
Chapter 12
The Declare Service

Maja Pesic, Helen Schonenberg, and Wil van der Aalst

12.1 Introduction

The Declare Service is a YAWL Custom Service that enables decomposing YAWL
tasks into DECLARE workflows, i.e. workflows supported by the workflow man-
agement system (WfMS) called DECLARE. The goal of this service is to enable
a particular kind of flexibility. Chapter 6 describes a constraint-based approach to
workflow models and the ConDec language. This approach, supported by the DE-
CLARE WfMS, allows for more flexibility, i.e. execution of tasks is allowed if it is
not explicitly forbidden by some constraint. This chapter describes DECLARE and
the Declare Service for YAWL.

Sometimes it is easier to express a process in a procedural language (e.g. the na-
tive workflow language of YAWL) and sometimes a declarative approach is more
suitable. Moreover, in a larger process it may be useful to express parts of the pro-
cess in a procedural language and specify other parts in terms of constraints. Using
the service-oriented architecture of YAWL, this can easily be realized. A YAWL
task may decompose into a DECLARE process and a task in DECLARE can be de-
composed into a YAWL process. Arbitrary decompositions of DECLARE and YAWL
models allow for the integration of declarative and YAWL workflows on different
abstraction levels.1 This way the designer is not forced to make a binary choice
between a declarative and a procedural way of modeling. Hence, a seamless inte-
gration can be achieved, where parts of the workflow that need a high degree of
flexibility are supported by declarative DECLARE models and parts of the processes
that need centralized control of the system are supported by YAWL models.

Consider, for example, the decomposition of the Carrier Appointment process
shown in Figure 12.1. At the highest level of decomposition, the main process is
modeled using a procedural YAWL Carrier Appointment net, which is described in
Appendix A. However, the parts of the net that refer to the Truck Load and Less than

1 Note that the service oriented architecture also allows for decompositions involving worklets,
which are described in Chapters 4 and 11.

333

334 Maja Pesic, Helen Schonenberg, and Wil van der Aalst

YAWL

DECLARE

DECLARE

Fig. 12.1: An example illustrating the service-oriented architecture: tasks Truck Load and Less
than Truck-Load in the top-level YAWL net are decomposed into DECLARE processes

Truck Load scenarios are now decomposed and specified as declarative workflows,
as described in Chapter 6. Although this example only presents decomposition of
YAWL nets into DECLARE sub-models, it is also possible to decompose DECLARE
models into YAWL sub-nets. This way, procedural and declarative workflows can
be combined.

12.2 Service Architecture

As Figure 12.2 shows, the Declare Service uses Interface B in two ways. First,
YAWL can delegate a task to the service, instead of to the Resource Service. For
example task S in Figure 12.2(a) can be delegated to a Custom Service. Second, a
Custom Service can request the launch of a new YAWL instance. In both cases, rele-
vant instance and task data elements are exchanged between YAWL and the service.
The Resource Service is a Custom Service, which is described in Chapter 10. By de-
fault, all tasks in YAWL models are delegated to the Resource Service, i.e. all tasks
are by default executed by users through their YAWL worklists. If a task should

12 The Declare Service 335

be delegated to another Custom Service, then this must be explicitly specified in
the model. The Declare Service enables arbitrary decompositions of DECLARE and
models in two ways, as shown in Figure 12.2(b). First, it is possible that a YAWL
task triggers the execution of a DECLARE instance: when the YAWL task D be-
comes enabled, DECLARE will initiate the required constraint model. YAWL will
consider the completion of the launched DECLARE instance as a completion of its
task. Second, DECLARE task Y can trigger the execution of a YAWL instance.

custom
YAWL
service

S

YA
W

L
En

gi
ne

in
te

rfa
ce

 B
 start task

completed task

start
instance

completed
instance

(a) Custom Service interface

D

YA
W

L
En

gi
ne D

EC
LAR

E

*

Y

(b) DECLARE as a service

Fig. 12.2: DECLARE as a YAWL Custom Service

As Figure 12.3 shows, DECLARE consists of three components; the Designer,
the Framework and the Worklist. The Designer component is used for creating
constraint templates, constraint models, and by verification of constraint models.
For example, Figure 12.1 shows the Designer component containing the Carrier
Appointment model. The Framework component facilitates instance creation and
change of constraint models. Finally, the Worklist component offers users access
to active instances of constraint models. Also, users can execute tasks of active in-
stances in their Worklist. The Declare Service acts as a bridge between the YAWL
Engine and the DECLARE Framework, as shown in Figure 12.3. Note that users ex-
ecute ‘normal’ tasks (i.e. tasks that are not decomposed or subcontracted to another
system or process) of DECLARE and YAWL instances in a default manner by using
the respective worklists.

YAWL
Engine

in
te

rfa
ce

 B

YAWL
Worklist

Framework Worklist

DesignerDECLARE

DECLARE
Service

TCP/IP

Fig. 12.3: Interface between YAWL, Declare Service and DECLARE

336 Maja Pesic, Helen Schonenberg, and Wil van der Aalst

After presenting the architecture of DECLARE and the way it is embedded into
the YAWL environment, we now focus on the functionality provided by DECLARE.
In the remainder, we show the following capabilities:

• The possibility to define constraint templates. DECLARE is multi-lingual and
can support multiple constraint languages at the same time. Moreover, it is pos-
sible to define new languages using constraint templates.

• The possibility to define constraint models. Using the constraint templates it is
possible to specify specific constraints for a particular process.

• The verification capabilities of DECLARE. While modeling or redesigning work-
flows errors may be introduced. Hence, DECLARE offers a wide range of verifi-
cation capabilities.

• The enactment of constraint model instances. Based on such constraint lan-
guages, the DECLARE can automatically generate the support needed, i.e.
mandatory constraints can not be violated while optional constraints are used
to generate warnings.

• The possibility to change constraint models and to migrate instances. Although
DECLARE allows for a declarative way of modeling, other flexibility issues such
as migrating cases are supported.

• The integration of YAWL and DECLARE. As explained using Figure 12.1 it is
rather easy to support an arbitrary nesting of workflow languages.

12.3 Constraint Templates

An arbitrary number of constraint-based languages can be defined in DECLARE. For
example, Figure 12.4 shows how the ConDec language (cf. Chapter 6) is defined
in the Designer tool. A tree with the language templates is shown under the se-
lected language. On the panel on the right side of the screen the selected template is
presented graphically.

An arbitrary number of templates can be created for each language. Figure 12.4
shows a screenshot of the Designer while defining the precedence template. First,
the template name and additional label are entered. Next, it is possible to define an
arbitrary number of parameters in the template. The precedence template has two
parameters: A and B. For each parameter it is specified whether it can be branched
or not. When creating a constraint from a template in a model, a task replaces each
of the template’s parameters. If a parameter is branchable, then it is possible to re-
place the parameter with more tasks. In this case, the parameter will be replaced by a
disjunction of selected tasks in the formula (cf. Chapter 6). The graphical represen-
tation of the template is defined by selecting the kind of symbol that will be drawn
next to each parameter and the style of the line. Figure 12.4 shows that the response
template is graphically represented by a single line with a filled arrow-and-circle
symbol next to the second task (B). Furthermore, a textual description and the LTL
formula are given.

12 The Declare Service 337

Fig. 12.4: Creating a language by defining constraint templates using the DECLARE Designer tool

12.4 Constraint Workflow Models

Constraint models can be developed in the Designer tool after selecting one of the
languages defined in the system. In this chapter we only use the ConDec templates
described in Chapter 6. However, as explained before, DECLARE is extensible and
multi-lingual. As an example, we consider the Less than Truck Load (LTTL) process
described in Chapter 6. Figure 12.5 shows the ConDec LTTL model in DECLARE.

Each constraint in the model in Figure 12.5 is created using a ConDec template.
For example, the constraint between tasks pickup and bill is created by applying
the precedence template2. The creation of this template was already shown in Fig-
ure 12.4. However, when making a constraint model there is no need to define new
constraints from scratch. Instead, constraints are defined by applying templates. Fig-
ure 12.6 shows the application of the precedence template. The template is selected
in the top left corner of the screen. Underneath the template all its parameters are
shown. Tasks are assigned to parameters by selecting a task (or multiple tasks in case

2 For the purposes of simplicity, in this chapter we will use shorter names of the relevant tasks:
pickup for Arrange Pickup Appointment, delivery for Arrange Delivery Appointment, bill for Cre-
ate Bill of Lading and shipment for Create Shipment Information Document.

338 Maja Pesic, Helen Schonenberg, and Wil van der Aalst

Fig. 12.5: The LTTL model in DECLARE

Fig. 12.6: Defining a constraint in DECLARE based on the precedence template constructed in
Figure 12.4

of branching) from the model. On the right side of the screen some additional infor-
mation can be given. Initially, constraints have the template name, but constraints
can have arbitrary names and can be renamed. Constraints can have a condition in-
volving some data elements from the model. For example, condition “totalPrice <
1000” on a constraint would mean that the constraint should hold only if the data
element totalPrice has a value less than 1000. Finally, the type (mandatory or op-

12 The Declare Service 339

tional) of the constraint must be specified. The constraint shown in Figure 12.6 is
mandatory.

12.5 Verification of Constraint Models

DECLARE uses the methods presented in Chapter 6 to detect dead tasks, conflicts
and the smallest set of constraints that cause them. To illustrate this, we use the
example for a ConDec model with a conflict from Chapter 6. Figure 12.7(a) shows
this model in DECLARE: the two 1..* constraints specify that each of the tasks deliv-
ery and bill must be executed at least once. The two precedence constraints specify
that (1) task bill cannot be executed before task pickup and (2) task pickup can-
not be executed before task bill. Besides for detecting error(s) in models, for each
error DECLARE searches through (the powerset) mandatory constraints to find the
smallest group of constraints that causes the error. DECLARE applies the verification
methods described in Chapter 6 for each group of constraints in order to detect the
smallest group of constraints that causes the error.

Figures 12.7(b), (c) and (d) show that the DECLARE verification procedure re-
ports three errors in this model. First, the two precedence constraints cause the bill
task to be dead (cf. Figure 12.7(b)). Second, the two precedence constraints cause
the pickup task to be dead (cf. Figure 12.7(c)). Finally, the two precedence con-
straints and the 1..* constraint on task bill cause a conflict (cf. Figure 12.7(d)). Be-
cause of this conflict it is not possible to satisfy all constraints at the same time. At
least one of the three related constraints mentioned needs to be dropped.

Detailed verification reports in DECLARE aim at helping model developers to un-
derstand error(s) in the model. The goal is to assist the resolution of such problems.
As discussed in Chapter 6, errors can be eliminated from a model by removing at
least one constraint from the group of constraints that together cause the error. For
example, if one of the two precedence constraints would be removed from the DE-
CLARE model in Figure 12.7(a), there would no longer be errors in this model. Also,
removing the 1..* constraint on task bill would remove the conflict, but tasks bill and
pickup would still be dead.

12.6 Execution of Constraint Model Instances

DECLARE determines which tasks can be executed next, i.e. determining the enabled
tasks, the state of an instance and states of constraints using the approach presented
in Chapter 6. Each instance is launched (i.e. created) in the Framework tool and
users can work on instances via their Worklists (cf. Figure 12.3 on page 335). A user
can work on instances from his/her Worklist. Figure 12.8 shows a screenshot of a
Worklist. All available instances are shown in the list on the left side of the screen,
underneath the ‘instances’ header. In Figure 12.8, there are two instances of the Less

340 Maja Pesic, Helen Schonenberg, and Wil van der Aalst

(a) DECLARE model

(b) task bill is dead

(c) task pickup is dead

(d) a conflict

Fig. 12.7: A DECLARE model with a conflict and two dead tasks

12 The Declare Service 341

than Truck Load model presented in Figure 12.5 on page 338: ‘1: Less than Truck
Load’ and ‘2: Less than Truck Load’. The model of the selected instance is shown
on the right side of the screen. After the user starts a task by double-clicking it, the
task will be opened in the ‘task panel’ under the model.

Fig. 12.8: The DECLARE Worklist showing details of a selected instance

Although the structure of the process model is the same as in the Designer (cf.
Figure 12.5), the Worklist presents some additional symbols and colors to users to
indicate which tasks are enabled, the current state of the instance and each con-
straint. Each task contains ‘start’ (play) and ‘complete’ (stop) icons, that indicate
whether users can start/complete the task at the moment. State satisfied, violated
and temporarily violated are indicated by the colors green, red and orange, respec-
tively. This color scheme is used for both constraint states and instance states.

The initial state of the process instance in Figure 12.8 shows that it is only pos-
sible to start tasks delivery and pickup, because the corresponding start symbols
are enabled. Starting and completing task bill is not possible, as indicated by the
disabled start icon. In addition, all currently disabled tasks are colored grey (cf.
task bill). This initial state of the process instance is influenced by the precedence
constraint, which specifies that task bill can not be executed until task pickup is ex-
ecuted. Also note that each constraint is colored to indicate its state. The two 1..*
constraints are temporarily violated (i.e. orange), while the precedence constraint is
satisfied (i.e. green).

Figure 12.8 shows the instance after starting task delivery. This task is now
“open” in the ‘task panel’ on the bottom of the screen. Data elements that are used
in this task are presented in the ‘task panel’. In this case, four data elements are

342 Maja Pesic, Helen Schonenberg, and Wil van der Aalst

available – patient location, date, transporter and time. In this way, users can ma-
nipulate data elements while executing tasks. The task can be completed or canceled
by clicking on the appropriate buttons on the ‘task panel’.

12.7 Optional Constraints

So far in this chapter, we have used models where all constraints are mandatory.
However, as discussed in Chapter 6, constraints can also be optional, i.e. they can
be violated. If the user is about to violate an optional constraint, DECLARE issues a
warning. This warning contains additional information about the constraint, and it
should help the user when deciding whether to proceed and violate the constraint, or
to abort and not violate it. As Figure 12.9 shows, additional information for optional
constraints contains: (1) a group; (2) the importance level on a scale from 1 (for low
importance) to 10 (for high importance); and (3) some local message that should be
displayed. This additional information for an optional constraint is presented in the
warning given when a user is about to violate this constraint.

Fig. 12.9: Defining the optional constraint precedence

Groups for optional constraints are defined in the Designer component and can
be used to define corporate policies, etc. Each group has a name and a short descrip-
tion, as illustrated by Figure 12.10, and end-users should be able to interpret them.
For example, it should be easier to decide to violate a constraint belonging to the
Ordering Policy, than a constraint that belongs to the Billing Policy.

In some cases, triggering an event or closing the instance can violate optional
constraint(s). For example, consider an instance of the DECLARE model shown in
Figure 12.11, where the user attempts to start executing task bill. Note that, despite

12 The Declare Service 343

Fig. 12.10: Warnings related to possible violations are linked to so-called constraint groups

the precedence constraint, it is possible to start task bill in this instance. This is be-
cause this constraint is optional. If the user would now attempt to start executing
task bill, DECLARE would first issue a warning associated with the optional con-
straint, as shown in Figure 12.11. The user can now decide based on the information
presented in the warning whether to start the execution of task bill and violate the
constraint or not. Note that, in case of mandatory constraints, this is not possible, i.e.
if this would be a mandatory constraint, it would not be possible to start executing
task bill at this moment.

12.8 Dynamic Instance Change

Instances in DECLARE can be changed dynamically by adding and removing tasks
and constraints. After the change, DECLARE creates an automaton for the whole
mandatory formula (i.e. the conjunction of all mandatory constraints expressed in
LTL) of the new model. If the instance trace can be ‘replayed’ on this automaton, the
dynamic change is accepted. If not, the error is reported and the instance continues
its execution based on the old model. Naturally, when applying a dynamic change, it
is also possible to verify the new model against dead tasks and conflicts but these er-
rors will not disable the change. Actually, the procedure for dynamic change is very
similar to the procedure for starting instances in DECLARE, as Figure 12.12 shows.
It is possible to perform basic model verification in both cases. The only difference
is in the execution of the automaton. When an instance is started, the execution of
the automaton begins from the initial state. In case of a dynamic change, DECLARE
first makes an attempt to ‘replay’ the current trace of the instance on the new au-
tomaton, i.e. the new model is verified against the current trace. If this is possible,
the dynamic change is successful and the execution continues from the current set
of possible states in the new automaton, i.e. the instance state, enabled tasks, and
states of constraints are determined using the new automaton and the current trace.

344 Maja Pesic, Helen Schonenberg, and Wil van der Aalst

Fig. 12.11: Warning: starting task bill violates the optional constraint precedence

If this is not possible, the dynamic change fails and the instance must continue using
the old model.

developing
model

changing
instance

starting
instance

create
mandatory
automaton

instance
verification

(replay trace)
start from

current state
set to

 initial state

X X

X XX ? ok

X

report error
cancel change

not ok

verify against
dead tasks

and conflicts

?

?

report error
not ok

Fig. 12.12: Procedure for starting and changing instances in DECLARE

Besides changing a single instance, DECLARE offers two additional options: mi-
gration of all instances and changing the original constraint model. It is possible
to request a migration of all instances, i.e. that the dynamic change is applied to
all running instances of the same constraint model. DECLARE performs migration

12 The Declare Service 345

by applying the same procedure for dynamic change to all instances of the same
constraint model, i.e. only instances with traces that can be replayed on the new au-
tomaton are migrated. It is also possible to also change the original constraint model.
In this case, all instances created in the future will be based on the new model.

Consider, for example, the dynamic change scenario described in Chapter 6 with
two instances of the ConDec model for the Less than Truck Load process shown in
Figure 12.13(a). For the first instance, tasks hpickup,deliveryi have been executed
and tasks hpickup,bill,deliveryi have been executed for the second instance. Fig-
ure 12.13(b) shows a DECLARE screenshot of a changed model where task pickup,
constraint 1..* on the delivery task and the precedence constraint are removed, and
a new precedence constraint is added between delivery and bill is added. As a con-
sequence of adding the precedence constraint, task bill can now be executed only
after task delivery. The migration of all active instances of this model are requested.
Figure 12.13(c) shows the DECLARE report for the requested dynamic change. The
migration is applied to the two currently running instances. The change failed for
the first instance due to the violation of the precedence constraint as task bill al-
ready occurs before task delivery in the trace hpickup,bill,deliveryi. However, the
dynamic change is successfully applied to the second instance, which has trace
hpickup,deliveryi. Hence only the second instance is migrated and the first instance
remains in the original process.

(c) this change cannot be applied to instance nr. 2

(a) original model (b) new model

instance nr. 1
<pickup, delivery>

instance nr. 2
<pickup,bill, delivery>

Fig. 12.13: Dynamic instance change in DECLARE

346 Maja Pesic, Helen Schonenberg, and Wil van der Aalst

12.9 Decompositions of YAWL and Declarative Workflows

In both YAWL and DECLARE models, tasks are offered by default to users to manu-
ally execute them. If a task should be delegated to an external application, then this
must be explicitly defined in the process model. Figure 12.14 shows how the deliv-
ery task from the DECLARE model shown in Figure 12.5 could be decomposed into
a YAWL model, e.g. a model named Arrange Delivery Appointment. In this case,
task delivery would be graphically presented with a special “YAWL” symbol in the
DECLARE model. Note that, although task delivery will not be executed manually
by a user, the user will decide when this task (i.e. the referring YAWL model) will
be executed. However, when the user starts this task, it will not be opened in the
‘task panel’ in the Worklist. Instead, it will be automatically delegated to YAWL,
which will launch a new instance of its Arrange Delivery Appointment model.

Fig. 12.14: DECLARE task delivery launches a YAWL instance

Similarly, in a YAWL process model it can be specified that a task should be
delegated to a YAWL Custom Service, e.g. DECLARE. Figure 12.15 illustrates a
YAWL instance where tasks D1, D2 and D3 are delegated to DECLARE. In the gen-
eral scenario, DECLARE users must manually select which DECLARE model should
be executed for each YAWL request. For example, DECLARE users can choose to
execute Model B for task D1. If the decomposed YAWL task contains an input data
element named ‘declaremodel’, then DECLARE automatically launches a new in-
stance of the referring model. For example, in this particular YAWL process, task
D2 launches a new instance of Model A in DECLARE. If the specified model cannot
be found, DECLARE users must manually select a DECLARE process models to be
executed. For example, users can select to execute an instance of model Model C

12 The Declare Service 347

for task D3. Because the ‘declaremodel’ data element is also an output data element
in task D3, DECLARE will return the name of the executed model to YAWL. In this
manner YAWL users are informed about the sub-process that was executed for the
decomposed YAWL task.

D
EC

LA
R

E

D2YA
W

L
En

gi
ne declaremodel

“Model A”

? *

Model A

“M
od

el
 A

”

declaremodel
“unknown”

?

Model C

“u
nk

no
w

n”

“M
odel C

”

Model B

YAWL
Worklist

input input-output

D1 D3

Fig. 12.15: YAWL tasks D1, D2 and D3 launch DECLARE instances

12.10 Conclusions

Depending on the nature of a business process, a higher or lower degree of flexi-
bility is needed when it comes to workflow support. For example, while procedural
YAWL processes are appropriate for many of the more structured processes encoun-
tered in practice, they may be less suitable for less structured processes (such as
our TL and LTTL sub-processes) that require the flexibility of declarative workflow
models. Moreover, it might be the case that one business process contains some sub-
processes that require the procedural approach and some sub-processes that require
the declarative approach.

The Declare Service enables combining the two approaches by allowing for ar-
bitrary decompositions of procedural YAWL and declarative DECLARE workflows.
This is achieved by allowing the decomposition of both YAWL tasks into DECLARE
workflows, and DECLARE tasks into YAWL nets. This way the workflow designer is
not forced to make a binary choice between declarative and procedural workflows.
Instead, an integration can be achieved, where parts of the workflow that need a high
degree of flexibility are supported by declarative DECLARE models and parts of the
processes that need centralized control of the system are supported by more pro-
cedural YAWL models. Note that YAWL also provides flexibility via the so-called
Worklet Service. The Worklet Service (cf. Chapter 11) offers a different kind of

348 Maja Pesic, Helen Schonenberg, and Wil van der Aalst

flexibility that is complementary to DECLARE. Since the Declare Service and the
Worklet Service are embedded in a similar manner, it is possible to arbitrarily mix
procedural YAWL models, declarative models, and worklets.

Exercises

Exercise 1. Tasks bless, pray, curse and become holy are four tasks in the Reli-
gion process. Users of this process must obey two important rules. First, one should
pray at least once. Second, every time one curses, one must eventually pray for for-
giveness afterwards. Develop a model in DECLARE for this process using ConDec
constraint templates.

Exercise 2. Consider the following four scenarios:

(a) hbecome holy,curse,blessi
(b) hpray,bless,prayi
(c) hcurse,bless,curse,bless,prayi
(d) hbless,become holyi

For each scenario create an instance of the Religion model developed in the previous
exercise. Try to execute these four scenarios using DECLARE. Which traces were
possible to execute and which were not? Describe why it was not possible to execute
some of the given scenarios.

Exercise 3. Launch one instance of the Religion model described in the first exer-
cise and monitor how states of the instance and constraints change while executing
tasks hbless,curse,bless,bless,curse,become holy,pray,curse,prayi.

Exercise 4. Launch one instance of the Religion model described in the first exer-
cise and execute tasks hbless,curse,bless,bless,curse,become holy,pray,curse,prayi.
Now try to change the model of this instance in a way that:

• the constraint specifying that one should pray at least once is removed, and
• task become holy is removed.

Did DECLARE accept this dynamic change? Explain why or why not.

Exercise 5. Launch one instance of the Religion model described in the first exer-
cise and execute tasks hbless,curse,bless,bless,curse,become holy,pray,curse,prayi.
Now try to change the model of this instance in a way that a constraint specifying
that task become holy cannot be executed before task pray is added. Did DECLARE
accept this dynamic change? Explain why or why not.

Exercise 6. Develop a ConDec model in DECLARE for the process containing tasks
bless, pray, curse and become holy, where three rules must be followed:

(a) One should become holy at least once.

12 The Declare Service 349

(b) Every time one curses, one must eventually pray for forgiveness afterwards.
(c) Tasks become holy and curse cannot be both executed in the same instance.

Verify this model in DECLARE. Does this model have errors? Explain why or why
not.

Exercise 7. Develop a ConDec model in DECLARE for the process containing tasks
bless, pray, curse and become holy, where four rules must be followed:

(a) One should become holy at least once.
(b) Every time one curses, one must eventually pray for forgiveness afterwards.
(c) Tasks become holy and curse cannot be both executed in the same instance.
(d) One should curse at least once.

Verify this model in DECLARE. Does this model have errors? Explain why or why
not.

Chapter Notes

This chapter described the Declare Service in YAWL. More details about the service
and the DECLARE tool can be found in [19, 20, 192, 193, 195]. The combined use
of YAWL, the Declare Service and the Worklet Service, possible due to the service-
oriented architecture of YAWL, is described in [5]. More details about the DECLARE
tool in relation to the YAWL architecture can be found in [194].

