2

Specifying and Monitoring Service Flows:
Making Web Services Process-Aware

W.M.P. van der Aalst and M. Pesic

Department of Technology Management, Eindhoven University of Technology,
P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl,m.pesic@tm.tue.nl

Abstract. BPEL has emerged as the de-facto standard for implementing processes
based on web services while formal languages like Petri nets have been proposed as
an “academic response” allowing for all kinds of analysis. Although languages such
as BPEL and Petri nets can be used to describe service flows, they both tend to
“overspecify” the process and this does not fit well with the autonomous nature of
services. Therefore, we propose DecSerFlow as a Declarative Service Flow Language.
By using a more declarative style, there is no need to overspecify service flows.
The declarative style also makes DecSerFlow an ideal language for monitoring web
services, i.e., using process mining techniques it is possible to check the conformance
of service flows by comparing the DecSerFlow specification with reality. This can
be used to expose services that do not follow the rules of the game. This is highly
relevant given the autonomous nature of services.

2.1 Introduction

Web services, an emerging paradigm for architecting and implementing busi-
ness collaborations within and across organizational boundaries, are currently
of interest to both software vendors and scientists [4]. In this paradigm, the
functionality provided by business applications is encapsulated within web
services: software components described at a semantic level, which can be
invoked by application programs or by other services through a stack of Inter-
net standards including HTTP, XML, SOAP [23], WSDL [24], and UDDI [22].
Once deployed, web services provided by various organizations can be inter-
connected in order to implement business collaborations, leading to composite
web services.

Today, workflow management systems are readily available [7, 58, 68] and
workflow technology is hidden in many applications, e.g., ERP, CRM, and
PDM systems. However, their application is still limited to specific industries
such as banking and insurance. Since 2000, there has been a growing in-
terest in web services. This resulted in a stack of Internet standards (HTTP,



12 W.M.P. van der Aalst and M. Pesic

XML, SOAP, WSDL, and UDDI) which needed to be complemented by a pro-
cess layer. Several vendors proposed competing languages, e.g., IBM proposed
WSFL (Web Services Flow Language) [57] building on FlowMark/MQSeries
and Microsoft proposed XLANG (Web Services for Business Process Design)
[84] building on Biztalk. BPEL [18] emerged as a compromise between both
languages.

The Business Process Ezxecution Language for Web Services (BPELAWS,
or BPEL for short) has become the de-facto standard for implementing pro-
cesses based on web services [18]. Systems such as Oracle BPEL Process Man-
ager, IBM WebSphere Application Server Enterprise, IBM WebSphere Studio
Application Developer Integration Edition, and Microsoft BizTalk Server 2004
support BPEL, thus illustrating the practical relevance of this language. Al-
though intended as a language for connecting web services, its application is
not limited to cross-organizational processes. It is expected that in the near
future a wide variety of process-aware information systems [30] will be realized
using BPEL. Whilst being a powerful language, BPEL is difficult to use. Its
XML representation is very verbose and readable only to the trained eye. It
offers many constructs and typically things can be implemented in many ways,
e.g., using links and the flow construct or using sequences and switches. As
a result, only experienced users are able to select the right construct. Several
vendors offer a graphical interface that generates BPEL code. However, the
graphical representations are a direct reflection of the BPEL code and are not
intuitive to end-users. Therefore, BPEL is closer to classical programming
languages than, e.g., the more user-friendly workflow management systems
available today.

In discussions, Petri nets [78] and Pi calculus [67] are often mentioned as
two possible formal languages that could serve as a basis for languages such
as BPEL. Some vendors claim that their systems are based on Petri nets or Pi
calculus and other vendors suggest that they do not need a formal language to
base their system on. In essence, there are three “camps” in these discussions:
the “Petri net camp,” the “Pi calculus” (or process algebra) camp, and the
“Practitioners camp” (also known as the “No formalism camp”). This was
the reason for starting the “Petri nets and Pi calculus for business processes”
working group [76] in June 2004. More than two years later the debate is still
ongoing and it seems unrealistic that consensus on a single language will be
reached.

This chapter will discuss the relation between Petri nets and BPEL and
show that today it is possible to use formal methods in the presence of lan-
guages like BPEL. However, this will only be the starting point for the results
presented in this chapter. First of all, we introduce a new language DecSer-
Flow. Second, we show that process mining techniques can be very useful
when monitoring web services.

The language DecSerFlow is a Declarative Service Flow Language, i.e., it
is intended to describe processes in the context of web services. The main
motivation is that languages like BPEL and Petri nets are procedural by



2 Specifying and Monitoring Service Flows 13

nature, i.e., rather than specifying “what” needs to happen these languages
describe “how” things need to be done. For example, it is not easy to specify
that anything is allowed as long as the receipt of a particular message is never
followed by the sending of another message of a particular type. DecSerFlow
allows for the specification of the “what” without having to state the “how.”
This is similar to the difference between a program and its specification. (For
example, one can specify what an ordered sequence is without specifying an
algorithm to do so.)

In a service-oriented architecture, a variety of events (e.g., messages being
sent and received) are being logged [6, 73]. This information can be used for
process mining purposes, i.e., based on some event log it is possible to discover
processes or to check conformance [14, 13]. The goal of process discovery is
to build models without a priori knowledge, i.e., based on sequences of events
one can look for the presence or absence of certain patterns and deduce some
process model from it. For conformance checking, there has to be an initial
model. One can think of this model as a “contract” or “specification” and it
is interesting to see whether the parties involved stick to this model. Using
conformance checking it is possible to quantify the fit (fewer deviations result
in a better fit) and to locate “problem areas” where a lot of deviations take
place.

In this chapter we will show that there is a clear link between more declar-
ative languages such as DecSerFlow and process mining. In order to do so, it
is important to look at the roles that process specifications can play in the
context of web services [94, 95]:

e DecSerFlow can be used as a global model, i.e., interactions are described
from the viewpoint of an external observer who oversees all interactions
between all services. Such a model is also called a choreography model.
Note that such a global model does not need to be executable. However,
the model is still valuable as it allows for conformance checking, i.e., by
observing interactions it is possible to detect deviations from the agreed
upon choreography model. Here DecSerFlow is competing with languages
such as the Web Services Choreography Description Language (WS-CDL)
[54].

e DecSerFlow can be used as a local model, i.e., the model that is used to
specify, implement, or configure a particular service. Here DecSerFlow is
competing with languages such as BPEL [18].

As discussed in [94, 95|, it is interesting to link global and local models.
Relating global models (that are produced by analysts to agree on interaction
scenarios from a global perspective) to local models (that are produced during
system design and handed on to implementers) is a powerful way of ensuring
that services can work together. Although DecSerFlow can be used at both
levels, we will argue that it is particularly useful at the global level. Moreover,
we will show that global models can be used to check conformance using
process mining techniques.



14 W.M.P. van der Aalst and M. Pesic

The remainder of this chapter is organized as follows. Section 2.2 describes
the “classical approach” to processes in web services, i.e., Petri nets and BPEL
are introduced and pointers are given to state-of-the-art mappings between
them. Section 2.3 first discusses the need for a more declarative language and
then introduces the DecSerFlow language. In Sect. 2.4 the focus shifts from
languages to the monitoring of services. Finally, there is a section on related
work (Sect. 2.5) and a conclusion (Sect. 2.6).

2.2 Classical Approaches: BPEL and Petri Nets

Before we introduce the DecSerFlow, we focus on two more traditional lan-
guages for the modeling of service flows, i.e., Petri nets and BPEL. Petri nets
are more at the conceptual level and can serve only as a theoretical basis for
the modeling and analysis of service flows. BPEL is emerging as the de-facto
standard for implementing processes based on web services. In this section,
we also discuss the link between Petri nets and BPEL and present two tools:
one to map Petri nets onto BPEL and another to map BPEL onto Petri
nets.

2.2.1 Petri Nets

Petri nets [78] were among the first formalisms to capture the notion of con-
currency. They combine an intuitive graphical notation with formal seman-
tics and a wide range of analysis techniques. In recent years, they have been
applied in the context of process-aware information systems [30], workflow
management [7, 9], and web services [64].

To illustrate the concept of Petri nets we use an example that will be used
in the remainder of this chapter. This example is inspired by electronic book-
stores such as Amazon and Barnes and Noble and taken from [16]. Figure 2.1
shows a Petri-net that will be partitioned over four partners: (1) the customer,
(2) the bookstore (e.g., Amazon or Barnes and Noble), (3) the publisher, and
(4) the shipper. As discussed in Sect. 2.1, Fig. 2.1 can be considered as a
global model, i.e., interactions are described from the viewpoint of an external
observer who oversees all interactions between all services.

The circles in Fig. 2.1 represent places and the squares represent transi-
tions. Initially, there is one token in place start and all other places are empty
(we consider one book order in isolation [7]). Transitions are enabled if there
is a token on each of input places. Enabled transitions can fire by removing
one token from each input place and producing one token for each output
place. In Fig. 2.1, transition place ¢ order is enabled. When it fires one token
is consumed and two tokens are produced. In the subsequent state (also called
marking) transition handle ¢ order is enabled. Note that transitions rec acc
and rec decl are not enabled because only one of their input places is marked
with a token.



2 Specifying and Monitoring Service Flows 15

(@) start
c_order

place_c_order . . . handle_c_order

. alt_publ
f b_order
’ | ] eval_b_order

c_confirm

rec_decl .
c_decline

s_request
req_shipment » | ] eval_s_req

alt_shipper s_decline

- [ ] [ ]s_accept

s_reject
inform_publ
' s_confirm
prepare_b

book_to_s

book_to_c send_book

send_bill

et notification
. . . . notify
. payment
. . . handle_payment
pay

O end

Fig. 2.1. A Petri net describing the process as agreed upon by all four parties (i.e.,
the global model)

Figure 2.1 represents an inter-organizational workflow that is initiated
by a customer placing an order (activity place ¢ order). This customer or-
der is sent to and handled by the bookstore (activity handle ¢ order). The
electronic bookstore is a virtual company which has no books in stock.
Therefore, the bookstore transfers the order of the desired book to a publisher



16 W.M.P. van der Aalst and M. Pesic

(activity place b order). We will use the term “bookstore order” to refer to the
transferred order. The bookstore order is evaluated by the publisher (activ-
ity eval b order) and either accepted (activity b accept) or rejected (activity
b reject). In both cases an appropriate signal is sent to the bookstore. If the
bookstore receives a negative answer, it decides (activity decide) to either
search for an alternative publisher (activity alt publ) or to reject the customer
order (activity ¢ reject). If the bookstore searches for an alternative publisher,
a new bookstore order is sent to another publisher, etc. If the customer re-
ceives a negative answer (activity rec decl), then the workflow terminates. If
the bookstore receives a positive answer (activity ¢ accept), the customer is in-
formed (activity rec acc) and the bookstore continues processing the customer
order. The bookstore sends a request to a shipper (activity req shipment), the
shipper evaluates the request (activity eval s req) and either accepts (activity
s accept) or rejects (activity b reject) the request. If the bookstore receives a
negative answer, it searches for another shipper. This process is repeated until
a shipper accepts. Note that, unlike the unavailability of the book, the unavail-
ability of a shipper cannot lead to a cancellation of the order. After a shipper
is found, the publisher is informed (activity inform publ), the publisher pre-
pares the book for shipment (activity prepare b), and the book is sent from the
publisher to the shipper (activity send book). The shipper prepares the ship-
ment to the customer (activity prepare s) and actually ships the book to the
customer (activity ship). The customer receives the book (activity rec book)
and the shipper notifies the bookstore (activity notify). The bookstore sends
the bill to the customer (activity send bill). After receiving both the book
and the bill (activity rec bill), the customer makes a payment (activity pay).
Then the bookstore processes the payment (activity handle payment) and the
inter-organizational workflow terminates.

The Petri net shown in Fig. 2.1 is the so-called “WF-net” (WorkFlow-net)
because it has one input place (start) and one output place (end) and all
places’ transitions are on a path from start to end. Using tools such as Woflan
[88] or ProM [29], we can show that the process is sound [2, 7]. Figure 2.2
shows a screenshot of the Woflan plug-in of ProM. Soundness means that each
process instance can terminate without any problems and that all parts of the
net can potentially be activated. Given a state reachable from the marking
with just a token in place start, it is always possible to reach the marking with
one token place end. Moreover, from the initial state it is possible to enable
any transition and to mark any place. Using ProM it is possible to prove that
the Petri net shown in Fig. 2.1 is sound, cf. Fig. 2.2.

One can think of the Petri net shown in Fig. 2.1 as the contract between the
customer, the bookstore, the publisher, and the shipper (i.e., global model).
Clearly, there are many customers, publishers, and shippers. Therefore, the
Petri net should be considered as the contract between all customers, publish-
ers, and shippers. However, since we model the processing of an order for a
single book, we can assume, without loss of generality, that only one customer,
one publisher, and at most one shipper (at any time) are involved. Note that



2 Specifying and Monitoring Service Flows 17

SEIE |
Fila Mining Anaysis Comersin Bxpons Wniow  Help
a M @
5] Anatysts - wiotlan Anaysts a1 |
0
[7] Anatysis - Petri net Analysis o @
- == =

Fig. 2.2. Two analyses plug-in of ProM indicate that the Petri net shown in Fig. 2.1
is indeed sound. The top window shows some diagnostics related to soundness. The
bottom window shows part of the state space

Fig. 2.1 abstracts from a lot of relevant things. However, given the purpose of
this chapter, we do not add more details.

Figure 2.3 shows the same process but now all activities are partitioned
over the four parties involved in the ordering of a book. It shows that each of
the parties is responsible for a part of the process. In terms of web services,
we can think of each of the four large-shaded rectangles as a service. The
Petri-net fragments inside these rectangles can be seen as specifications of the
corresponding services (i.e., local models).

It is interesting to point out that in principle multiple shippers could be
involved, i.e., the first shipper may decline and then another shipper is con-
tacted, etc. However, at any point in time, at most one shipper is involved in
each process instance. Another interesting aspect is the correlation between
the various processes of the partners. There may be many instances of the
process shown in area labeled bookstore in Fig. 2.3. However, each instance
is unique and messages passed over the places connecting the bookstore to
the other partners refer to a particular process instance. In general, it is a
non-trivial problem to correlate messages to process instances. See [6, 73] for
a more detailed discussion on correlation.

We will refer to whole diagram shown in Fig. 2.3 as the choreography or
orchestration model of the four services.

2.2.2 BPEL

BPEL [18] supports the modeling of two types of processes: executable and
abstract processes. An abstract (not executable) process is a business protocol,



18 W.M.P. van der Aalst and M. Pesic

start

custc\)mer bookstore
/

N
N /
c_ord z

O]

place_c_order e_c_order
blisher
alt_publ PU// I

| order £

O— eval|b_order

lace_b_

c_acc|

—(O- b_accept
c_confi ide [b_reject
rec_decl :[T‘
c_decline rejec
M)
/
d shipper
/
_|confirm /
s_regquest

ya
. eval_s_req

1 L
t_shipper s|decline
Hgl

hip_info v

S|
preparg_b
prepare_s
book to_s
book_to| send_book
ship
| book send| bill
pn

payment

req_ship

inform

5

notify

handlr_payment

pay

end

Fig. 2.3. The process as partitioned over (1) the customer, (2) the bookstore, (3)
the publisher, and (4) the shipper (i.e., four local models and their interconnections)



2 Specifying and Monitoring Service Flows 19

specifying the message exchange behavior between different parties without
revealing the internal behavior of any one of them. This abstract process views
the outside world from the perspective of a single organization or (composite)
service. An executable process views the world in a similar manner; however,
things are specified in more detail such that the process becomes executable,
i.e., an executable BPEL process specifies the execution order of a number
of activities constituting the process, the partners involved in the process,
the messages exchanged between these partners, and the fault and exception
handling required in cases of errors and exceptions.

In terms of Fig. 2.3, we can think of abstract BPEL as the language to
specify one service, i.e., describing the desired behavior of a single Petri-net
fragment (e.g., shipper). Frecutable BPEL on the other hand can be used as
the means to implement the desired behavior.

A BPEL process itself is a kind of flow-chart, where each element in the
process is called an activity. An activity is either a primitive or a structured
activity. The set of primitive activities contains invoke, invoking an operation
on a web service; receive, waiting for a message from an external source; reply,
replying to an external source; wait, pausing for a specified time; assign, copy-
ing data from one place to another; throw, indicating errors in the execution;
terminate, terminating the entire service instance; and empty, doing nothing.

To enable the presentation of complex structures the following structured
activities are defined: sequence, for defining an execution order; switch, for con-
ditional routing; while, for looping; pick, for race conditions based on timing or
external triggers; flow, for parallel routing; and scope, for grouping activities
to be treated by the same fault-handler. Structured activities can be nested
and combined in arbitrary ways. Within activities executed in parallel the ex-
ecution order can further be controlled by the usage of links (sometimes also
called control links, or guarded links), which allows the definition of directed
graphs. The graphs too can be nested but must be acyclic.

As indicated in Sect. 2.1, BPEL builds on IBM’s WSFL (Web Services
Flow Language) [57] and Microsoft’s XLANG (Web Services for Business Pro-
cess Design) [84] and combines the features of a block-structured language in-
herited from XLANG with those for directed graphs originating from WSFL.
As a result, simple things can be implemented in two ways. For example, a se-
quence can be realized using the sequence or flow elements (in the latter case
links are used to enforce a particular order on the parallel elements), a choice
based on certain data values can be realized using the switch or flow elements,
etc. However, for certain constructs one is forced to use the block-structured
part of the language, e.g., a deferred choice [8] can only be modeled using the
pick construct. For other constructs one is forced to use links, i.e., the more
graph-oriented part of the language, e.g., two parallel processes with a one-
way synchronization require a link inside a flow. In addition, there are very
subtle restrictions on the use of links: “A link MUST NOT cross the boundary
of a while activity, a serializable scope, an event handler or a compensation
handler... In addition, a link that crosses a fault-handler boundary MUST



20 W.M.P. van der Aalst and M. Pesic

be outbound, i.e., it MUST have its source activity within the fault handler
and its target activity within a scope that encloses the scope associated with
the fault handler. Finally, a link MUST NOT create a control cycle, i.e., the
source activity must not have the target activity as a logically preceding activ-
ity, where an activity A logically precedes an activity B if the initiation of B
semantically requires the completion of A. Therefore, directed graphs created
by links are always acyclic” (see p. 64 in [18]). All of this makes the language
complex for end-users. A detailed or complete description of BPEL is beyond
the scope of this chapter. For more details, the reader is referred to [18] and
various web sites such as the web site of the OASIS technical committee on
WS-BPEL [70].

2.2.3 BPEL2PN and PN2BPEL

As shown, both BPEL and Petri nets can be used to describe the process-
aspect of web services. There are several process engines supporting Petri nets
(e.g., COSA, YAWL, etc.) or BPEL (e.g., Oracle BPEL, IBM WebSphere,
etc.). BPEL currently has strong industry support while Petri nets offer a
graphical language and a wide variety of analysis tools (cf. Fig. 2.2). Therefore,
it is interesting to look at the relation between the two. First of all, it is possible
to map BPEL onto Petri nets for the purpose of analysis. Second, it is possible
to generate BPEL on the basis of Petri nets, i.e., mapping a graphical, more
conceptual, language onto a textual language for execution purposes.

Several tools have been developed to map BPEL onto Petri nets (see
Sect. 2.5). As a example, we briefly describe the combination formed by
BPEL2PNML and WofBPEL developed in close collaboration with QUT [72].
BPEL2PNML translates BPEL process definitions into Petri nets represented
in the Petri Net Markup Language (PNML). WofBPEL, built using Woflan
[88], applies static analysis and transformation techniques to the output pro-
duced by BPEL2PNML. WofBPEL can be used (1) to simplify the Petri net
produced by BPEL2PNML by removing unnecessary silent transitions and (2)
to convert the Petri net into the so-called “WorkFlow net” (WF-net) which
has certain properties that simplify the analysis phase. Although primarily
developed for verification purposes, BPEL2PNML and WofBPEL have also
been used for conformance checking using abstract BPEL processes [6].

Few people have been working on the translation from Petri nets to BPEL.
In fact, [9] is the only work we are aware of that tries to go from (colored)
Petri nets to BPEL. Using our ProM tool [29] we can export a wide variety of
languages to CPN Tools. For example, we can load Petri-net models coming
from tools such as Protos, Yasper, and WoPeD, EPCs coming from tools such
as ARIS, ARIS PPM, and EPC Tools, and workflow models coming from tools
such as Staffware and YAWL, and automatically convert the control-flow in
these models to Petri nets. Using our ProM tool this can then be exported
to CPN Tools where it is possible to do further analysis (state space analy-
sis, simulation, etc.). Moreover, WF-nets in CPN Tools can be converted into
BPEL using WorkflowNet2BPEL4WS [9, 55]. To illustrate this, consider the



2 Specifying and Monitoring Service Flows 21

<?xml version="1.0" encoding="UTF-8"?>
tp://schemas.xmlsoap.org/ws/2003/03/business-process/"
=== name="shipper" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.xmlsoap.org/ws/2003/03/business-
O—-r_v- process/ http://schemas.xmlsoap.org/ws/2003/03/business-process/"
targetNamespace="http://shipper">
<sequence name="Sequence_F3">
<receive name="eval_s_req" />
<switch name="Switch_F2">

<case condition="bpws:getVariableData('accept', ‘accept’, "//type')!=1">
<invoke name="s_reject" />
</case>

<case condition="bpws:getVariableData(‘'accept', ‘accept’, '//type')=1">
<sequence name="Sequence_F1">
<invoke name="s_accept" />
<receive name="prepare_s" />
<invoke name="ship" />
<invoke name="notify" />
<Isequence>
| »/,,« ke </case>
@ </switch>
</sequence>
</process>

Fig. 2.4. The Petri net describing the service offered by the shipper is mapped
onto BPEL code using WorkflowNet2BPEL4WS, a tool to automatically translate
colored Petri nets into BPEL template code

shipper service shown in Fig. 2.3. The WF-net corresponding to the shipper
process was modeled using the graphical editor of the COSA workflow man-
agement system. This was automatically converted by Woflan to ProM. Us-
ing ProM the process was automatically exported to CPN Tools. Then using
WorkflowNet2BPEL4WS the annotated WF-net was translated into BPEL
template code. Figure 2.4 shows both the annotated WF-net in CPN Tools
(left) and the automatically generated BPEL template code (right).

The availability of the tools and systems mentioned in this section makes
it possible to support service flows, i.e., the process-aspect of web services,
at the design, analysis, and enactment levels. For many applications, BPEL,
Petri nets, or a mixture of both provide a good basis for making web services
“process-aware.” However, as indicated in Sect. 2.1, the focus of this chapter
is on DecSerFlow. Section 2.3 introduces DecSerFlow and shows that it is a
truly declarative language which addresses the problem of overspecification
typically resulting from the procedural languages described in this section.
After introducing the language we focus on the monitoring of service flows
(Sect. 2.4) specified in terms of DecSerFlow.

2.3 DecSerFlow

The goal of this section is to provide a “fresh view” on process support in the
context of web services. We first argue why a more declarative approach is
needed and then introduce a concrete language: DecSerFlow.

2.3.1 The Need for More Declarative Languages

Petri nets and BPEL have in common that they are highly procedural, i.e.,
after the execution of a given activity the next activities are scheduled.! Seen

! Note that both BPEL and Petri nets support the deferred choice pattern 8], i.e.,
it is possible to put the system in a state where several alternative activities are



22 W.M.P. van der Aalst and M. Pesic

from the viewpoint of an execution language the procedural nature of Petri
nets and BPEL is not a problem. However, unlike the modules inside a clas-
sical system, web services tend to be rather autonomous and an important
challenge is that all parties involved need to agree on an overall global pro-
cess. Currently, terms like choreography and orchestration are used to refer
to the problem of agreeing on a common process. Some researchers distin-
guish between choreography and orchestration, e.g., “In orchestration, there’s
someone—the conductor—who tells everybody in the orchestra what to do
and makes sure they all play in sync. In choreography, every dancer follows
a pre-defined plan—everyone independently of the others.” We will not make
this distinction and simply assume that choreographies define collaborations
between interacting parties, i.e., the coordination process of interconnected
web services all partners need to agree on. Note that Fig. 2.3 can be seen as
an example of a choreography.

Within the Web Services Choreography Working Group of the W3C, a
working draft defining version 1.0 of the Web Services Choreography Descrip-
tion Language (WS-CDL) has been developed [54]. The scope of WS-CDL
is defined as follows: “Using the Web Services Choreography specification, a
contract containing a global definition of the common ordering conditions and
constraints under which messages are exchanged is produced that describes,
from a global viewpoint, the common and complementary observable behav-
ior of all the parties involved. Each party can then use the global definition
to build and test solutions that conform to it. The global specification is in
turn realized by a combination of the resulting local systems, on the basis of
appropriate infrastructure support. The advantage of a contract based on a
global viewpoint as opposed to any one endpoint is that it separates the over-
all global process being followed by an individual business or system within a
domain of control (an endpoint) from the definition of the sequences in which
each business or system exchanges information with others. This means that,
as long as the observable sequences do not change, the rules and logic followed
within a domain of control (endpoint) can change at will and interoperability
is therefore guaranteed” [54]. This definition is consistent with the definition
of choreography just given. Unfortunately, like most standards in the web
services stack, CDL is verbose and complex. Somehow the essence as shown
in Fig. 2.3 is lost. Moreover, the language again defines concepts such as
“sequence,” “choice,” and “parallel” in some ad hoc notation with unclear
semantics. This suggests that some parts of the language are an alternative
to BPEL while they are not.

However, the main problem is that WS-CDL, like Petri nets and BPEL,
is not declarative. A choreography should allow for the specification of the
“what” without having to state the “how”. This is similar to the difference

enabled but the selection is made by the environment (cf. the pick construct in
BPEL). This allows for more flexibility. However, it does not change the fact that
in essence both Petri nets and BPEL are procedural.



2 Specifying and Monitoring Service Flows 23

between the implementation of a program and its specification. For example,
it is close to impossible to describe that within a choreography two messages
exclude one another. Note that such an exclusion constraint is not the same as
making a choice! To illustrate this, assume that there are two actions A and
B. These actions can correspond to exchange of messages or some other type
of activity which is relevant for the choreography. The constraint that “A and
B exclude one another” is different from making a choice between A or B.
First of all, A and B may be executed multiple times, e.g., the constraint is
still satisfied if A is executed five times while B is not executed at all. Second,
the moment of choice is irrelevant to the constraint. Note that the modeling
of choices in a procedural language forces the designer to indicate explicit
decision points which are evaluated at explicit decision times. Therefore, there
is a tendency to overspecify things.

Therefore, we propose a more declarative approach based on temporal logic
[61, 74] as described in the following subsection.

2.3.2 DecSerFlow: A Declarative Service Flow Language

Languages such as Linear Temporal Logic (LTL) [41, 45, 46] allow for more
declarative style of modeling. These languages include temporal operators
such as nexttime (OF), eventually (OF), always (OF), and until (F UG), cf.
Table 2.1. However, such languages are difficult to read. Therefore, we define
a graphical syntax for the typical constraints encountered in service flows.
The combination of this graphical language and the mapping of this graphical
language to LTL forms the Declarative Service Flow (DecSerFlow) Language.
We propose DecSerFlow for the specification of a single service, simple service
compositions, and more complex choreographies.

Developing a model in DecSerFlow starts with creating activities. The no-
tion of an activity is like in any other workflow-like language, i.e., an activity
is atomic and corresponds to a logical unit of work. However, the nature of
the relations between activities in DecSerFlow can be quite different than in

Table 2.1. Brief explanation of the basic LTL temporal operators

name notation explanation

nexttime OF F has to hold at the next state, e.g., [A,F,B,C,D,E],
[A,F,F.F,F,F,B,C,D,E], [F,F,F,F,A,B,C,D,E], etc.

eventually OF F  has to hold eventually, e.g., [F,AB,C,D,E],
[A,B,C,F,D,E], [ABFCDFEF], etc.

always oF F has to always hold, e.g., [F,F,F,F,F,F].

until FuG G holds at the current state or at some future state,

and F has to hold until G holds. When G holds
F does not have to hold any more. Examples are
[G,A,B,C,D,E], [F,G,A,B,C,D,E], [F,F,F,F,G,A,B,C,D,E],
[F,F,F,F,G,A,B,G,F,C,D,E,F,GJ, etc.



24 W.M.P. van der Aalst and M. Pesic

traditional procedural workflow languages (like Petri nets and BPEL). For
example, places between activities in a Petri net describe causal dependencies
and can be used to specify sequential, parallel, alternative, and iterative rout-
ing. By using such mechanisms, it is both possible and necessary to strictly
define how the flow will be executed. We refer to the relations between activ-
ities in DecSerFlow as constraints. Each of the constraints represents a policy
(or a business rule). At any point in time during the execution of a service,
each constraint evaluates to true or false. This value can change during the
execution. If a constraint has the value true, the referring policy is fulfilled.
If a constraint has the value false, the policy is violated. The execution of a
service is correct (according to the DecSerFlow model) at some point in time
if all constraints (from the DecSerFlow model) evaluate to ¢rue. Similarly, a
service has completed correctly if at the end of the execution all constraints
evaluate to true. The goal of the execution of any DecSerFlow model is not
to keep the values of all constraints true at all times during the execution.
A constraint which has the value false during the execution is not considered
an error. Consider, e.g., the LTL expression O(A — <B) where A and B
are activities, i.e., each execution of A is eventually followed by B. Initially
(before any activity is executed), this LTL expression evaluates to true. After
executing A the LTL expression evaluates to false and this value remains false
until B is executed. This illustrates that a constraint may be temporarily vi-
olated. However, the goal is to end the service execution in a state where all
constraints evaluate to true.

To create constraints in DecSerFlow, we use constraint templates. Each
constraint template consists of a formula written in LTL and a graphical
representation of the formula. An example is the “response constraint” which
is denoted by a special arc connecting two activities A and B. The semantics
of such an arc connecting A and B are given by the LTL expression O(A —
OB), i.e., any execution of A is eventually followed by B. We have developed a
starting set of constraint templates and we will use these templates to create a
DecSerFlow model for the electronic bookstore example. This set of templates
is inspired by a collection of specification patterns for model checking and
other finite-state verification tools [32]. Constraint templates define various
types of dependencies between activities at an abstract level. Once defined,
a template can be reused to specify constraints between activities in various
DecSerFlow models. It is fairly easy to change, remove, and add templates,
which makes DecSerFlow an “open language” that can evolve and be extended
according to the demands from different domains. There are three groups
of templates: (1) “existence,” (2) “relation,” and (3) “negation” templates.
Because a template assigns a graphical representation to an LTL formula, we
will refer to such a template as a formula.

Before giving an overview of the initial set of formulas and their notation,
we give a small example explaining the basic idea. Figure 2.5 shows a Dec-
SerFlow model consisting of four activities: A, B, C, and D. Each activity is
tagged with a constraint describing the number of times the activity should



2 Specifying and Monitoring Service Flows 25

A can be executed (A =><>B), ie.,
an arbitrary ) every A is eventually )
number of times | N followed by B | Bis executed
- N twice
0.* 2

<>D =><>C,i.e,ifDis
.| executed at least once, C is
also executed at least once.

) <>D,ie,Dis
A executed at least once

Fig. 2.5. A DecSerFlow model showing some example notations. (Note that the
temporal operators ¢ and O are denoted as <> and [ ])

if A is executed at
least once, C is
never executed
and vice versa.

be executed, these are the so-called “existence formulas.” The arc between
A and B is an example of a “relation formula” and corresponds to the LTL
expression discussed before: O( A — <& B ). The connection between C' and
D denotes another relation formula: & D — <& C, ie., if D is executed at
least once, C' is also executed at least once. The connection between A and
C denotes a “negation formula” (the LTL expression ¢(A) < —(<O(B)) is
not shown in diagram but will be explained later). Note that it is not easy
to provide a classical procedural model (e.g., a Petri net) that allows for all
behavior modeled in Fig. 2.5.

FExistence Formulas

Figure 2.6 shows the so-called “existence formulas”. These formulas define the
cardinality of an activity. For example, the first formula is called existence and
its visualization is shown (i.e., the annotation “l..x” above the activity). This
indicates that A is executed at least once. Formulas existence2, existences,
and existencey all specify a lower bound for the number of occurrences of A.
It is also possible to specify an upper bound for the number of occurrences of
A. Formulas absence, absence2, absence3, and absencey are also visualized by
showing the range, e.g., “0...IN” for the requirement absencepy 1. Similarly, it
is possible to specify the exact number of occurrences as shown in Fig. 2.6,
e.g., constraint exactlyy (A : activity) is denoted by an N above the activity
and specifies that A should be executed exactly N times.

Table 2.2 provides the semantics for each of the notations shown in
Fig. 2.6, i.e., each formula is expressed in terms of an LTL expression. Formula
existence(A : activity) is defined as ©(A), i.e., A has to hold eventually which
implies that in any full execution of the process A occurs at least once. Formula
existencey (A : activity) shows how it is possible to express a lower bound N
for the number of occurrences of A in a recursive manner, i.e., ezistencey (4) =
O(A A O(existencen—1(A))). Formula absencen (A : activity) can be defined



26 W.M.P. van der Aalst and M. Pesic

1 B
existence(A : activity) A
2."
existence2(A : activity) A N
N ~ A
existence3(A : activity) A
N.*
existence (A : activity) A
- -/
absence(A : activity) A
o1 )
absence2(A : activity)
0.2 0.N
absence3(A : activity) > | A
0.N
absence ,,,,(A : activity)
=
exactly1(A : activity) A
2 N
exactly2(A : activity) A > A
N
exactly \(A : activity) A
_

Fig. 2.6. Notations for the “existence formulas”

as the inverse of existencen (A). Together they can be combined to express
that for any full execution, A should be executed a prespecified number N,
ie., exactlyy(A) = existencen (A) N absencent1(A).

Relation Formulas

Figure 2.7 shows the so-called “relations formulas.” While an “existence for-
mula” describes the cardinality of one activity, a “relation formula” defines
relation(s) (dependencies) between multiple activities. Figure 2.7 shows only
binary relationships (i.e., between two activities); however, in DecSerFlow
there are also notations involving generalizations to three or more activities,
e.g., to model an OR-split. For simplicity, however, we first focus on the bi-
nary relationships shown in Fig. 2.7. All relation formulas have activities A
and B as parameters and these activities are also shown in the graphical rep-
resentation. The line between the two activities in the graphical representa-
tion is unique for the formula, and reflects the semantics of the relation. The
existence response formula specifies that if activity A is executed, activity



2 Specifying and Monitoring Service Flows

Table 2.2.

name of formula

existence(A : activity)
ezistence2(A : activity)
existence3(A : activity)

existencen (A : activity)

absence(A : activity)
absence2(A : activity)
absence3(A : activity)

absencen (A : activity)

exactlyl (A : activity)
ezactly2(A : activity)

exactlyn (A : activity)

Existence formulas
LTL expression
O(A)
O(A

)
(A )

O(A N o(existencen—1(A)))
\:‘(‘\A)

—existence2(A)
—ezistence3(A)

(existence(A
(existence2(

~—
~

e
N O

b

—ezistencen (A)

existence(A) N absence2(A)
existence2(A) A absence3(A)

existencey (A) A absencent1(A)

existence_response(A, B) A

co_existence(A, B)

response(A, B)

precedence(A, B)

succession(A, B)

alternate_response(A, B)

alternate_precedence(A, B)

alternate_succession(A, B)

chain_response(A, B)

chain_precedence(A, B)

chain_succession(A, B) A

L

fie

> >
| |

>]
II

>] [>]
||

Fig. 2.7. Notations for the “relation formulas”

27



28 W.M.P. van der Aalst and M. Pesic

B also has to be executed (at any time, i.e., either before or after activity
A is executed). According to the co-ezistence formula, if one of the activities
A or B is executed, the other one has to be executed also. While the first
two formulas do not consider the order of activities, formulas response, prece-
dence, and succession do consider the ordering of activities. Formula response
requires that every time activity A executes, activity B has to be executed
after it. Note that this is a very relaxed relation of response, because B does
not have to execute straight after A, and another A can be executed be-
tween the first A and the subsequent B. For example, the execution sequence
[B,A,A,A,C,BJ satisfies the formula response. The formula precedence requires
that activity B is preceded by activity A, i.e., it specifies that if activity B
was executed, it could not have been executed until activity A was executed.
According to this formula, the execution sequence [A,C,B,B,A] is correct. The
combination of the response and precedence formulas defines a bi-directional
execution order of two activities and is called succession. In this formula,
both response and precedence relations have to hold between the activities
A and B. Thus, this formula specifies that every activity A has to be fol-
lowed by an activity B and there has to be an activity A before every activity
B. For example, the execution sequence [A,C,A,B,B] satisfies the succession
formula.

Formulas alternate response, alternate precedence, and alternate succession
strengthen the response, precedence, and succession formulas, respectively. If
activity B is alternate response of activity A, then after the execution of an
activity A activity B has to be executed and between the execution of each
two activities A at least one activity B has to be executed. In other words,
after activity A there must be an activity B, and before that activity B there
cannot be another activity A. The execution sequence [B,A,C,B,A,B] satisfies
the alternate response. Similarly, in the alternate precedence every instance of
activity B has to be preceded by an instance of activity A and the next in-
stance of activity B cannot be executed before the next instance of activity
A is executed. According to the alternate precedence, the execution sequence
[A,C,B,A,B,A] is correct. The alternate succession is a combination of the al-
ternate response and alternate precedence and the sequence [A,C,B,A,B,A,B]
would satisfy this formula.

Even more strict ordering relations are specified by the last three con-
straints shown in Fig. 2.7: chain response, chain precedence, and chain suc-
cession. These require that the executions of the two activities (A and B) are
next to each other. According to the chain response constraint the first activ-
ity after activity A has to be activity B and the execution [B,A,B,C,A,B]
would be correct. The chain precedence formula requires that the activ-
ity A is the activity directly preceding any B and, hence, the sequence
[A,B,C,A,B,A] is correct. Since the chain succession formula is the combi-
nation of the chain response and chain precedence formulas, it requires that
activities A and B are always executed next to each other. The execution
sequence [A,B,C,A,B,A,BJ is correct with respect to this formula.



2 Specifying and Monitoring Service Flows 29

Table 2.3. Relation formulas

name of formula LTL expression

existence response(A : activity, B : activity) — O(A) = &(B)

co existence(A : activity, B : activity) O(A) & O(B)

response(A : activity, B : activity) O(A = <©(B))

precedence(A : activity, B : activity) O(B) = ((B)U A)

succession(A : activity, B : activity) response(A, B) N precedence(A, B)

alternate response(A : activity, B : activity)  O(A = o((-A) U B))
alternate precedence(A : activity, B : activity) precedence(A, B) A
O(B = O(precedence(A, B)))
alternate succession(A : activity, B : activity) alternate response(A, B) A
alternate precedence(A, B)

chain response(A : activity, B : activity) O(A = o(B))
chain precedence(A : activity, B : activity) O(o(B) = A)
chain succession(A : activity, B : activity) O(A & o(B))

Table 2.3 shows the formalization of the “relations formulas” depicted in
Fig. 2.7. existence response(A, B) is specified by ¢(A) = <O(B) indicating
that some occurrence of A should always imply an occurrence of B either be-
fore or after A. co existence(A, B) means that the existence of one implies the
existence of the other and vice versa, i.e., O(A4) & O(B). response(A, B) is
defined as O(A = <&(B)). This means that at any point in time where activity
A occurs there should eventually be an occurrence of B. precedence(A, B) is
similar to response but now looking backward, i.e., if B occurs at all, then
there should be no occurrence of B before the first occurrence of A. This is
formalized as &(B) = ((—B) U A). Note that we use the U (until) operator
here: (wB)U A means that A holds (i.e., occurs) at the current state or at some
future state, and —B has to hold until A holds. When A holds —=B does not
have to hold any more (i.e., B may occur). succession(A, B) is defined by com-
bining both into response(A, B) A precedence(A, B). alternate response(A, B)
is defined as O(A = O((—A) U B)), i.e., any occurrence of A implies that in
the next state and onward no A may occur until a B occurs. In other words,
after activity A there must be an activity B, and before that activity B occurs
there cannot be another activity A. alternate precedence(A, B) is a bit more
complicated: O((B A O(¢(B))) = o(AUB)). This implies that at any point
in time where B occurs and at least one other occurrence of B follows, an
A should occur before the second occurrence of B. alternate succession(A, B)
combines both into alternate response(A, B) A alternate precedence(A, B).
chain response(A, B) is defined as O(A = ©O(B)) indicating that any oc-
currence of A should be directly followed by B. chain precedence(A, B) is
the logical counterpart: O(O(B) = A). chain succession(A, B) is defined as
0O(A < 0(B)) and specifies that any occurrence of A should be directly fol-
lowed by B and any occurrence of B should be directly preceded by A.



30 W.M.P. van der Aalst and M. Pesic
Negation Formulas

Figure 2.8 shows the “negation formulas,” which are the negated versions
of the “relation formulas.” (Ignore the grouping of constraints on the right-
hand side of Fig. 2.8 for the moment. Later, we will show that the eight
constraints can be reduced to three equivalence classes.) The first two formu-
las negate the existence response and co existence formulas. The neg exist-
ence response formula specifies that if activity A is executed activity then B
must never be executed (not before nor after activity A). The neg co existence
formula applies neg existence response from A to B and from B to A. It
is tmportant to mote that the term “negation” should not be interpreted
as the “logical negation,” e.g., if activity A never occurs, then both ezis-
tence response(A,B) and neg existence response(A,B) hold (i.e., one does not
exclude the other). The neg response formula specifies that after the execu-
tion of activity A, activity B cannot be executed any more. According to
the formula neg precedence, activity B cannot be preceded by activity A. The
last three formulas are negations of formulas chain response, chain precedence,
and chain succession. neg chain response specifies that A should never be fol-
lowed directly by B. neg chain precedence specifies that B should never be pre-
ceded directly by A. neg chain succession combines both neg chain response
and neg chain precedence. Note that Fig. 2.8 does not show “negation formu-
las” for the alternating variants of response, precedence, and succession. The
reason is that there is no straightforward and intuitive interpretation of the
converse of an alternating response, precedence, or succession.

neg_existence_response(A, B)

.
neg_co_existence(A, B)

neg_response(A, B) H
neg_precedence(A, B) > H
neg_succession(A, B) E
—
neg_chain_response(A, B) )
neg_chain_precedence(A, B) > === H
neg_chain_succession(A, B)
_J

Fig. 2.8. Notations for the “negations formulas”




2 Specifying and Monitoring Service Flows 31

Table 2.4. Negation formulas (formulas grouped together are equivalent)
name of formula LTL expression

neg existence response(A : activity, B : activity) — O(A) = —(O(B))

neg co existence(A : activity, B : activity) neg existence response(A, B) A
neg existence response(B, A)

neg response(A : activity, B : activity) O(A = —(¢(B)))

neg precedence(A : activity, B : activity) O(>(B) = (—A4))

neg succession(A : activity, B : activity) neg response(A, B) A
neg precedence(A, B)

neg chain response(A : activity, B : activity) O(A = o(=(B)))

neg chain precedence(A : activity, B : activity) O(o(B) = —(4))

neg chain succession(A : activity, B : activity) neg chain response(A, B) A

neg chain precedence(A, B)

Table 2.4 shows the LTL expressions of the notations shown in Fig. 2.8.
Table 2.4 also shows that some of the notions are equivalent, i.e., neg co
eristence and neg existence response are equivalent and similarly the next
two pairs of three formulas are equivalent. Note that a similar grouping
is shown in Fig. 2.8 where a single representation for each group is sug-
gested. neg existence response(A, B) is defined as O(A4) = —(<(B)). How-
ever, since the ordering does not matter, neg eristence response(A, B) =
neg existence response(A, B) and hence coincides with neg co existence(A, B).
neg response(A, B) is defined as O(A = —(<(B))), i.e., after any occurrence
of A, B may never happen (or formulated alternatively: any occurrence of
B should take place before the first A). neg precedence(A, B) is defined as
O(S(B) = (—A4)), ie., if B occurs in some future state, then A cannot
occur in the current state. It is easy to see that neg precedence(A4,B) =
neg response(A, B) because both state that no B should take place af-
ter the first A (if any). Since neg succession(A, B) combines both, also
neg succession(A, B) = neg response(A, B). The last three formulas are nega-
tions of formulas chain response, chain precedence, and chain succession. It is
easy to see that they are equivalent, neg chain response(A, B) = neg chain
precedence(A,B) = neg chain succession(A, B).

Figures 2.7 and 2.8 and the corresponding formalizations show only binary
relationships. However, these can easily be extended to deal with more activ-
ities. Consider, e.g., the response relationship, i.e., response(A, B) = O(A =
<&(B)). This can easily be extended to response(A, B, C) = O(A = (&(B) V
&(C)), i.e., every occurrence of A is eventually followed by an occurrence of B
or C. This can also be extended to a choice following A of N alternatives, i.e.,
response(A, A;, Ag, ..., An) =0(4A = (O(41) V O(A2) V ...V O(AN))).
Many of the other formulas can be generalized in a similar fashion and rep-
resented graphically in an intuitive manner. For example, response(4, B, C),
i.e., A is eventually followed by an occurrence of B or C, is depicted by multiple



32 W.M.P. van der Aalst and M. Pesic

arcs that start from the same dot. Similarly, it is possible to have a precedence
constraint where different arrows end in the same dot indicating that at least
one of the preceding activities should occur before the subsequent activity is
executed.

DecSerFlow is an extendible language, i.e., designers can add their own
graphical notations and provide their semantics in terms of LTL. For ex-
ample, one can add constraints similar to the control-flow dependencies in
classical languages such as Petri nets, EPCs, etc. and draw diagrams similar
to the diagrams provided by these languages. However, the aim is to have
a relatively small set of intuitive notations. In this chapter we show only a
core set. Figure 2.9 assists in reading diagrams using this core notation. When
extending the language with new constraints, it is important to use a set of
drawing conventions as shown in Fig. 2.9. For example, a dot connected to
some activity A means that “A occurs” and is always associated to some kind
of connection, a line without some arrow means “occurs at some point in
time,” an arrow implies some ordering relation, two short vertical lines depict
a negation, etc. Note that Fig. 2.9 also shows the response(A, A;, Az, ..., AN)
constraint described earlier, i.e., A is followed by at least one of its successors.

2.3.3 The amazon.com Example in DecSerFlow

In this subsection, we revisit the amazon.com example to show how DecSer-
Flow language can be used to model services. For this purpose, we will model

The .do! show“s how to read the consiurain!, On top the lower  -bound ( N) and
: i.e., it means “suppose that A occurs”. B upper-bound (M) are spec ified.

. The type of connection describes the type of constraint (in A
: . this case “existence response”) and should be interpreted 3

N.M

: +* | depending on the location of the dot.
R If A occurs, then also B should occur (at any
A B =" time), i.e., ()[A:l = O(B)
Most of the binary constraints
Two dots, i.e., read the “existence response” constraint can be extended to constraints
i .*"| from both sides, i.e., O(A) = O (B) involving an arbitrary number of
o ' activities.
The arrow should be interpreted as “is followed E A1
- *| by” or “is preceded by” (in this case both).
A 1B A A,
The negation symbol inverses the meaning of the
- connection, i.e., in this case ‘is NOT followed by”
et and “is NOT preceded by”.
et An
Al B » . .
O(A = (&A1) v O(da) v oo O(AN)))

Fig. 2.9. Explanation of the graphical notation



2 Specifying and Monitoring Service Flows 33

the customer service using existence, relation, and negation formulas. In this
way, we will use the defined templates for formulas, apply them to activities
from our example and thus create real constraints in our DecSerFlow model.
In addition to this model of a single service, we will also show how the com-
munication between services can be presented with DecSerFlow by modeling
the communication of the customer service with other services. We start by
removing all arcs and places from the example model. This results in an ini-
tial DecSerFlow model populated only by unconnected activities. Next, we
create necessary constraints for the customer. Adding constraints to the rest
of the model is straightforward and easy but not necessary for illustrating the
DecSerFlow language.

Figure 2.10 shows the new model with DecSerFlow constraints for the
customer. We added existence constraints for all activities which can be seen
as cardinality specifications above activities. Activity place ¢ order has to
be executed exactly one time. Activities rec acc and rec decl can be executed
zero or one time, depending on the reply of the bookstore. Similarly, activities
rec book, rec bill, and pay can be executed at most one time.

Every occurrence of place ¢ order is eventually followed by at least one
occurrence of rec acc or rec decl, as indicated by the non-binary relationship
also shown in Fig. 2.9. However, it is possible that both activities are executed,
and to prevent this we add the neg co existence constraint between activities
rec acc and rec decl. So far, we have managed to make sure that after activity
place ¢ order one of the activities rec acc and rec decl will execute in the ser-
vice. One problem remains to be solved — we have to specify that none of the
activities rec acc and rec decl can be executed before activity place ¢ order.
We achieve this by creating two precedence constraints: (1) the one between
the activities place ¢ order and rec acc, making sure that activity rec acc can
be executed only after activity place ¢ order was executed and (2) the one be-
tween activities place ¢ order and rec decl, making sure that activity rec decl
can be executed only after activity place ¢ order was executed. It is impor-
tant to note that the constraints related to place ¢ order, rec ace, and rec decl
together form a “classical choice”. It may seem rather clumsy that four con-
straints are needed to model a simple choice. However, (1) the four constraints
can be merged into a single notation and LTL formula that can be re-used in
other diagrams and (2) it is a nice illustration of how procedural languages
like Petri nets and BPEL tend to overspecify things. In fact, in a classical
language one would not only implicitly specify four elementary constraints
but would typically need to specify the data conditions. In DecSerFlow one
can add these conditions, but one does not need to do so, i.e., one can drop
any of the four constraints involving place ¢ order, rec acc, and rec decl and
still interpret the resulting set of constraints in a meaningful way.

The next decision to be made is the dependency between the activities
rec acc and rec book. In the old model, we had a clear sequence between these
two activities. However, due to some problems or errors in the bookstore
it might happen that, although the order was accepted (activity rec acc is



34 W.M.P. van der Aalst and M. Pesic

custo\mer bookstore
7

/
N /
succession
=-i handIL_c_order

ublisher
|:| alt_publ PI y

L
dlace_b_otder I:l D eval |b_order

c_accept

succession D D |:| |:| h_accept

degide [p_reject

rec_acc

neg_co_existehce

c_[reject

rec_decl succession D
shipper

’

/

L

req_shipment D D eval_s_req
% alf_shigper
: D D D s_accept
s_feject
inform_|publ |:|
preparg_b
|:| prepare_s
3
§
L]
s o1 3 send_book
E rec_book precedenge ,I:l .
§ send |bil
°l o
rec_bill D
precedence D nOtify
Y o1
pay ucoession > D handl¢_payment

Fig. 2.10. DecSerFlow model

executed), the book does not arrive (activity rec book is not executed). How-
ever, we assume that the book will not arrive before the order was accepted.
The constraint precedence between the activities rec acc and rec book specifies
that activity rec book can be executed only after activity rec acc is executed.
The old model specified that the bill arrives after the book. This may not
be always true. Since the bill and the book are shipped by different services
through different channels, the order of their arrival might vary. For example,
it might happen that the shipper who sends the book is closer to the location



2 Specifying and Monitoring Service Flows 35

of the customer and the bookstore is on another continent, or the other way
around. In the first scenario the book will arrive before the bill, and in the
second one the bill will arrive before the book. Therefore, we choose not to cre-
ate an ordering constraint between the activities rec book and rec bill. Even
more, our DecSerFlow model accepts the error when the bill arrives even
without the book being sent. This could happen in the case of an error in
the bookstore when a declined order was archived as accepted, and the bill
was sent without the shipment of the book. However, we assume that every
bookstore that delivers a book, also sends a bill for the book. We specify this
with the existence response constraint between the rec book activity and the
rec bill activity. This constraint forces that if activity rec book is executed,
then activity rec bill must have been executed before or will be executed after
activity rec book. Thus, if the execution of activity rec book exists, then the
execution of activity rec bill also exists. The constraint precedence between
the activities rec bill and pay means that the customer will pay only after the
bill is received. However, after the bill is received the customer does not nec-
essarily pay, like in the old model. It might happen that the received book was
not the one that was ordered or it was damaged. In these cases, the customer
can decide not to pay the bill.

Besides for the modeling of a single service, DecSerFlow language can as
well be used to model the communication between services. In Fig. 2.10, we
can see how constraints specify the communication of the customer with the
bookstore and the shipper. First, the succession constraint between activities
place ¢ order and handle ¢ order specifies that after activity place ¢ order ac-
tivity handle ¢ order has to be executed, and that activity handle ¢ order can
be executed only after activity place ¢ order. This means that every order of
a customer will be handled in the bookstore, but the bookstore will handle
the order only after it is placed. The same holds (constraint succession) for
the pairs of activities (¢ accept, rec acc), (¢ reject, rec decl), and (pay, han-
dle payment). The relations between the pairs of activities (ship, rec book)
and (send bill, rec bill) are more relaxed than the previous relations. These
two relations are not succession, but precedence. We can only specify that
the book will be received after it is sent, but we cannot claim that the book
that was sent will indeed be received. It might happen that the shipment is
lost or destroyed before the customer receives the book. The same holds for
the bill. Because of this, we create the two precedence constraints. The first
precedence constraint is between activity ship and rec book to specify that
activity rec book can be executed only after activity ship was executed. The
second one is between the activities send bill and rec bill, according to which
activity rec bill can be executed only after activity send bill is executed.

Figure 2.10 shows how DecSerFlow language can be used to specify ser-
vices. While the old Petri-net model specified the strict sequential relations
between activities, with DecSerFlow we were able to create many different
relations between the activities in a more natural way. For the illustration, we
developed constraints only for the customer service and its communication



36 W.M.P. van der Aalst and M. Pesic

with other services, but developing of the rest of the model is as easy and
straightforward.

2.3.4 Mapping DecSerFlow Onto Automata

DecSerFlow can be used in many different ways. Like abstract BPEL it can be
used to specify services but now in a more declarative manner. However, like
executable BPEL we can also use it as an execution language. The DecSerFlow
language can be used as an execution language because it is based on LTL
expressions. Every constraint in a DecSerFlow model has both a graphical
representation and a corresponding parameterized LTL formula. The graphical
notation enables a user-friendly interface and masks the underlying formula.
The formula, written in LTL, captures the semantics of the constraint. The
core of a DecSerFlow model consists of a set of activities and a number of LTL
expressions that should all evaluate to true at the end of the model execution.

Every LTL formula can be translated into an automaton [26]. Algorithms
for translating LTL expressions into automata are given in [40, 92]. The pos-
sibility to translate an LTL expression into an automaton and the algorithms
to do so have been extensively used in the field of model checking [26]. More-
over, the initial purpose for developing such algorithms comes from the need
to, given a model, check if certain properties hold in the model. The SPIN
tool [50] can be used for the simulation and exhaustive formal verification of
systems, and as a proof approximation system. SPIN uses an automata theo-
retic approach for the automatic verification of systems [86]. To use SPIN, the
system first has to be specified in the verification modeling language Promela
(PROcess MEta LAnguage) [50]. SPIN can verify the correctness of require-
ments, which are written as LTL formulas, in a Promela model using the
algorithms presented in [40, 48, 49, 51, 52, 86, 77, 91]. When checking the
correctness of an LTL formula, SPIN first creates an automaton for the nega-
tion of the formula. If the intersection of this automaton and the system model
automaton is empty, the model is correct with respect to the requirement de-
scribed in LTL. When the system model does not satisfy the LTL formula,
the intersection of the model and the automaton for the negated formula will
not be empty, i.e., this intersection is a countererample that shows how the
formula is violated. The approach based on the negation of the formula is
quicker, because the SPIN runs verification until the first counterexample is
found. In the case of the formula itself, the verifier would have to check all
possible scenarios to prove that a counterexample does not exist.

Unlike SPIN, which generates an automaton for the negation of the for-
mula, we can execute a DecSerFlow model by constructing an automaton for
the formula itself. We will use a simple DecSerFlow model to show how pro-
cesses can be executed by translating LTL formulas into automata. Figure 2.11
shows a DecSerFlow model with three activities: curse, pray, and bless. The
only constraint in the model is the response constraint between activity curse
and activity pray, i.e., response(curse, pray) = O(curse = <O(pray)). This



2 Specifying and Monitoring Service Flows 37

curse fesponse pray | | bless |

Fig. 2.11. A simple model in DecSerFlow

constraint specifies that if a person curses, she/he should eventually pray af-
ter this. Note that there is no restriction on the execution of the activities
pray and bless. There are no existence constraints in this model, because all
three activities can be executed an arbitrary number of times.

Using the example depicted in Fig. 2.11, we briefly show the mapping of
LTL formulas onto automata [40], which is used for execution of DecSerFlow
models. Automata consists of states and transitions. By executing activities
of DecSerFlow model, we fire transitions and thus change state of the related
automaton. Automaton can be in an accepting or not-accepting state. If the
automaton is in an accepting state after executing a certain trace (of DecSer-
Flow activities), the trace fulfills the related LTL formula. If the automaton
is not in an accepting state after executing a certain trace, the trace violates
the related LTL formula. Automata created by the algorithm presented in
[40] deal with infinite traces and cannot be used for execution of finite traces
like DecSerFlow traces. Therefore, a variation of this algorithm that enables
work with finite traces is used [41]. A more detailed introduction to automata
theory and the creation of Biichi automata from LTL formulas is out of scope
of this article and we refer the interested reader to [26, 40, 41, 48].

Figure 2.12 shows a graph representation of the automaton which is gen-
erated for the response constraint [40].? Automaton states are represented as
nodes, and transitions as edges. An initial state is represented by an incoming
edge with no source node. An accepting state is represented as a node with a
double-lined border. The automaton in Fig. 2.12 has two states: p1 and p2.
State pI is both the initial and accepting state. Note that such automaton
can also be generated for a DecSerFlow model with multiple constraints, i.e.,
for more than one LTL formula, by constructing one big LTL formula as a
conjunction of each of the constraints.

response(curse, pray) = O(curse = O(pray))

curse curse,bless

pray pray

Fig. 2.12. Automaton for the formula response

2 Note that the generated automaton is a non-deterministic automaton. For reasons
of simplicity, we use a deterministic automaton with the same results.



38 W.M.P. van der Aalst and M. Pesic

Note that for illustration purposes, we only show a simplified automaton
in Fig. 2.12. Any LTL expression is, actually, translated into a automaton,
i.e, a non-deterministic automaton for infinite words. An automaton is deter-
ministic if in each state there is exactly one transition for each possible input.
In case of a deterministic automaton, we can simply change the state of the
automata when executing an activity. To check the correctness of the execu-
tion, we check if the current state is an accepting one. In non-deterministic
automata, there can be multiple transitions from a given state for a given
possible input. In case of a DecSerFlow model, the fact that we are deal-
ing with non-deterministic automata means that executing an activity might
transfer an automaton to more that one next state—a set of possible states.
To check the correctness of the execution, we need to check if the current set
of possible states contains at least one accepting state. Another issue when
executing automata for DecSerFlow models is the fact that we assume that
every execution will be completed at some point of time, i.e., an execution
of a DecSerFlow model is a finite one. The original algorithm for creating
automata from LTL expressions generates automata for infinite words, i.e.,
for infinite executions [40]. That creates problems because the criteria for de-
ciding which states are accepting are different for finite and infinite words.
Therefore, we use a modified version of the original algorithm [41], which was
constructed for verification of finite software traces. We use the Java PathEx-
plorer (JPAX), a runtime verification tool, as a basis [41]. The algorithm in
JPAX assumes that the system will start the execution, and does not consider
empty traces. To allow an empty execution of a DecSerFlow model, we add an
invisible activity init and a constraint initiate that specifies that activity init
has to be executed as the first activity in the model. We automatically exe-
cute activity init at the beginning of the enactment of a DecSerFlow model.
Another small complication is that in the JPAX implementation of [41], the
O operator is slightly weaker (if there is no next step, OF evaluates to true
by definition). This can be modified easily by redefining OF to (OF A OF).

The mapping for LTL constraints onto automata allows for the guidance of
people, e.g., it is possible to show whether a constraint is in an accepting state
or not. Moreover, if the automaton of a constraint is not in an accepting state,
indicate whether it is still possible to reach an accepting state. To do this, we
can color the constraints green (in accepting state), yellow (accepting state
can still be reached), or red (accepting state cannot be reached anymore).
Using the automaton, some engine could even enforce a constraint, i.e., the
automaton could be used to drive a classical workflow engine [7].

2.3.5 Using DecSerFlow to Relate Global and Local Models

In the first part of the chapter, we distinguished between global and local
models. In the global model, interactions are described from the viewpoint
of an external observer who oversees all interactions between all services.
Local models are used to specify, implement, or configure particular services.



2 Specifying and Monitoring Service Flows 39

Clearly, both types of models can be represented using DecSerFlow. Moreover,
as just shown, it is possible to construct an automaton to enact a DecSerFlow
specification. This seems particularly relevant for local models. As we will
see in the next section, both global and local models can be used for mon-
itoring services. For example, given a DecSerFlow specification we can also
check whether each party involved in a choreography actually sticks to the
rules agreed upon. The ProM framework offers the so-called “LTL-checker”
to support this (cf. Sect. 2.4.2). However, before focusing on the monitoring of
service flows, we briefly discuss the relevance of DecSerFlow in relating global
and local models.

Using DecSerFlow both global and local models can be mapped onto LTL
expressions and automata. This allows for a wide range of model checking
approaches. For example, it is possible to check if the constraints in the lo-
cal model are satisfied by the global model and vice versa. Note that the set
of activities in both models does not need to be the same. However, given
the logical nature of DecSerFlow this is not a problem. Also, note that the
different notions of inheritance of dynamic behavior can be used in this con-
text [2] (e.g., map activities onto 7 actions). The only constraints that seem
problematic in this respect are chained relation formulas, i.e., chain response,
chain precedence, and chain succession. These use the “nexttime” (OF') op-
erator whose interpretation depends on the context, i.e., from a global per-
spective an activity in one service may be followed by an activity in another
service thus violating some “nexttime” constraint. Nevertheless, it seems that
the LTL foundation of DecSerFlow offers a solid basis for comparing global
and local models and generating templates for local models from some parti-
tioned global model.

2.4 Monitoring Service Flows

DecSerFlow can be used to create both local and global models. As shown
in the previous section, these models can be used to specify a (part of some)
service flow and to enact it. In this section, we show that DecSerFlow can also
be used in the context of monitoring service flows.

In a service-oriented architecture, and also in classical enterprise systems,
a variety of events (e.g., messages being sent and received) are being logged.
This information can be used for process mining purposes, i.e., based on some
event log some knowledge is extracted. In the context of service flows an
obvious starting point is the interception of messages exchanged between the
various services. For example, SOAP messages can be recorded using TCP
Tunneling techniques [6] or, if middleware solutions such as IBM’s Websphere
are used, different events are logged in a structured manner [73]. Although
possible, it is typically not easy to link events (e.g., SOAP messages) to process
instances (cases) and activities. However, as pointed out by many researchers,
the problem of correlating messages needs to be addressed anyway. Hence, in



40 W.M.P. van der Aalst and M. Pesic

the remainder, we assume that it is possible to obtain an event log where each
event can be linked to some process instance and some activity identifier.

2.4.1 Classification of Process Mining

Assuming that we are able to monitor activities and/or messages being ex-
changed, a wide range of process mining techniques comes into reach. Before
we focus on the relation between DecSerFlow and process mining, we provide
a basic classification of process mining approaches. This classification is based
on whether there is an a priori model (e.g., a DecSerFlow specification) and,
if so, how it is used.

e Discovery: There is no a priori model, i.e., based on an event log some
model is constructed. For example, using the « algorithm [15] a process
model can be discovered based on low-level events. There exist many tech-
niques to automatically construct process models (e.g., in terms of a Petri
net) based on some event log [15, 17, 27, 28, 89]. Recently, process mining
research also started to target the other perspectives (e.g., data, resources,
time, etc.). For example, the technique described in [11] can be used to
construct a social network.

e Conformance: There is an a priori model. This model is compared with
the event log, and discrepancies between the log and the model are ana-
lyzed. For example, there may be a process model indicating that purchase
orders of more than €1 million require two checks. Another example is the
checking of the so-called “four-eyes” principle. Conformance checking may
be used to detect deviations, to locate and explain these deviations, and to
measure the severity of these deviations. An example is the conformance
checker described in [79] which compares the event log with some a priori
process model expressed in terms of a Petri net.

e FExtension: There is an a priori model. This model is extended with a new
aspect or perspective, i.e., the goal is not to check conformance but to
enrich the model. An example is the extension of a process model with
performance data, i.e., some a priori process model is used to project the
bottlenecks on. Another example is the decision miner described in [80]
which takes an a priori process model and analyzes every choice in the
process model. For each choice the event log is consulted to see which
information is typically available the moment the choice is made. Then
classical data mining techniques are used to see which data elements in-
fluence the choice. As a result, a decision tree is generated for each choice
in the process.

Figure 2.13 illustrates the classification just given in the context of DecSer-
Flow. The figure shows different web services together realizing a service flow.
A DecSerFlow can be used to specify the whole service flow (global model)
or individual services (local models). As shown in Fig. 2.13, we assume that
we are able to record events which are stored on some event log. Given such



2 Specifying and Monitoring Service Flows 41

supports/ ,
controls

web services

records
events, e.g.,
specifies specifies/ via SOAP
global model implements messages
local model
discovery -
DecSerFlow | «—— » event
model conformance logs

extension

Fig. 2.13. Overview of the various process mining approaches related to DecSerFlow

an event log, the three types of process mining (discovery, conformance, and
extension) become possible.

Discovery in the context of DecSerFlow would mean that, based on the
event log, we discover a DecSerFlow model, i.e., by analyzing the log different
constraints are discovered. For example, if an activity is always followed by
another, this can be easily be deduced from the log. Currently, there exist
many process discovery approaches [15, 17, 27, 28, 89]. Although none of
them is tailored toward DecSerFlow, it is easy to modify these to yield a
(partial) DecSerFlow model. Note that ordering relations discovered by the «
algorithm [15] can easily be visualized in DecSerFlow.

Conformance checking requires an a priori DecSerFlow model, e.g., a global
model showing the overall service flow. This model can easily be compared
with the event logs, i.e., each constraint in the DecSerFlow specification is
mapped onto an LTL expression and it is easy to check whether the LTL ex-
pression holds for a particular process instance. Hence it is possible to classify
process instances into conforming or non-conforming for each constraint. This
way it is possible to show where and how frequent deviations occur. More-
over, the (non-)conforming process instances can be investigated further using
other process mining techniques, e.g., to discover the typical features of cases
that deviate.

The third type of process mining also requires an a priori DecSerFlow
model. However, now the model is extended with complementary information.
For example, performance data are projected onto the DecSerFlow model or
decision trees are generated for decision points in the process.

As suggested by Fig. 2.13, DecSerFlow can be used in combination
with various process mining approaches. It is important to note that the



42 W.M.P. van der Aalst and M. Pesic

autonomous nature of services, the declarative style of modeling (avoiding any
overspecification), and process mining fit well together. The autonomous na-
ture of services allows services to operate relatively independently. In many
cases it is not possible to enforce control. At best one can agree on a way
of working (the global model) and hope that the other parties involved will
operate as promised. However, since it is often not possible to control other
services, one can only observe, detect deviations, and monitor performance.

In the remainder of this section, we discuss some of the features of ProM
[29]: a process mining framework offering plug-ins for discovery, conformance,
and extension.

2.4.2 Linking DecSerFlow to the ProM LTL Checker

The ProM framework [29] is an open-source infrastructure for process mining
techniques. ProM is available as open source software (under the Common
Public License, CPL) and can be downloaded from [75]. It has been applied to
various real-life processes, ranging from administrative processes and health-
care processes to the logs of complex machines and service processes. ProM is
plug-able, i.e., people can plug-in new pieces of functionality. Some of the plug-
ins are related to model transformations and various forms of model analysis
(e.g., verification of soundness, analysis of deadlocks, invariants, reductions,
etc.). Most of the plug-ins, however, focus on a particular process mining
technique. Currently, there are more than 100 plug-ins of which about half
are mining and analysis plug-ins.

Starting point for ProM are event logs in MXML format. The MXML
format is system independent and using ProMimport it is possible to extract
logs from a wide variety of systems, i.e., systems based on products such
as SAP, Peoplesoft, Staffware, FLOWer, WebSphere, YAWL, ADEPT, ARIS
PPM, Caramba, InConcert, Oracle BPEL, Outlook, etc. and tailor-made sys-
tems. It is also possible to load and/or save a variety of models, e.g., EPCs
(i.e., event-driven process chains in different formats, e.g., ARIS, ARIS PPM,
EPML, and Visio), BPEL (e.g., Oracle BPEL, Websphere), YAWL, Petri nets
(using different formats, e.g., PNML, TPN; etc.), CPNs (i.e., colored Petri nets
as supported by CPN Tools), and Protos.

One of the more than 100 plug-ins offered by ProM is the so-called “LTL
checker” [3]. The LTL checker offers an environment to provide parameters for
predefined parameterized LTL expressions and check these expressions with
respect to some event log in MXML format. For each process instance, it is
determined whether the LTL expression holds or not, i.e., given an LTL expres-
sion all process instances are partitioned into two classes: conforming and non-
conforming. We have predefined 60 typical properties one may want to verify
using the LTL checker (e.g., the 4-eyes principle) [3]. These can be used with-
out any knowledge of the LTL language. In addition the user can define new
sets of properties. These properties may be application specific and may refer
to data. Each property is specified in terms of an LTL expression. Formulas



2 Specifying and Monitoring Service Flows 43

may be parameterized, are reusable, and carry explanations in HTML format.
This way both experts and novices may use the LTL checker.

Recall that each model element of the DecSerFlow is mapped onto an LTL
expression. Therefore, it is possible to use the ProM LTL checker to assess the
conformance of a DecSerFlow model in the context of a real log. All notations
defined in Figs. 2.6, 2.7, and 2.8 map directly onto LTL expressions that can
be stored and loaded into ProM. Currently, we do not yet provide a direct
connection between the DecSerFlow editor and the ProM LTL checker. Hence,
it is not yet possible to visualize violations on the DecSerFlow editor. However,
it is clear that such integration is possible.

2.4.3 Other Process Mining Techniques in ProM

Clearly, the LTL checker is one of the most relevant plug-ins of ProM in the
context of DecSerFlow. However, the LTL checker plug-in is only one of more
than 100 plug-ins. In this subsection, we show some other plug-ins relevant
to process mining of service flows. First, we show some plug-ins related to
process discovery. Then, we show the ProM conformance checker that has
been successfully used in the context of (BPEL) service flows.

The basic idea of process discovery is to derive a model from some event
log. This model is typically a process model. However, there are also techniques
to discover organization models, social networks, and more data-oriented mod-
els such as decision trees. To illustrate the idea of process mining consider the
log shown in Table 2.5. Such a log could have been obtained by monitoring
the SOAP messages the shipper service in Fig. 2.3 exchanges with it its en-
vironment. Note that we do not show the content of the message. Moreover,
we do not show additional header information (e.g., information about sender
and receiver).

Using process mining tools such as ProM, it is possible to discover a process
model as shown in Fig. 2.14. The figure shows the result of three alternative
process discovery algorithms: (1) the o miner shows the result in terms of a
Petri net, (2) the multi-phase miner shows the result in terms of an EPC,
and (3) the heuristics miner shows the result in terms of a heuristics net.?
They are all able to discover the shipper service as specified in Fig. 2.3. Note
that Fig. 2.14 shows the names of the messages rather than the activities
because this is the information shown in Table 2.5. Note that the algorithms
used in Fig. 2.14 can easily be modified to generate DecSerFlow models, i.e.,
constraints imposed by, e.g., a Petri net can be mapped onto DecSerFlow
notations.

For process discovery, we do not assume that there is some a priori model,
i.e., without any initial bias we try to find the actual process by analyzing some
event log. However, in many applications there is some a priori model. For

3 Note that ProM allows for the mapping from one format to the other if needed.
Fig. 2.14 shows the native format of each of the three plug-ins.



44 W.M.P. van der Aalst and M. Pesic

Table 2.5. An event log

case identifier activity identifier time data
order290166 s request 2006-04-02T08:38:00
order090504 s request 2006-04-03T12:33:00
order290166 s confirm 2006-04-07T23:55:00
order261066 s request 2006-04-15T06:43:00
order160598 s request 2006-04-19T20:13:00
order290166 book to s 2006-05-10T07:31:00
order290166 book to ¢ 2006-05-12T08:43:00
order160598 s confirm 2006-05-20T07:01:00
order210201 s request 2006-05-22T09:20:00
order261066 s confirm 2006-06-08T10:29:00
order290166 notification 2006-06-13T14:44:00
order160598 book to s 2006-06-14T16:56:00
order261066 book to s 2006-07-08T18:01:00
order090504 s decline 2006-07-12T09:00:00
order261066 book to ¢ 2006-08-17T11:22:00
order210201 s decline 2006-08-18T12:38:00
order160598 book to ¢ 2006-08-25T20:42:00
order261066 notification 2006-09-27T09:51:00
order160598 notification 2006-09-30T10:09:00

=121x]
Fila Mining Analysie COmmrsion Expons Winlow Help
| @

[ Rursuits - Sutiings fer minsg Fitered CpnTootsiog.<mi using Jgha akoritm plign o o' [E
|

bockto_s bogk_to_c ol ation
somalels comaleie Somplek
[ Rnsutts - Setings for minag Selection of CpnToolsingaemd ust. o' =" [H [ Results - Settings for mining Filered CpnT oslsing.cmi using Mulli phase.. o " [ L
f P etnces || e 0 = |
1 Deess instances P [ Ed
—— AN T Zuore 153 %
= |

T
=
|

T

s BRI

C
T Foum: 51 %

4] 1 i Upetate graph Show main graph  Arinet & Display EPC ) Display Graph

Fig. 2.14. The output of three process discovery algorithms supported by ProM
when analyzing the event log shown in Table 2.5



2 Specifying and Monitoring Service Flows 45

example, we already showed that ProM’s LTL checker can be used to check
the conformance of a DecSerFlow model. However, ProM is not limited to
DecSerFlow and can also be used to check the conformance of a specification
in terms of abstract BPEL, EPC, or Petri nets. To illustrate this, assume that
we add an additional process instance to Table 2.5 where the notification is
sent before the book is shipped to the customer (i.e., in Fig. 2.3 activity notify
takes place before activity ship).

If we assume there is some a priori model in terms of a Petri net, we
can use the conformance checker plug-in of ProM. Figure 2.15 shows the
result of this analysis (top-right corner). It shows that the fitness is 0.962 and
also highlights the part of the model where the deviation occurs (the place
connecting ship/book to ¢ and notify/notification). An event log and Petri net
“fit” if the Petri net can generate each trace in the log. In other words, the
Petri net describing the choreography should be able to “parse” every event
sequence observed by monitoring, e.g., SOAP messages. In [79] it is shown
that it is possible to quantify fitness as a measure between 0 and 1. The
intuitive meaning is that a fitness close to 1 means that all observed events
can be explained by the model (in the example about 96 percent). However,
the precise meaning is more involved since tokens can remain in the network
and not all transactions in the model need to be logged [79].

Unfortunately, a good fitness does not only imply conformance, e.g., it
is easy to construct Petri nets that are able to parse any event log (cor-
responding to a DecSerFlow model without any constraints, i.e., a model
described by true). Although such Petri nets have a fitness of 1 they do

2 1he prov-ramemork ST
File Mining Ansiysis Comersin Dxjorts Wilos Heip
a8 @
[ Anatysss - Gommemance Chackar = B
“Coetormance | Performatce
2 |Log Traces =i Measures
: Iz = 3 . [ Anaysis - LTL Chocker Plugn o @
g B notification (complete) | Finess: ——
1 2 B isched formula  respanse
0 5 o = pensoran f )
0 3 | K L[ ¥ e A = bonk_to_c g
Diogmostic Porspeciive Model | = ] Tokan Counter  +| Falles Tasks || Remaining Tasks [+ Path Coverags [ Passed Edges _— =] o) I=]
) Corrent i & C 0
soectpatey | S| s [0 e — -
Biix B
(5] L1 Chnecher Plugs |
Seactiormusa: Check options _
|
[response [] |5 eocess.
) Chock t st failure. .
ek : N g
L | ) Check ta fest succoss.
Description: Earea|
1s esery ocewrence of activicy A eventuslly followed by sctivity B2
= e
=
sualize selected 0 r T
abate the parameters :
[ Hame | Tipe Vap
& et BOEK 156
B [set olinzsaon

Fig. 2.15. Both the conformance checker plug-in and the LTL checker plug-in are
able to detect the deviation



46 W.M.P. van der Aalst and M. Pesic

not provide meaningful information. Therefore, we use a second dimension:
appropriateness. Appropriateness tries to capture the idea of Occam’s razor,
i.e., “one should not increase, beyond what is necessary, the number of entities
required to explain anything.” Appropriateness tries to answer the following
question: “Does the model describe the observed process in a suitable way”
and can it be evaluated from both a structural and a behavioral perspective?
To explain the concept in more detail, it is important to note that there are
two extreme models that have a fitness of 1. First of all, there is a model
that starts with a choice and then has one path per process instance, i.e., the
model simply enumerates all possibilities. This model is “overfitting” since it
is simply another representation of the log, i.e., it does not allow for more
sequences than those that were observed in the log. Therefore, it does not
offer a better understanding than what can be obtained by just looking at the
aggregated log. Secondly, there is the so-called “flower Petri net” [79] that can
parse any log, i.e., there is one state in which all activities are enabled. This
model is “underfitting” since it contains no information about the ordering of
activities. In [79] it is shown that a “good” process model should somehow be
minimal in structure to clearly reflect the described behavior, referred to as
structural appropriateness, and minimal in behavior in order to represent as
closely as possible what actually takes place, which will be called behavioral
appropriateness. The ProM conformance checker supports both the notion of
fitness and the various notions of appropriateness.

In [6] we have demonstrated that any (abstract) BPEL specification can
automatically be mapped onto a Petri net that can be used for conformance
checking using ProM’s conformance checker.

Figure 2.15 also shows the LTL checker plug-in while checking the response
property on book to ¢ and notification. This check shows that indeed there is
one process instance where activity notify takes place before activity ship.
This example shows that it is possible to compare a DecSerFlow specification
and an event log and to locate the deviations.

2.5 Related Work

Since the early 1990s, workflow technology has matured [39] and several text-
books have been published, e.g., [7, 30]. Most of the available systems use
some proprietary process modeling language and, even if systems claim to
support some “standard,” there are often all kinds of system-specific exten-
sions and limitations. Petri nets have been used not only for the modeling
of workflows [7, 25, 30] but also for the orchestration of web services [65].
Like most proprietary languages and standards, Petri nets are highly proce-
dural. This is the reason why we introduced the DecSerFlow language in this
chapter.

Several attempts have been made to capture the behavior of BPEL [18] in
some formal way. Some advocate the use of finite state machines [35], others



2 Specifying and Monitoring Service Flows 47

process algebras [34], and yet others abstract state machines [33] or Petri nets
[71, 62, 83, 87]. (See [71] for a more detailed literature review.) For a detailed
analysis of BPEL based on the workflow patterns [8], we refer to [90]. Few
researchers have explored the other direction, e.g., translating (Colored) Petri
nets into BPEL [9].

The work presented in this chapter is also related to the choreography
language “Let’s Dance” [94, 95]. Let’s Dance is a language for modeling ser-
vice interactions and their flow dependencies. The focus of Let’s Dance is
not so much on the process perspective (although a process modeling nota-
tion is added); instead, it focuses on interaction patterns and mechanisms.
Similar to DecSerFlow it is positioned as an alternative to the Web Services
Choreography Description Language (WS-CDL) [54].

Clearly, this chapter builds on earlier work on process discovery, i.e., the
extraction of knowledge from event logs (e.g., process models [15, 17, 27, 37,
38, 47] or social networks [12]). For example, the well-known « algorithm [15]
can derive a Petri net from an event log. In [6] we used the conformance check-
ing techniques described in [79] and implemented in our ProM framework [29]
and applied this approach to SOAP messages generated from Oracle BPEL.
The notion of conformance has also been discussed in the context of security
[10], business alignment [1], and genetic mining [66].

It is impossible to give a complete overview of process mining here. There-
fore, we refer to a special issue of Computers in Industry on process mining [14]
and a survey paper [13]. Process mining can be seen in the broader context
of Business (Process) Intelligence (BPI) and Business Activity Monitoring
(BAM). In [43, 44, 81] a BPI toolset on top of HP’s Process Manager is de-
scribed. The BPI toolset includes the so-called “BPI Process Mining Engine.”
In [69] Zur Muehlen describes the PISA tool which can be used to extract
performance metrics from workflow logs. Similar diagnostics are provided by
the ARIS Process Performance Manager (PPM) [53]. The latter tool is com-
mercially available and a customized version of PPM is the Staffware Process
Monitor (SPM) [85] which is tailored toward mining Staffware logs.

The need for monitoring web services has been raised by other researchers.
For example, several research groups have been experimenting with adding
monitor facilities via SOAP monitors in Axis [19]. Reference [56] introduces
an assertion language for expressing business rules and a framework to plan
and monitor the execution of these rules. Reference [21] uses a monitoring
approach based on BPEL. Monitors are defined as additional services and
linked to the original service composition. Another framework for monitor-
ing the compliance of systems composed of web-services is proposed in [60].
This approach uses event calculus to specify requirements. Reference [59] is
an approach based on WS-Agreement defining the Crona framework for the
creation and monitoring of agreements. In [42, 31], Dustdar et al. discuss the
concept of web services mining and envision various levels (web service opera-
tions, interactions, and workflows) and approaches. Our approach fits in their
framework and shows that web-services mining is indeed possible. In [73] a



48 W.M.P. van der Aalst and M. Pesic

tool named the Web Service Navigator is presented to visualize the execution
of web services based on SOAP messages. The authors use message sequence
diagrams and graph-based representations of the system topology. Note that
also in [5] we suggested to focus less on languages like BPEL and more on
questions related to the monitoring of web services. In [6] we showed that it
is possible to translate abstract BPEL into Petri nets and SOAP messages
exchanged between services into event logs represented using the MXML for-
mat (i.e., the format used by our process mining tools). As a result, we could
demonstrate that it is possible to compare the modeled behavior (in terms of
a Petri net) and the observed behavior (in some event log). We used Oracle
BPEL and demonstrated that it is possible to monitor SOAP messages using
TCP Tunneling technique [6]. This comparison could be used for monitor-
ing deviations and to analyze the most frequently used parts of the service/
choreography.

This chapter discussed the idea of conformance checking by comparing the
observed behavior recorded in logs with some predefined model. This could
be termed “run-time conformance.” However, it is also possible to address
the issue of design-time conformance, i.e., comparing different process models
before enactment. For example, one could compare a specification in abstract
BPEL with an implementation using executable BPEL. Similarly, one could
check at design-time the compatibility of different services. Here one can use
the inheritance notions [2] explored in the context of workflow management
and implemented in Woflan [88]. Axel Martens et al. [62, 63, 64, 82] have
explored questions related to design-time conformance and compatibility us-
ing a Petri-net-based approach. For example, [63] focuses on the problem
of consistency between executable and abstract processes and [64] presents
an approach where for a given composite service the required other services
are generated. Also related is [36] where Message Sequence Charts (MSCs)
are compiled into the “Finite State Process” notation to describe and reason
about web service compositions.

2.6 Conclusion

This chapter focused on service flows from the viewpoint of both specifica-
tion/enactment and monitoring.

First, we discussed more traditional approaches based on Petri nets and
BPEL. We showed that Petri nets provide a nice graphical representation
and a wide variety of analysis techniques, and mentioned that BPEL has
strong industry support making it a viable execution platform. We also showed
that there are mappings from BPEL to Petri net for the purpose of analysis
(cf. BPEL2PNML and WofBPEL [72]). Moreover, it is possible to translate
graphical languages such a Petri nets to BPEL (cf. WorkflowNet2BPEL4AWS
[55]). Using such techniques, it is also possible to translate languages such as
EPCs, BPMN, etc. to BPEL.



2 Specifying and Monitoring Service Flows 49

Although the first author has been involved in the development of these
tools and these tools are mature enough to be applied in real-life applications,
both Petri nets and BPEL are rather procedural and this does not fit well
with the autonomous nature of services. Therefore, we proposed a new, more
declarative language, DecSerFlow. Although DecSerFlow is graphical, it is
grounded in temporal logic. It can be used for the enactment of processes, but
it is particularly suited for the specification of a single service or a complete
choreography. In the last part of this chapter, the focus shifted from languages
to process mining. We showed that the combination of DecSerFlow and process
mining (conformance checking in particular) is useful in the setting of web
services. Moreover, we showed that DecSerFlow can be combined well with
the conformance-checking techniques currently implemented in ProM (cf. the
LTL checker plug-in).

DecSerFlow also seems to be an interesting proposal for linking global and
local models. If both the global model (i.e., the view on the process as seen by
some external observer) and one or more local models (i.e., the specification
or implementation of a single service or service composition) are modeled
in DecSerFlow, standard model checking techniques can be used to compare
both.

To conclude, we would like to mention that all of the presented analysis
and translation tools can be downloaded from various web sites: [75] (ProM),
[20] (BPEL2PNML and WofBPEL), and [93] (WorkflowNet2BPEL4WS).

References

1. W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool
for Delta Analysis. In J. Grundspenkis and M. Kirikova, editors, Proceedings
of the 5th Workshop on Business Process Modeling, Development and Support
(BPMDS’04), volume 2 of Caise’04 Workshops, pages 138-145. Riga Technical
University, Latvia, 2004.

2. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270
(1-2):125-203, 2002.

3. W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process Mining
and Verification of Properties: An Approach based on Temporal Logic. In
R. Meersman and Z. Tari et al., editors, On the Move to Meaningful Internet
Systems 2005: CooplS, DOA, and ODBASE: OTM Confederated International
Conferences, CooplS, DOA, and ODBASE 2005, volume 3760 of Lecture Notes
in Computer Science, pages 130—147. Springer-Verlag, Berlin, 2005.

4. W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Web Service Com-
position Languages: Old Wine in New Bottles? In G. Chroust and C. Hofer,
editors, Proceeding of the 29th EUROMICRO Conference: New Waves in Sys-
tem Architecture, pages 298-305. IEEE Computer Society, Los Alamitos, CA,
2003.

5. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, H.M.W.
Verbeek, and P. Wohed. Life After BPEL? In M. Bravetti, L. Kloul, and



50

10.

11.

12.

13.

14.

15.

16.

17.

18.

W.M.P. van der Aalst and M. Pesic

G. Zavattaro, editors, WS-FM 2005, volume 3670 of Lecture Notes in Computer
Science, pages 35-50. Springer-Verlag, Berlin, 2005.

W.M.P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H.M.W. Ver-
beek. Choreography Conformance Checking: An Approach based on BPEL
and Petri Nets (extended version). BPM Center Report BPM-05-25, BPMcen-
ter.org, 2005.

W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT press, Cambridge, MA, 2002.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.
W.M.P. van der Aalst, J.B. Jgrgensen, and K.B. Lassen. Let’s Go All the
Way: From Requirements via Colored Workflow Nets to a BPEL Implemen-
tation of a New Bank System Paper. In R. Meersman and Z. Tari et al.,
editors, On the Move to Meaningful Internet Systems 2005: CooplS, DOA,
and ODBASE: OTM Confederated International Conferences, CooplS, DOA,
and ODBASE 2005, volume 3760 of Lecture Notes in Computer Science, pages
22-39. Springer-Verlag, Berlin, 2005.

W.M.P. van der Aalst and A.K.A. de Medeiros. Process Mining and Security:
Detecting Anomalous Process Executions and Checking Process Conformance.
In N. Busi, R. Gorrieri, and F. Martinelli, editors, Second International Work-
shop on Security Issues with Petri Nets and other Computational Models (WISP
2004), pages 69-84. STAR, Servizio Tipografico Area della Ricerca, CNR Pisa,
Ttaly, 2004.

W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks
from Event Logs. Computer Supported Cooperative work, 14(6):549-593, 2005.
W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Inter-
action Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, ed-
itors, International Conference on Business Process Management (BPM 2004),
volume 3080 of Lecture Notes in Computer Science, pages 244—260. Springer-
Verlag, Berlin, 2004.

W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches.
Data and Knowledge Engineering, 47(2):237-267, 2003.

W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Spe-
cial Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science
Publishers, Amsterdam, 2004.

W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining;:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128-1142, 2004.

W.M.P. van der Aalst and M. Weske. The P2P approach to Interorganizational
Workflows. In K.R. Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings
of the 13th International Conference on Advanced Information Systems Engi-
neering (CAiSE’01), volume 2068 of Lecture Notes in Computer Science, pages
140-156. Springer-Verlag, Berlin, 2001.

R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from
Workflow Logs. In Sizth International Conference on Extending Database Tech-
nology, pages 469-483, 1998.

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business



19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

2 Specifying and Monitoring Service Flows 51

Process Execution Language for Web Services, Version 1.1. Standards proposal
by BEA Systems, International Business Machines Corporation, and Microsoft
Corporation, 2003.

Apache Axis, http://ws.apache.org/axis/.

BABEL, Expressiveness Comparison and Interchange Facilitation Between
Business Process Execution Languages, http://www.bpm.fit.qut.edu.au/
projects/babel/tools/.

L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for Composed Services.
In ICSOC ’04: Proceedings of the 2nd International Conference on Service Ori-
ented Computing, pages 193-202, New York, NY, USA, 2004. ACM Press.

T. Belwood and et al. UDDI Version 3.0. http://uddi.org/pubs/uddi\_v3.
htm, 2000.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen,
S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1. http:
//www.w3.org/TR/soap, 2000.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

P. Chrzastowski-Wachtel. A Top-down Petri Net Based Approach for Dy-
namic Workflow Modeling. In W.M.P. van der Aalst, A.H.M. ter Hofstede,
and M. Weske, editors, International Conference on Business Process Manage-
ment (BPM 2003), volume 2678 of Lecture Notes in Computer Science, pages
336-353. Springer-Verlag, Berlin, 2003.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts and London, UK, 1999.

J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215-249, 1998.

A. Datta. Automating the Discovery of As-Is Business Process Models: Prob-
abilistic and Algorithmic Approaches. Information Systems Research, 9(3):
275-301, 1998.

B.F. van Dongen, A.K. Alves de Medeiros, HM.W. Verbeek, A.J.M.M. Wei-
jters, and W.M.P. van der Aalst. The ProM framework: A New Era in Process
Mining Tool Support. In G. Ciardo and P. Darondeau, editors, Application and
Theory of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science,
pages 444-454. Springer-Verlag, Berlin, 2005.

M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware In-
formation Systems: Bridging People and Software through Process Technology.
Wiley & Sons, 2005.

S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining.
Technical Report TUV-1841-2004-16, Information Systems Institute, Vienna
University of Technology, Wien, Austria, 2004.

M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in Property Specifi-
cations for Finite-State Verification. In ICSE ’99: Proceedings of the 21st in-
ternational conference on Software engineering, pages 411-420, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative
control flow. In D. Beauquier and E. Borger and A. Slissenko, editor, Proc.
12th International Workshop on Abstract State Machines, pages 131-151, Paris,
France, March 2005.



52

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

W.M.P. van der Aalst and M. Pesic

A. Ferrara. Web services: A process algebra approach. In Proceedings of the
2nd international conference on Service oriented computing, pages 242-251,
New York, NY, USA, 2004. ACM Press.

J.A. Fisteus, L.S. Ferndndez, and C.D. Kloos. Formal verification of BPEL4WS
business collaborations. In K. Bauknecht, M. Bichler, and B. Proll, editors,
Proceedings of the 5th International Conference on Electronic Commerce and
Web Technologies (EC-Web ’04), volume 3182 of Lecture Notes in Computer
Science, pages 79-94, Zaragoza, Spain, August 2004. Springer-Verlag, Berlin.
H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web
Service Composition. In Proceedings of 18th IEEE International Conference
on Automated Software Engineering (ASE), pages 152-161, Montreal, Canada,
October 2003.

W. Gaaloul, S. Bhiri, and C. Godart. Discovering Workflow Transactional
Behavior from Event-Based Log. In R. Meersman, Z. Tari, W.M.P. van der
Aalst, C. Bussler, and A. Gal et al., editors, On the Move to Meaningful Internet
Systems 2004: CooplS, DOA, and ODBASE: OTM Confederated International
Conferences, CooplS, DOA, and ODBASE 200/, volume 3290 of Lecture Notes
in Computer Science, pages 3—18, 2004.

W. Gaaloul and C. Godart. Mining Workflow Recovery from Event Based
Logs. In W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera,
editors, Business Process Management (BPM 2005), volume 3649, pages 169—
185. Springer-Verlag, Berlin, 2005.

D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases, 3:119-153, 1995.

R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-The-Fly Auto-
matic Verification of Linear Temporal Logic. In Proceedings of the Fifteenth
IFIP WG6.1 International Symposium on Protocol Specification, Testing and
Verification XV, pages 3—18, London, UK, 1996. Chapman & Hall, Ltd.

D. Giannakopoulou and K. Havelund. Automata-based verification of tem-
poral properties on running programs. In ASE ’01: Proceedings of the 16th
IEEFE international conference on Automated software engineering, page 412,
Washington, DC, USA, 2001. IEEE Computer Society.

R. Gombotz and S. Dustdar. On Web Services Mining. In M. Castellanos
and T. Weijters, editors, First International Workshop on Business Process
Intelligence (BPI’05), pages 58-70, Nancy, France, September 2005.

D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan.
Business Process Intelligence. Computers in Industry, 53(3):321-343, 2004.

D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Pro-
cess Quality through Exception Understanding, Prediction, and Prevention. In
P. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snod-
grass, editors, Proceedings of 27th International Conference on Very Large Data
Bases (VLDB’01), pages 159-168. Morgan Kaufmann, 2001.

K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Proceed-
ings of the 16th IEEE International Conference on Automated Software Engi-
neering (ASE’01), pages 135-143. IEEE Computer Society Press, Providence,
2001.

K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In
Proceedings of the 8th International Conference on Tools and Algorithms for the



47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

2 Specifying and Monitoring Service Flows 53

Construction and Analysis of Systems (TACAS 2002), volume 2280 of Lecture
Notes in Computer Science, pages 342—-356. Springer-Verlag, Berlin, 2002.

J. Herbst. A Machine Learning Approach to Workflow Management. In Proceed-
ings 11th European Conference on Machine Learning, volume 1810 of Lecture
Notes in Computer Science, pages 183—-194. Springer-Verlag, Berlin, 2000.
G.J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):
279-295, 1997.

G.J. Holzmann. An Analysis of Bitstate Hashing. Form. Methods Syst. Des.,
13(3):289-307, 1998.

G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, Massachusetts, USA, 2003.

G.J. Holzmann and D. Peled. An Improvement in Formal Verification. In
FORTE 1994 Conference, Bern, Switzerland, 1994.

G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth-first search. In
The Spin Verification System, Proceedings of the 2nd Spin Workshop.), pages
23-32. American Mathematical Society, 1996.

IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, An-
alyze and Optimize Your Business Process Performance (whitepaper). IDS
Scheer, Saarbruecken, Gemany, http://wuw.ids-scheer.com, 2002.

N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Ser-
vices Choreography Description Language, Version 1.0. W3C Working Draft
17-12-04, 2004.

K.B. Lassen and W.M.P. van der Aalst. WorkflowNet2BPEL4WS: A Tool
for Translating Unstructured Workflow Processes to Readable BPEL. BETA
Working Paper Series, WP 167, Eindhoven University of Technology, Eind-
hoven, 2006.

A. Lazovik, M. Aiello, and M. Papazoglou. Associating Assertions with Business
Processes and Monitoring their Execution. In ICSOC ’04: Proceedings of the
2nd International Conference on Service Oriented Computing, pages 94—104,
New York, NY, USA, 2004. ACM Press.

F. Leymann. Web Services Flow Language, Version 1.0, 2001.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

H. Ludwig, A. Dan, and R. Kearney. Crona: An Architecture and Library for
Creation and Monitoring of WS-agreements. In ICSOC ’04: Proceedings of
the 2nd International Conference on Service Oriented Computing, pages 65—74,
New York, NY, USA, 2004. ACM Press.

K. Mahbub and G. Spanoudakis. A Framework for Requirents Monitoring of
Service Based Systems. In ICSOC ’04: Proceedings of the 2nd International
Conference on Service Oriented Computing, pages 84-93, New York, NY, USA,
2004. ACM Press.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1991.

A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli,
editor, Proceedings of the 8th International Conference on Fundamental Ap-
proaches to Software Engineering (FASE 2005), volume 3442 of Lecture Notes
in Computer Science, pages 19-33. Springer-Verlag, Berlin, 2005.

A. Martens. Consistency between executable and abstract processes. In Pro-
ceedings of International IEEE Conference on e-Technology, e-Commerce, and
e-Services (EEE’05), pages 60-67. IEEE Computer Society Press, 2005.



54

64

65

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.
76.
e

78.

79.

W.M.P. van der Aalst and M. Pesic

P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach to
the SOA. In Proceedings of the 2nd South-FEast European Workshop on Formal
Methods 2005 (SEEFMO05), Ohrid, Republic of Macedonia, 2005.

M. Mecella, F. Parisi-Presicce, and B. Pernici. Modeling E-service Orchestra-
tion through Petri Nets. In Proceedings of the Third International Workshop on
Technologies for E-Services, volume 2644 of Lecture Notes in Computer Science,
pages 38-47. Springer-Verlag, Berlin, 2002.

A K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Using
Genetic Algorithms to Mine Process Models: Representation, Operators and
Results. BETA Working Paper Series, WP 124, Eindhoven University of Tech-
nology, Eindhoven, 2004.

R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge
University Press, Cambridge, UK, 1999.

M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin,
2004.

M. zur Mihlen and M. Rosemann. Workflow-based Process Monitoring and
Controlling - Technical and Organizational Issues. In R. Sprague, editor,
Proceedings of the 33rd Hawaii International Conference on System Science
(HICSS-33), pages 1-10. IEEE Computer Society Press, Los Alamitos, Califor-
nia, 2000.

OASIS Web Services Business Process Execution Language (WSBPEL)
TC, http://www.oasis-open.org/committees/tc\_home.php?wg\_abbrev=
wsbpel.

C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede,
and H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-
BPEL. BPM Center Report BPM-05-15, BPMcenter.org, 2005.

C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas, and
A.H.M. ter Hofstede. WofBPEL: A Tool for Automated Analysis of BPEL
Processes. In B. Benatallah, F. Casati, and P. Traverso, editors, Proceedings of
Service-Oriented Computing (ICSOC 2005), volume 3826 of Lecture Notes in
Computer Science, pages 484-489. Springer-Verlag, Berlin, 2005.

W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J.F. Morar. Web
Services Navigator: Visualizing the Execution of Web Services. IBM Systems
Journal, 44(4):821-845, 2005.

A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Annual Symposium on the Foundations of Computer Science, pages 46-57.
IEEE Computer Society Press, Providence, 1977.

Process Mining Home Page, http://www.processmining.org.

Process Modelling Group, http://process-modelling-group.org.

A. Puri and G.J. Holzmann. A Minimized automaton representation of reach-
able states. In Software Tools for Technology Transfer, volume 3. Springer-
Verlag, Berlin, 1993.

W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1998.

A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the
Fit and Appropriateness of Event Logs and Process Models. In C. Bussler et
al., editor, BPM 2005 Workshops (Workshop on Business Process Intelligence),



80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

2 Specifying and Monitoring Service Flows 55

volume 3812 of Lecture Notes in Computer Science, pages 163-176. Springer-
Verlag, Berlin, 2006.

A. Rozinat and W.M.P. van der Aalst. Decision Mining in ProM. In S. Dustdar,
J.L. Faideiro, and A. Sheth, editors, International Conference on Business Pro-
cess Management (BPM 2006), volume 4102 of Lecture Notes in Computer
Science, pages 420—425. Springer-Verlag, Berlin, 2006.

M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Business Process Cockpit.
In Proceedings of 28th International Conference on Very Large Data Bases
(VLDB’02), pages 880—883. Morgan Kaufmann, 2002.

B.H. Schlingloff, A. Martens, and K. Schmidt. Modeling and model checking
web services. Electronic Notes in Theoretical Computer Science: Issue on Logic
and Communication in Multi-Agent Systems, 126:3—26, mar 2005.

C. Stahl. Transformation von BPEL4AWS in Petrinetze (In German). Master’s
thesis, Humboldt University, Berlin, Germany, 2004.

S. Thatte. XLANG Web Services for Business Process Design, 2001.

TIBCO. TIBCO Staffware Process Monitor (SPM). http://www.tibco.com,
2005.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In In Proceedings of the 1st Symposium on Logic in Computer
Science, pages 322-331, Cambridge, Massachusetts, USA, 1986.

H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes us-
ing Petri Nets. In D. Marinescu, editor, Proceedings of the Second Interna-
tional Workshop on Applications of Petri Nets to Coordination, Workflow and
Business Process Management, pages 59-78. Florida International University,
Miami, Florida, USA, 2005.

H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246-279, 2001.
A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Mod-
els from Event-Based Data using Little Thumb. Integrated Computer-Aided
Engineering, 10(2):151-162, 2003.

P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis
of Web Services Composition Languages: The Case of BPEL4AWS. In LY.
Song, S.W. Liddle, T.W. Ling, and P. Scheuermann, editors, 22nd International
Conference on Conceptual Modeling (ER 20083), volume 2813 of Lecture Notes
in Computer Science, pages 200-215. Springer-Verlag, Berlin, 2003.

P. Wolper and D. Leroy. Reliable hashing without collision detection. In Proc.
5th Int. Conference on Computer Aided Verification, pages 59-70, 1993.

P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about Infinite Computation
Paths. In Proceedings of the 24th IEEE symposium on foundation of cumputer
science, pages 185-194, Tucson, Arizona, November 1983.

WorkflowNet2BPEL4WS, http://www.daimi.au.dk/~krell/
WorkflowNet2BPEL4WS/.
J.M. Zaha, A. Barros, M. Dumas, and A.H.M. ter Hofstede. Let’s Dance:

A Language for Service Behavior Modeling. QUT ePrints 4468, Faculty of
Information Technology, Queensland University of Technology, 2006.

J.M. Zaha, M. Dumas, A.H.M. ter Hofstede, A. Barros, and G. Dekker. Service
Interaction Modeling: Bridging Global and Local Views. QUT ePrints 4032,
Faculty of Information Technology, Queensland University of Technology, 2006.



