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Abstract. In today’s fast changing business environment flexible Pro-
cess Aware Information Systems (PAISs) are required to allow companies
to rapidly adjust their business processes to changes in the environment.
However, increasing flexibility in large PAISs usually leads to less guid-
ance for its users and consequently requires more experienced users. To
allow for flexible systems with a high degree of support, intelligent user
assistance is required. In this paper we propose a recommendation ser-
vice, which, when used in combination with flexible PAISs, can support
end users during process execution by giving recommendations on pos-
sible next steps. Recommendations are generated based on similar past
process executions by considering the specific optimization goals. In this
paper we also evaluate the proposed recommendation service, by means
of experiments.

1 Introduction

In todays fast changing business environment, flexible Process Aware Informa-
tion Systems (PAISs) are required to allow companies to rapidly adjust their
business processes to changes in the environment [7]. PAISs offer promising
perspectives and there are several paradigms, e.g., adaptive process manage-
ment [I3], case handling systems [16] and declarative processes [T1,[12] (for an
overview see [I820L13]).

In general, in flexible PAIS it occurs frequently that users working on a case,
i.e., a process instance, have the option to decide between several activities that
are enabled for that case. However, for all flexibility approaches, the user sup-
port provided by the PAIS decreases with increasing flexibility (cf. Fig.[), since
more options are available, requiring users to have in-depth knowledge about
the processes they are working on. Traditionally, this problem is solved by edu-
cating users (e.g., by making them more aware of the context in which a case is
executed), or by restricting the PAIS by introducing more and more constraints
on the order of activities and thus sacrificing flexibility. Both options, however,
are not satisfactory and limit the practical application of flexible PAISs.
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In this paper, we present an approach for intelligent user assistance which
allows PAISs to overcome this problem and to provide a better balance be-
tween flexibility and support. We use event logs of PAISs to gain insights into
the process being supported without involving a process analyst and we pro-
pose a tooling framework to provide continuously improving support for users
of flexible PAISs. At the basis of our approach lie so-called recommendations.
A recommendation provides information to a user about how he should proceed
with a partial case (i.e., a case that was started but not completed yet), to
achieve a certain goal (e.g., minimizing cycle time, or maximizing profit). In this
paper we discuss several methods for calculating log-based recommendations. In
addition, we describe the implementation of our approach as recommendation
service and its evaluation. The remainder of this paper is structured as follows.
In Section 2] we present the requirements and an overview of the recommenda-
tion service. Then, in Section[Blwe define a log-based recommendation service. In
Section Ml we describe the experiment we conducted to evaluate whether recom-
mendations indeed help to achieve a particular goal. Finally, we discuss related
work in Section Bl and provide conclusions in Section

2 Overview

Fig. [ illustrates the envisioned support of users of flexible PAISs through a
recommendation service. In general, each business process to be supported is
described as process model in the respective PAIS. We consider both impera-
tive and declarative process models. In fact, our approach is most useful when
the process model provides the user a lot freedom to manoeuvre, i.e., multiple
activities are enabled during execution of a case. At run-time, cases are cre-
ated and executed considering the constraints imposed by the process model.
In addition, the PAIS records information about executed activities in event
logs. Typically, event logs contain information about start and completion of
activities, their ordering, resources which executed them and the case they
belong to [1].

As illustrated in Fig.[2 the recommendation service is initiated by a request
from the user for recommendations on possible next activities to execute. In this
request, the user sends the recommendation service information about the par-
tially executed case, i.e., (1) the currently enabled activities, and (2) the history
of executed activities, which we call the partial trace. Information about the
partial trace is required because the decision which activities to perform next
for a particular case usually depends on the activities already performed for this
case. In addition, only enabled activities are considered to ensure that no recom-
mendations are made that violate the constraints imposed by the process model.
The recommendation service then provides the PAIS a recommendation result,
i.e., an ordering of recommendations where each recommendation refers to one
activity and some quality attributes (e.g., expected outcome) explaining the rec-
ommendation. Recommendations are ordered such that the first recommendation
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in the list is most likely to help the user achieving his goal, i.e., optimizing a
certain target, such as profit, cost, or cycle time. Different users can have different
targets, resulting in different recommendations.

As an example we describe a fictive process of applying for a building permit
at a town hall. Initially, the employee has to do several tasks; (A) bill registration
fee (B) register the application details, (C) initiate permission procedure, (D)
announce the application in local newspaper, and (F) inform applicant. The
employee can decide in which order to execute these tasks. Ideally, the employee
finishes these as soon as possible. All tasks have a fixed duration, however, tasks
B and C use the same database application and if B is directly followed by C,
then the combined duration of the tasks is much shorter, since there is no closing-
time for B an not set-up time for C, moreover C' can use the data provided by
B, without data re-entry. The recommendation service can guide employees to
execute in the faster order of tasks.

In this simple example the use of recommendations seems to be an overkill
as the user only has to select among a limited set of options. In the presence of
real life flexible processes, with increasing complexity there are so many options
for users, that user support becomes fundamental. At the same time, giving
recommendations based on extracted knowledge from execution logs can provide
knowledge that was not available during the design of the process.

3 Log-Based Recommendation Service

In this section, we present a concrete definition of a log-based recommendation
service for providing users with recommendations on next possible activities to
execute. Recommendations for an enabled activity provide predictive informa-
tion about the user goal, based on observations from the past, i.e., fully com-
pleted traces accompanied by their target value (e.g., cost, cycle time, or profit),
that have been stored in an event log. The log-based recommendation service
requires the presence of an event log that contains such information about cases
that have been executed for a certain process.



54 H. Schonenberg et al.

3.1 Preliminaries

Let A be a set of activities. A* denotes a set of finite sequences over A. A
trace o € A* is a finite sequence of activities, where |o| = n is the length
of the sequence. Sequences are denoted as o = (a1,aq,...,a,) and we denote
Vlgign O’(Z) = a;.

On traces, we define the standard set of operators.

Definition 1 (Trace operators). Leto : {1,...,n} — Aando’ : {1,...,m} —

B be traces with o = (a1, as,...,an) and o’ = (b1, ba, ..., bm).
Prefix 0<o0 = n<mAYi<i<n a; =0
Concatenation 070’ = (aj,a2,...,a,,b1,b2,...,bm)

Membership a4 €0 = Ji<i<n @; =0
Parikh vector par(o)(a) = #o<i<n @i = a.

The Parikh vector par(o)(a) denotes the number of occurrences of @ in a trace
o, e.g., par({a,b,c,a,b,c,d))(a) = 2.

For multi-sets (bags), we introduce standard notation to denote the universe
of multi-sets over a given set. Let S be a set, then the universe of multi-sets
over S is denoted by B(S), with X € B(S), denoted as X : S — N is a multi-
set, where for all s € S holds that X(s) denotes the number of occurrences
of s in X(s). We will use [a,b?, c®] to denote the multi-set of one a, two b’s
and three ¢’s as a shorthand for the multi-set X € B(A) where A = {a,b,c},
X(a) =1,X(b) = 2,X(c) = 3. Furthermore, multi-set operators such as for for
union W, intersection M, and submulti-set C, C are defined in a straightforward
way and can handle a mixture of sets and multi-sets.

Definition 2 (Event log). Let A be a set of activities. An event log L € B(A*)
is a multi-set of traces referring to the activities in A.

Recall that each recommendation contains predictive information regarding the
user goal. For now, we assume that this goal can be captured by a function on a
trace, i.e., each trace o in an event log has a target value (e.g., cost, cycle time,
or profit) attached to it.

Definition 3 (Target Function). Let A be a set of activities and o € A* a
sequence of activities. We define T(c) € RT to represent the target value of the
sequence o.

Note that T is not a function, as similar sequences might have different values
attached to them. However, T is total, i.e. it provides a value for all sequences.

3.2 Recommendations

A recommendation is initiated by a recommendation request, which consists of
a partial trace and a set of enabled activities. Formally, we define a recommen-
dation request as follows.
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Definition 4 (Recommendation request). Let A be a set of activities and
p € A* a partial trace. Furthermore, let E C A be a set of enabled activities.
We call r = (p, E) a recommendation request.

An activity accompanied by predictive information regarding the user goal is
called a recommendation. For each enabled activity, we determine the expected
target value when doing this activity (do), and the expected target value for
alternatives of the enabled activity, i.e., other enabled activities (dont). Precise
definitions of do and dont are given in Definitions[I0land [T} A recommendation
result is an ordering over recommendations.

Definition 5 (Recommendations). Let A be a set of activities and L €
B(A*) an event log over A. Furthermore, let (p,E) be a recommendation re-
quest with E C A, |E| =n and e € E an enabled activity.

— (e, do(e,p, L), dont(e,p,L)) € E x R x R is a recommendation. We use R
to denote the universe of recommendations.

— A recommendation result R = <(€1, do(e1, p, L), dont(eq, p, L)), (62, do(ea, p,
L), dont (e, p, L)), . (en, do(en, p, L), dont (e, p, L))> is a sequence of rec-
ommendations, such that R € R* and Vi<i<j<n €; 7 €;.

The nature of the ordering over recommendations is kept abstract, however, we
provide a possible ordering for a recommendation result in Example [l Section
In the next section we describe how recommendations are generated by the
recommendation service based on an existing event log L.

3.3 Trace Abstraction

When generating log-based recommendations only those traces from the event
log should be considered, which are relevant for determining the predictive infor-
mation of an enabled activity. From those traces the ones with a high degree of
matching with the partial trace execution should be weighted higher than those
with small or no match.

To determine which log traces are relevant to provide recommendations for
a given partial trace and to weight them according to their degree of match-
ing we need suitable comparison mechanisms for traces. Our recommendation
service provides three different trace abstractions based on which traces can be
compared, namely, prefix, set and multi-set abstraction. The prefix abstraction
basically allows for a direct comparison between the partial trace and a log trace.
In practice such a direct comparison is not always relevant, e.g., when the order-
ing, or frequency of activities is not important. Therefore we provide with set
and multi-set two additional abstractions. They are independent of the domain
context, e.g., they do not assume the process to be a procurement process or an
invoice handling process [17].

Definition 6 (Trace abstraction). Let A be a set of activities, L € B(A*) be
an event log and o € L be a trace. o, = o denotes the prefix abstraction of o,
os ={a | a € o} denotes the set abstraction of o and o, = par(c) denotes the
multi-set abstraction of o, i.e., for all a € o holds that 0., (a) = par(c)(a).
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In Section B4] we explain how we determine which log traces are relevant for
obtaining predictive information of an enabled activity. In Section[3.5 we describe
how we calculate the weighting of log traces.

3.4 Support

The relevance of log traces for a recommendation is determined on basis of sup-
port. Typically, traces that are relevant are those that support the enabled ac-
tivity for which the recommendation is computed. What support exactly means
here, depends on the trace abstraction used.

For the prefix abstraction, we say that a log trace o supports enabled activity
e, if and only if e occurs in o at the same index as in the partial trace p, when this
activity is executed. For set abstraction, we consider a log trace o to support the
enabled activity e whenever activity e has been observed at least once in the log
trace. To support an enabled activity e in multi-set abstraction of trace o, the
the frequency of activity e in the partial trace p must be less than the frequency
in the log trace o, i.e., by executing e after p, the total number of e¢’s does not
exceed the number of €’s in o.

Definition 7 (Activity support functions). Let A be a set of activities,
p,0 € A* and enabled activity e € A. We use the predicate s(p,o,¢e) to state
that log trace o supports the execution of e after partial trace p. The predicate is
defined for the three abstractions by:

sp(pyoe) <= oap(lp|+1)=¢e
ss(p,o,e) <= e € oy
sm(p;0,€) <= pm(e) < omle)

The support predicate is used to filter the event log by removing all traces that
do not support an enabled activity.

Definition 8 (Support filtering). Let A be a set of activities and L € B(A*)
an event log over A. Furthermore, let (p, E) be a recommendation request with
p € A* and E C A. We define the log filtered on su]ﬁport of enabled activity

e € E and partial trace p as L{, , = [o € L| s(p,o,e)

Log traces from L?p,e) support enabled activity e and are used for the recom-
mendation of e. Next, we define a weighing function (w) to express the relative
importance of each of these log traces for the recommendation of an enabled
activity e.

3.5 Trace Weight

The support of an enabled activity determines the part of the log that serves as
a basis for a recommendation. However, from the traces supporting an enabled

! Note that o ranges over a multi-set traces.
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activity, not every one is equally important, i.e., some log traces match the
partial trace better than others. Hence, we define weighing functions that assign
a weight to each log trace. The weight of a trace can be between 1 and 0, where a
value of 1 indicates that two traces fully match and 0 that they do not match at
all. The calculation of the degree of matching depends on the trace abstraction.
For prefixes, the weight of a log trace is 1 if the partial trace is a prefix of
the log trace, otherwise, the weight is 0. For the set abstraction, the weight of
the log trace is defined as the fraction of distinct partial trace activities that the
partial trace abstraction and log trace abstraction have in common. The weight
of a trace for the multi-set abstraction is similar to the set-weight, however, the
frequency of activities is also considered.

Definition 9 (Weight functions). Let A be a set of activities and o,p € A*.
We define w(p, o), i.e., the relative importance of a log trace o when considering
the partial trace p as follows:

_f1,if pp <oy _ lpsnosl _ |lom Mom|
wl’(p7 J) - {0 ,otherwise ) wS(p7U) - |,0.5| ’ le(p7 J) - |pm|

3.6 Expected Outcome

Definition [ states that a recommendation for enabled activity e contains pre-
dictive information about the target value. We define the expected outcome of
the target value (do value), when e is executed in the next step, as a weighted
average over target values of log traces from Lf ) the log filtered on support
of e. The target value of each trace from L, is weighted (w) on basis of the

degree of matching with the partial trace.

Definition 10 (do calculation). Let A be a set of activilies, T a target func-
tion, p,o € A*, L € B(A*) and e € E C A an enabled activity. The expected
target value when p is completed by the user after performing activity e next is
defined as:

ZJELS

o wlpo)-7(0)

ZUELS ) W(p, O')

(p,e

do(e,p, L) =

Similarly, we define the expected target value of not doing an enabled activity

. The dont function determines the weighted average over all alternatives of
e, i.e., all traces that do not support the execution of e after p, but do support
any of the alternatives e’ after p.

Definition 11 (dont calculation). Let A be a set of activities, T a target func-
tion, p,o € A*, L € B(A*) and e,¢’ € E C A enabled activities. The expected

2 Note that in both do and dont ¥ ranges over a multi-set of traces.
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Log Weight and support
o cost ws(p,0) ss(p,o,€)
e=Ae=Be=C
ABC 900 0 T T T
DBC 500 0.5 T T
FBC 500 0.5 T T
DFA 1000 1 T
DFB 1500 1 T
DFC 2000 1 T
DFH 1260 1
CCA 1680 0 T T

Fig. 3. Example log, with weight and support values for p = (D, F')

target value when p is completed by the user after not performing activity e next
1s defined as:

Ze’EE\{e} ZGEL‘EP e/)\L?p,e) w(pv J) ’ T(J)
dont(e, p, L) = > > ’ (p.0)
e’€B\{e} fuo€Ly, \\L{,.) wip o

Next, we provide an example calculation for a recommendation, based on a
concrete partial trace, a set of enabled events and a log.

Ezample 1 (Recommendation). Suppose p = (D, F) is a partial trace and E =
{A, B,C'} is the set of enabled activities. Together, they form a recommenda-
tion request (p, E'). The log is given by L = [(4,B,C),(D,B,C),...], with
T((A, B,C)) = 900, 7({D, B,C)) = 500, etc. (cf. Fig. Bl). For convenience, we
also provide the values for support (ss(p,0,¢)) and trace weight (ws(p,o)). For
each log trace, support is denoted by T. The user wants to minimize the cost
and uses set abstraction. The do and dont values for the recommendation are
calculated as follows.

~0-900 + 11000 + 0 - 1680

- 04+140

~0-900 + 0.5 500 + 0.5 - 500 + 1 - 1500

n 04054+0.5+1

do(C.(D. F). L) = 0900+ 0.5 500 + 0.5 500 + 12000+ 01680 _
0+05+05+1+40

_(0.5-500 4 0.5 - 500 + 1 - 1500) + (0.5 - 500 + 0.5 - 500 + 1 - 2000)

N 054+05+1+05+0.5+1

~(1-1000 + 0 - 1680) + (1 - 2000 + 0 - 1680)

N 14+04+14+0

_(1-1000) + (1 - 1500)

- 141

do(A, (D, F), L) = 1000

do(B,(D, F),L) = 1000

dont(A, (D, F), L) = 1125

dont(B, (D, F), L) = 1500

dont(C, (D, F), L) = 1250

The implementation of our recommendation service orders the enabled ac-
tivities on the difference between do and dont, i.e., the bigger the difference,
the more attractive the activity is. The recommendations for the enabled ac-
tivities are (A, 1000, 1125),(B, 1000, 1500) and (C, 1250, 1250), with the dif-
ferences of -125, -500 and 0 respectively. Thus, the recommendation result is
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A.) Experiment Procedure

1.) Log Creation Based on Recommendations (for Object ,,Set-Up Time Model*)

Abstraction Create Traces 3‘%’
abs using Mean
dation Service Trace 1 Cycle Time

X

from log L with
Log L abstraction abs Sample abs / k
with size k —- with 30 observations (*)

(*) Levels used for Log Size k = {5,30,60,120} and abstractions abs = {prefix, set, multiSet} resulting
in 12 samples = {Pref5, Pref30, ...., MultiSet60, MultiSet120}

2.) Random Log Creation (for Object ,,Set-Up Time Model“)

Create Traces %
randomly % Mean
Trace 1 Cycle Time

Random Sample
with 30 observations

Fig. 4. The experiment design

((B, 1000, 1500), (A, 1000, 1125), (C, 1250, 1250)). If the user goal would be to
maximize costs, the order will be reversed.

4 Evaluation Based on a Controlled Experiment

To evaluate the effectiveness of our recommendation service we conducted a
controlled experiment. Section ] describes the design underlying our experi-
ment and Section 2] describes the preparatory steps we conducted. Section
explains the experiment procedure including data analysis. The results of our
experiment are presented in Section L4l Factors threatening the validity of our
experiment are discussed in

In our experiment we use the recommendation service to support the business
process, that has been explained in Section 21 The process has five activities
(A, B,C, D, E) that have to be executed exactly once and can be executed in
any order. Each activity has a cycle time of 10 time units, however, if C' is
directly executed after B, then the cycle time of the trace will be 35 time units
of 50. For the experiment we assume that the user goal is to minimize the cycle
time and that the recommendation service is used for support.

4.1 Experiment Design
This section describes the design underlying our experiment.

— Object: The object to be studied in our experiment are the traces created
for the set-up time model with the help of our recommendation service.

— Independent Variables: In our experiment we consider the log abstraction
and the log size as independent variables. For variable log abstraction we
consider levels abs € {prefiz, set, multiset} (cf Section B3)). Variable Log
size k represents the number of instances in the event log, i.e., the amount
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of learning material based on which recommendations are made. As levels
k € {5,30,60,120} are considered.

— Response Variable: The response variable in our experiment is the cycle

time of a trace created by the recommendation service using a log of a given
size and a given abstraction.

— Experiment Goal: The main goal of our experiment is to investigate

whether changes in the log significantly effect the cycle timdd of the cre-
ated traces given an abstraction. Another goal is to investigate whether the
traces created by our recommendation service yield significantly better re-
sults than randomly created traces.

4.2 Experiment Preparation

This section describes the preparatory steps we conducted for the experiment.

— Implementing the Recommendation Service in ProM. As a prepa-

ration for our experiment we implemented the recommendation service de-
scribed in SectionBlas a plug-in for the (Pro)cess (M)ining framework ProM.
ProM is a pluggable framework that provides a wide variety of plug-ins to ex-
tract information about a process from event logs [19], e.g., a process model,
an organizational model or decision point information can be discovered.
To implement the recommendation service we had to make several exten-
sions to ProM as the recommendation service, in contrast to other plug-ins,
is not a posteriori mining technique, but recommendations are provided in
real-time during process execution. The implementation of our recommen-
dation service is able to provide a process engine with recommendations
on possible next steps knowing the enabled activities and the partial trace.
In addition, the recommendation service provides means to add finished
cases to the event log to make them available for recommendations in future
executions.

— Implementing a Log Creator and Log Simulator. In addition to the

3

4
5

recommendation service we implemented a log creator and log simulator.
While the log creator allows us to randomly create logs of size k for a given
process model, the log simulator can be used to create traces using the rec-
ommendation service with a log of size k and an abstraction abs. The log
simulator takes the constraints imposed by the process model into consid-
eration and ensures that no constraint violations can occur. Thus, the log
simulator can be seen as a simulation of a process engine. Both the log cre-
ator and the log simulator have been implemented in Java using Fitness
as user interface. This allows us to configure our experiments in a fast and
efficient way using a WIKI and to fully automate their execution.

Note that our approach can also be used for costs, quality, utilization, etc. However,
for simplicity we focus on the cycle time only.

The ProM framework can be downloaded from [www.processmining.org.

Fitness Acceptance Testing Framework [fitnesse.org
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4.3 Experiment Execution and Data Analysis

The experiment procedure including the analysis of the collected data is de-
scribed in this section.

— Generation of Data. As illustrated in Fig. @ our experiment design com-
prises two independent variables (i.e., log abstraction abs and log size k). As
a first step a log of size k is randomly created using the log creator, which
is then - in a second step - taken by the log simulator as input to create
traces for each combination of abstractions and log sizes. Traces are created
based on the recommendations provided by the recommendation service de-
scribed in Section Bl The recommendations given by the recommendation
service are used throughout the entire execution of the case whereby the
best recommendation (i.e., the one with the highest difference of do and
dont values, see. Section [3.6)) is taken. For each completed trace the log sim-
ulator records the cycle time. We repeated (n=30) the process of producing
a log and creating a trace using the log simulator with this log as input. In
total we obtained 12 samples covering all combinations of log size levels and
abstraction levels. For example, sample PREF5 represents the sample with
abs = prefirx and k = 5.

In addition to the 12 samples which are created using recommendations,
we created one sample with 30 randomly created traces to compare this
sample with the ones created using the recommendation service.

— Effects of Changes in Log Size and Abstraction. To analyse the ef-
fects of changes in the log size and the selection of a particular abstraction
on the cycle time of the created traces we calculated 95% confidence inter-
vals (CI 95%) on the mean cycle time for each sample. Doing so, we can
say with 95% probability, for a given log size and a given abstraction, that
the cycle time of a created trace will be within the calculated confidence
interval.

If we then compare the confidence intervals of two samples of a given
abstraction (e.g., PREF5 and PREF10) and these intervals do not overlap, we
can assume that the two samples have statistically different cycle times.

— Effectiveness of Abstractions. To investigate whether the traces created
by our recommendation service yield significantly better results than ran-
domly created traces we compared the confidence interval of the random
sample with the confidence intervals of each of the other 12 samples.

4.4 Experiment Results

The results of our experiments are summarized in Figures[BHIU FiguresBH7 depict
the effect of the log size on the mean cycle time for the 12 samples created using
recommendations. In Figures [RB{I0 we compare the different abstractions and the
random strategy for a fixed log size.

— Increasing the Log Size. Figure [} clearly shows the impact of increasing
the log size on the cycle time for prefix abstraction. The mean cycle time
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for sample PREF5 is given by a CI 95% [38.68,44.32] and for samples PREF30,
PREF60 and PREF120 the mean cycle time is 35 (with a standard deviation
of 0), which is also the optimum cycle time. When studying the results
of Fig. [ changing the log size from k = 5 to k = 30 yields a significant
decrease of the cycle time. As the confidence intervals of samples PREF5 and
PREF30 are not overlapping the difference in their cycle times is statistically
significantly different. Further increases in the log size have no effect since
the optimum cycle time has already been found for sample PREF30. Figure [0l
and [[ shows the results for the set and multi-set abstraction. As all intervals
are overlapping we can conclude that there is no significant improvement in
the cycle time for the set and multi-set abstraction.

Comparing the Abstractions. Figure compares randomly created
traces with the samples for prefix, set and multi-set. It can be observed
that the prefix abstraction (i.e., samples PREF5, PREF30 and PREF60) has
significantly better cycle times compared to the random sample and thus
outperforms the random selection strategy. As illustrated in Figure BUI0 the
difference between random selection and prefix abstraction becomes bigger
with increasing log size. The prefix abstraction also outperforms the multi-
set abstraction for all considered log sizes. A comparison of the set and prefix
abstraction reveals that no significant differences exist between PREF5 and
SET5, while PREF30 and SET30 as well as PREF60 and SET60 significantly
differ. Finally, between the samples of the set and multi-set abstraction no
significant differences can be observed.
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In summary, our results show that an increase of the log size does effect the
mean cycle time for the prefix abstraction and that this abstraction significantly
outperforms the random selection strategy. For the set and multi-set abstraction
changes in the log size do not significantly effect the mean cycle time. As these
abstractions cannot exploit the order characteristics of the traces in the log they
do not outperform the random selection strategy.

4.5 Risk Analysis

In the following we discuss factors potentially threatening the validity of our
experiment. In general, it can be differentiated between threats to the internal
validity (Are the claims we made about our measurements correct?) and threats
to the external validity (Can we generalize the claims we made?) [10]. For our
experiment most relevant threats affect the external validity:

— Selection of Process Model. In the selection of the business process for
our experiment constitutes a threat to the external validity of our experi-
ment. Given the properties of the chosen process model, a particular order
of executing activities yields a benefit. As the prefix abstraction considers
the exact ordering of activities, while the set and multi-set abstractions dis-
regard this information, the chosen process model is favouring the prefix
abstraction. For process models with different characteristics other abstrac-
tions might be more favourable. Therefore it cannot be generalized that the
prefix abstraction is always better than the set and multi-set abstraction.
A family of experiments using process models with different characteristics
is needed for generalization. Initial investigations with a business process
which is not order-oriented show that set and multi-set abstraction can per-
form significantly better than random selection.

— Method of Log Creation. For our experiment the method we used for log
creation might constitute another threat to the external validity. We assume
a log that only contains randomly created traces as the input for the log
simulator. Using the simulator we then create, based on this log, an addi-
tional trace considering recommendations. In practice such an assumption
might not always be realistic as a real-life log will most probably contain
a mixture of randomly created traces and traces created using recommen-
dations., i.e., by random/explorative and experience-based ways of working.
First experiments indicate that the degree to which a log contains random
traces compared to traces created based on recommendations also influences
the cycle time. However, like for completely random logs an increase of the
log size has led to decreases in the cycle time, but the slope of the decrease
tends to be steeper for higher ratios of random behaviour in the log. An
extensive investigation of logs with different ratios of random traces will be
subject of further studies.

5 Related Work

The need for flexible PAISs has been recognized and several compet-
ing paradigms (e.g., adaptive process management [13,[22/ 0], case-handling
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systems [16] and declarative processes [I2]) have been proposed by both
academia and industry (for an overview see [20]). In all these approaches the
described trade-off between flexibility requiring user assistance can be observed.

Adaptive PAIS represent one of these paradigms by enabling users to make
structural process changes to support both the handling of exceptions and
the evolution of business processes. Related work in the context of adaptive
PAISs addresses user support in exceptional situations. Both ProCycle [21],[14]
and CAKE2 [J] support users to conduct instance specific changes through
change reuse. While their focus is on process changes, our recommendation ser-
vice assists users in selecting among enabled activities. ProCycle and CAKE2
use case-based reasoning techniques to support change reuse. Therefore sug-
gestions to the users are based on single experiences, (i.e., the most similar
case from the past), while in our approach recommendations are based on the
entire log.

In addition to adaptive process management technology, which allows for
structural change of the process model, and the case-handling paradigm, which
provides flexibility by focusing on the whole case, many approaches support
flexibility by allowing the design of a process with regions (placeholders) whose
contents is unknown at design-time and whose content is specified (Late Model-
ing) or selected (Late Binding) during execution of the tasks (for details see [20]).
Examples of such approaches are, Worklets [2] or the Pockets of Flexibility [15]
approach. Both approaches provide user assistance by providing simple support
for the reuse of previously selected or defined strategies, recommendations as
envisioned in our approach are not considered.

Besides the approaches described above there is a third paradigm for flexible
workflows, which relies on a declarative way of modeling business processes.
As opposed to imperative languages that “procedurally describe sequences of
action”, declarative languages “describe the dependency relationships between
tasks” [6]. Generally, declarative languages propose modeling constraints that
drive the model enactment [I2]. When working with these systems, users have
the freedom to choose between a variety of possibilities as long as they remain
within the boundaries set by the constraints [TIT2]. In the context of declarative
workflows user assistance has not been addressed so far.

In [I7] recommendations are used to select the step, which meets the perfor-
mance goals of the process best. Like in our approach selection strategies (e.g.,
lowest cost, shortest remaining cycle time) are used. However, the recommen-
dations are not based on a log, but on a product data model. [9,[823[4] also
address similarity measures, but unlike these approaches, our approach relies on
observed behaviour rather than information derived from process models.

6 Conclusion

Existing PAISs are struggling to balance support and flexibility. Classical work-
flow systems provide process support by dictating the control-flow while group-
ware-like systems offer flexibility but provide hardly any process support. By
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using recommendations, we aim at offering support based on earlier experiences
but not limit the user by imposing rigid control-flow structures. In this paper we
presented an approach based on recommendations, i.e., based on a process model
providing a lot of flexibility the set of possible activities is ranked based on do
and dont values. The recommendation is based on (1) a configurable abstraction
mechanism to compare the current partial case with earlier cases and (2) a
target function (e.g., to minimize costs or cycle time). The whole approach has
been implemented by extending ProM and can be combined with any PAIS that
records events and offers work through worklists. The experimental results in
this paper show the wvalue of information, i.e., the more historic information
is used, the better the quality of the recommendation. We experimented with
different abstractions and log sizes. Clearly, the performance depends on the
characteristics of the process and the abstraction. However, the experiments
show that traces executed by support of recommendations often outperform
traces executed without such support. This is illustrated by the difference in
performance between the random selection and appropriate guided selection.

Future work will aim at characterizing the suitability of the various abstrac-
tion notions. Through a large number of real-life and simulated experiments we
alm at providing insights into the expected performance of the recommenda-
tion service. Furthermore, we plan to extend our recommendation service such
that in addition to control-flow information, information on data and resources
is considered as well. Moreover, we plan to incorporate more sophisticated ab-
straction and comparison techniques, using available approaches from the field
of data mining. In addition we will investigate the added value to create rec-
ommendations based on models that are extracted from the log, e.g., Markov
Decision Processes.
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