specification, we decided
to make an executable specification as a coloured Petri net (CPN) [6] model.
The resulting CPN has been useful, both as a specification and as an executable
prototype for verification of correctness of the devised protocol. After construct-
ing the model, we had to address the problem that the state-space of the model
was very large (exhausted memory around 105 − 106 states). Model-alterations
and implementation of a more efficient state representation allowed us to analyze
the model with 107 − 108 states, enough for this case. Modeling revealed several
under-specified parts and verification revealed further problems (memory leaks
and dead-locks), which were found and fixed before implementation started.

The contribution of this paper is three-fold: first, we present a viable proto-
col for operational support with sessions, second, we demonstrate that coloured
Petri nets can be used for both making an abstract idea of a protocol more con-
crete and for verifying that the final design is correct even though the resulting

Modeling and Verification of a Protocol for Operational Support 171

state-space is very large, and, third, we present a very efficient state represen-
tation for CPNs. We have spent around 1 man week on the construction of the
model and around 2 man weeks on implementing a new state space analyzer.

The rest of this paper is structured as follows: in the next section, we provide
the background needed to understand the rest of this paper. In Sect. 3, we
present the developed model, and in Sect. 4, we sum up the analysis phase and
the required fixes to the model. In Sect. 5, we outline an implementation of the
devised protocol and its advantages for a real-life provider. Finally, in Sect. 6,
we draw our conclusions and provide directions for future work. The reader is
assumed to have a basic knowledge of coloured Petri nets but no prior knowledge
of operational support is assumed.

2 Background

In this section we briefly introduce coloured Petri nets (CPNs) and the old oper-
ational support service (OSS). CPN is a high-level Petri net formalism, extend-
ing standard Petri nets. CPNs are bipartite directed graphs comprising places,
transitions and arcs, with inscriptions and types allowing tokens to be distin-
guishable. In Fig. 6 we see (part of) a CPN. Places are ovals (e.g., Working)
and transitions are rectangles (e.g., Check). Places have a type (e.g., CLIEN-
TxSESSIONID) and can have an initial marking which is a multi-set of values
(tokens) of the corresponding type. Arcs contain expressions with zero or more
free variables .

We call a transition and assignment of values to all its free variables a bind-
ing element or binding (e.g., Check with c=1, sid=2, t1=[] and trace=[] written
Check〈c=1,sid=2,t1=[],trace=[]〉). An arc expression can be evaluated in a bind-
ing using the assignments, resulting in a value (e.g., (1,2) on the arc from Working
to Check in the previous binding). A binding is enabled if all input places contain
at least the tokens prescribed by evaluating the arc expressions (in the example
no binding elements are enabled; if Working contained a token (1,2) and Trace
a token (1, ([],[])) the binding Check〈c=1,sid=2,t1=[],trace=[]〉 would be). An
enabled binding can occur , removing the corresponding tokens on input places
and creating new tokens on output places (in the example, the binding would
among others remove the token (1,2) from Working and move it to Waiting).

CPNs can contain multiple modules (or pages). The interface of a module
is described using port places, places with an annotation In, Out, or I/O (e.g.,
Working is a port place and Waiting is not). A module can be represented using
a substitution transition, which is a rectangle with a double outline (e.g., Query
in Fig. 5). Places connected to a substitution transition are called socket places
and are connected to port places using port/socket assignments. We use the
convention that places in a port/socket assignment share the same name.

2.1 Operational Support Service

We have already introduced the basic operation of the old operational sup-
port service (OSS) in Sect. 1, so instead of repeating that, we focus on a single

172 M. Westergaard and F.M. Maggi

provider, the Declare Monitor, and stress some of the problems that the old
OSS encountered in this provider. In Sect. 5, we show how these issues have
been addressed in the new implementation.

ReceivePayment

ReceiveOrder

SendInvoice

ArchiveOrder

chain response

response

Fig. 2. Example Declare model

Monitoring Declare Models. The De-
clare Monitor takes as input a Declare
model [8] consisting of events and con-
straints on the events. In Fig. 2 we see
an example Declare model of a selling
process. Here ReceivePayment must be di-
rectly followed by SendInvoice (expressed by the constraint chain response) and
ReceiveOrder must be eventually followed by ArchiveOrder (response).

The provider receives partial traces from clients (e.g., different executions of
the selling process) and monitors the behavior of these w.r.t. the Declare model.
When an event occurs, the Declare Monitor associates to each constraint of the
Declare model one of the states: satisfied , pending, or violated . A constraint
is satisfied if it is currently not violated. The pending state indicates that a
constraint is currently violated but can become satisfied later. This is e.g. the
case for constraints waiting for a specific event. Finally, a constraint is violated
if it is currently violated and can never become satisfied again.

In Fig. 3, a client for the Declare Monitor is shown. When event ReceiveOrder
initially occurs, response becomes pending (waiting for the event ArchiveOrder).
ArchiveOrder never occurs in the trace so, when the execution completes, the con-
straint is violated. The constraint chain response is initially satisfied. When event
ReceivePayment occurs, it becomes pending (waiting for SendInvoice). When
SendInvoice occurs (immediately after ReceivePayment) the constraints is sat-
isfied again. When event ReceivePayment occurs again, it is not followed directly
by SendInvoice and the constraint is violated.

The first issue identified in the existing OSS is that when a client sends a
request, the OSS unconditionally sends the request to all providers, regardless
of whether they can handle it or not. Second, any information needed by the
provider to perform analysis must be specified when the provider is started, so
clients cannot customize a provider. For instance, in the Declare Monitor, all the
clients use the Declare model specified when the provider is started, so a single
server cannot monitor different processes. Third, the old protocol is state-less, so
a provider receives all information related to a client in each request. Therefore,
the Declare monitor is forced to check the entire partial trace statically every

Fig. 3. Declare Monitor client

Modeling and Verification of a Protocol for Operational Support 173

time, making run-time monitoring impossible (and impractical to simulate as
the start-up cost of the Declare monitor is very large). Finally, clients cannot
inform providers that an execution is completed. For the Declare Monitor, this
information is crucial to report pending constraints as violated when execution
ends.

3 Model of the New Protocol

We wish to extend the existing operational support service (OSS) so it supports
sessions with persistent data between calls from the same client instance. We
want to preserve a loose coupling between client and provider, but we still want
to be able to make an intelligent pairing, so a client instance and a provider are
only paired if the provider is able to provide meaningful responses to queries
from the client.

The basic idea of the protocol is that a client sends a CREATE SESSION
message to the OSS. The OSS queries all available providers if they wish to
be attached to the session, and the OSS responds back to the client with a
SESSION CREATED message. The client now sends CHECK messages connected
to a session, which are distributed to all providers attached to the session,
and an aggregate result is returned to the client in a CHECKED message. A
client can send a CLOSE SESSION message to the OSS, which is distributed to
all providers registered with the session, and finally a SESSION CLOSED mes-
sage is returned to the client. Providers may register themselves with the OSS
by a REGISTER PROVIDER message and deregister themselves with a SHUT-
DOWN PROVIDER message. This can happen at any time.

Our focus with this model is on the correctness of the protocol with respect to
session management, so we have abstracted away any data not directly related
to this and made any decision based on data using a non-deterministic choice.
We have build a more detailed model than explained in this paper (explicitly
modeling data and also a backwards compatibility layer). We can switch features
on and off to reflect the different uses of the model (specification and verification)
and for simplicity have chosen to just explain the model used for verification here.
We have chosen to model all processes as terminating (so, for example, once a
client instance has terminated, it will never again become alive to send requests).
The model is rather large and consists of 25 modules and a total of 134 places
and 65 transitions.

Response

CLIENTxRESPONSE

Request

CLIENTxREQUEST

Client

ClientClient

Operational
Support

Operational SupportOperational Support

Fig. 4. Operational support model

The top level of our model is shown in
Fig. 4. We have clients to the left and the
operational support server to the right
(the server comprises the OSS and all
providers). They communicate via two
places, one for sending requests from the
client to the server and one for getting
replies from the server. Requests are tied
to a specific client, effectively modeling

174 M. Westergaard and F.M. Maggi

a bidirectional channel between each client and the server. We assume that no
communication channels lose packets. For most channels we allow participants
to consume any transmitted packet in arbitrary order (more on this later). Our
focus is on the operational support server, but we briefly introduce the client
part to get a better understanding of the environment of the server.

3.1 Client

The model of the clients is shown in Fig. 5. We have folded all clients into a single
net, so all places have a CLIENT component identifying the client. Clients are
assumed to be single-threaded (or at least synchronize around communication
with the server, so each has at most one outstanding message). Clients start in
the Idle state and can Start Session by sending a CREATE SESSION message to
the server, receiving a SESSION CREATED message back and transitioning to the
Working state. In the Working state, a client can either Execute tasks internally
or it can perform a Query to the operational support server. Executing tasks
naturally updates our local view of the execution Trace, and sending a Query
accesses the Trace as well as the communication channels to the server. When
we Close Session, aside from notifying the server, we can either go to the Off-line
state or the Done state. In the Off-line state we can continue Execute tasks, but
we can no longer make queries. From the Off-line state we can Start Session anew
and get back to the Working state. In the Done state, the client does no more
work, and all messages from the server are just Discarded.

c(c, response)

Start
Session

Start Session

CLIENT

Trace

CLIENTxTRACExTRACE

Working CLIENTxSESSIONID

Idle

1`1++1`2

CLIENT

Response
In CLIENTxRESPONSE

Request
Out

CLIENTxREQUEST

Out

In

Start Session

CLIENTxTRACE

Execute
CExecute

Off-line

CExecute

Query

CQueryCQuery

Close Session

Close SessionClose Session

DoneDiscard

P_HIGH

Fig. 5. Client

Modeling and Verification of a Protocol for Operational Support 175

(c, SESSION_CLOSED)

Terminated
Check

Receive
Response

Response
In

Working
I/O

Waiting

I/O

In
CLIENTxRESPONSE

(c, CHECKED (sid, result))

(c, sid)

(c, sid)

(c, sid)

(c, sid)

(c, sid)

(c, sid)

CLIENTxSESSIONID

CLIENTxREQUEST

(c, (t1, trace)) Trace
I/OI/O

(c, (t1 ^^ trace, []))

CLIENTxTRACExTRACE

Request
OutOut

(c, CHECK (sid, trace, WHATEVER))

CLIENTxSESSIONID

Fig. 6. Query module of client

We have modeled all types
of queries as a single action
Check in the query module
(Fig. 6). The Check transi-
tion reads the Trace and trans-
mits a CHECK message to the
server, containing the id of
the session, the part of the
trace currently not sent to the
server, and a query (here just
modeled as the value WHAT-
EVER as we are not interested
in the actual contents but want to model that information is sent). The Trace
actually contains two traces: one for events that have not yet been seen by the
server and one for events that have already been seen by the server. When we
send a message to the server, we move all events from the first to the latter
and only send new events. After executing a query, we go to the Waiting state
and wait for response. From this state, we can Receive Response and go back
to the Working state if we receive a CHECKED message. We may also receive a
SESSION CLOSED message from the server if the server has decided to garbage
collect the session. Here we also go back to the Working state so we can share
the session shutdown (and optional revival) procedure with the successful case.

3.2 Operational Support Server

The operational support server (Fig. 7) consists of an Operational Support Service
(OSS) receiving messages from the client via Request. Requests are handled and
optionally forwarded to one or more Operational Support Providers via Provider
Request. Providers send back responses via Provider Response, and the OSS com-
bines responses corresponding to a request and sends a Response back to the
client containing the aggregated results from all providers. The OSS makes sure
to instantiate and remove Sessions but providers can both read from and write
data to sessions. A session is essentially a representation of the executed trace
(the OSS makes sure this matches the values of the place Trace of Fig. 12 to the
best of its knowledge) and a key/value mapping, allowing providers to store any
named data.

3.3 Operational Support Service

The Operational Support Service (OSS) module is by far the most complicated.
This reflects the desire to put as much functionality (and hence complexity) as
possible inside this module to keep the clients and providers simple. Furthermore,
we have tried to make locking as fine-grained as possible to increase concurrency.
The OSS (Fig. 8) consists of two logical parts: handling communication from the
client (the part of the figure to the left of places Provider Request and Provider
Response) and communication from the providers (the part to the right).

176 M. Westergaard and F.M. Maggi

The simplest part is the provider side, which handles new providers and reg-
isters them (Register Provider) as well as shuts them down (Shutdown Provider).
Together these modules take care of maintaining a view of all registered providers
on AllProviders. These receive input on the Provider Response channel, which is
the channel used for communication from the provider to the OSS. Neither of
these sends responses back to the providers as we do not expect a provider to
be able to receive messages after announcing a shutdown and providers do not
need any response after setup (as we assume that packets are not lost).

The client handling part performs Session Handling and handles Queries from
clients. Both of these activities involve receiving messages on Request, passing
them through to Provider Request, receiving responses on Provider Response and
passing them on to Response. Session Handling maintains all Sessions according to
requests from clients and garbage collection rules. For analysis reasons, we only
allow a limited number of sessions to be created, and the number of Available
Sessions keeps track of how many extra sessions we can create. We furthermore
maintain a database of all currently active session ids on AllSessions (which is

Operational
Support
Provider

Operational Support Provider

Operational
Support
Service

Operational Support Service

Sessions

SESSIONS

Provider
Response

IDxPRESPONSES

Provider
Request

IDxPREQUEST

Request
In

CLIENTxREQUEST

Response
Out

CLIENTxRESPONSE
Out

In

Operational Support Service Operational Support Provider

Fig. 7. Server

Available
Sessions

3

INT

Client
Sessions

CLIENTxSESSIONID

AllSessions

[]

SESSIONIDS

Sessions
I/O SESSIONS

AllProviders

[]

IDS

Response
Out

CLIENTxRESPONSE

Provider
Request

Out
IDxPREQUEST

Provider
Response

In
IDxPRESPONSES

Request
In

CLIENTxREQUEST
In

In

Out

Out

I/O

Session Handling

Service Session Handling

Shutdown Provider

Shutdown Provider

Query

Query

Service Session Handling

Query Shutdown Provider

Discard

DiscardDiscard
Register
Provider

Register ProviderRegister Provider

Fig. 8. Operational support service (OSS)

Modeling and Verification of a Protocol for Operational Support 177

used to allow modules to detect when garbage collection has taken place in the
middle of processing) and a mapping from client ids to session ids on Client
Sessions, which is used to make sure that clients cannot hijack the session of
another client. The Query module receives queries and passes them on to the
correct recipient providers. The client handling part also has a Discard module,
which takes care of requests from clients after we have used up all Available Ses-
sions, and just emulates a session that is created upon request and immediately
garbage collected. This makes sure that clients do not deadlock after the arti-
ficially imposed bound on the number of sessions that can be created has been
reached, and would not exist in an implementation.

Session Handling. Session handling consists of three parts: session setup
(Fig. 9), session tear-down (Fig. 10), and garbage collection (Fig. 11). Session
setup is triggered when a CREATE SESSION message is received. Session setup
shares the layout with all main OSS modules, namely we have input from/out-
put to the client to the left and output to/input from providers to the right,
and state moves from the top to the bottom. Create Session generates a new
session id (sid) using Available Sessions and adds the session to AllSessions and
Client Sessions for later use. We generate a new empty session on Sessions. A
session is a tuple consisting of a session id, a pair of new and old execution
traces (initially both empty), and a mapping from provider id to a set of key/-
value pairs, i.e., a data storage for each provider. We get all providers from All-
Providers. We furthermore inform all providers that the session has been created,
and move to the Pending Setup state noting the client, session id, and providers
from which to expect a response. In the Pending Setup state we receive positive or

Available
Sessions

In INT

3

In

Pending
Setup

CLIENTxSESSIONxIDS

Sessions
I/O SESSIONSI/O

AllProviders
I/O IDS

[]

I/O

Provider
Request

Out
IDxPREQUEST
Out

Request
In

CLIENTxREQUEST
In

Provider
Response

I/O
IDxPRESPONSES
I/O

Response
Out

CLIENTxRESPONSE
Out

AllSessions

I/O SESSIONIDS

[]

I/O

Client
Sessions

I/O

CLIENTxSESSIONID

I/O

Send
Response

Create
Session

[sid > 0]

Setup
Session

[contains ids id]

Cancel
Session

Cancel Session
P_HIGH

Cancel Session

Cancel

[not (contains sids sid)]

P_HIGH

(c, sid,
 remove ids id)

(c, sid, ids)

sid

(c, sid, [])

(c, sid, ids)

ids

IDxPREQUEST.mult (ids, [START sid])(c, CREATE_SESSION)

(c, SESSION_CREATED sid)

(sid, ([], []), IDxMAP.mult (ids, [[]]))(c, sid)

(c, sid)

sid-1

sids

add sids sid

(c, sid, ids)

sids(c, SESSION_CREATED sid)

(id, (STARTED sid)::presponses)

(id, presponses)

Fig. 9. Session setup module

178 M. Westergaard and F.M. Maggi

sids

(sid, ids)

sidsremove sids sid

(sid, remove ids id)

(sid, ids)

(id, SHUTDOWN_PROVIDER::presponses)

(id, presponses)

(c, sid)

(c, sid)

close (sid, map)

(id, (SESSION_ENDED sid)::presponses)

(sid, (t1, t2), map)

(sid,
 (t1 ^^ t2, []),
 map)

(c, CLOSE_SESSION sid)

(c, SESSION_CLOSED)

(sid, (t1, t2), map)

(sid, all_providers map)

(sid, [])

(sid, remove ids id)

(sid, ids)

Cancel

[not(contains sids sid)]

P_HIGH

Discard

[contains ids id]

P_HIGH

Send
Response

[contains sids sid]

Receive
Confirmation

[contains ids id]

Dispatch
Close

Client
Sessions

I/O
CLIENTxSESSIONID

AllSessions
I/O

[]

SESSIONIDS

Provider
Request

Out
IDxPREQUEST

Provider
Response

I/O
IDxPRESPONSES

Request
In

CLIENTxREQUEST

Response
Out

CLIENTxRESPONSE

Sessions
I/O

SESSIONS

Waiting

SESSIONIDxIDS

In

I/O

I/O

Out

I/O

I/O

Out

Fig. 10. Session tear-down module

negative acknowledgments from all providers associated with a session. If a
provider sends a STARTED message, we successfully Setup Session for that
provider, and remove it from the list of providers for which we expect a reply.
If a provider rejects the session using a SESSION ENDED message or has shut
down, sending a SHUTDOWN PROVIDER message, the session is canceled, and
the entry in the session containing information about that provider is removed.
The details are hidden in a module so as not to clutter the model unnecessarily.
The Provider Response channel is the only channel modeled as an ordered chan-
nel to avoid session response messages building up in the channel if a provider
first accepts a session and then shuts down. When the list of providers we ex-
pect a response from is empty, Send Response becomes enabled and sends a
SESSION CREATED message back to the client. The Cancel transition aborts
session setup if the session has been garbage collected while waiting for response
from providers. Even if we cancel a session, we send a SESSION CREATED mes-
sage to the client, so the client does not have to handle session shutdown during
setup, but only during queries.

Session tear-down (Fig. 10) is handled similarly. When a CLOSE SESSION
message is received, it is matched with Client Sessions, the session trace informa-
tion is updated, all providers are notified, and the OSS transitions to the Waiting
state, noting all providers from which it expects a response. If a provider has
been shutdown, we Discard the entry for the provider and if we Receive Confirma-
tion we do the same. When we no longer wait for response from any providers,
we remove the session from Sessions, AllSessions and Client Sessions, and send
SESSION CLOSED back to the client. As before, we can Cancel the operation if
the session has been garbage collected while waiting for response.

Session garbage collection (GC) (Fig. 11) is modeled in a simple way: we
GC a session if it has no more registered providers. We could make this more
elaborate, e.g., allowing GC to take place if a session has a certain age.

Modeling and Verification of a Protocol for Operational Support 179

[]

SESSIONS

CLIENTxRESPONSE

Discard
Session

[contains sids sid]

remove sids sid

Sessions
InIn

(sid, (t1, t2), [])

sids

AllSessions
I/OI/O

(c, SESSION_CLOSED)
Response

OutOut
CLIENTxSESSIONID

(c, sid)

P_HIGH

Client
Sessions

InIn

SESSIONIDS

Fig. 11. Session GC module

Query. Queries are handled (Fig. 12)
similarly to session handling: when
the OSS receives a query message
(CHECK) it checks the validity in
Client Sessions, updates the trace
in Sessions and dispatches to all
providers. In the Waiting state it is
possible to Gather Results, storing the
aggregate result in Intermediate Re-
sults. Here the aggregation is just
boolean or between truth values returned by providers, (in fact, for analysis,
we configure the model so the produced response is always false and no aggrega-
tion actually takes place). If a provider has terminated the connection, we stop
waiting for a response and Discard Request. We can also Cancel processing if the
session has been garbage collected. When we have received a response from all
providers, we Send Response back to the client.

Provider Handling. Provider handling is responsible for maintaining the All-
Providers view of active providers as well as for removing provider-specific data
from all sessions when a provider shuts down. When a new provider registers it-
self using a REGISTER PROVIDER message (Fig. 13) it is added to AllProviders.
When a provider shuts down, sending a SHUTDOWN PROVIDER (Fig. 14), it
is removed from AllProviders and all provider-specific data is scheduled to be

sids

(c, sid)

(c, sid)

check (sid, map) query(c, CHECK (sid, trace, query))

P_HIGH

Dispatch
Check

Send
Response

[]

CLIENTxSESSIONID

Provider
Request

Out
IDxPREQUEST

IDxPRESPONSES

Response
Out

CLIENTxRESPONSE

SESSIONS

Request
In

CLIENTxREQUEST

SESSIONIDxBOOL

SESSIONIDxIDS

In

Out

Out

Sessions
I/OI/O

(sid, (t1 ^^ t2, trace), map) (sid, (t1, t2), map)

(c, CHECKED (sid, result))

AllSessions
I/OI/O

SESSIONIDS

Provider
Response

InIn

(sid, ids)

(sid, [])

(sid, all_providers map)

P_HIGH

[contains ids id]

(sid, ids)

(sid, remove ids id)

(sid, remove ids id)
[contains ids id]

(id, (SESSION_ENDED sid)::presponses)

(id, (PCHECKED (sid, result))::presponses)
Gather
Results

Waiting

Client
Sessions

I/OI/O

Discard
Request

(sid, ids)

(sid, false)

Intermediate
Results

Cancel

(sid, result)

[not (contains sids sid)]

(sid, result') (sid, result' orelse result)

(sid, result)

(id, presponses)

Fig. 12. Query module

180 M. Westergaard and F.M. Maggi

AllProviders
I/O IDS

[]

I/O

Provider
Response

In
IDxPRESPONSES

In

Register
Provider

add ids id

(id, (REGISTER_PROVIDER)::presponses)

ids

(id, presponses)

Fig. 13. Register provider module

removed from all sessions. As long as
a session containing provider-specific
data for the removed provider exists,
the provider-specific data is Removed.
We note that at no point do we as-
sume that we have exclusive access
to all sessions at once here. When
no more sessions registered with the
provider are available (a session may
be shut down between the shutdown of the provider and the removal of provider-
specific data from that session), the request is Done.

Waiting

IDS

[]

AllSessions
I/O

[]

I/O

SESSIONS

Provider
Response

In
IDxPRESPONSES

In
[contains ids id]

Remove[contains sids sid] Done

[notSubset sids sids']

remove ids id

sids

(sid, (t1, t2), delete map id)

(id, SHUTDOWN_PROVIDER::presponses)

ids

IDxSESSIONIDS

(id,
 remove sids sid)

(id, sids)

SESSIONIDS

Shutdown
Provider

sids
(id, sids)

(id, sids')

Sessions
I/OI/O

(sid, (t1, t2), map)

AllProviders
I/OI/O

Fig. 14. Shutdown provider module

3.4 Operational Support Provider

id

(id, prequest)

DiscardP_HIGH

ID ID

Sessions
I/O SESSIONS

IDxPRESPONSES

Provider
Request

In
IDxPREQUEST
In I/O

Provider
Registration

Provider RegistrationProvider Registration

Session Handlng

Provider Session HandlngProvider Session Handlng

Shut
Down Started

Provider
Response

OutOut

Query

PQueryPQuery

Fig. 15. Provider module

A provider (Fig. 15) performs two
administrative tasks, Provider Reg-
istration and Session Handling, and
one actual task, handling Queries.
Any request to a Shut Down
provider is Discarded.

The provider registration mod-
ule (Fig. 16) implements a sim-
ple life-cycle for providers: they are
initially Stopped and after calling
Register Provider and sending a RE-
GISTER PROVIDER message to the
OSS, they are Started. Finally, they can call Remove Provider to transition to the
Shut Down state and send a SHUTDOWN PROVIDER message to the OSS.

Modeling and Verification of a Protocol for Operational Support 181

Stopped

List.tabulate (3, fn n => n)

IDxPRESPONSES

Register
Provider

id

Started
I/OI/O

id

id

Remove
Provider

Shut
Down

I/OI/O

ID

ID
Provider
Response

I/O
(id, presponses)

(id, [REGISTER_PROVIDER])

(id, presponses^^
 [SHUTDOWN_PROVIDER])

I/O

ID

id

Fig. 16. Provider registration
module

Session handling for providers is simple. It
consists of two parts, session setup (Fig. 17)
and ending sessions (Fig. 18). Setup is han-
dled when a provider receives a START mes-
sage from the OSS. If a provider is Started, it
can choose to Setup Session and respond with
a STARTED message. In the model, we also
store the provider name in the provider-specific
data of the Session. If a provider is no longer
started (i.e., if it has shut down after the OSS
sent the message but before it was handled), it
chooses to Reject Session and reply with a SES-
SION ENDED message. In fact, when a provider
is Started, a non-deterministic choice is made be-
tween Setup Session and Reject Session to sim-

ulate that a provider may be incompatible with the services requested in
the session. An implementation would of course not make a non-deterministic
choice here, but inspect meta-data in the session request and make an in-
formed decision. End Session (Fig. 18) is invoked when an END SESSION mes-
sage is received and sends back a SESSION ENDED message. On termination
a provider has access to the data of the session, and can use that to shut
down resources referred to in the session.

IDxPREQUEST IDxPRESPONSES

ID

Setup
Session

Reject
Session

Provider
Response

I/OI/O

(id, presponses^^
 [SESSION_ENDED sid])

(id, presponses)

(id, presponses)

(sid, (t1, t2), map)

(id, presponses^^[STARTED sid])

(id, START sid)
Provider
Request

InIn (id, START sid)

Started
I/OI/O

id

Sessions
I/OI/O

(sid, (t1, t2),
 set map id "provider" (i2s id))

SESSIONS

Fig. 17. Setup session module

Queries are handled (Fig. 19)
in much the same way: When a
PCHECK message is received, we ac-
cess the Sessions to get provider-
specific data, make sure that the
provider is actually Started and send
a PCHECKED message back to the
OSS. The contents of the response is
generated randomly as a boolean.

4 Analysis

The main goal of the model developed is to serve as specification of the opera-
tional support protocol. We have tested the protocol with all features enabled
using simulation but also in an iterative process using state-space analysis with

IDxPRESPONSESIDxPREQUEST

SESSIONS

End
Session

Provider
Request

InIn

(id, END_SESSION sid) (id, presponses)

(id, presponses^^
 [SESSION_ENDED sid])

Provider
Response

I/OI/O

(sid, (t1, t2), map)

Sessions
I/OI/O

Fig. 18. End session module

182 M. Westergaard and F.M. Maggi

(id, presponses)

id
(sid, (t1, t2), map)

(id, presponses^^
 [PCHECKED (sid, (result andalso result'))])

(id, PCHECK (sid, query))
Check

Started
I/O

ID

Sessions
I/O SESSIONS

Provider
Response

I/O

IDxPRESPONSES

Provider
Request

In
IDxPREQUEST

Fig. 19. Query module of provider

some features disabled. State-space analysis is a common technique for analysis
of formally modeled systems as it promises fully automatic and complete cov-
erage of all behavior of the modeled system. The method suffers from the state
explosion problem, namely that the size of the state-space may be exponential
or even larger in the size of the model. In this case, we also encounter the state
explosion problem. We describe some techniques we have used to reduce the size
of the state-space by means of model alterations, use of transition priorities, and
a very efficient state-representation for general CPNs. Furthermore, we describe
the errors found during analysis and how we have fixed them.

Model Alterations. Model alterations can drastically reduce the size of the
state-space. In our model, the client is allowed to execute arbitrary events an
arbitrary number of times (Fig. 5), causing, among others, the Trace place to be
unbounded and hence the state-space to be infinite. For analysis, we therefore
switch off the ability to execute events. Related to this, we have also abstracted
away most data not having anything directly to do with session handling, and
we have restricted the number of available sessions in Fig. 9.

Aside from standard data-abstraction, we have also used transition priorities
to reduce the state-space. The idea is that sometimes tokens are produced that
will have no effect on the future execution. One such example is packets that
should be discarded, such as packets sent to a shut down provider in Fig. 15.
Instead of non-deterministically discarding the tokens, we discard them imme-
diately. Otherwise, we basically double the size of the state-space for each such
possible token, as we have one copy of each following marking where the token
is discarded immediately and one where it is discarded last (and the two copies
are interconnected by discarding the token at any intermediate point). By dis-
carding the token immediately we only have one copy, reducing the state-space.
We do the same reduction for the Cancel transitions in Figs. 9, 10 and 12, and
for Discard Session in Fig. 11.

New State-space Tool. We used exploratory modeling to get a hold of our
requirements for the protocol. This involved using state-space exploration as a
debugging technique. In order to accommodate that, we used two known tech-
niques: translating liveness-properties to safety properties (really dead-locks)
and using depth-first traversal to find errors as fast as possible and report

Modeling and Verification of a Protocol for Operational Support 183

them on-the-fly. To support that, we could not easily use the built-in state-space
generator in CPN Tools [3], as it generates the state-space in a breath-first
manner and is designed around off-line verification. We could also not directly
use ASAP [11] as it has no support for priorities of transitions.

Safety properties, including dead-lock freeness and bound violations, are a
particularly simple kind of properties that can be determined by looking at each
state in isolation. Not all interesting properties are safety properties, though.
This includes a property like “any session created is eventually torn down if
the client terminates”, which can only be determined by looking at all (possible
infinitely many) execution traces. This can be done on-the-fly but requires repre-
senting the synchronized product of the state-space and a property automaton,
making it infeasible in our case. Instead we translate such interesting proper-
ties to safety properties by making sure that no entities (clients, sessions, and
providers) in the model can be revived after terminating. This ensures the sys-
tem has goal states (all clients and providers have shut down) and we can check
if the system has dead states where not all sessions have been torn down.

As we could not use any off-the-shelf state-space generator, we made our own.
We did not have complicated requirements as we only had to find dead states and
provide error-traces. For this reason we decided to use Access/CPN [12], which
makes it possible to access the CPN simulator used in CPN Tools from Java.
The reason for not implementing this in ASAP instead is that Java compared
to Standard ML (the language used in ASAP) allows finer grained control over
memory, access to more memory, and support for threads.

During initial analysis, we noticed that many places share the same marking
and are often empty. This prompted us to implement an efficient state represen-
tation exploiting this. The final representation is shown in Fig. 20. CPN Tools
already uses a state-representation sharing on the levels of values, markings, and
places [2], but it is structured, requiring several pointers for each place. Instead
we propose using an unstructured representation: store all multi-sets as strings
and enumerate them. We can then store the marking of a place using an integer.
Instead of storing places in a structured way, we enumerate them, allowing us to
represent a state using #places · |integer| bits (plus the overhead of storing the
multi-sets). Rather than of wasting an integer for places with empty markings,
we store a bit-map indicating non-empty places, and only store a marking for
them. Finally, we do not need to use an entire machine word to store an integer.
Instead, we can use just 8, 16, 24, or 32 bits depending on the value of the largest
integer used. We do not need more bits as, if we have more than 232 different
multi-sets, chances are we are not able to analyze the model anyway. We add
to each state two bits indicating the number of bytes used for each integer, re-
sulting the representation shown in Fig. 20. We translate to this representation
using a map from multi-sets to their enumerated value and a counter for the
next multi-set id, inspecting places in a canonical order. We translate from this
representation by additionally having an array storing each multi-set in the en-
try with its id. This representation is generic and has also proved efficient for
other models.

184 M. Westergaard and F.M. Maggi

H Bit-map
Marking index of

non-empty place 1
Marking index of

non-empty place 2
Marking index of

non-empty place j

2 #places 8, 16, 24, or 32 8, 16, 24, or 32 8, 16, 24, or 32

Fig. 20. Compact state representation

We currently store each state in a separate array, imposing an overhead of 16
bytes plus enough to make it a multiple of 8 bytes. In our case, we used a total of
3.18 giga-bytes to represent 68,923,926 states (including overhead and 8.8 mega-
bytes for mappings between multi-sets and ids), for an average of 49.5 bytes per
state. To store these, we use an additional 2–4 pointers (8–16 bytes), for at total
of up to 65.5 bytes per state, allowing us to store this in just over 4 giga-bytes of
memory. We can represent more than 108 states explicitly in memory on a stan-
dard computer with 8 giga-bytes of memory (we can use 32-bits to address up
to 32 giga-bytes of memory by using packed pointers addressing objects aligned
at positions divisible by 8), which we have made use of on several intermediate
models. Without reduction, CPN Tools was able to generate 200,000–300,000
states before exhausting available memory. The amount of memory used by
our compact representation is comparable to other memory-efficient but po-
tentially time-consuming explicit representations of the state-space for coloured
Petri nets. For example, the ComBack [4] method uses 140–150 bytes per state
for realistic examples in the Standard ML implementation. In theory the Com-
Back method uses just 20 bytes per state but does so by imposing a quite heavy
penalty on execution time. Using the sweep-line method [7] it is possible to rep-
resent a state in around 8 bytes plus 8 bytes per transition at the cost of not
easily being able to reconstruct a compactly represented state, a potential cost
of re-exploring parts of the state-space, and a peak memory usage which may be
much larger. These methods can also gain from our compact state representation
for intermediate representations and caches. Other methods for compact state
representation, such as bit-state hashing [5] and hash compaction [13], do not
guarantee full coverage, and there is no good approach for symbolic represen-
tation of fully general CPNs as it is not known how to represent the transition
relation symbolically.

4.1 Errors Found

The non-trivial parts of the protocol consist of the interaction between client
communication and session garbage collection, and handling of provider ter-
mination. For example, a scenario where a client sets up a session, initiates a
query, and during the query one of the providers handling the request terminates,
should be handled by the OSS. As all entities in our model are terminating (i.e.,
cannot be revived after stopping), this corresponds to checking that in all dead
states, all entities are in their shut down state (meaning they did not dead-lock)
and that in all dead states there are no sessions alive (so all sessions can be ter-
minated correctly), no providers are registered (so the OSS does not dead-lock
in an undesired state), and there are no outstanding messages on either of the

Modeling and Verification of a Protocol for Operational Support 185

communication channels (so neither of the components dead-locked or did not
process all messages correctly).

We had several cycles of modeling and analysis, and after fixing some minor
initial modeling problems, we were left with three major bugs. The first bug
was in the interplay between OSS communication with providers and provider
shutdown. The second bug was mainly due to the fact that we modeled all
communication channels without an explicit ordering, and the third bug was
more serious and caused by the interplay between session garbage collection and
provider communication.

The first version of our model did not consider a provider terminating in the
middle of a query or session tear-down, leading to dead-locks in the OSS (dead
states where the OSS was in Waiting in Figs. 10 and 12). Instead the OSS would
wait indefinitely for a SESSION ENDED which would never arrive. We therefore
added Discard transitions in those cases, solving this.

The second problem arose from the fact that the protocol between the provider
and the OSS is one-way. If a provider replies to a query and immediately shuts
down, the OSS would have both an answer and a SESSION ENDED message for
the same provider in Provider Response in Figs. 9, 10 and 12, enabling both the
Discard/Cancel Session transition and the transition for successfully receiving a
response (Setup Session/Receive Confirmation/Gather Results). We could fix this
by adding an explicit response for each message to the provider, but this would
unnecessarily clutter the model. As we expected to implement the protocol over
TCP (which ensures in-order delivery of messages), we instead modeled this
channel as first-in/first-out ordered, thereby fixing the problem. To keep the
model simpler, we do not impose this on the remaining channels.

Initially, we did not have Cancel transitions on the OSS components in Figs. 9,
10 and 12. If a client made a request, registered one provider, made a query, and
then the provider shut down (causing the session to be garbage collected), the
OSS would be stuck in the Waiting state. This third problem can occur in various
forms for all three modules, and is fixed by adding the AllSessions place main-
taining a view of all sessions not garbage collected and using that information
to Cancel a request if necessary. Our initial solution had the Cancel transitions
explicitly notify clients that a request was canceled, but this could lead to stale
messages in the communication channels if garbage collection (Discard Session
in Fig. 11) also sent a SESSION CLOSED message, so that was removed.

The model presented in the previous section is the final model which has
been analyzed and verified to be without errors. The presented model has 2
dead states. In them, all clients are in the Done state, all providers are Shut
Down and both AllProviders and AllSessions contain empty lists. Available Sessions
contains either 0 or 1, corresponding to the number of unused session identifiers
in the model (each client has to consume at least one session). All other places
are empty. These dead states therefore exactly exhibit the desired behavior: no
clients or providers are stuck, all sessions are removed, and all channels are
empty. Analysis has fixed three problems in the model; two of these would most
likely also have shown themselves in an implementation and one made an implicit

186 M. Westergaard and F.M. Maggi

assumption explicit in the model. This is of course only a single instance of the
model, but we have also verified it for other configurations, and as the model has
no limits pertaining to the configuration, we are confident the protocol works in
all configurations.

5 New Implementation

We have implemented the model described in Sect. 3 and analyzed in Sect. 4 as
a service in the process mining tool ProM [9]. The entire implementation was
done by one person in two days.

A provider has to implement the interface in Figure 21. The interface shown
is slightly simplified as we provide a little more meta-information for session
setup and queries in the implementation, but this is not important for our dis-
cussion. The accept method is invoked whenever a client creates a session. The
session corresponds to a session in the model, and the queryLanguages param-
eter describes which query languages will be used (not modeled). The accept
method returns a boolean indicating whether the provider is willing to handle
the session (corresponds to the STARTED/SESSION ENDED messages). destroy
is called when a session is shut down. The simple, comparison, predict, and rec-
ommend methods implement the four kinds of queries. They are parametrized
with a result type, R, and a query language type L (a query is not necessarily
a string, but can also be structured), and each method takes a session and a
query as parameters as well as a boolean indicating whether the execution is
done (can have impact on the result of queries; for example a Declare process
may have temporarily violated constraints, which is allowed unless the execution
has terminated). Providers may be called with different session parameters from
different threads, so providers should not store data locally between calls, but
instead store all information in the Session object.

The OSS has methods for adding and removing providers, addProvider and
removeProvider, which each take a Provider as parameter. A client class exists
with an interface similar to the Provider in Fig. 21.

Monitoring Declare Models. In the new OSS a client instance and a provider
are paired only if, inspecting the meta-data available in the session request, the
provider chooses to setup the session. This ensures a client is only bound to
providers able to provide meaningful results. Meta-data sent on setting up a

1 public interface Provider extends Serializable {
2 boolean accept(Session session, List<String> queryLanguages);
3 void destroy(Session session);
4
5 <R, L> R simple(Session session, L query, boolean done);
6 <R, L> Prediction<R> comparison(Session session, L query, boolean done);
7 <R, L> Prediction<R> predict(Session session, L query, boolean done);
8 <R, L> Recommendation<R> recommend(Session session, L query, boolean done);
9 }

Fig. 21. Provider Interface

Modeling and Verification of a Protocol for Operational Support 187

session allows clients to customize providers by setting configuration parameters.
For instance, in the Declare Monitor, each client can set the Declare model which
should be used for monitoring, allowing clients executing workflows from different
models to use the same server.

Using sessions, a provider can store case-specific information, such as the
current state of each Declare constraint. Starting from the current recorded
state, the Declare Monitor is able to compute the new state for each constraint
when events occur without replaying the entire partial trace each time. This is
crucial for the implementation of a run-time monitor which is no longer reduced
to an expensive statical checker.

In the new implementation of the OSS, a client can inform the provider that
a trace is completed. The Declare Monitor can use this information to raise a
violation for all those constraints which are in a pending state when the data
stream completes.

6 Conclusion and Future Work

We have presented a new protocol for operational support within business pro-
cess management supporting sessions, thereby alleviating problems found during
development of a real-life provider. The protocol is the result of iterative pro-
totyping and state-space analysis using coloured Petri nets. In addition to the
developed protocol, we believe the techniques developed during the prototyping
are generally applicable. This includes a very compact state representation for
general CPN models, allowing explicit analysis of state-spaces with more than
108 states, and demonstrating that model alterations and use of priorities to re-
duce concurrency reduce the state-space sufficiently. We believe that by building
a prototype using a formal model instead of a textual specification or a direct
implementation has led to a much clearer and better protocol as well as much
faster development. Analysis revealed two major and one minor problems in the
protocol which were fixed before implementation. Using the formal model as
blueprint for the implementation has made the implementation next to trivial,
as evidenced by the implementation time frame of two person days.

Future work includes extending the protocol with a cross-session cache, which
can, e.g., be used by the Declare Monitor to store the representation of a Declare
Model used for monitoring (which is expensive to create). We do not expect this
to have a major impact on the protocol. Furthermore, we have only considered
a single-client/single-case scenario here, where a single client is working on a
single case. It would also be interesting to consider the cases where two or more
clients work on a single case, where a single client works on multiple cases, and
where multiple clients work on multiple (not necessarily the same) cases. This
should be possible by allowing sharing of sessions, which again would require
authentication, and by extending the protocol with a means for a provider to
easily consider multiple sessions at once.

It would be interesting to implement the current compact state representation
in ASAP [11] to evaluate the performance of the representation without the

188 M. Westergaard and F.M. Maggi

overhead of communication between two processes. Also, while we can reduce
the overhead per state a bit more, we do not believe that we can explicitly
represent states much smaller than now. It would be interesting to instead use
a symbolic representation (even if states are calculated explicitly), e.g., using
BDDs [1].

Acknowledgment. The authors wish to thank Marco Montali for his input to the
design of the new operational support protocol.

References

1. Bryant, R.E.: Graph Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

2. Christensen, S., Kristensen, L.M.: State Space Analysis of Hierarchical Coloured
Petri Nets. Petri Net Approaches for Modelling and Validation, 1–16 (2003)

3. CPN Tools webpage, http://cpntools.org
4. Evangelista, S., Westergaard, M., Kristensen, L.M.: The ComBack Method Re-

visited: Caching Strategies and Extension with Delayed Duplicate Detection.
ToPNoC 3, 189–215 (2009)

5. Holzmann, G.J.: An Analysis of Bitstate Hashing. FMSD 13, 289–307 (1998)
6. Jensen, K., Kristensen, L.M.: Coloured Petri Nets – Modelling and Validation of

Concurrent Systems. Springer, Heidelberg (2009)
7. Mailund, T., Westergaard, M.: Obtaining Memory-Efficient Reachability Graph

Representations Using the Sweep-Line Method. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 177–191. Springer, Heidelberg (2004)

8. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for
Loosely-Structured Processes. In: Proc. of EDOC 2007, p. 287 (2007)

9. Process mining webpage, processmining.org.
10. Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge,

C.J.: Workflow Simulation for Operational Decision Support. Data Knowl. Eng. 68,
834–850 (2009)

11. Westergaard, M., Evangelista, S., Kristensen, L.M.: ASAP: An Extensible Platform
for State Space Analysis. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009.
LNCS, vol. 5606, Springer, Heidelberg (2009)

12. Westergaard, M., Kristensen, L.M.: The Access/CPN Framework: A Tool for In-
teracting With the CPN Tools Simulator. In: Franceschinis, G., Wolf, K. (eds.)
PETRI NETS 2009. LNCS, vol. 5606, Springer, Heidelberg (2009)

13. Wolper, P., Leroy, D.: Reliable Hashing without Collision Detection. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer, Heidelberg (1993)

http://cpntools.org
processmining.org

	Modeling and Verification of a Protocol for Operational Support Using Coloured Petri Nets
	Introduction
	Background
	Operational Support Service

	Model of the New Protocol
	Client
	Operational Support Server
	Operational Support Service
	Operational Support Provider

	Analysis
	Errors Found

	New Implementation
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

