Lie Algebras Generated by Extremal Elements

E.J. Postma
epostma@win.tue.nl

Technische Universiteit Eindhoven

27 October 2006 / DIAMANT Intercity Seminar on Lie Algebras
Joint Work

- A.M. Cohen
- F.G.M.T. Cuypers
- J. Draisma
- J.C.H.W. In ’t Panhuis
- D.A. Roozemond
1 Problem and Preliminaries
Problem Statement

Find a nice presentation of all sufficiently big classical simple Lie algebras using geometric properties.

In particular, find a result of the following type:

Goal

Let \mathcal{L} be a sufficiently big classical simple Lie algebra over a field \mathbb{F} of characteristic not two. We find a “structure” $\Gamma_{\mathcal{L}}$ such that:

\Rightarrow \mathcal{L} is generated by elements with $\Gamma_{\mathcal{L}}$-structure;

\Leftarrow if a Lie algebra is generated by elements with $\Gamma_{\mathcal{L}}$-structure, then it is almost always isomorphic to \mathcal{L}.
Problem Statement

Find a nice presentation of all sufficiently big classical simple Lie algebras using geometric properties.

In particular, find a result of the following type:

Goal

Let \mathcal{L} be a sufficiently big classical simple Lie algebra over a field \mathbb{F} of characteristic not two. We find a “structure” $\Gamma_\mathcal{L}$ such that:

\Rightarrow \mathcal{L} is generated by elements with $\Gamma_\mathcal{L}$-structure;

\Leftarrow if a Lie algebra is generated by elements with $\Gamma_\mathcal{L}$-structure, then it is almost always isomorphic to \mathcal{L}.
Extremal Elements and Root Elements

- Classical simple Lie algebras \mathcal{L} have a Cartan subalgebra and root system.

- (Long) root elements x satisfy:

$$\forall y \in \mathcal{L}: [x, [x, y]] \in \mathbb{F}x. \quad (1)$$
Extremal Elements and Root Elements

- Classical simple Lie algebras \mathcal{L} have a Cartan subalgebra and root system.
- (Long) root elements x satisfy:

$$\forall y \in \mathcal{L}: [x, [x, y]] \in Fx.$$ (1)
Extremal Elements and Root Elements

- Classical simple Lie algebras \mathcal{L} have a Cartan subalgebra and root system.
- (Long) root elements x satisfy:

$$\forall y \in \mathcal{L}: [x, [x, y]] \in \mathbb{F}x. \quad (1)$$
Extremal Elements and Root Elements

- Classical simple Lie algebras \mathcal{L} have a Cartan subalgebra and root system.
- (Long) root elements x satisfy:

$$\forall y \in \mathcal{L}: [x, [x, y]] \in \mathbb{F}x.$$ (1)

- Elements x satisfying eq. (1) are called extremal elements.
Extremal Elements and Root Elements

- Classical simple Lie algebras \mathcal{L} have a Cartan subalgebra and root system.
- (Long) root elements x satisfy:

$$\forall y \in \mathcal{L} : [x, [x, y]] \in Fx.$$ \hspace{1cm} (1)

- Elements x satisfying eq. (1) are called extremal elements.
- A multiple of an extremal element is again extremal.
Example: Two Extremal Elements

- x and y are extremal; consider $\langle x, y \rangle =: \mathcal{L}$.
- If $[x, y] = \alpha x + \beta y$, then

 $$
 [x, [x, y]] = [x, \alpha x + \beta y] = \alpha \beta x + \beta^2 y,
 $$

 so $\beta = 0$. Similarly $\alpha = 0$.
- \mathcal{L} is two-dimensional $\iff [x, y] = 0$.
- Otherwise, $[x, [x, y]] \in \mathbb{F}x$ and $[y, [x, y]] = -[y, [y, x]] \in \mathbb{F}y$,
 so \mathcal{L} is three-dimensional.
- Cohen, Steinbach, Ushirobira, Wales [2001]: always finite-dimensional (after result from Zel’manov, Kostrikin [1990]).
Example: Two Extremal Elements

- x and y are extremal; consider $\langle x, y \rangle =: \mathcal{L}$.
- If $[x, y] = \alpha x + \beta y$, then

$$[x, [x, y]] = [x, \alpha x + \beta y] = \alpha \beta x + \beta^2 y,$$

so $\beta = 0$. Similarly $\alpha = 0$.

- \mathcal{L} is two-dimensional $\iff [x, y] = 0$.
- Otherwise, $[x, [x, y]] \in Fx$ and $[y, [x, y]] = -[y, [y, x]] \in Fy$, so \mathcal{L} is three-dimensional.

- Cohen, Steinbach, Ushirobira, Wales [2001]: always finite-dimensional (after result from Zel’manov, Kostrikin [1990]).
Example: Two Extremal Elements

- x and y are extremal; consider $\langle x, y \rangle =: \mathcal{L}$.
- If $[x, y] = \alpha x + \beta y$, then
 \[[x, [x, y]] = [x, \alpha x + \beta y] = \alpha \beta x + \beta^2 y, \]
 so $\beta = 0$. Similarly $\alpha = 0$.
- \mathcal{L} is two-dimensional \iff $[x, y] = 0$.
- Otherwise, $[x, [x, y]] \in \mathbb{F}x$ and $[y, [x, y]] = -[y, [y, x]] \in \mathbb{F}y$, so \mathcal{L} is three-dimensional.
- Cohen, Steinbach, Ushirobira, Wales [2001]: always finite-dimensional (after result from Zel’manov, Kostrikin [1990]).
Example: Two Extremal Elements

- x and y are extremal; consider $\langle x, y \rangle =: \mathcal{L}$.
- If $[x, y] = \alpha x + \beta y$, then
 \[
 [x, [x, y]] = [x, \alpha x + \beta y] = \alpha \beta x + \beta^2 y,
 \]
 so $\beta = 0$. Similarly $\alpha = 0$.
- \mathcal{L} is two-dimensional $\iff [x, y] = 0$.
- Otherwise, $[x, [x, y]] \in \mathbb{F}x$ and $[y, [x, y]] = -[y, [y, x]] \in \mathbb{F}y$, so \mathcal{L} is three-dimensional.

- Cohen, Steinbach, Ushirobira, Wales [2001]: always finite-dimensional (after result from Zel’manov, Kostrikin [1990]).
Example: Two Extremal Elements

- x and y are extremal; consider $\langle x, y \rangle =: \mathcal{L}$.
- If $[x, y] = \alpha x + \beta y$, then

 $$[x, [x, y]] = [x, \alpha x + \beta y] = \alpha \beta x + \beta^2 y,$$

so $\beta = 0$. Similarly $\alpha = 0$.
- \mathcal{L} is two-dimensional $\iff [x, y] = 0$.
- Otherwise, $[x, [x, y]] \in \mathbb{F}x$ and $[y, [x, y]] = -[y, [y, x]] \in \mathbb{F}y$, so \mathcal{L} is three-dimensional.
- Cohen, Steinbach, Ushirobira, Wales [2001]: always finite-dimensional (after result from Zel’manov, Kostrikin [1990]).
The Extremal Form

For extremal \(x \in \mathcal{L} \), all \(a \in \mathcal{L} \) give a \(\lambda \) with \([x, [x, a]] = \lambda x \); let \(f_x \in \mathcal{L}^* \) be such that

\[
[x, [x, a]] = f_x(a)x.
\]

- \(f_x(x) = 0 \).
- \(f_x(y) = f_y(x) \).
- If \(\mathcal{L} \) is generated by extremal elements, then it is spanned by extremal elements. Then the form can be extended to a (symmetric) bilinear form \(f(x, y) = f_x(y) \).
The Extremal Form

- For extremal $x \in \mathcal{L}$, all $a \in \mathcal{L}$ give a λ with $[x, [x, a]] = \lambda x$; let $f_x \in \mathcal{L}^*$ be such that

 $$[x, [x, a]] = f_x(a)x.$$

- $f_x(x) = 0$.
- $f_x(y) = f_y(x)$.

If \mathcal{L} is generated by extremal elements, then it is spanned by extremal elements. Then the form can be extended to a (symmetric) bilinear form $f(x, y) = f_x(y)$.
The Extremal Form

- For extremal \(x \in \mathcal{L} \), all \(a \in \mathcal{L} \) give a \(\lambda \) with \([x, [x, a]] = \lambda x \); let \(f_x \in \mathcal{L}^* \) be such that
 \[
 [x, [x, a]] = f_x(a)x.
 \]

- \(f_x(x) = 0 \).

- Let \(x, y \) be extremal elements. Since
 \[
 [x, [y, [y, x]]] = f_y(x)[x, y]
 \]
 and
 \[
 [x, [y, [y, x]]] = [[x, y], [x, y]] + [y, [x, [y, x]]]
 = -[y, [x, [x, y]]] = -f_x(y)[y, x] = f_x(y)[x, y],
 \]
 we find \(f_x(y) = f_y(x) \).
The Extremal Form

- For extremal \(x \in \mathcal{L} \), all \(a \in \mathcal{L} \) give a \(\lambda \) with \([x, [x, a]] = \lambda x\); let \(f_x \in \mathcal{L}^* \) be such that
 \[
 [x, [x, a]] = f_x(a)x.
 \]
- \(f_x(x) = 0 \).
- Let \(x, y \) be extremal elements. Since
 \[
 [x, [y, [y, x]]] = f_y(x)[x, y]
 \]
 and
 \[
 [x, [y, [y, x]]] = [[x, y], [x, y]] + [y, [x, [y, x]]] = -[y, [x, [x, y]]] = -f_x(y)[y, x] = f_x(y)[x, y],
 \]
 we find \(f_x(y) = f_y(x) \).
The Extremal Form

- For extremal $x \in \mathcal{L}$, all $a \in \mathcal{L}$ give a λ with $[x, [x, a]] = \lambda x$; let $f_x \in \mathcal{L}^*$ be such that
 \[[x, [x, a]] = f_x(a)x. \]
- $f_x(x) = 0$.
- $f_x(y) = f_y(x)$.
- If \mathcal{L} is generated by extremal elements, then it is spanned by extremal elements. Then the form can be extended to a (symmetric) bilinear form $f(x, y) = f_x(y)$.

The Extremal Form

- For extremal $x \in \mathcal{L}$, all $a \in \mathcal{L}$ give a λ with $[x, [x, a]] = \lambda x$; let $f_x \in \mathcal{L}^*$ be such that $[x, [x, a]] = f_x(a)x$.

- $f_x(x) = 0$.
- $f_x(y) = f_y(x)$.
- If \mathcal{L} is generated by extremal elements, then it is spanned by extremal elements. Then the form can be extended to a (symmetric) bilinear form $f(x, y) = f_x(y)$.
Either \mathcal{L} is two-dimensional and $[x, y] = 0$,

or \mathcal{L} is three-dimensional;

\[
\begin{align*}
 f(x, x) &= f(y, y) = f(x, [x, y]) = f(y, [x, y]) = 0, \\
 f(x, y) &= f(y, x), \\
 f([x, y], [x, y]) &= f(x, y)^2.
\end{align*}
\]

Either $f(x, y) = 0$; then \mathcal{L} is the so-called Heisenberg algebra,

or we can make $f(x, y) = 2$ by rescaling x; then

\[
\begin{align*}
 x &\rightarrow \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \\
 y &\rightarrow \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
\end{align*}
\]

determines an isomorphism with \mathfrak{sl}_2.

In a sense, the generic case is \mathfrak{sl}_2.

Example: Two Extremal Elements (Cont’d)
Example: Two Extremal Elements (Cont’d)

- Either \mathcal{L} is two-dimensional and $[x, y] = 0$,
- or \mathcal{L} is three-dimensional;

\[
f(x, x) = f(y, y) = f(x, [x, y]) = f(y, [x, y]) = 0,
\]
\[
f(x, y) = f(y, x), \quad f([x, y], [x, y]) = f(x, y)^2.
\]

- Either $f(x, y) = 0$; then \mathcal{L} is the so-called Heisenberg algebra,
- or we can make $f(x, y) = 2$ by rescaling x; then

\[
x \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad y \mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
\]

determines an isomorphism with \mathfrak{sl}_2.
- In a sense, the generic case is \mathfrak{sl}_2.
Example: Two Extremal Elements (Cont’d)

- Either \mathcal{L} is two-dimensional and $[x, y] = 0$,
- or \mathcal{L} is three-dimensional;

\[
\begin{align*}
f(x, x) &= f(y, y) = f(x, [x, y]) = f(y, [x, y]) = 0, \\
f(x, y) &= f(y, x), \quad f([x, y], [x, y]) = f(x, y)^2.
\end{align*}
\]

- Either $f(x, y) = 0$; then \mathcal{L} is the so-called Heisenberg algebra,
- or we can make $f(x, y) = 2$ by rescaling x; then

\[
\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
\]

determines an isomorphism with \mathfrak{sl}_2.
- In a sense, the generic case is \mathfrak{sl}_2.
Example: Two Extremal Elements (Cont’d)

- Either \mathcal{L} is two-dimensional and $[x, y] = 0$,
- or \mathcal{L} is three-dimensional;

\[
\begin{align*}
f(x, x) &= f(y, y) = f(x, [x, y]) = f(y, [x, y]) = 0, \\
f(x, y) &= f(y, x), \quad f([x, y], [x, y]) = f(x, y)^2.
\end{align*}
\]

- Either $f(x, y) = 0$; then \mathcal{L} is the so-called Heisenberg algebra,
- or we can make $f(x, y) = 2$ by rescaling x; then

\[
\begin{align*}
x &\mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \\
y &\mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
\end{align*}
\]

determines an isomorphism with \mathfrak{sl}_2.

- In a sense, the generic case is \mathfrak{sl}_2.

Example: Two Extremal Elements (Cont’d)

- Either \mathcal{L} is two-dimensional and $[x, y] = 0$,
- or \mathcal{L} is three-dimensional;

\[
\begin{align*}
 f(x, x) &= f(y, y) = f(x, [x, y]) = f(y, [x, y]) = 0, \\
 f(x, y) &= f(y, x), \quad f([x, y], [x, y]) = f(x, y)^2.
\end{align*}
\]

- Either $f(x, y) = 0$; then \mathcal{L} is the so-called Heisenberg algebra,
- or we can make $f(x, y) = 2$ by rescaling x; then

\[
 x \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad y \mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
\]

determines an isomorphism with \mathfrak{sl}_2.
- In a sense, the generic case is \mathfrak{sl}_2.

E.J. Postma

Lie Algebras Generated by Extremal Elements
The geometrical structure we will find is a set of generating extremal elements, where we specify which pairs of elements commute and which don’t (necessarily).
Generators for the Classical Algebras
Definitions

- Take an n-dimensional vector space V.
- The special Lie algebra \mathfrak{sl}_n consists of the trace 0 matrices. Multiplication is the commutator.
- \mathfrak{sl}_n is the classical Lie algebra of type A_{n-1}.
Definitions

- Take an n-dimensional vector space V.
- The special Lie algebra \mathfrak{sl}_n consists of the trace 0 matrices. Multiplication is the commutator.
- \mathfrak{sl}_n is the classical Lie algebra of type A_{n-1}.
Definitions

- Take an n-dimensional vector space V.
- The special Lie algebra \mathfrak{sl}_n consists of the trace 0 matrices. Multiplication is the commutator.
- \mathfrak{sl}_n is the classical Lie algebra of type A_{n-1}.
Extremal Elements in \mathfrak{sl}_n

- Let $v \in V$ and $h \in V^*$ with $h(v) = 0$. Define

$$v \otimes h : V \rightarrow V, \quad u \mapsto h(u)v.$$

- $v \otimes h \in \mathfrak{sl}_n$. We call $I + v \otimes h$ a transvection and $v \otimes h$ an infinitesimal transvection (if $h(v) = 0$).

- The infinitesimal transvections span \mathfrak{sl}_n.

- Infinitesimal transvections are extremal elements of \mathfrak{sl}_n:

$$[u \otimes g, [u \otimes g, v \otimes h]](w) = -2g(v)h(u)(u \otimes g)(w),$$

if $g(u) = h(v) = 0$, so $f(u \otimes g, v \otimes h) = -2g(v)h(u)$.
Let $v \in V$ and $h \in V^*$ with $h(v) = 0$. Define

$$v \otimes h : V \to V, \ u \mapsto h(u)v.$$

Matrix for a suitable basis:

$$\begin{pmatrix}
0 & \ldots & 0 & 1 \\
0 & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{pmatrix}.$$

$v \otimes h \in \mathfrak{sl}_n$. We call $I + v \otimes h$ a transvection and $v \otimes h$ an infinitesimal transvection (if $h(v) = 0$).

- The infinitesimal transvections span \mathfrak{sl}_n.
- Infinitesimal transvections are extremal elements of \mathfrak{sl}_n:

$$[u \otimes g, [u \otimes g, v \otimes h]](w) = -2g(v)h(u)(u \otimes g)(w).$$
Extremal Elements in \mathfrak{sl}_n

- Let $v \in V$ and $h \in V^*$ with $h(v) = 0$. Define

$$v \otimes h : V \to V, \quad u \mapsto h(u)v.$$

- $v \otimes h \in \mathfrak{sl}_n$. We call $I + v \otimes h$ a transvection and $v \otimes h$ an infinitesimal transvection (if $h(v) = 0$).

- The infinitesimal transvections span \mathfrak{sl}_n.

- Infinitesimal transvections are extremal elements of \mathfrak{sl}_n:

$$[u \otimes g, [u \otimes g, v \otimes h]](w) = -2g(v)h(u)(u \otimes g)(w),$$

if $g(u) = h(v) = 0$, so $f(u \otimes g, v \otimes h) = -2g(v)h(u)$.
Extremal Elements in \mathfrak{sl}_n

- Let $v \in V$ and $h \in V^*$ with $h(v) = 0$. Define

$$v \otimes h : V \to V, u \mapsto h(u)v.$$

- $v \otimes h \in \mathfrak{sl}_n$. We call $I + v \otimes h$ a transvection and $v \otimes h$ an infinitesimal transvection (if $h(v) = 0$).

- The infinitesimal transvections span \mathfrak{sl}_n.

- Infinitesimal transvections are extremal elements of \mathfrak{sl}_n:

$$[u \otimes g, [u \otimes g, v \otimes h]](w) = -2g(v)h(u)(u \otimes g)(w),$$

if $g(u) = h(v) = 0$, so $f(u \otimes g, v \otimes h) = -2g(v)h(u)$.
Extremal Elements in \mathfrak{sl}_n

- Let $v \in V$ and $h \in V^*$ with $h(v) = 0$. Define

$$v \otimes h: V \to V, u \mapsto h(u)v.$$

- $v \otimes h \in \mathfrak{sl}_n$. We call $I + v \otimes h$ a transvection and $v \otimes h$ an infinitesimal transvection (if $h(v) = 0$).

- The infinitesimal transvections span \mathfrak{sl}_n.

- Infinitesimal transvections are extremal elements of \mathfrak{sl}_n:

$$[u \otimes g, [u \otimes g, v \otimes h]](w) = -2g(v)h(u)(u \otimes g)(w),$$

if $g(u) = h(v) = 0$, so $f(u \otimes g, v \otimes h) = -2g(v)h(u)$.

E.J. Postma

Lie Algebras Generated by Extremal Elements
Geometric Configurations

\[f(u \otimes g, v \otimes h) = -2h(u)g(v) \]

What geometrical setups do you get with a pair of infinitesimal transvections, \(v \otimes h \) and \(u \otimes g \)?
Geometric Configurations

\[f(u \otimes g, v \otimes h) = -2h(u)g(v) \]

<table>
<thead>
<tr>
<th>(h(u) \neq 0)</th>
<th>(g(v) \neq 0)</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neq 0)</td>
<td>(\neq 0)</td>
<td>(\mathfrak{sl}_2)</td>
</tr>
</tbody>
</table>
Geometric Configurations

\[f(u \otimes g, v \otimes h) = -2h(u)g(v) \]

<table>
<thead>
<tr>
<th>(h(u))</th>
<th>(g(v))</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neq 0)</td>
<td>(\neq 0)</td>
<td>(\mathfrak{sl}_2)</td>
</tr>
<tr>
<td>(= 0)</td>
<td>(\neq 0)</td>
<td>?</td>
</tr>
</tbody>
</table>

\[
[u \otimes g, v \otimes h](w) = \\
(u \otimes g)h(w)v - (v \otimes h)g(w)u
\]
\[f(u \otimes g, v \otimes h) = -2h(u)g(v) \]

<table>
<thead>
<tr>
<th>h(u)</th>
<th>g(v)</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>≠ 0</td>
<td>≠ 0</td>
<td>(\mathfrak{sl}_2)</td>
</tr>
<tr>
<td>= 0</td>
<td>≠ 0</td>
<td>?</td>
</tr>
</tbody>
</table>

\[
[u \otimes g, v \otimes h](w) = h(w)g(v)u - g(w)h(u)v
\]
Geometric Configurations

\[f(u \otimes g, v \otimes h) = -2h(u)g(v) \]

<table>
<thead>
<tr>
<th>h(u)</th>
<th>g(v)</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>≠ 0</td>
<td>≠ 0</td>
<td>(\mathfrak{sl}_2)</td>
</tr>
<tr>
<td>= 0</td>
<td>≠ 0</td>
<td>?</td>
</tr>
</tbody>
</table>

\[[u \otimes g, v \otimes h](w) = g(v)(u \otimes h)(w) \]
Problem and Preliminaries
Generators for the Classical Algebras
Each Similarly Structured Algebra is Classical

Summary

Geometric Configurations

\[f(u \otimes g, v \otimes h) = -2h(u)g(v) \]

\[[u \otimes g, v \otimes h] = g(v)(u \otimes h). \]

<table>
<thead>
<tr>
<th>Algebra</th>
<th>$h(u)$</th>
<th>$g(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathfrak{sl}_2</td>
<td>$\neq 0$</td>
<td>$\neq 0$</td>
</tr>
<tr>
<td>Heisenberg</td>
<td>$= 0$</td>
<td>$\neq 0$</td>
</tr>
</tbody>
</table>
Geometric Configurations

\[f(u \otimes g, v \otimes h) = -2h(u)g(v) \]

<table>
<thead>
<tr>
<th>\text{h (u)}</th>
<th>\text{g (v)}</th>
<th>\text{Algebra}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\neq 0</td>
<td>\neq 0</td>
<td>\mathfrak{sl}_2</td>
</tr>
<tr>
<td>= 0</td>
<td>\neq 0</td>
<td>Heisenberg</td>
</tr>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>commuting</td>
</tr>
</tbody>
</table>
Geometric Configurations

\[f(u \otimes g, v \otimes h) = -2h(u)g(v) \]

<table>
<thead>
<tr>
<th>(h(u))</th>
<th>(g(v))</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neq 0)</td>
<td>(\neq 0)</td>
<td>(\mathfrak{sl}_2)</td>
</tr>
<tr>
<td>(= 0)</td>
<td>(\neq 0)</td>
<td>Heisenberg</td>
</tr>
<tr>
<td>(= 0)</td>
<td>(= 0)</td>
<td>commuting</td>
</tr>
</tbody>
</table>

The last is also the case if two points or planes coincide.
A Concrete Realization

Let \(\{e_1, \ldots, e_n\} \) be a basis of \(V \) and \(\{f_1, \ldots, f_n\} \) its dual basis.

Let

\[
\begin{align*}
v_1 &= e_1 - e_2 \\
v_i &= e_{i-1} + e_i \\
h_1 &= f_1 + f_2, \\
h_i &= f_{i-1} - f_i \\
&\text{for } 1 < i \leq n.
\end{align*}
\]

Then \(\mathfrak{sl}_n = \langle v_i \otimes h_i \mid 1 \leq i \leq n \rangle \).
A Concrete Realization

- Let \(\{ e_1, \ldots, e_n \} \) be a basis of \(V \) and \(\{ f_1, \ldots, f_n \} \) its dual basis.
- Let

\[
\begin{align*}
 v_1 &= e_1 - e_2 \\
v_i &= e_{i-1} + e_i & h_i &= f_{i-1} - f_i \\
 v_1 &= e_1 - e_2 & h_1 &= f_1 + f_2,
\end{align*}
\]

for \(1 < i \leq n \).

Then \(\mathfrak{sl}_n = \langle v_i \otimes h_i \mid 1 \leq i \leq n \rangle \).

Problem and Preliminaries
Generators for the Classical Algebras
Each Similarly Structured Algebra is Classical
Summary

A Concrete Realization

- Let \(\{e_1, \ldots, e_n\} \) be a basis of \(V \) and \(\{f_1, \ldots, f_n\} \) its dual basis.
- Let

 \[
 v_1 = e_1 - e_2 \quad h_1 = f_1 + f_2, \\
 v_i = e_{i-1} + e_i \quad h_i = f_{i-1} - f_i \quad \text{for } 1 < i \leq n.
 \]

- Then \(\mathfrak{sl}_n = \langle v_i \otimes h_i \mid 1 \leq i \leq n \rangle \).
Problem and Preliminaries
Generators for the Classical Algebras
Each Similarly Structured Algebra is Classical
Summary

Proof (1)

A group \(\langle I + \lambda v \otimes h \mid \lambda \in F \rangle \) is called a transvection group. It is contained in \(\text{SL}(V) \), because \(\det v_i \otimes h_i = 0 \). Transvection groups are isomorphic to \(F^+ \), because

\[
(I + \lambda v \otimes h)(I + \mu v \otimes h) = I + (\lambda + \mu)v \otimes h.
\]

Theorem (McLaughlin, 1967)

If a group \(H \) acting on \(V \) is generated by transvection subgroups, where \(V \) is spanned by an \(H \)-orbit of centres of these transvection subgroups and \(V^* \) is spanned by the axes, then either \(H = \text{SL}(V) \) or \(H = \text{Sp}(V, B) \).

Let \(G = \langle I + \lambda v_i \otimes h_i \mid \lambda \in F, 1 \leq i \leq n \rangle \). \(G \) satisfies the criteria, so either \(G = \text{SL}(V) \) or \(G = \text{Sp}(V, B) \).
A group \(\langle I + \lambda v \otimes h \mid \lambda \in \mathbb{F} \rangle \) is called a **transvection group**. It is contained in \(\text{SL}(V) \), because \(\det v_i \otimes h_i = 0 \). Transvection groups are isomorphic to \(\mathbb{F}^+ \), because

\[
(I + \lambda v \otimes h)(I + \mu v \otimes h) = I + (\lambda + \mu)v \otimes h.
\]

Theorem (McLaughlin, 1967)

If a group \(H \) acting on \(V \) is generated by transvection subgroups, where \(V \) is spanned by an \(H \)-orbit of centres of these transvection subgroups and \(V^* \) is spanned by the axes, then either \(H = \text{SL}(V) \) or \(H = \text{Sp}(V, B) \).

Let \(G = \langle I + \lambda v_i \otimes h_i \mid \lambda \in \mathbb{F}, 1 \leq i \leq n \rangle \). \(G \) satisfies the criteria, so either \(G = \text{SL}(V) \) or \(G = \text{Sp}(V, B) \).
Proof (1)

A group \(\langle I + \lambda v \otimes h \mid \lambda \in \mathbb{F} \rangle \) is called a transvection group. It is contained in \(SL(V) \), because \(\det v_i \otimes h_i = 0 \). Transvection groups are isomorphic to \(\mathbb{F}^+ \), because

\[
(I + \lambda v \otimes h)(I + \mu v \otimes h) = I + (\lambda + \mu)v \otimes h.
\]

Theorem (McLaughlin, 1967)

If a group \(H \) acting on \(V \) is generated by transvection subgroups, where \(V \) is spanned by an \(H \)-orbit of centres of these transvection subgroups and \(V^* \) is spanned by the axes, then either \(H = SL(V) \) or \(H = Sp(V, B) \).

Let \(G = \langle I + \lambda v_i \otimes h_i \mid \lambda \in \mathbb{F}, 1 \leq i \leq n \rangle \). \(G \) satisfies the criteria, so either \(G = SL(V) \) or \(G = Sp(V, B) \).
Proof (1)

A group \(\langle I + \lambda v \otimes h \mid \lambda \in F \rangle \) is called a transvection group. It is contained in \(SL(V) \), because \(\det v_i \otimes h_i = 0 \). Transvection groups are isomorphic to \(F^+ \), because

\[
(I + \lambda v \otimes h)(I + \mu v \otimes h) = I + (\lambda + \mu)v \otimes h.
\]

Theorem (McLaughlin, 1967)

If a group \(H \) acting on \(V \) is generated by transvection subgroups, where \(V \) is spanned by an \(H \)-orbit of centres of these transvection subgroups and \(V^* \) is spanned by the axes, then either \(H = SL(V) \) or \(H = Sp(V, B) \).

Let \(G = \langle I + \lambda v_i \otimes h_i \mid \lambda \in F, 1 \leq i \leq n \rangle \). \(G \) satisfies the criteria, so either \(G = SL(V) \) or \(G = Sp(V, B) \).
Problem and Preliminaries
Generators for the Classical Algebras
Each Similarly Structured Algebra is Classical
Summary

Proof (1)

A group \(<I + \lambda \nu \otimes h \mid \lambda \in F>\) is called a transvection group. It is contained in \(SL(V)\), because \(\det \nu_i \otimes h_i = 0\). Transvection groups are isomorphic to \(F^+\), because

\[(I + \lambda \nu \otimes h)(I + \mu \nu \otimes h) = I + (\lambda + \mu) \nu \otimes h.\]

Theorem (McLaughlin, 1967)

If a group \(H\) acting on \(V\) is generated by transvection subgroups, where \(V\) is spanned by an \(H\)-orbit of centres of these transvection subgroups and \(V^*\) is spanned by the axes, then either \(H = SL(V)\) or \(H = Sp(V, B)\).

Let \(G = \langle I + \lambda \nu_i \otimes h_i \mid \lambda \in F, 1 \leq i \leq n\rangle\). \(G\) satisfies the criteria, so either \(G = SL(V)\) or \(G = Sp(V, B)\).
Proof (2): $G \neq \text{Sp}(V)$

- All transvections in $\text{Sp}(V)$ are of shape $I + v \otimes h$ where $h(w) = B(v, w)$.
- If $I + u \otimes g, I + v \otimes h \in \text{Sp}(V)$ and $h(u) = B(v, u) = 0$, then also $g(v) = B(u, v) = 0$.
- So the situation where $h(u) = 0 \neq g(v)$ (Heisenberg) does not occur.
- $[v_2 \otimes h_2, v_1 \otimes h_1 + 4v_3 \otimes h_3 \pm 2[v_1 \otimes h_1, v_3 \otimes h_3]]$ are a pair of infinitesimal transvections in that situation.
- The corresponding objects exist in G, but not in $\text{Sp}(V)$. Hence G is not $\text{Sp}(V)$.
Proof (2): $G \neq \text{Sp}(V)$

- All transvections in $\text{Sp}(V)$ are of shape $I + v \otimes h$ where $h(w) = B(v, w)$.
- If $I + u \otimes g, I + v \otimes h \in \text{Sp}(V)$ and $h(u) = B(v, u) = 0$, then also $g(v) = B(u, v) = 0$.
- So the situation where $h(u) = 0 \neq g(v)$ (Heisenberg) does not occur.
- $[v_2 \otimes h_2, v_1 \otimes h_1 + 4v_3 \otimes h_3 \pm 2[v_1 \otimes h_1, v_3 \otimes h_3]]$ are a pair of infinitesimal transvections in that situation.
- The corresponding objects exist in G, but not in $\text{Sp}(V)$. Hence G is not $\text{Sp}(V)$.
Proof (2): $G \neq \text{Sp}(V)$

- All transvections in $\text{Sp}(V)$ are of shape $l + v \otimes h$ where $h(w) = B(v, w)$.
- If $l + u \otimes g, l + v \otimes h \in \text{Sp}(V)$ and $h(u) = B(v, u) = 0$, then also $g(v) = B(u, v) = 0$.
- So the situation where $h(u) = 0 \neq g(v)$ (Heisenberg) does not occur.
- $[v_2 \otimes h_2, v_1 \otimes h_1 + 4v_3 \otimes h_3 \pm 2[v_1 \otimes h_1, v_3 \otimes h_3]]$ are a pair of infinitesimal transvections in that situation.
- The corresponding objects exist in G, but not in $\text{Sp}(V)$. Hence G is not $\text{Sp}(V)$.
Proof (2): \(G \neq \text{Sp}(V) \)

- All transvections in \(\text{Sp}(V) \) are of shape \(I + v \otimes h \) where \(h(w) = B(v, w) \).
- If \(I + u \otimes g, I + v \otimes h \in \text{Sp}(V) \) and \(h(u) = B(v, u) = 0 \), then also \(g(v) = B(u, v) = 0 \).
- So the situation where \(h(u) = 0 \neq g(v) \) (Heisenberg) does not occur.
- \([v_2 \otimes h_2, v_1 \otimes h_1 + 4v_3 \otimes h_3 \pm 2[v_1 \otimes h_1, v_3 \otimes h_3]]\) are a pair of infinitesimal transvections in that situation.
- The corresponding objects exist in \(G \), but not in \(\text{Sp}(V) \).
 Hence \(G \) is not \(\text{Sp}(V) \).
Proof (2): $G \neq \text{Sp}(V)$

- All transvections in $\text{Sp}(V)$ are of shape $l + v \otimes h$ where $h(w) = B(v, w)$.
- If $l + u \otimes g, l + v \otimes h \in \text{Sp}(V)$ and $h(u) = B(v, u) = 0$, then also $g(v) = B(u, v) = 0$.
- So the situation where $h(u) = 0 \neq g(v)$ (Heisenberg) does not occur.
- $[v_2 \otimes h_2, v_1 \otimes h_1 + 4v_3 \otimes h_3 \pm 2[v_1 \otimes h_1, v_3 \otimes h_3]]$ are a pair of infinitesimal transvections in that situation.
- The corresponding objects exist in G, but not in $\text{Sp}(V)$. Hence G is not $\text{Sp}(V)$.
Proof (3)

\[G = \langle I + \lambda v_i \otimes h_i \mid \lambda \in \mathbb{F}, 1 \leq i \leq n \rangle = \text{SL}(V). \]
\[\langle v_i \otimes h_i \rangle = T_I(\text{SL}(V)) = \mathfrak{sl}_n. \]
Problem and Preliminaries
Generators for the Classical Algebras
Each Similarly Structured Algebra is Classical
Summary

Proof (3)

\[G = \langle l + \lambda v_i \otimes h_i \mid \lambda \in \mathbb{F}, 1 \leq i \leq n \rangle = \text{SL}(V). \]

\[\langle v_i \otimes h_i \rangle = T_I(\text{SL}(V)) = \mathfrak{sl}_n. \]
Other Classical Lie Algebras

\[A_n \]

1 3 \(\ldots \) n n + 1

\[2 \]
Other Classical Lie Algebras

\[A_n \]

\[
\begin{array}{cccc}
1 & & & n \\
2 & & & n + 1 \\
3 & & & \\
\end{array}
\]

\[B_n \]

\[
\begin{array}{cccc}
1 & & & n - 2 \\
2 & & & n - 1 \\
3 & & & n \\
\end{array}
\]

\[\text{Lie Algebras Generated by Extremal Elements} \]
Other Classical Lie Algebras

- A_n: $1 \rightarrow 3 \rightarrow \ldots \rightarrow n \rightarrow n+1$
- B_n: $1 \rightarrow 3 \rightarrow \ldots \rightarrow n-2 \rightarrow n-1 \rightarrow n \rightarrow n+1$
- C_n: $1 \rightarrow 2 \rightarrow \ldots \rightarrow 2n-1 \rightarrow 2n$
Other Classical Lie Algebras

- A_n: \[\begin{array}{ccccccc}
1 & 3 & \ldots & n & n+1 \\
2 & & & & & &
\end{array} \]

- B_n: \[\begin{array}{ccccccc}
1 & 3 & \ldots & n-2 & n-1 & n \\
2 & & & & & n+1 & &
\end{array} \]

- C_n: \[\begin{array}{ccccccc}
1 & 2 & \ldots & 2n-1 & 2n \\
& & & & & &
\end{array} \]

- D_n: \[\begin{array}{ccccccc}
1 & 3 & \ldots & n-3 & n-2 & n-1 \\
2 & & & & & n & &
\end{array} \]
Each Similarly Structured Algebra is Classical
Goal

- With two extremal elements: of the three-dimensional Lie algebras, the “generic” one is \mathfrak{sl}_2.
- Of the maximal-dimensional Lie algebras generated by n extremal elements where the unconnected ones commute, the “generic” one is \mathfrak{sl}_n.
- Find a sort of presentation.
Goal

- With two extremal elements: of the three-dimensional Lie algebras, the “generic” one is \mathfrak{sl}_2.
- Of the maximal-dimensional Lie algebras generated by n extremal elements where the unconnected ones commute, the “generic” one is \mathfrak{sl}_n.
- Find a sort of presentation.
Goal

- With two extremal elements: of the three-dimensional Lie algebras, the “generic” one is \mathfrak{sl}_2.
- Of the maximal-dimensional Lie algebras generated by n extremal elements where the unconnected ones commute, the “generic” one is \mathfrak{sl}_n.
- Find a sort of presentation.

\[A : \begin{array}{c}
 1 \\
 2 \\
 3 \\
 \vdots \\
 n - 1 \\
 n
\end{array} \]
Towards a Presentation

- For a presentation, we need some sort of free object and some defining relations to divide out.
- The free object will be the free Lie algebra \mathcal{F} over \mathbb{F} on n generators x_1, \ldots, x_n.
- Every Lie algebra generated by n elements is a quotient of \mathcal{F}.
Towards a Presentation

- For a presentation, we need some sort of **free object** and some **defining relations** to divide out.

- The free object will be the **free Lie algebra** \mathcal{F} over \mathbb{F} on n generators x_1, \ldots, x_n.

 \[\{1, \ldots, n\} \]

 \[\mathcal{F} \quad \text{\rightarrow} \quad \mathcal{L} \]

- Every Lie algebra generated by n elements is a quotient of \mathcal{F}.

E.J. Postma
Towards a Presentation

- For a presentation, we need some sort of free object and some defining relations to divide out.
- The free object will be the free Lie algebra \(\mathcal{F} \) over \(\mathbb{F} \) on \(n \) generators \(x_1, \ldots, x_n \).
- Every Lie algebra generated by \(n \) elements is a quotient of \(\mathcal{F} \).
Towards a Presentation

- For a presentation, we need some sort of free object and some defining relations to divide out.
- The free object will be the free Lie algebra \mathcal{F} over \mathbb{F} on n generators x_1, \ldots, x_n.

\[
\{1, \ldots, n\} \quad \xrightarrow{\mathcal{F}} \quad L
\]

- Every Lie algebra generated by n elements is a quotient of \mathcal{F}.

E.J. Postma

Lie Algebras Generated by Extremal Elements
We need to find an ideal that can be divided out, then after that x_i are extremal elements and some of them commute.

Commutation relations: easy, put $[x_i, x_j]$ in the ideal whenever x_i and x_j need to commute.

Extremal elements: depends on extremal form! Divide out $[x, [x, y]] - f(x, y)x$ – but what is $f(x, y)$?
Relations

- We need to find an ideal that can be divided out, then after that x_i are extremal elements and some of them commute.
- Commutation relations: easy, put $[x_i, x_j]$ in the ideal whenever x_i and x_j need to commute.
- Extremal elements: depends on extremal form! Divide out $[x, [x, y]] - f(x, y)x$ – but what is $f(x, y)$?
We need to find an ideal that can be divided out, then after that \(x_i \) are extremal elements and some of them commute.

Commutation relations: easy, put \([x_i, x_j]\) in the ideal whenever \(x_i \) and \(x_j \) need to commute.

Extremal elements: depends on extremal form! Divide out \([x, [x, y]] - f(x, y)x\) – but what is \(f(x, y) \)?
Solution

- For a given graph Γ (ex.: A) on n vertices, let \mathcal{F}_Γ be the quotient of \mathcal{F} by the ideal generated by $[x_i, x_j]$ whenever x_i and x_j are unconnected.

- Take $f_i \in \mathcal{F}_\Gamma^*$, the dual of \mathcal{F}_Γ. This will determine the “extremal form”. Let $f = (f_1, \ldots, f_n)$ and

$$I_{\Gamma, f} = \langle [x_i, [x_i, y]] - f_i(y)x_i \mid y \in \mathcal{F}_\Gamma \rangle.$$

$$L_{\Gamma, f} = \mathcal{F}_\Gamma / I_{\Gamma, f}.$$

- The images of x_i in $L_{\Gamma, f}$ are extremal with $f(x_i, y) = f_i(y)$.
Solution

- For a given graph Γ (ex.: \mathcal{A}) on n vertices, let \mathcal{F}_Γ be the quotient of \mathcal{F} by the ideal generated by $[x_i, x_j]$ whenever x_i and x_j are unconnected.

- Take $f_i \in \mathcal{F}_\Gamma^*$, the dual of \mathcal{F}_Γ. This will determine the "extremal form". Let $f = (f_1, \ldots, f_n)$ and

$$l_{\Gamma, f} = \langle [x_i, [x_i, y]] - f_i(y)x_i \mid y \in \mathcal{F}_\Gamma \rangle.$$

$$\mathcal{L}_{\Gamma, f} = \mathcal{F}_\Gamma / l_{\Gamma, f}.$$

- The images of x_i in $\mathcal{L}_{\Gamma, f}$ are extremal with $f(x_i, y) = f_i(y)$.
Solution

For a given graph Γ (ex.: A) on n vertices, let \mathcal{F}_Γ be the quotient of \mathcal{F} by the ideal generated by $[x_i, x_j]$ whenever x_i and x_j are unconnected.

Take $f_i \in \mathcal{F}_\Gamma^*$, the dual of \mathcal{F}_Γ. This will determine the “extremal form”. Let $f = (f_1, \ldots, f_n)$ and

$$l_{\Gamma,f} = \langle [x_i, [x_i, y]] - f_i(y)x_i \mid y \in \mathcal{F}_\Gamma \rangle.$$

$$\mathcal{L}_{\Gamma,f} = \mathcal{F}_\Gamma / l_{\Gamma,f}.$$

The images of x_i in $\mathcal{L}_{\Gamma,f}$ are extremal with $f(x_i, y) = f_i(y)$.
For a given graph Γ (ex.: A) on n vertices, let \mathcal{F}_Γ be the quotient of \mathcal{F} by the ideal generated by $[x_i, x_j]$ whenever x_i and x_j are unconnected.

Take $f_i \in \mathcal{F}_\Gamma^*$, the dual of \mathcal{F}_Γ. This will determine the “extremal form”. Let $f = (f_1, \ldots, f_n)$ and

$$l_{\Gamma, f} = \langle [x_i, [x_i, y]] - f_i(y)x_i \mid y \in \mathcal{F}_\Gamma \rangle.$$

$$\mathcal{L}_{\Gamma, f} = \mathcal{F}_\Gamma / l_{\Gamma, f}.$$

The images of x_i in $\mathcal{L}_{\Gamma, f}$ are extremal with $f(x_i, y) = f_i(y)$.
For a given graph Γ (ex.: \mathcal{A}) on n vertices, let \mathcal{F}_Γ be the quotient of \mathcal{F} by the ideal generated by $[x_i, x_j]$ whenever x_i and x_j are unconnected.

Take $f_i \in \mathcal{F}_\Gamma^*$, the dual of \mathcal{F}_Γ. This will determine the "extremal form". Let $f = (f_1, \ldots, f_n)$ and

$$l_{\Gamma,f} = \langle [x_i, [x_i, y]] - f_i(y)x_i \mid y \in \mathcal{F}_\Gamma \rangle.$$

$$\mathcal{L}_{\Gamma,f} = \mathcal{F}_\Gamma / l_{\Gamma,f}.$$

The images of x_i in $\mathcal{L}_{\Gamma,f}$ are extremal with $f(x_i, y) = f_i(y)$.

Obtain an Upper and Lower Bound

- Zel’manov and Kostrikin [1990]: “complete graph” (no commutation relations) and each $f_i = 0$, then finite-dimensional.

- Cohen, Steinbach, Ushirobira, Wales [2001]: any other f, then every basis for $f = 0$ turns into a spanning set (dimension may go down).

- Hence find a finite list M_Γ of monomials in x_i that form a basis of $L_{\Gamma,0}$. This gives an upper bound for the dimension of $L_{\Gamma,f}$.

- The preceding section, with the explicit realization of $L_{\Gamma,f}$, gave a lower bound for a certain f.

- In the case of the classical Lie algebras, these upper and lower bounds are the same.
Obtain an Upper and Lower Bound

- Zel’manov and Kostrikin [1990]: “complete graph” (no commutation relations) and each $f_i = 0$, then finite-dimensional.

- Cohen, Steinbach, Ushirobira, Wales [2001]: any other f, then every basis for $f = 0$ turns into a spanning set (dimension may go down).

- Hence find a finite list \mathcal{M}_Γ of monomials in x_i that form a basis of $\mathcal{L}_{\Gamma,0}$. This gives an upper bound for the dimension of $\mathcal{L}_{\Gamma,f}$.

- The preceding section, with the explicit realization of $\mathcal{L}_{\Gamma,f}$, gave a lower bound for a certain f.

- In the case of the classical Lie algebras, these upper and lower bounds are the same.
Obtain an Upper and Lower Bound

- Zel’manov and Kostrikin [1990]: “complete graph” (no commutation relations) and each $f_i = 0$, then finite-dimensional.

- Cohen, Steinbach, Ushirobira, Wales [2001]: any other f_i, then every basis for $f = 0$ turns into a spanning set (dimension may go down).

- Hence find a finite list M_Γ of monomials in x_i that form a basis of $L_{\Gamma,0}$. This gives an upper bound for the dimension of $L_{\Gamma,f}$.

- The preceding section, with the explicit realization of $L_{\Gamma,f}$, gave a lower bound for a certain f_i.

- In the case of the classical Lie algebras, these upper and lower bounds are the same.
Obtain an Upper and Lower Bound

- Zel’manov and Kostrikin [1990]: “complete graph” (no commutation relations) and each $f_i = 0$, then finite-dimensional.
- Cohen, Steinbach, Ushirobira, Wales [2001]: any other f, then every basis for $f = 0$ turns into a spanning set (dimension may go down).
- Hence find a finite list \mathcal{M}_Γ of monomials in x_i that form a basis of $L_{\Gamma,0}$. This gives an upper bound for the dimension of $L_{\Gamma,f}$.
- The preceding section, with the explicit realization of $L_{\Gamma,f}$, gave a lower bound for a certain f.
- In the case of the classical Lie algebras, these upper and lower bounds are the same.
Obtain an Upper and Lower Bound

- Zel’manov and Kostrikin [1990]: “complete graph” (no commutation relations) and each $f_i = 0$, then finite-dimensional.

- Cohen, Steinbach, Ushirobira, Wales [2001]: any other f, then every basis for $f = 0$ turns into a spanning set (dimension may go down).

- Hence find a finite list M_Γ of monomials in x_i that form a basis of $L_\Gamma,0$. This gives an upper bound for the dimension of L_Γ,f.

- The preceding section, with the explicit realization of L_Γ,f, gave a lower bound for a certain f.

- In the case of the classical Lie algebras, these upper and lower bounds are the same.
Example Monomial List

Example for \mathcal{A}: all monomials of the following shapes:

- $[x_k, [x_{k-1}, \ldots, [x_{m+1}, x_m]]]$ for $1 \leq m \leq k \leq n$,
- $[x_k, [x_{k-1}, \ldots, [x_3, x_1]]]$ for $3 \leq k \leq n$,
- $[x_k, [x_{k-1}, \ldots, [x_{m+1}, [x_{m-1}, [x_m, [x_{m-2}, [x_{m-1}, \ldots, [x_2, [x_3, x_1] \ldots]]]]]]]$ for $3 \leq m \leq k \leq n$.

![Diagram of a graph with nodes 1, 2, 3, 4, 5, 6 connected in a specific pattern.]

E.J. Postma

Lie Algebras Generated by Extremal Elements
Example Monomial List

Example for A: all monomials of the following shapes:

- $[x_k, [x_{k-1}, \ldots, [x_{m+1}, x_m]]]$ for $1 \leq m \leq k \leq n$,
- $[x_k, [x_{k-1}, \ldots, [x_3, x_1]]]$ for $3 \leq k \leq n$,
- $[x_k, [x_{k-1}, \ldots, [x_{m+1}, [x_{m-1}, [x_m, [x_{m-2}, [x_{m-1}, \ldots, [x_2, [x_3, x_1] \ldots]]]]]]]$ for $3 \leq m \leq k \leq n$.
Example Monomial List

Example for A: all monomials of the following shapes:

- $[x_k, [x_{k-1}, \ldots, [x_{m+1}, x_m]]]$ for $1 \leq m \leq k \leq n$,
- $[x_k, [x_{k-1}, \ldots, [x_3, x_1]]]$ for $3 \leq k \leq n$,
- $[x_k, [x_{k-1}, \ldots, [x_{m+1}, [x_{m-1}, [x_m, [x_{m-2}, [x_{m-1}, \ldots, [x_2, [x_3, x_1] \cdots]]]]]]]$ for $3 \leq m \leq k \leq n$.

Diagram:

```
1 -- 3 -- 4
|     |
|     |
2 -- 5 -- 6
```
The Extremal Form

- For some values of f, we will find $\dim \mathcal{L}_\Gamma, f = \dim \mathcal{L}_\Gamma, 0$; for others, the dimension will be smaller.

- It turns out that those f for which the dimension is maximal, form an algebraic variety X_Γ in $(\mathcal{F}_\Gamma^*)^n$.

- For the (sufficiently large) classical Lie algebras, we show that for a generic choice of $f \in X_\Gamma$ (meaning: outside a certain closed subset) \mathcal{L}_Γ, f is isomorphic to that Lie algebra: given a suitable f, we modify the realization we found earlier to have a corresponding extremal form.
The Extremal Form

For some values of \(f \), we will find \(\dim \mathcal{L}_{\Gamma,f} = \dim \mathcal{L}_{\Gamma,0} \); for others, the dimension will be smaller.

It turns out that those \(f \) for which the dimension is maximal, form an algebraic variety \(X_{\Gamma} \) in \((\mathcal{F}_{\Gamma}^*)^n\).

For the (sufficiently large) classical Lie algebras, we show that for a generic choice of \(f \in X_{\Gamma} \) (meaning: outside a certain closed subset) \(\mathcal{L}_{\Gamma,f} \) is isomorphic to that Lie algebra: given a suitable \(f \), we modify the realization we found earlier to have a corresponding extremal form.
The Extremal Form

- For some values of f, we will find $\dim \mathcal{L}_{\Gamma, f} = \dim \mathcal{L}_{\Gamma, 0}$; for others, the dimension will be smaller.
- It turns out that those f for which the dimension is maximal, form an algebraic variety X_{Γ} in $(\mathcal{F}_{\Gamma}^*)^n$.
- For the (sufficiently large) classical Lie algebras, we show that for a generic choice of $f \in X_{\Gamma}$ (meaning: outside a certain closed subset) $\mathcal{L}_{\Gamma, f}$ is isomorphic to that Lie algebra: given a suitable f, we modify the realization we found earlier to have a corresponding extremal form.
For some values of f, we will find $\dim \mathcal{L}_{\Gamma,f} = \dim \mathcal{L}_{\Gamma,0}$; for others, the dimension will be smaller.

It turns out that those f for which the dimension is maximal, form an algebraic variety X_{Γ} in $(\mathcal{F}_{\Gamma}^*)^n$.

For the (sufficiently large) classical Lie algebras, we show that for a generic choice of $f \in X_{\Gamma}$ (meaning: outside a certain closed subset) $\mathcal{L}_{\Gamma,f}$ is isomorphic to that Lie algebra: given a suitable f, we modify the realization we found earlier to have a corresponding extremal form.
We have found a nice presentation of the sufficiently large classical Lie algebras; we used the geometry from the extremal elements.

Future work: types E, F and G?
We have found a nice presentation of the sufficiently large classical Lie algebras; we used the geometry from the extremal elements.

Future work: types E, F and G?
Summary

We have found a nice presentation of the sufficiently large classical Lie algebras; we used the geometry from the extremal elements.

Future work: types E, F and G?