
DECLARE Manual

February 18, 2008

Contents

1 Introduction 3
1.1 Introduction . 3

2 Installing DECLARE 5
2.1 Installation . 5

2.1.1 Installing YAWL service for DECLARE 5
2.1.2 Installing DECLARE . 6

3 Designing process models 7
3.1 Creating a basic model . 8

3.1.1 Defining activities . 9
3.1.2 Defining constraints . 9
3.1.3 Removing activities and constraints 10
3.1.4 Saving the model . 10
3.1.5 Validating the model . 11

3.2 Creating an advanced model . 14
3.2.1 Setting up the system level 14
3.2.2 Defining data and people 19
3.2.3 Linking work, data and roles 21

4 Creating and adapting cases 23
4.1 Creating and adapting cases . 23

4.1.1 Creating cases . 23
4.1.2 Changing cases at run-time 25

5 Executing cases 26
5.1 Executing cases . 26

5.1.1 Selecting a case . 26
5.1.2 Working on a case . 26
5.1.3 Closing a case . 26

6 Adapting cases? 27

7 Recommendation 28
7.1 Recommendation . 28

1

8 Glossary 29

A LTL syntax 31

B Constraint condition syntax 32

2

Chapter 1

Introduction

1.1 Introduction

DECLARE is a prototype of a workflow management system that takes a declar-
ative approach to business process modelling. It can be used for specification
and enactment of loosely-structured processes.

The basic difference between DECLARE and traditional approaches is in
its understanding of what a process model is. Traditional process modelling
languages understand a process as a directed graph, where control has a clearly
defined begin, end and flow between begin and end, i.e., they specify in detail
the “HOW”. DECLARE process models focus on specifying the “WHAT” by
introducing constraints in models as rules that have to be followed during exe-
cution. Figure 1.1 shows the declarative approach. Because of their imperative
nature, traditional languages focus in specifying to details of how to execute
processes. Therefore, due to exceptions and dynamics it is often necessary to
deviate from the prescribed model. On the contrary, DECLARE specifies what
to do by introducing some constraints in the model that should not be violated.

forbidden
behavior

deviations from
the prescribed

model

IMPERATIVE
MODEL

ConDec C
onD

ec

ConDec Con
Dec

Figure 1.1: Declarative vs. imperative approaches.

DECLARE process models are constraint-based models, i.e., instead of ex-
plicitly modelling the control-flow, they model constraints on activities that
represents some rules that should be followed. In this way, the control-flow is

3

specified implicitly – as all executions that do not violate constraints are possi-
ble. Currently, DECLARE uses Linear Temporal Logic (LTL) [?] for constraint
specification. Many algorithm were developed in the field of model-checking
for translating LTL into finite state automata [?, ?]. DECLARE uses these
automata for verification and execution of constraint models.

In simple cases, DECLARE can be used as a stand-alone workflow manage-
ment system. However, it is also possible to use DECLARE for more complex
applications together with YAWL and ProM (cf. Figure 1.2). YAWL is a
workflow management system developed at Queensland University of Technol-
ogy in Australia. It has a powerful process modelling language that supports all
control-flow patterns. We propose to use YAWL for specification and enactment
of high-level highly-structured operational processes, which are decomposed into
loosely-structured DECLARE sub-processes. Both YAWL and DECLARE gen-
erate process execution logs that can be used in the ProM framework for process
mining. Moreover, ProM framework already offers module for work with DE-
CLARE logs. DECLARE language export can be used in ProM for process
discovery, while DECLARE model exports can be used for conformance check-
ing. Recommendation mechanism is a novelty which enables DECLARE process
support by providing recommendations based on history. Recommendations are
of significant importance in cases when users need advice based on past execu-
tions to help them choose between variety of options.

YAWL

Declare
ProM

event
logs

records

recordshighly-structured

loosely-structured

operational
process

language/model
export

recommendation

Figure 1.2: The architecture.

4

Chapter 2

Installing DECLARE

2.1 Installation

DECLARE is witten in Java and can be downloaded from http://is.tm.tue.

nl/staff/mpesic/under terms of GNU licence1. Two modules are available for
download: (1) (web) service module for connection with YAWL via its interface
B, and (2) DECLARE itself. Note that core DECLARE system is not depend-
able on this service, YAWL or any other application - correct version of Java is
the only requirement for running it.

2.1.1 Installing YAWL service for DECLARE

Requirements:

1. declareService executable.zip (service itself) is obtainable at http:

//is.tm.tue.nl/staff/mpesic/;

2. YAWL system is obtainable at http://yawlfoundation.org;

3. Apache Tomcat is obtainable at http://jakarta.apache.org/tomcat/;

4. Java 2 for running YAWL and declare service.

The service is contained in the file declareService.war that you can find
in declareService executable.zip. To use the service, you first have to have
the Apache Tomcat http://jakarta.apache.org/tomcat/and YAWL system
installed. YAWL system and related documentation can be obtained from http:

//yawlfoundation.org. Follow the YAWL documentation to install YAWL.

Launching the service To launch the service in your system, you have to
install it as a web application in Apache Tomcat. To do this you need to:

1http://www.gnu.org/licenses/gpl.html

5

1. stop Apache server;

2. copy file declareService.war into the Apache folder for web applica-
tions, e.g., C:\ProgramFiles\ApacheSoftwareFoundation\Tomcat5.0\

webapps\; and

3. start Apache server again.

If this process is completed successfully, there Apache should have automatically
created a new folder for the service: C:\ProgramFiles\ApacheSoftwareFoundation\
Tomcat5.0\webapps\declareService\

Registering the service in YAWL For the service to become operational it
first has to registered in YAWL. Note that service registration is not persistent
in YAWL - you have to register the service every time you restart YAWL. To
access YAWL go to its worklist. Figure 2.1 shows YAWL worklist at log in.
To register the service, log in and then go to link “Administrate”. This page
contains a list of registered YAWL services. To register DECLARE service enter
http://localhost:8080/declareService/ib2 as ServiceURI and click on the
button “Add YAWL service” (cf. Figure 2.2). If this process is completed
successfully, the new service should appear in the list of registered services.

Figure 2.1: Connecting to YAWL. Figure 2.2: Registering service
in YAWL.

2.1.2 Installing DECLARE

Requirements:

1. declare executable.zip (service itself) is obtainable at http://is.tm.
tue.nl/staff/mpesic/;

2Note that the first part of the URI “localhost:8080” depends on the settings of your

Apache Tomcat

6

2. Java 5 for running DECLARE.

To install DECLARE unzip declare executable.zip. You can start DE-
CLARE applications by double-clicking on designer.bat, framework.bat or
worklist.bat.

7

Chapter 3

Designing process models

The Designer can be used for designing DECLARE process models. It can also
be used to chose a set of constraint templates that will be available for design.
Moreover, it is possible to create new constraints and to add them to a template
set. In the Designer you can also create end users and roles for the system and
link roles to the user.

Launching the Designer To launch the Designer, double-click designer.bat

in the declare folder.

Launch the Designer
1. Open Declare folder
2. Double-click designer.bat

Table 3.1: Launching the Designer

This will open the Designer as depicted in Figure 3.1. Initially the designer
is empty. The designer contains two menu items, namely Assignment model and
Design.

To create a new model (see Section 3.1), choose Assignment model→new,
followed by the choice of template. To open or edit an exisisting model (see
Section 3.1), choose Assignment model→open. CHECK WHEN FINISHED. To
manage users, select Design and then Organization, or alternatively Alt-R (see
Section 3.2.3). For opening the constraint templates, select Design followed by
Constraint templates, or just press Alt-C(see Section 3.2.3).

8

Figure 3.1: The designer after opening.

Alt Designer Menu
-O Assignment model → open open and edit an existing model

Assignment model → new create a new model
-R Design → Organization manage roles and users
-C Design → Constraint Templates manage constraint templates

manage constraint groups

Table 3.2: The menus for the Designer

3.1 Creating a basic model

In this section we will explain how to create and verify a very simple DECLARE
model that can be used for execution. This basic model will not contain any
data or organizational aspects. In Section 3.2 we will explain how to extend a
basic model with these aspects.

The actual process model is a set of constraints on activities. We consider
the set of constraints on activities as work. DECLARE facilitates definition of
people that can be involved in the execution of the process. Finally, data can
be defined and initialized for the process.

To open an existing model click (Assignment model→Open), or alternatively,
press Alt-O. To create a new model, click (Assignment model→New). Then
choose one of the displayed constraint templates sets. Only constraint templates
from this set will be available during design. Figure 3.2 shows the window for

9

defining work in the model. The tabs of this window are explained in the
remainder of this section.

Start a new model
1. Click Assignent model

2. Click New

3. Choose a template

Table 3.3: Start a new model

Opening an exisiting model
1. Click Assignent model

2. Click Open (or ALT-O)
3. Browse for the (XML) model

Table 3.4: Opening an existing model

click to
add

activity

click to
add

constraint

delete
selected

 activity or
constraint

group un-group zoom to real
zoom in zoom out

Figure 3.2: Creating a new model.

10

3.1.1 Defining activities

Activities can be created with the create activity button, the leftmost button
in the window depicted in Figure 3.2. Clicking on this button will create a new
activity in the window, as shown in Figure 3.3. Activities can be renamed in
the activity properties view. To open this view, (right-click activity → edit).
The name in the name field can now be retyped. Press Ok to apply the settings.
The authorization and data properties are explained later.

Figure 3.3: New activity in the model. Figure 3.4: Editing one activity.

Creating and renaming an activity
1. Click the create activity button
2. Right-click the activity
3. Choose Edit

4. Retype the name
5. Click Ok

Table 3.5: Creating (1) and renaming (2-5) an activity

3.1.2 Defining constraints

Constraints can only be selected from the constraint set that was selected during
creation of the model, e.g. ConDec or DecSerFlow). The choosen set is depicted
in the work tab, e.g. in Figure 3.2, only constraints from the ConDec templates
can be chosen.

To actually draw the constraint between two activities, first the add con-

straint button (the arrow with the template name) must be selected and then
the constraint can be dragged from one activity to the other. Notice that the

11

mouse pointer must be on the activity center to be able to do this.

Constraints can be renamed in the constraint properties view. To open this
view, (right-click constraint → edit). The name in the name field can now be
retyped. Press Ok to apply the settings. Additional constraint settings are ex-
plained later.

Creating constraints
1. Click the create constraint button
2. Move the mouse cursor onto the center of the source activity
3. Click and hold the left mouse button
4. Drag the constraint to the destination activity
5. Release the left mouse button
6. Right-click the constraint
7. Choose Edit

8. Retype the name
9. Click Ok

Table 3.6: Creating and renaming constraints.

SIMPLE CONSTRAINT FIGURE HERE

3.1.3 Removing activities and constraints

Select the activity, or constraint by left-clicking it and then press delete on the
keyboard or click the trash bin button. Note that when an activity is removed,
all its connected constraints are also removed.

Deleting activities and constraints
1. Click on the activity, or constraint
2. Click the trash bin button, or press delete

Table 3.7: Deleting constraints and activities.

3.1.4 Saving the model

To save the model, click Assignment model and then Save, or alternatively
ALT-s, or declSave as.

12

Saving the model (ALT-s)
1. Click Assignment model in the menu
2. Click Save, or Save as

Table 3.8: Saving the model.

3.1.5 Validating the model

Models can contain many types of constraints and DECLARE offers a validation
mechanism to check for errors before execution. During validation the model
is checked for dead activities, i.e. activities that can never be executed and
conflicting constraints. To validate the model, click Assignment model and
then Validate, or alternatively ALT-v. Validation can be either successful, or
unsuccessful and then errors are shown.

Validation (ALT-v)
1. Click Assignment model in the menu
2. Click validate,

Table 3.9: Validation of the model.

Successful validation

When there are no errors in the model, DECLARE will report this by prompting
that “no errors were detected”. A valid (and saved) model can be instantiated
(Chapter 4.1) and executed (Chapter 5.1). Further extension of the model with
data and organizational aspects is also possible and is described in Section 3.2.
This section also describes how to extend template sets.

Unsuccessful validation

DECLARE finds and reports two kinds of modeling errors, namely dead activ-
ities and conflicts. A dead activity is an activity that can never be executed in
the model. A set of constraints is conflicting if there exists no execution that
would fulfill all constraints.

Dead activities Figure 3.5 shows a model with one dead activity.
This model contains four constraints: (1) the “0..1” constraint above activ-

ity “bless” specifies that this activity can be executed at mot once; (2) the “not
co-existence” constraint specifies that one who curses can never be declared
holy and that holy people never curse; (3) the “response” constraint between
activities “curse” and “pray” specifies that after cursing one eventually has to
“pray”; and (4) the “response” constraint between activities “pray” and “holy”

13

Figure 3.5: Activity “curse” is
dead.

Figure 3.6: Validation result for dead activity.

specifies that one is eventually declared holy after praying. During the execu-
tion, if the activity “curse” would execute the two “response” constraints would
require execution of activities “pray” and “holy”, respectively. Execution of the
activity “holy” would then violate the “not co-existence” constraint. Because
activity “curse” would lead to an error, this activity will be permanently dis-
abled in the system, i.e., this is a dead activity. The validation of this model
reports this error as shown in Figure 3.6. On the left side of the screen the list
of existing errors is shown. When one of the errors is selected, the sub-set of
constraint that causes is shown in the table on the right side. In Figure 3.6,
we can see that activity “curse” is a dead activity and that this is a result of
a combination of three constraints in the model: (1) “response” constraint be-
tween activities “curse” and “pray”, (2) “not co-existence” constraint between
activities “curse” and “holy”, and (3) “response” constraint between activities
“pray” and “holy”. Note that the system detected that the fourth constraint
(“0..1” constraint above activity “bless”) does not influence this error.

Conflicts A set of constraints is conflicting if there exists no execution that
would fulfill all constraints. This causes the whole model to be dead, i.e., im-
possible to execute. To illustrate a conflicting situation we extend the example
we used for dead activities. The conflicting model has one additional constraint
specifying that activity “curse” has to execute at least once (the “1..*” constraint
above activity “curse”). This constraint would enforce execution of the activity
“curse”, which would then result (because of the two “response” constraints) in
execution of activities “pray” and “holy”. Execution of activity “holy” would
create an error, because it would violate constraint “not co-existence”. Shortly,
it is not possible to execute this model in a way that would enable all constraints
to be fulfilled. Validation detects this error and the result is shown in Figure
3.8. On the right side of the scree one conflicting error is shown. The set of
constraints that causes it is shown on the right side of the screen. Note that
the system detected that the fourth constraint (“0..1” constraint above activity
“bless”) does not influence this error.

14

Figure 3.7: Model with a con-
flict.

Figure 3.8: Validation result for conflict.

15

3.2 Creating an advanced model

3.2.1 Setting up the system level

At system level you can manage the users of the system and choose the conve-
nient set of constraint templates that will be available for the design.

Defining the organization

The organization view of the designer is opened by choosing Design and then
Organization in the menu of the Designer (cf. Table 3.2). This will give the
“Organization” window with a tab for roles and a tab for users, as can be seen
in Figures 3.9 and 3.10.

Figure 3.9: Organization view in the Designer, roles tab

Roles The Roles tab allow the modeler to define roles for the execution of the
model. ETC

Users In this tab of the the “Organization” window the users of the system
can be managed. Four users are shown in the list in Figure 3.10. Each user has
name (first and last), user-name and password (cf. Figure 3.11). Users can be
added, deleted and edited via buttons “add”, “edit” and “delete”, respectively.
At the left side of the list of users, a list of the assigned system roles can be
seen for the selected user. For example, In Figure 3.10, we can see that the
user “maja pesic” has several roles: “boss”, “cleaner”, “enjoyer”, “employee”,

16

Adding a role
1. Click Add

2. Enter a role name
3. Press ok (or cancel to cancel)
Editing a role
1. Click Edit

2. Re-enter a role name
3. Press ok (or cancel to cancel)
Removing a role
1. Select the role to be deleted
2. Click Delete

3. Press ok (or cancel to cancel)

Table 3.10: Launching the Designer

and “priest”. Buttons “add role” and “delete role” are used to assign/disassign
system roles to/from the selected user.

Figure 3.10: Organization view in the Designer, users
tab

Figure 3.11: Adding a
user

Defining constraint languages

It is possible to define customized process modeling languages in DECLARE.
To get to the languages, choose the Design and then Constraint templates in
the menu of the Designer. “Constraint templates” window has two tabs. On the
firs tab - the “templates” tab - modeling languages are defined. The drop-down
list of defined languages is shown in the top-left corner of the tab. Specifying
a language is very simple - one just has to enter a language name. Use button
“add” to add a new language and button “delete” to remove the selected lan-
guage. Each language consists of a set of constraint templates – constructs that

17

are used for developing process models in that language. When a language is
selected in the drop-dow list of languages, its templates are shown in the list
below it.

Then manually add constraints. To copy constraints from other languages
it is better to copy from the file.

Defining constraint templates for languages

Constraint templates define possible relations between activities in the model.
When a template is selected in the templates list, its graphical representation is
shown on the panel on the right side. This graphical representation show how
the template is presented to users in process models. For example, Figure 3.12
shows that template “response” between two arbitrary activities “A” and “B”
is show as a single line with a circle symbol next to the activity “A” and the
arrow symbol next to the activity “B”.

Figure 3.12: Defining constraint templates.

Figure 3.13 shows how a constraint template is defined. In this case, the
name of the template is “response” and it is a binary template (i.e., the tem-
plate defines relation between two activities). At the right of the template name
the middle symbol and the style of the line can be selected in drop-down lists.

18

Since the template is binary, two formal parameters are defined. For each of
them a name is given (in this case “A” and “B”), the symbol style and the
branching option. So far, the graphical specifications of the “response” tem-
plate are given. Next, a textual description of the template is given. Last, the
template semantics is written in the formalization language. In this case, LTL
formula for the template is given and by pressing button “check syntax”, syntax
of the formula is checked. In the formula, specified parameters “A” and “B”.
However, it is possible to specify parameters in more detail. Moreover, parame-
ters should not be seen as activities, but rather as events. In DECLARE, there
are three types of events: (1) activity.started, (2) activity.completd and (3) ac-
tivity.canceled. If the parameter is used in its short version in the formula (e.g.,
“A”), DECLARE will assume that completed event is meant and replace this
short specification with “A.completed”. For illustration, our “response” tem-
plate the specified formula is 2(“A′′

⇒ 3(“B′′)). This is seen by the system
as if it was specified 2(“A.completed′′ ⇒ 3(“B.completed′′)). Note that, for
example, formulas 2(“A.started′′ ⇒ 3(“B.completed′′)) or 2(“A.canceled′′ ⇒

3(“B.completed′′)) have different semantics.

Figure 3.13: Defining a constraint template.

Defining constraint groups

When designing constraints in process models, users can assign some constraint
to predefined groups. These groups can be seen as policies and are used in
cases constraint violation for warning users. Figure 3.14 shows an example of a
DECLARE system with five policies. On the right side of the policies list, the
warning level can be altered. The warning level is used to decide weather to
earn the user when violating constraints.

19

Figure 3.14: Creating a constraint group.

20

3.2.2 Defining data and people

In Section 3.1 we explained how to make a basic model while defining work.
Now we will explain how to define data and execution roles for the model and
in the next section we will explain how to link data and people to the activities.

Defining roles (people) in a model Figure 3.15 shows the window for
setting people for the process. Initially this window is empty. Press add to
add people to the process. Choose a team role for this process and choose the
organizational role. Organizational roles are defined at system level and only
roles from the defined set can be chosen.

Figure 3.15: Defining roles in the model.

Defining data elements in a model 1 Figure 3.16 shows the window for
setting people for the process. Initially this window is empty. Press add to add
data to the process and fill in the name, the type and an initial value. Existing
data can be edited and deleted.

1DATA IS USED DURING COOPERATION WITH YAWL.

21

Figure 3.16: Creating data for the model.

22

3.2.3 Linking work, data and roles

Activity properties

Figure 3.18 shows which properties can be set for activities. First the name of
the activity can be changed into “curse”. Second, the authorizations for this
activity are specified using the define team roles. If no authorization is set (the
“authorized” list is empty) then any team member can execute this activity.
If authorization is set (the “authorized” list is not empty), then any of the
team members with any of the authorized team roles can execute the activity.
Second, data elements available in the activity can be defined. In Figure 3.4, we
can see that users with team roles “main sinner” and “occasional sinner” can
execute activity “curse”. To define available data elements for the activity, one
selects from the list of model-defined data elements (definition of model data is
explained in Section ??). In the case of the activity “curse”, we use model data
element “prayers” as an “input-output” element. Further more, data elements
that are available in the activity can be “input” (user can only read the value
during execution), “output” (user has to provide a value during execution) or
“input-output” (combination of the previous two) elements.

Figure 3.17: New activity in the model. Figure 3.18: Editing one activity.

Constraint properties

After adding a constraint, its properties can be edited by clicking the item “edit”
on the pop-up menu when the constraint is selected. The form that is used to
edit constraints properties is shown in Figure 3.20.

Figure 3.19 shows that a constraint based on the template “response” is cre-
ated between activities “curse” and “pray”. Note that, while the template uses
formal parameters (e.g., “A” and “B”), constraint replaces these formal parame-
ters with real activities in the model (e.g., “curse” and “pray”). This constraint
(“response”) specifies that after every execution of the activity “curse”, activity
“pray” will eventually be executed at least once.

23

Figure 3.19: New constraint in the model. Figure 3.20: Editing one con-
straint.

Name First, the name of the constraint can be changed. By default, con-
straint gets the name of its template. For the readability of the model, it is
possible to change this name and give a context-related new name. For exam-
ple, we can change the name of the constraint “response” into “eventually pray
after every curse” to make the model more understandable for users.

Condition Second, a condition can be specified using model data elements. In
Figure 3.20 constraint “response” is valid only if the number of prayers is higher
that one. Additionally, the correctness of the condition syntax can be checked
using the button “check syntax”. Finally, we can choose if the constraint is
“mandatory” or “optional”.

Constraint type MANDATORY, OPTIONAL
OPTIONAL: POLICY GROUP, DESCRIPTION, PRIORITY LEVEL, MES-
SAGE

Finally, we can specify wether the constraint is mandatory or optional. Dur-
ing the model execution, the system will impose mandatory constraints to users,
i.e., users will not be able to violate them. On the contrary, optional constraints
are not imposed during the execution, but rather used as warnings when about
to be violated. However, to improve user support, the system generates infor-
mative warning when the user is about to violate the constraint. In this way,
the user can make an informed decision weather to proceed and violate the
constraint or to quit and leave the constraint fulfilled. The information that
will be presented to the user when about to violate the “response” constraint is
specified in the bottom part of the form in Figure 3.20.

24

Policy OPTIONAL: POLICY GROUP, DESCRIPTION, PRIORITY LEVEL,
MESSAGE

First, the constraint group for the constraint is selected (e.g., “BIBLE POL-
ICY”) and its description is automatically displayed. Constraint groups are
defined on the system level (cf. Section 3.2.1). Second, optional constraint
should also have a (priority) level. This level is an integer on the scale from 0 to
10, and the higher it is the more dangerous it is to violate this constraint. Third,
to complete optional information, we can specify a context-related message that
will explain the constraint in more details to the user during the execution.

OLD
Each activity has properties that can be set by (right-click activity → edit).
This will open the activity editor window, shown in Figure 3.3).

25

Chapter 4

Creating and adapting cases

4.1 Creating and adapting cases

Application Framework is used to create cases and change already running cases.
Double-click on framework.bat to start this application. Figure 4.1 shows the
Framework screen. First, there is the available assignments table where
all pending requests from YAWL are shown. Second, there are two buttons:
(1) click the load available button to load a pending YAWL request or (2)
click the load empty button to load a independent assignment. At the bottom
of the screen there is the active assignments table – this table contains all
assignments that are currently being executed by users. Finally, the two left
bottom buttons are used to close the selected active assignment and change the
model of a selected active assignment.

pending requests from YAWL

start the selected
YAWL request

start an independent
DECLARE assignment

cases that are
currently being

executed by users

complete the
selected active

assignment

change the
model of the

selected active
assignment

UNDER
CONSTRUCTION

Figure 4.1: The framework screen.

26

4.1.1 Creating cases

There are two ways to create a case in the Framework. First, a case can be cre-
ated for each task that arrives from the YAWL system. Second, an independent
DECLARE assignment can be created.

Creating cases for YAWL tasks

If a task in a YAWL model should be handled as a DECLARE assignment,
declare service for YAWL will send this request to the Framework. The pending
YAWL requests are shown in the available assignments table on the Frame-
work screen. Figure 4.2 shows one pending request for the YAWL task during.
First column shows the time of the request arrival. The second column shows
the identification number of the YAWL task. The third column shows the name
of the task YAWL process. The fourth column shows the task name and the
fifth column the YAWL decomposition identification.

Figure 4.2: One pending request form YAWL.

To launch a case for a pending request you must select the request in the
available table and click the button load available – you will need to select
a DECLARE assignment model file you wish to load for this YAWL request.
Next, the screen presented in Figure 4.3 appears. On top of this screen the
selected DECLARE model file is presented. This file can be changed by clicking
on the button change model.

Setting data mapping All data elements from the YAWL task request are
listed in the data table. For each of the listed YAWL data elements one data

27

element from the selected DECLARE model must be selected. The values of
input YAWL data elements are copied into the referring DECLARE model data
elements when the case is started. The values of the DECLARE model data
elements will be copied into the referring output YAWL data elements when the
case is closed.

Figure 4.3: Data mapping for a YAWL request.

Assigning people to the case The model roles and the assigned people are
presented in the team table. Use buttons add members and remove members
to assign/disassign people to/from model roles. Figure 4.4 shows a completed
data mapping and the assigned people to the tem role.

Creating independent cases

Click the button load empty to select a DECLARE assignment model file you
wish to load as an independent case.

Setting initial values for the case data UNDER CONSTRUCTION !!!!

Assigning people to the case If there are no roles in the selected assignment
this step will be skipped. By default, administrator is assigned to all roles in all
assignments. If there are roles in the selected assignment, the screen in Figure
4.4 will appear: the data table will be empty and the people can be assigned
to the case using the add members button.

28

Figure 4.4: Completed data mapping and team assignment.

4.1.2 Changing cases at run-time

Changing the case model

Figure 4.5: Changing the case model.

Changing case roles

29

Changing case work model

Verification

1. Dead activities

2. Conflicting constraints

3. History validation

Reassigning people to the case

UNDER CONSTRUCTION !!!!

30

Chapter 5

Executing cases

5.1 Executing cases

5.1.1 Selecting a case

5.1.2 Working on a case

Constraints

1. state (green, orange, red)

2. type (mandatory, optional)

3. conditional

Working with activities

1. Starting activity

2. Working on the activity

3. Completing the activity

4. Cancelling the activity

5. Receiving waringins about possible violations

Using the recommendation feature

5.1.3 Closing a case

31

Chapter 6

Adapting cases?

32

Chapter 7

Recommendation

7.1 Recommendation

33

Chapter 8

Glossary

Assignment Case

Case

Conflict Verification reveals a conflict when it is not possible to satisfy all
constraints.

Constraint A constraint is a rule that has to be satisfied (at the end of exe-
cution).

Constraint Group

Constraint Template See template.

Data element

Dead activity A dead activity is an activity that can not be executed.

Declare Declare is a tool set for modeling in declarative language.

Designer The Designer is part of Declare that is used for defining

• the organization, for defining templates for languages

• languages,

• templates for languages,

• constraint groups.

Formal parameter

History violation A history violation is a possible validation result when
changing the model. Validation gives a history violation if the execution
trace permanently violates one or more new constraints, we

Mandatory Constraint A mandatory constraint is a constraint that must be
followed during execution.

34

Optional Constraint An optional constraint is a constraint from which can
be deviated during execution.

People

Policy list

Role Team role, organizational role

Template A (constraint) template is a graphical representation of a constraint
(LTL formula).

Worklist The list of all started, but not yet completed activities of one case,
for one user.

Syntax

35

Appendix A

LTL syntax

36

Appendix B

Constraint condition syntax

37

