
Chosen-prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities

Marc Stevens1, Arjen Lenstra2, and Benne de Weger1

1 TU Eindhoven, Faculty of Mathematics and Computer Science
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2 EPFL IC LACAL, Station 14, and Bell Laboratories
CH-1015 Lausanne, Switzerland

Abstract. We present a novel, automated way to find differential paths for MD5. As an application
we have shown how, at an approximate expected cost of 250 calls to the MD5 compression function,
for any two chosen message prefixes P and P ′, suffixes S and S′ can be constructed such that the
concatenated values P‖S and P ′‖S′ collide under MD5. Although the practical attack potential of this
construction of chosen-prefix collisions is limited, it is of greater concern than random collisions for
MD5. To illustrate the practicality of our method, we constructed two MD5 based X.509 certificates
with identical signatures but different public keys and different Distinguished Name fields, whereas
our previous construction of colliding X.509 certificates required identical name fields. We speculate on
other possibilities for abusing chosen-prefix collisions. More details than can be included here can be
found on www.win.tue.nl/hashclash/ChosenPrefixCollisions/.

1 Introduction

In March 2005 we showed how Xiaoyun Wang’s ability [17] to quickly construct random collisions
for the MD5 hash function could be used to construct two different valid and unsuspicious X.509
certificates with identical digital signatures (see [10] and [11]). These two colliding certificates
differed in their public key values only. In particular, their Distinguished Name fields containing
the identities of the certificate owners were equal. This was the best we could achieve because

– Wang’s hash collision construction requires identical Intermediate Hash Values (IHVs);
– the resulting colliding values look like random strings: in an X.509 certificate the public key

field is the only suitable place where such a value can unsuspiciously be hidden.

A natural and often posed question (cf. [7], [3], [1]) is if it would be possible to allow more freedom
in the other fields of the certificates, at a cost lower than 264 calls to the MD5 compression function.
Specifically, it has often been suggested that it would be interesting to be able to select Distinguished
Name fields that are different and, preferably, chosen at will, non-random and human readable as one
would expect from these fields. This can be realized if two arbitrarily chosen messages, resulting
in two different IHVs, can be extended in such a way that the extended messages collide. Such
collisions will be called chosen-prefix collisions.

We describe how chosen-prefix collisions for MD5 can be constructed, and show that our method
is practical by constructing two MD5 based X.509 certificates with different Distinguished Name
fields and identical digital signatures. The full details of the chosen-prefix collision construction and
the certificates can be found in [16] and [14], respectively.

Section 2 contains a bird’s eye view of the chosen-prefix collision construction method and its
complexity. Its potential applications are discussed in Section 3 with Section 4 containing implica-
tions and details of the application to X.509 certificates. Details of the automated differential path
construction for MD5 are provided in Section 5.

2 Chosen-prefix collisions for MD5

The main contribution of this paper is a method to construct MD5 collisions starting from two
arbitrary IHVs. Given this method one can take any two chosen message prefixes and construct
bitstrings that, when appended to the prefixes, turn them into two messages that collide under
MD5. We refer to such a collision as a chosen-prefix collision. Their possibility was mentioned
already in [3, Section 4.2 case 1] and, in the context of SHA-1, in [1] and on www.iaik.tugraz.
at/research/krypto/collision/.

We start with a pair of arbitrarily chosen messages, not necessarily of the same length. Padding
with random bits may be applied so that the padded messages have the same bitlength which equals
416 modulo 512 (incomplete last block). Equal length is unavoidable, because Merkle-Damg̊ard
strengthening, involving the message length, is applied after the last message block has been com-
pressed by MD5. The incomplete last block condition is a technical requirement. In our example of
colliding certificates the certificate contents were constructed in such a way that padding was not
necessary, to allow for shorter RSA moduli.

Given the padded message pair, we followed a suggestion by Xiaoyun Wang1 to find a pair of
96-bit values that, when used to complete the last blocks by appending them to the messages and
applying the MD5 compression function, resulted in a specific form of difference vector between
the IHVs. Finding these 96-bit values was done using a birthdaying procedure.

The remaining differences between the IHVs were then removed by appending near-collision
blocks. Per pair of blocks this was done by constructing new differential paths using an automated,
improved version of Wang’s original approach. This innovative differential path construction is
described in detail in Section 5 below. Due to the specific form of the near-collisions and the first
difference vector, essentially one triple of bit differences could be removed per near-collision block,
thus shortening the overall length of the colliding values. For our example 8 near-collision blocks
were needed to remove all differences. Thus, a total of 96 + 8× 512 = 4192 bits were appended to
each of the chosen message prefixes to let them collide.

The birthdaying step can be entirely avoided, thereby making it harder to find the proper dif-
ferential paths and considerably increasing the number of near-collision blocks. Or the birthdaying
step could be simplified, increasing the number of near-collision blocks from 8 to about 14. Our
approach was inspired by our desire to minimize the number of near-collision blocks. Using a more
intricate differential path construction it should be possible to remove more than a single triple
of bit differences per block, which would reduce the number of near-collision blocks. Potential
enhancements and variations, and the full details of the construction as used, will be discussed
in [16].

The expected complexity of the birthdaying step is estimated at 249 MD5 compression function
calls. Estimating the complexity of the near-collision block construction is hard, but it turned
out to be a small fraction of the birthdaying complexity. Based on our observations we find it
reasonable to estimate the overall expected complexity of finding a chosen-prefix collision for MD5
at about 250 MD5 compression function calls. For the example we constructed, however, we had
some additional requirements and also were rather unlucky in the birthdaying step, leading to
about 252 MD5 compression function calls. Note that, either way, this is substantially faster than
the trivial birthday attack which has complexity 264.

1 Private communication.

2

The construction of just a single example required, apart from the development of the automated
differential path construction method, substantial computational efforts. Fortunately, the work
is almost fully parallelizable and suitable for grid computing. It was done in the “HashClash”
project (see www.win.tue.nl/hashclash/) and lasted about 6 months: using BOINC software (see
boinc.berkeley.edu/) up to 1200 machines contributed, involving a cluster of computers at TU/e
and a grid of home PCs. We expect that another chosen-prefix collision can be found much faster,
but that it would again require substantial effort, both human and computationally: say 2 months
real time assuming comparable computational resources.

3 Applications of chosen-prefix collisions

We mention some potential applications of chosen-prefix collisions.

– The example presented in the next section, namely colliding X.509 certificates with different
fields before the appended bitstrings that cause the collision. Those bitstrings are ‘perfectly’
hidden inside the RSA moduli, where ‘perfect’ means that inspection of either one of the RSA
moduli does not give away anything about the way it is constructed (namely, crafted such that
it collides with the other one). In particular it could be of interest to be able to freely choose
the Distinguished Name fields, which contain the identities of the alleged certificate owners.

– It was suggested to combine different Distinguished Names with equal public keys, to lure
someone to encrypt data for one person, which can then be decrypted by another. It is unclear
to us how realistic this is—or why one would need identical digital signatures. Nevertheless,
if the appendages are not hidden in the public key field, some other field must be found for
them, located before or after the public key field. Such a field may be specially defined for this
purpose, and there is a good chance that the certificate processing software will not recognize
this field and ignore it. However, as the appendages have non-negligible length, it will be hard
to define a field that will not look suspicious to someone who looks at the certificate at bit level.

– A way to realize the above variant is to hide the collision-causing appendages in the public
exponent. Though the public exponent is often taken from a small set (3, 17, and 65537 are
common choices), a large, random looking one is in principle possible. It may even be larger
than the modulus, but that may raise suspicion. In any case, the two certificates can now have
identical RSA moduli, making it easy for the owner of one private key to compute the other one.

– Entirely different abuse scenarios are conceivable. In [2] (see also [4]) it was shown how to
construct a pair of Postscript files that collide under MD5, and that send different messages to
output media such as screen or printer. However, in those constructions both messages had to
be hidden in each of the colliding files, which obviously raises suspicions upon inspection at bit
level. With chosen-prefix collisions, this can be avoided. For example, two different messages
can be entered into a document format that allows insertion of color images (such as Microsoft
Word), with one message per document. At the last page of each document a color image will
be shown—a short one pixel wide line will do, for instance hidden inside a layout element,
a company logo, or in the form of a nicely colored barcode claiming to be some additional
security feature, obviously offering far greater security than those old-fashioned black and white
barcodes—carefully constructed such that the hashes of the documents collide when their color
codes are inserted. In Figure 1 the actual 4192-bit collision-causing appendages computed for
the certificates are built into bitmaps to get two different barcode examples. Each string of 4192

3

Fig. 1. A collision built into bitmap images.

bits leads to one line of 175 pixels, say A and B, and the barcodes consist of the lines ABBBBB
and BBBBBB respectively. Apart from the 96 most significant bits corresponding to the 4 pixels
in the upper left corner, the barcodes differ in only a few bits, which makes the resulting color
differences hard to spot for the human eye. As noted above the ‘obviously differing’ 4 initial
pixels can be avoided at the cost of more near-collision blocks (thus longer barcodes), and the
barcodes can be shortened again at the cost of more elaborate differential path constructions.

– In [12] and [8] it was shown how to abuse existing MD5 collisions to mislead integrity checking
software based on MD5. Similar to the colliding Postscript applications, they also used the
differences in the colliding inputs to construct deviating execution flows of some programs. Here
too chosen-prefix collisions allow a more elegant approach, especially since common operating
systems ignore bitstrings that are appended to executables: the programs will run unaltered.
Thus one can imagine two executables: a ‘good’ one (say Word.exe) and a bad one (the attacker’s
Worse.exe). A chosen-prefix collision for those executables is computed, and the collision-causing
bitstrings are appended to them. The resulting altered file Word.exe, functionally equivalent
to the original Word.exe, can then be offered to Microsoft’s Authenticode signing program and
receive an ‘official’ MD5 based digital signature. This signature will be equally valid for the
attacker’s Worse.exe, and the attacker might be able to replace Word.exe by his Worse.exe
(renamed to Word.exe) on the appropriate download site. This construction affects a common
functionality of MD5 hashing and may pose a practical threat, also because there is no a priori
reason why the collision-causing bitstrings could not be hidden inside the executables.

– More ideas can be found on www.iaik.tugraz.at/research/krypto/collision/.

Further study is required to assess the impact of chosen-prefix collisions on applications of hash
functions. Commonly used protocols and message formats such as SSL, S/MIME (CMS) and XML
Signatures should be studied, with special attention to whether random looking data can be hidden
in these protocols and data formats, in such a way that some or all implementations will not detect
them. For instance, it was suggested by Pascal Junod to let a ‘proper’ certificate collide with one
that contains executable code in the Distinguished Name field, thereby potentially triggering a
buffer overflow, but we have not seen an actually working example of this idea yet. It also requires
more study to see if there are formats that even allow the much easier random collision attacks.

4 Colliding X.509 certificates for different identities

In this section we concentrate on the first application mentioned above, that of two X.509 certificates
with identical digital signatures but different Distinguished Name fields, where the collisions are
perfectly hidden inside the public key moduli.

4.1 Attack scenarios

Though our current X.509 certificates construction, involving different Distinguished Names, should
have more attack potential than the one with identical names fields in [11], we have not been able to

4

find truly convincing attack scenarios yet. Ideally, a realistic attack targets the core of PKI: provide
a relying party with trust, beyond reasonable cryptographic doubt, that the person indicated by
the Distinguished Name field has exclusive control over the private key corresponding to the public
key in the certificate. The attack should also enable the attacker to cover his trails.

Getting two certificates for the price of one could be economically advantageous in some situ-
ations, e.g. with two different owner names, or for two different validity periods. Such certificates
undermine the proof of knowledge of the secret key corresponding to a certified public key. These
possibilities have been noted before (cf. [10]) and do, in our opinion, not constitute attacks.

Our construction requires that the two colliding certificates are generated simultaneously. Al-
though each resulting certificate by itself is completely unsuspicious, the fraud becomes apparent
when the two certificates are put alongside, as may happen during a fraud analysis. An attacker
can generate one of the certificates for a targeted person, the other one for himself, and attempt to
use his own credentials to convince an external and generally trusted CA to sign the second one.
If successful, the attacker can then distribute the first certificate, which will be trusted by relying
parties, e.g. to encrypt messages for the targeted person. The attacker however is in control of the
corresponding private key, and can thus decrypt confidential information embedded in intercepted
messages meant for the targeted person. Or the attacker can masquerade as the targeted person
while signing messages, which will be trusted by anyone trusting the CA. In this scenario it does
not matter whether the two certificates have different public keys (as in our example) or identical
ones (in which case the colliding blocks would have to be hidden somewhere else in the certificate).

A problem is, however, that the CA will register the attacker’s identity. As soon as a dispute
arises, the two certificates will be produced and revealed as colliding, and the attacker will be
identified. Another problem is that the attacker must have sufficient control over the CA to predict
all fields appearing before the public key, such as the serial number and the validity periods. It
has frequently been suggested that this is an effective countermeasure against colliding certificate
constructions in practice, but there is no consensus how hard it is to make accurate predictions.
When this condition of sufficient control over the CA by the attacker is satisfied, colliding certificates
based on chosen-prefix collisions are a bigger threat than those based on random collisions.

Obviously, the attack becomes effectively impossible if the CA adds a sufficient amount of fresh
randomness to the certificate fields before the public key, such as in the serial number (as some
already do, though probably for different reasons). This randomness is to be generated after the
approval of the certification request. On the other hand, in general a relying party cannot verify
this randomness. In our opinion, trustworthiness of certificates should not crucially depend on such
secondary and circumstantial aspects. On the contrary, CAs should use a trustworthy hash function
that meets the design criteria. Unfortunately, this is no longer the case for MD5, or SHA-1.

We stress that our construction (we prefer this wording to ‘attack’) is not a preimage attack.
As far as we know, existing certificates cannot be forged by chosen-prefix collisions if they have
not been especially crafted for that purpose. However, a relying party cannot distinguish any given
trustworthy certificate from a certificate that has been crafted by our method to violate PKI
principles. Therefore we repeat, with more urgency, our recommendation that MD5 is no longer
used in new X.509 certificates. Similar work [1] is in development for the SHA-1 hash function, so
we feel that a renewed assessment of the use of SHA-1 in certificate generation is also appropriate.

4.2 Certificate construction outline

Table 1 outlines the to-be-signed fields of the colliding certificates that were constructed.

5

Table 1. The to-be-signed parts of the colliding certificates.

field comments value first certificate value second certificate

X.509 version number identical, standard X.509 version 3

serial number different, chosen by CA 0x010C0001 0x020C0001

signature algorithm identifier identical, standard X.509 md5withRSAEncryption

issuer distinguished name identical, chosen by CA CN = “Hash Collision CA”
L = “Eindhoven”

C = “NL”

not valid before identical, chosen by CA Jan. 1, 2006, 00h00m01s GMT

not valid after identical, chosen by CA Dec. 31, 2007, 23h59m59s GMT

subject distinguished name different, chosen by us CN = “Arjen K. Lenstra” CN = “Marc Stevens”
O = “Collisionairs” O = “Collision Factory”
L = “Eindhoven” L = “Eindhoven”
C = “NL” C = “NL”

public key algorithm identical, standard X.509 rsaEncryption

subject public key info different, constructed by us modulus Sb‖Sc‖E as below modulus S′
b‖S′

c‖E as below

version 3 extensions identical, standard X.509 (irrelevant for the present description)

Here, Sb and S′b are 96-bit values found using birthdaying, Sc and S′c each consist of 8 near-
collision blocks found using the automated method to find differential paths, and E is a 4000-bit
value such that the 8192-bit values Sb‖Sc‖E and S′b‖S′c‖E are both RSA moduli. The details of
the construction are set forth below.

Before the collision search (i.e., the searches for Sb, S′b and for Sc, S′c) is started the contents
needs to be known of all to-be-signed fields of the certificate that appear before the modulus.
Therefore, to be able to construct the certificates, sufficient control over the CA is necessary. This
was achieved by implementing and operating this CA ourselves. In fact, we used the CA that had
already been set up for [10]. It is used solely for the purposes of signing colliding certificates.

4.3 Certificate construction details

We provide a detailed description of our construction.

1. We construct two templates for the certificates in which all fields are filled in, with the exception
of the RSA public key moduli and the signature, meeting the following three requirements:
– The data structures must be compliant with the X.509 standard and the ASN.1 DER en-

coding rules (see [5], but see also the final section of [14]);
– The byte lengths of the moduli and the public exponent (in fact, also the byte lengths of

the entire to-be-signed parts of the certificates) must be fixed in advance, because these
numbers have to be specified as parts of the ASN.1 structure, coming before the modulus;

– The position where the RSA moduli start must be controlled. We chose to have this at an
exact multiple of 64 bytes (512 bits) minus 96 bits, after the beginning of the to-be-signed
fields. This gives convenient space for the results of the birthdaying step (described below).

The third condition can be dealt with by adding dummy information to the subject Distin-
guished Name. This we did in the Organization-field (i.e., the value O in the outline above).

2. We apply MD5 to each of the first parts of the two to-be-signed fields, truncated at the last
full block (thus excluding the incomplete blocks whose last 96 bits will consist of the most
significant bits of the RSA moduli under construction), suppressing the padding normally used

6

in MD5. As output we get a pair of IHVs that we use as input for the next step. These IHVs
will be completely different and have no special properties built in.

3. Using the IHVs and their corresponding incomplete blocks (the ones that still fail their last 96
bits) as input, we complete these blocks by appending 96-bit values Sb and S′b. These values
are computed by birthdaying, to satisfy 96 bit conditions on the output IHV difference. For
this purpose each output IHV is interpreted as 4 little endian 32-bit integers, and the difference
between the output IHVs is defined as the 4-tuple of differences modulo 232 between the four
corresponding 32-bit integers. If we represent this IHV difference as δa‖δb‖δc‖δd for 32-bit
δa, δb, δc, δd, then the conditions are δa = 0 and δb = δc = δd, as suggested to us by Xiaoyun
Wang. The reason for this choice is that it facilitates the search for near-collision blocks, as
explained in Section 5.3. The resulting δb can be expressed as only 8 signed bit differences
(these are not bitwise XOR but additive differences).

4. Using the techniques developed in [16] and described in Section 5, we compute two different
bitstrings Sc and S′c, of 4096 bits (8 near-collision blocks) each. Each near-collision block is used
to eliminate one (triple) of the bit differences in the IHVs from the previous step, so that at the
end of the 8 near-collision blocks the IHVs are equal, and a complete MD5 collision has been
constructed. We now have S = Sb‖Sc and S′ = S′b‖S′c that form the leading 4192 bits of the
RSA moduli, such that the two to-be-signed fields up to and including S and S′, respectively,
collide under MD5. Therefore, in order not to destroy the collision, everything that is to be
appended from now on must be identical for the two certificates.

5. Next we used the method from [10] to craft two secure 8192-bit RSA moduli from the two
bitstrings S and S′ of 4192 bits each, by appending to each the same 4000-bit E. As explained
in [11] this means that we could in principle construct moduli that are products of primes of
sizes roughly 2000 and 6192 bits. In order to speed up the RSA modulus construction process,
we aimed somewhat lower here and settled for products of 1976 and 6216-bit primes. This took
about an hour on a regular laptop. The strongly unbalanced RSA moduli may be unusual, but
for our parameter choices (smallest prime factor around 1976 bits for a modulus of 8192 bits)
we see no reason to believe that these moduli are less secure than more balanced, regular RSA
moduli of the same size, given the present state of factoring technology.

6. We insert the subject public key info into the template for the first certificate, thereby completing
the to-be-signed part of the first certificate. We compute the MD5 hash of the entire to-be-signed
part, and from it we compute the signature, which is added to the certificate. The first certificate
is now complete. To obtain the second valid certificate, we put the proper subject public key
info and the same signature at their locations in the template for the second certificate.

Finding the chosen-prefix MD5 collisions (i.e., Steps 3 and 4) is by far the computationally hardest
part of the above construction, a remark that is similar to one made in [10]. However, in the mean-
time the methods for constructing MD5 collisions with identical initial IHVs have been improved
considerably: such collisions can now be found within seconds, see [15] and [9]. So in the scenario
of [10] the bottleneck may now have shifted from the collision search to the moduli construction.

An example pair of colliding certificates is available in full detail in [14] and on www.win.tue.
nl/hashclash/ChosenPrefixCollisions/.

7

5 Chosen-prefix collision construction

5.1 Preliminaries

MD5 operates on 32-bit words, and uses little endian byte ordering.
A binary signed digit representation (BSDR) for a 32-bit word X is defined as (ki)31i=0, where

X =
31∑
i=0

2iki, ki ∈ {−1, 0,+1}.

Many different BSDRs may exist for any given X. The weight of a BSDR is the number of non-zero
ki’s. A particularly useful BSDR is the Non-Adjacent Form (NAF), where no two non-zero ki’s
are adjacent. The NAF is not unique since we work modulo 232 (making k31 = +1 equivalent to
k31 = −1), but uniqueness of the NAF can be enforced by choosing k31 ∈ {0,+1}. Among the
BSDRs of an integer, the NAF has minimal weight. We use the following notation:

– Integers are denoted in hexadecimal as 12EF16 and in binary as 00010010111011112;
– X ∧ Y is the bitwise AND of X and Y ;
– X ∨ Y is the bitwise OR of X and Y ;
– X ⊕ Y is the bitwise XOR of X and Y ;
– X̄ is the bitwise complement of X;

for 32-bit integers X and Y :

– X[i] is the i-th bit of the regular binary representation of X;
– X + Y resp. X − Y is the addition resp. subtraction modulo 232;
– RL(X, n) (resp. RR(X, n)) is the cyclic left (resp. right) rotation of X by n bit positions:

RL(10100100 . . . 000000012, 5) = 10000000 . . . 001101002;

and for a 32-digit BSDR X:

– XJiK is the i-th signed bit of X;
– RL(X, n) (resp. RR(X, n)) is the cyclic left (resp. right) rotation of X by n positions.

For chosen message prefixes P and P ′ we seek suffixes S and S′ such that P‖S and P ′‖S′ collide
under MD5. In this section a variable occurring during the construction of S and intermediate
P -related MD5 calculations, may have a corresponding variable during the construction of S′ and
intermediate P ′-related MD5 calculations. If the former variable is X, then the latter is denoted X ′.
Furthermore, δX = X ′ − X for such a ‘matched’ 32-bit integer variable X, and ∆X = (X ′[i] −
X[i])31

i=0, which is a BSDR of δX. For a ‘matched’ variable Z that consist of tuples of 32-bit integers,
say Z = (z1, z2, . . .), we define δZ as (δz1, δz2, . . .).

5.2 Description of MD5

5.2.1 MD5 message processing
MD5 can be split up into these parts:

1. Padding. Pad the message with: first the ‘1’-bit, next as many ‘0’ bits until the resulting length
equals 448 mod 512, and finally the bitlength of the original message as a 64-bit little-endian
integer. The total bitlength of the padded message is 512N for a positive integer N .

8

2. Partitioning. Partition the padded message into N consecutive 512-bit blocks M1, M2, . . . , MN .
3. Processing. MD5 goes through N + 1 states IHVi, for 0 ≤ i ≤ N , called the intermediate hash

values. Each intermediate hash value IHVi consists of four 32-bit words ai, bi, ci, di. For i = 0
these are initialized to fixed public values:

(a0, b0, c0, d0) = (6745230116, EFCDAB8916, 98BADCFE16, 1032547616),

and for i = 1, 2, . . . N intermediate hash value IHVi is computed using the MD5 compression
function described in detail below:

IHVi = MD5Compress(IHVi−1,Mi).

4. Output. The resulting hash value is the last intermediate hash value IHVN , expressed as the
concatenation of the hexadecimal byte strings of the four words aN , bN , cN , dN , converted back
from their little-endian representation.

5.2.2 MD5 compression function
The input for the compression function MD5Compress(IHV, B) is an intermediate hash value
IHV = (a, b, c, d) and a 512-bit message block B. There are 64 steps (numbered 0 up to 63), split
into four consecutive rounds of 16 steps each. Each step uses a modular addition, a left rotation, and
a non-linear function. Depending on the step t, Addition Constants ACt and Rotation Constants
RCt are defined as follows:

ACt =
⌊
232 |sin(t + 1)|

⌋
, 0 ≤ t < 64,

(RCt, RCt+1, RCt+2, RCt+3) =

(7, 12, 17, 22) for t = 0, 4, 8, 12,

(5, 9, 14, 20) for t = 16, 20, 24, 28,

(4, 11, 16, 23) for t = 32, 36, 40, 44,

(6, 10, 15, 21) for t = 48, 52, 56, 60.

The non-linear function ft depends on the round:

ft(X, Y, Z) =

F (X, Y, Z) = (X ∧ Y)⊕ (X̄ ∧ Z) for 0 ≤ t < 16,

G(X, Y, Z) = (Z ∧X)⊕ (Z̄ ∧ Y) for 16 ≤ t < 32,

H(X, Y, Z) = X ⊕ Y ⊕ Z for 32 ≤ t < 48,

I(X, Y, Z) = Y ⊕ (X ∨ Z̄) for 48 ≤ t < 64.

The message block B is partitioned into sixteen consecutive 32-bit words m0,m1, . . . ,m15 (with
little endian byte ordering), and expanded to 64 words Wt, for 0 ≤ t < 64, of 32 bits each:

Wt =

mt for 0 ≤ t < 16,

m(1+5t) mod 16 for 16 ≤ t < 32,

m(5+3t) mod 16 for 32 ≤ t < 48,

m(7t) mod 16 for 48 ≤ t < 64.

We follow the description of the MD5 compression function from [6] because its ‘unrolling’ of
the cyclic state facilitates the analysis. For t = 0, 1, . . . , 63, the compression function algorithm

9

maintains a working register with 4 state words Qt, Qt−1, Qt−2 and Qt−3. These are initialized as
(Q0, Q−1, Q−2, Q−3) = (b, c, d, a) and, for t = 0, 1, . . . , 63 in succession, updated as follows:

Ft = ft(Qt, Qt−1, Qt−2),
Tt = Ft + Qt−3 + ACt + Wt,

Rt = RL(Tt, RCt),
Qt+1 = Qt + Rt.

After all steps are computed, the resulting state words are added to the intermediate hash value
and returned as output:

MD5Compress(IHV, B) = (a + Q61, b + Q64, c + Q63, d + Q62).

5.3 Outline of the collision construction

A chosen-prefix collision is a pair of messages M and M ′ that consist of arbitrarily chosen prefixes P
and P ′ (not necessarily of the same length), together with constructed suffixes S and S′, such that
M = P‖S, M ′ = P ′‖S′, and MD5(M) = MD5(M ′). The suffixes consist of three parts: random
padding bitstrings Sr, S

′
r, followed by ‘birthday’ bitstrings Sb, S

′
b, followed by ‘near collision’ blocks

Sc, S
′
c. The random padding bitstrings are chosen to guarantee that the bitlengths of P‖Sr‖Sb

and P ′‖S′r‖S′b are both equal to 512n for a positive integer n. (In our example of the colliding
certificates we engineered the prefixes such that Sr and S′r were both empty.) The MD5 compression
function applied to P‖Sr‖Sb resp. P ′‖S′r‖S′b will result in IHVn resp. IHV ′

n, in the notation from
Section 5.2.1. The birthday bitstrings Sb, S

′
b are taken in such a way that the resulting δIHVn has

certain desirable properties, to be described below.
The idea is to eliminate the difference δIHVn using a series of pairs of near-collision blocks that

together constitute Sc, S
′
c. For each near-collision we need to construct a differential path such that

the NAF weight of the new δIHVn+j is lower than the NAF weight of δIHVn+j−1, until after r
pairs of near-collision blocks we have reached δIHVn+r = 0.

Table 2. Partial differential path with δm11 = ±2d.

t δQt δFt δWt δTt δRt RCt

30 ∓2d

31 0

32 0

33 0 0 ±2d 0 0 16

34− 60 0 0 0 0 0 ·
61 0 0 ±2d ±2d ±2d+10 mod 32 10

62 ±2d+10 mod 32 0 0 0 0 15

63 ±2d+10 mod 32 0 0 0 0 21

64 ±2d+10 mod 32

For the j-th pair of near-collision blocks, i.e., Mn+j and M ′
n+j , we fix all but one of the 32-bit words

δmi of δMn+j as 0, and allow only δm11 to be ±2d with varying d, 0 ≤ d < 32. This was suggested
by Xiaoyun Wang because with this type of message difference the number of bitconditions over the

10

final two and a half rounds can be kept low. This is illustrated in Table 2, where the corresponding
partial differential path is shown for the final 31 steps. For these types of message differences we
try to find in an automated way a differential path with the right properties, and then try to find
a pair of near-collision blocks Mn+j , M ′

n+j that satisfies the differential path.
The differential paths under consideration can only add (or substract) a tuple (0, 2i, 2i, 2i) to

δIHVn+j and therefore cannot eliminate arbitrary δIHVn. To solve this we first use a birthday
attack to find ‘birthday’ bitstrings Sb and S′b such that δIHVn = (0, δb, δb, δb) for some δb. The
birthday attack actually searches for a collision (a, b − c, b − d) = (a′, b′ − c′, b′ − d′) between
IHVn = (a, b, c, d) and IHV ′

n = (a′, b′, c′, d′), implying indeed δa = 0 and δb = δc = δd. The search
space consists of 96 bits and therefore the birthday step can be expected to require on the order of
2
√

296 = 249 calls to the MD5 compression function.
One may extend the birthdaying by searching for a δb of low NAF weight, as this weight is the

number of near-collision block pairs to be found. On average one may expect to find a δb of NAF
weight 11. In the case of our colliding certificates example we found a δb of NAF weight only 8,
after having extended the search somewhat longer than absolutely necessary.

Let (ki) be the NAF of δb. Then we can reduce δIHVn = (0, δb, δb, δb) to (0, 0, 0, 0) by using,
for each non-zero ki, a differential path based on the partial differential path in Table 2 with
δm11 = −ki2i−10 mod 32. In other words, the signed bit difference at position i in δb can be eliminated
by choosing a message difference only in δm11, with just one opposite-signed bit set at position
i − 10 mod 32. Let ij for j = 1, 2, . . . , r be the indices of the non-zero ki. Starting with n-block
M = P‖Sr‖Sb and M ′ = P ′‖S′r‖S′b and the corresponding resulting IHVn and IHV ′

n we do the
following for j = 1, 2, . . . , r in succession:

1. Let δm11 = −kij2
ij−10 mod 32 and δm` = 0 for ` 6= 11 (note the slight abuse of notation, since

we define just the message block differences, without specifying the message blocks themselves).
2. Starting from IHVn+j−1 and IHV ′

n+j−1, find a differential path.
3. Find message blocks Sc,j and S′c,j = Sc,j + δMn+j , that satisfy the differential path. This can

be done by using collision finding techniques such as Klima’s tunnels, cf. [9] and [15].
4. Let IHVn+j = MD5Compress(IHVn+j−1, Sc,j), IHV ′

n+j = MD5Compress(IHV ′
n+j−1, S

′
c,j), and

append Sc,j to M and S′c,j to M ′.

It remains to explain step 2 in this algorithm.

Fig. 2. δIHV s for the colliding certificates.

Figure 2 visualizes the entire process. The horizontal lines represent the NAFs of δIHVi for i =
0, 1, . . . , 21. The section P‖Sr‖Sb consists of 4 blocks (i.e., n = 4), so at i = 4 only r = 8 triples of
bit differences are left. They are annihilated one by one by the 8 near-collision block pairs (i.e., Sc,j

and S′c,j for j = 1, 2, . . . , 8), so that at i = 12 a full collision is reached. The blocks after that (which
include E from Section 4.3) are identical for the two messages, so that the collision is retained.

11

5.4 Differential paths and bitconditions

Assume MD5Compress is applied to pairs of inputs for both intermediate hash value and message
block, i.e., to (IHV, B) and (IHV ′, B′). A differential path for MD5Compress is a precise description
of the propagation of differences through the 64 steps caused by δIHV and δB:

δFt = ft(Q′
t, Q

′
t−1, Q

′
t−2)− ft(Qt, Qt−1, Qt−2);

δTt = δFt + δQt−3 + δWt;
δRt = RL(T ′

t , RCt)−RL(Tt, RCt);
δQt+1 = δQt + δRt.

Note that δFt is not uniquely determined by δQt, δQt−1 and δQt−2, so it is necessary to describe
the value of δFt and how it can result from the Qi, Q

′
i in such a way that it does not conflict with

other steps. Similarly δRt is not uniquely determined by δTt and RCt, so also the value of δRt has
to be described.

5.4.1 Bitconditions
We use bitconditions on (Qt, Q

′
t) to describe differential paths, where a single bitcondition specifies

directly or indirectly the values of the bits Qt[i] and Q′
t[i]. Thus a differential path consists of a

matrix of bitconditions with 68 rows (for the possible indices t = −3,−2, . . . , 64 in Qt, Q
′
t) and 32

columns (one for each bit). A direct bitcondition on (Qt[i], Q′
t[i]) does not involve other bits Qj [k] or

Q′
j [k], while an indirect bitcondition does, and specifically one of Qt−2[i], Qt−1[i], Qt+1[i] or Qt+2[i].

Using only bitconditions on (Qt, Q
′
t) we can specify all the values of δQt, δFt and thus δTt and

δRt = δQt+1 − δQt by the relations above. A bitcondition on (Qt[i], Q′
t[i]) is denoted by qt[i], and

symbols like 0, 1, +, -, ^, . . . are used for qt[i], as defined below. The 32 bitconditions (qt[i])31i=0 are
denoted by qt. We discern between differential bitconditions and boolean function bitconditions.
The former, shown in Table 3, are direct, and specify the value ki = Q′

t[i] − Qt[i] which together

Table 3. Differential bitconditions.

qt[i] condition on (Qt[i], Q
′
t[i]) ki

. Qt[i] = Q′
t[i] 0

+ Qt[i] = 0, Q′
t[i] = 1 +1

- Qt[i] = 1, Q′
t[i] = 0 −1

Note: δQt =
P31

i=0 2iki and ∆Qt = (ki).

specify δQt =
∑

2iki by how each bit changes. Note that (ki) is also a BSDR. The boolean function
bitconditions, shown in Table 4, are used to resolve any ambiguity in

∆FtJiK = ft(Q′
t[i], Q

′
t−1[i], Q

′
t−2[i])− ft(Qt[i], Qt−1[i], Qt−2[i]) ∈ {−1, 0,+1}

caused by different possible values for Qj [i], Q′
j [i] for given bitconditions. As an example, for t = 0

and (qt[i], qt−1[i], qt−2[i]) = (., +, -) there is an ambiguity:

if Qt[i] = Q′
t[i] = 0 then ∆FtJiK = ft(0, 1, 0)− ft(0, 0, 1) = −1,

but if Qt[i] = Q′
t[i] = 1 then ∆FtJiK = ft(1, 1, 0)− ft(1, 0, 1) = +1.

12

Table 4. Boolean function bitconditions.

qt[i] condition on (Qt[i], Q
′
t[i]) direct/indirect direction

0 Qt[i] = Q′
t[i] = 0 direct

1 Qt[i] = Q′
t[i] = 1 direct

^ Qt[i] = Q′
t[i] = Qt−1[i] indirect backward

v Qt[i] = Q′
t[i] = Qt+1[i] indirect forward

! Qt[i] = Q′
t[i] = Qt−1[i] indirect backward

y Qt[i] = Q′
t[i] = Qt+1[i] indirect forward

m Qt[i] = Q′
t[i] = Qt−2[i] indirect backward

w Qt[i] = Q′
t[i] = Qt+2[i] indirect forward

Qt[i] = Q′
t[i] = Qt−2[i] indirect backward

h Qt[i] = Q′
t[i] = Qt+2[i] indirect forward

? Qt[i] = Q′
t[i] ∧ (Qt[i] = 1 ∨Qt−2[i] = 0) indirect backward

q Qt[i] = Q′
t[i] ∧ (Qt+2[i] = 1 ∨Qt[i] = 0) indirect forward

To resolve this ambiguity the bitcondition (.,+,-) can be replaced by (0,+,-) or (1,+,-).
All boolean function bitconditions include the constant bitcondition Qt[i] = Q′

t[i], so they do not
affect δQt. Furthermore, indirect boolean function bitconditions never involve a bit with condition
+ or -, since then it could be replaced by one of the direct bitconditions ., 0 or 1. We distinguish in
the direction of indirect bitconditions, since that makes it easier to resolve an ambiguity later on. It
is quite easy to change all backward bitconditions into forward ones in a valid (partial) differential
pathm, and vice versa.

When all δQt and δFt are determined by bitconditions then also δTt and δRt can be deter-
mined, which together describe the bitwise rotation of δTt in each step. Note that this does not
describe if it is a valid rotation or with what probability the rotation from δTt to δRt occurs. The
differential paths we constructed for our example can be found at www.win.tue.nl/hashclash/
ChosenPrefixCollisions/.

5.4.2 Differential path construction overview
The basic idea in constructing a differential path is to construct a partial lower differential path
over steps t = 0, 1, . . . , 11 and a partial upper differential path over steps t = 16, 17, . . . , 63, so that
the Qi involved in the partial paths meet but do not overlap. Then try to connect those partial
paths over the remaining 4 steps into one full differential path. Constructing the partial lower path
can be done by starting with bitconditions q−3, q−2, q−1, q0 that are equivalent to the values of
IHV, IHV ′ and then extend this step by step. Similarly the partial upper path can be constructed
by extending the partial path in Table 2 step by step. To summarize, step 2 in the algorithm of
section 5.3 consist of the following substeps:

2.1 Using IHV and IHV ′ determine bitconditions (qi)0i=−3.
2.2 Generate a partial lower differential path by extending (qi)0i=−3 forward up to step t = 11.
2.3 Generate a partial upper differential path by extending the path in Table 2 down to t = 16.
2.4 Try to connect these lower and upper differential paths over t = 12, 13, 14, 15.

If this fails generate other partial lower and upper differential paths and try again.

5.5 Extending differential paths

When constructing a differential path one must fix the message block differences δm0, . . . , δm15.
Suppose we have a partial differential path consisting of at least bitconditions qt−1 and qt−2 and

13

that the values δQt and δQt−3 are known. We want to extend this partial differential path forward
with step t resulting in the value δQt+1 and (additional) bitconditions qt, qt−1, qt−2. We assume
that all indirect bitconditions are forward and do not involve bits of Qt. If we also have qt instead
of only the value δQt (e.g. q0 resulting from given values IHV, IHV ′), then we can skip the carry
propagation and continue at Section 5.5.2.

5.5.1 Carry propagation
First we want to use the value δQt to select bitconditions qt. This can be done by choosing any
BSDR of δQt, which directly translates into a possible choice for qt as given in Table 3. Since we
want to construct differential paths with as few bitconditions as possible, but also want to be able
to randomize the process, we may choose any low weight BSDR (such as the NAF).

5.5.2 Boolean function
For some i, let (a, b, c) = (qt[i], qt−1[i], qt−2[i]) be any triple of bitconditions such that all indirect
bitconditions involve only Qt[i], Qt−1[i] or Qt−2[i]. The triple (a, b, c) is associated with the set Uabc

of tuples of values (x, x′, y, y′, z, z′) = (Qt[i], Q′
t[i], Qt−1[i], Q′

t−1[i], Qt−2[i], Q′
t−2[i]):

Uabc =
{
(x, x′, y, y′, z, z′) ∈ {0, 1}6 satisfies bitconditions (a, b, c)

}
.

If Uabc = ∅ then (a, b, c) is said to be contradicting and cannot be part of any valid differential path.
We define Ft as the set of all triples (a, b, c) such that all indirect bitconditions involve only Qt[i],
Qt−1[i] or Qt−2[i] and Uabc 6= ∅.

We define Vabc as the set of all possible boolean function differences ft(x′, y′, z′)− ft(x, y, z) for
given bitconditions (a, b, c) ∈ Ft:

Vabc =
{
ft(x′, y′, z′)− ft(x, y, z) | (x, x′, y, y′, z, z′) ∈ Uabc

}
⊂ {−1, 0,+1}.

If |Vabc| = 1 then (a, b, c) leaves no ambiguity and the triple (a, b, c) is said to be a solution. Let St

be the set of all solutions. If |Vabc| > 1 then for each g ∈ Vabc we define Wabc,g as the set of solutions
(d, e, f) ∈ St that are compatible with (a, b, c) and that have g as boolean function difference:

Wabc,g = {(d, e, f) ∈ St | Udef ⊂ Uabc ∧ Vdef = {g}} .

Note that for all g ∈ Vabc there is always a triple (d, e, f) ∈ Wabc,g that consists only of direct
bitconditions 01+-, hence Wabc,g 6= ∅. The direct and forward (resp. backward) boolean function
bitconditions were chosen such that for all t, i and (a, b, c) ∈ Ft and for all g ∈ Vabc there exists a
triple (d, e, f) ∈ Wabc,g consisting of direct and forward (resp. backward) bitconditions such that

Udef is equal to
{
(x, x′, y, y′, z, z′) ∈ Uabc | ft(x′, y′, z′)− ft(x, y, z) = g

}
.

In other words, these boolean function bitconditions allows one to resolve an ambiguity in an
optimal way. If the triple (d, e, f) is not unique, then we prefer direct over indirect bitconditions
and short indirect bitconditions (vy^!) over long indirect bitconditions (whqm#?) for simplicity
reasons. For given t, bitconditions (a, b, c), and g ∈ Vabc we define FC(t, abc, g) = (d, e, f) and
BC(t, abc, g) = (d, e, f) as the preferred triple (d, e, f) consisting of direct and forward, respectively
backward bitconditions. These should be precomputed for all cases.

For all i = 0, 1, . . . , 31 we have by assumption valid bitconditions (a, b, c) = (qt[i], qt−1[i], qt−2[i])
where only c can be an indirect bitcondition. If so, it must involve Qt−1[i]. Therefore (a, b, c) ∈ Ft.

14

If |Vabc| = 1 there is no ambiguity and we let {gi} = Vabc. Otherwise, if |Vabc| > 1, then we choose
any gi ∈ Vabc and we resolve the ambiguity left by bitconditions (a, b, c) by replacing them by
(d, e, f) = FC(t, abc, gi), which results in boolean function difference gi. Given all gi, the values
δFt =

∑31
i=0 2igi and δTt = δFt + δQt−3 + δWt can be determined.

5.5.3 Bitwise rotation
The integer δTt does not uniquely determine the value of δRt = RL(T ′

t , n) − RL(Tt, n), where
n = RCt. Nevertheless, we simply use δRt = RL(NAF (δTt), n) and determine δQt+1 = δQt + δRt

to extend our partial differential path forward with step t.
Another approach to determine δRt uses the fact that any BSDR (ki) of δTt determines δRt:

δRt =
31∑
i=0

2i+n mod 32(T ′
t [i]− Tt[i]) =

31∑
i=0

2i+n mod 32ki = 2n
31−n∑
i=0

2iki + 2n−32
31∑

i=32−n

2iki.

Different BSDRs (ki) and (`i) of δTt result in the same δRt as long as

31−n∑
i=0

2iki =
31−n∑
i=0

2i`i and
31∑

i=32−n

2iki =
31∑

i=32−n

2i`i.

In general, let (α, β) ∈ Z2 be a partition of the integer δTt with α + β = δTt mod 232, |α| < 232−n,
|β| < 232 and 232−n|β. For a BSDR (ki) of δTt we say that (α, β) ≡ (ki) if α =

∑31−n
i=0 2iki and

β =
∑31

i=32−n 2iki. The rotation of (α, β) is defined as RL((α, β), n) = 2nα + 2n−32β mod 232.
Let x = (δTt mod 232−n) and y = (δTt − x mod 232), then 0 ≤ x < 232−n and 0 ≤ y < 232.

This gives rise to at most 4 partitions of δTt:

1. (α, β) = (x, y);
2. (α, β) = (x, y − 232), if y 6= 0;
3. (α, β) = (x− 232−n, y + 232−n mod 232), if x 6= 0;
4. (α, β) = (x− 232−n, (y + 232−n mod 232)− 232), if x 6= 0 and y + 232−n 6= 0 mod 232.

The probability of each partition (α, β) equals

p(α,β) =
∑

(ki)≡(α,β)

2−weight of (ki).

One then chooses any partition (α, β) for which p(α,β) ≥ 1
4 and determines δRt as RL((α, β), n). In

practice NAF (δT) most often leads to the highest probability, which validates the simpler approach
we used.

5.5.4 Extending backward
Similar to extending forward, suppose we have a partial differential path consisting of at least
bitconditions qt and qt−1 and that the differences δQt+1 and δQt−2 are known. We want to extend
this partial differential path backward with step t resulting in δQt−3 and (additional) bitconditions
qt, qt−1, qt−2. We assume that all indirect bitconditions are backward and do not involve bits of Qt−2.

We choose a BSDR of δQt−2 with weight at most 1 or 2 above the lowest weight, such as the
NAF. We translate the chosen BSDR into bitconditions qt−2.

15

For all i = 0, 1, . . . , 31 we have by assumption valid bitconditions (a, b, c) = (qt[i], qt−1[i], qt−2[i])
where only b can be an indirect bitcondition. If so, it must involve Qt−2[i]. Therefore (a, b, c) ∈ Ft.
If |Vabc| = 1 there is no ambiguity and we let {gi} = Vabc. Otherwise, if |Vabc| > 1, then we choose
any gi ∈ Vabc and we resolve the ambiguity left by bitconditions (a, b, c) by replacing them by
(d, e, f) = BC(t, abc, gi), which results in boolean function difference gi. Given all gi, the value
δFt =

∑31
i=0 2igi can be determined.

To rotate δRt = δQt+1 − δQt over n = 32−RCt bits, we simply use δTt = RL(NAF (δRt), n).
Or we may choose a partition (α, β) of δRt with p(α,β) ≥ 1

4 and determine δTt = RL((α, β), n).
As in the ‘forward’ case, NAF (δRt) often leads to the highest probability. Finally, we determine
δQt−3 = δTt − δFt − δWt to extend our partial differential path backward with step t.

5.6 Constructing full differential paths

Construction of a full differential path can be done as follows. Choose δQ−3 and bitconditions q−2,
q−1, q0 and extend forward up to step 11. Also choose δQ64 and bitconditions q63, q62, q61 and
extend backward down to step 16. This leads to bitconditions q−2, q−1, . . . , q11, q14, q15, . . . , q63 and
differences δQ−3, δQ12, δQ13, δQ64. It remains to finish steps t = 12, 13, 14, 15. As with extending
backward we can, for t = 12, 13, 14, 15, determine δRt, choose the resulting δTt after right rotation
of δRt over RCt bits, and determine δFt = δTt − δWt − δQt−3.

We aim to find new bitconditions q10, q11, . . . , q15 that are compatible with the original bitcon-
ditions and that result in the required δQ12, δQ13, δF12, δF13, δF14, δF15, thereby completing the
differential path. First we can test whether it is even possible to find such bitconditions.

For i = 0, 1, . . . , 32, let Ui be a set of tuples (q1, q2, f1, f2, f3, f4) of 32-bit integers with qj ≡
fk ≡ 0 mod 2i for j = 1, 2 and k = 1, 2, 3, 4. We want to construct each Ui so that for each
tuple (q1, q2, f1, f2, f3, f4) ∈ Ui there exist bitconditions q10[`], q11[`], . . . , q15[`], determining the
∆Q11+jJ`K and ∆F11+kJ`K below, over the bits ` = 0, . . . , i− 1, such that

δQ11+j = qj +
i−1∑
`=0

2`∆Q11+jJ`K, j = 1, 2,

δF11+k = fk +
i−1∑
`=0

2`∆F11+kJ`K, k = 1, 2, 3, 4.

This implies U0 = {(δQ12, δQ13, δF12, δF13, δF14, δF15)}. The other Ui are constructed inductively
by Algorithm 1. Furthermore, |Ui| ≤ 26, since for each qj , fk there are at most 2 possible values
that can satisfy the above relations.

If we find U32 6= ∅ then there exists a path u0, u1, . . . , u32 with ui ∈ Ui where each ui+1 is
generated by ui in Algorithm 1. Now the desired new bitconditions (q15[i], q14[i], . . . , q10[i]) are
(a′, b′′, c′′′, d′′′, e′′, f ′), which can be found at step 13 of Algorithm 1, where one starts with ui and
ends with ui+1.

5.7 Implementation details

Implementation of these techniques was done in C++ using the general purpose library Boost and
the BOINC framework. BOINC is an open source distributed computing framework that allows
volunteers on the Internet to join a project and donate cpu-time. Each project running a BOINC

16

Algorithm 1 Construction of Ui+1 from Ui.
Suppose Ui is constructed as desired in Section 5.6.
Let Ui+1 = ∅ and (a, b, e, f) = (q15[i], q14[i], q11[i], q10[i]).
For each tuple (q1, q2, f1, f2, f3, f4) ∈ Ui do the following:

1. For each bitcondition d = q12[i] ∈
�
{.} if q1[i] = 0
{-, +} if q1[i] = 1

do

2. Let q′1 = 0,−1, +1 for resp. d =.,-,+
3. For each different f ′1 ∈ {−f1[i], +f1[i]} ∩ Vdef do
4. Let (d′, e′, f ′) = FC(12, def, f ′1)

5. For each bitcondition c = q13[i] ∈
�
{.} if q2[i] = 0
{-, +} if q2[i] = 1

do

6. Let q′2 = 0,−1, +1 for resp. c =.,-,+
7. For each different f ′2 ∈ {−f2[i], +f2[i]} ∩ Vcd′e′ do
8. Let (c′, d′′, e′′) = FC(13, cd′e′, f ′2)
9. For each different f ′3 ∈ {−f3[i], +f3[i]} ∩ Vbc′d′′ do

10. Let (b′, c′′, d′′′) = FC(14, bc′d′′, f ′3)
11. For each different f ′4 ∈ {−f4[i], +f4[i]} ∩ Vab′c′′ do
12. Let (a′, b′′, c′′′) = FC(15, ab′c′′, f ′4)
13. Insert (q1 − 2iq′1, q2 − 2iq′2, f1 − 2if ′1, f2 − 2if ′2, f3 − 2if ′3, f4 − 2if ′4) into Ui+1.

Keep only one of each tuple in Ui+1 that occurs multiple times. By construction we find Ui+1 as desired.

server automatically handles compute-client inputs and outputs specific to any number of appli-
cations, including output validation and re-assignment of jobs, if required. Volunteers, which can
form teams, can monitor their own and others’ progress, thus providing an inspiring competitive
environment. Our BOINC project had a peak performance of approximately 400 GigaFLOPS.

To construct our chosen-prefix collision we used six applications:

1. One that generates birthday trails ending in a distinguished point [13];
2. One that collects birthday trails and computes collisions when found;
3. One that loads a set of partial lower differential paths and extends those forward with step t

and saves only the paths with the fewest bitconditions;
4. One that loads a set of partial upper differential paths and extends those backward with step t

and saves only the paths with the fewest bitconditions;
5. One that loads sets of lower and upper differential paths and tries to connect each combination;
6. One that searches for near-collision blocks that satisfy a given full differential path.

While extending a partial differential path we exhaustively try all BSDRs of δQt with weight at
most 2 above the lowest weight, and all possible δFt and all high-probability rotations. We keep
only the N paths with the fewest bitconditions, for some preset value of N . Also we keep only those
paths that have a preset minimum total tunnel strength over the Q4, Q5, Q9, Q10-tunnels [9]. With
the exception of the 2nd, all applications can be fully parallelized. For the 1st and 5th application,
which were by far the most cpu-time consuming, we used BOINC; the others were run on a cluster.

6 Concluding remark

We have presented an automated way to find differential paths for MD5, have shown how to use
them to construct chosen-prefix collisions, and have constructed two X.509 certificates with different

17

name fields but idential signatures. Our construction required substantial cpu-time, but chosen-
prefix collisions can be constructed much faster by using a milder birthday condition (namely, just
δa = 0 and δc = δd) and allowing more near-collision blocks (about 14). See [16] for details.

Acknowledgements

This work benefited greatly from suggestions by Xiaoyun Wang. We are grateful for comments and
assistance received from the Eurocrypt 2007 reviewers, Bart Asjes, Stuart Haber, Paul Hoffman,
Pascal Junod, Vlastimil Klima, Bart Preneel, NBV, Gido Schmitz, Eric Verheul, and Yiqun Lisa
Yin. Finally, we thank hundreds of BOINC enthousiasts all over the world, most unknown to us, who
donated an impressive amount of cycles to the HashClash project running with BOINC software.

References

1. Christophe de Cannière and Christian Rechberger, Finding SHA-1 Characteristics: General results and applica-
tions, AsiaCrypt 2006, Springer LNCS 4284 (2006), 1–20.

2. M. Daum and S. Lucks, Attacking Hash Functions by Poisoned Messages, ”The Story of Alice and her Boss”,
June 2005, www.cits.rub.de/MD5Collisions/.

3. P. Gauravaram, A. McCullagh and E. Dawson, Collision Attacks on MD5 and SHA-1: Is this the “Sword of
Damocles” for Electronic Commerce?, AusSCERT 2006 R&D Stream, May 2006, www.isi.qut.edu.au/people/
subramap/AusCert-6.pdf.

4. M. Gebhardt, G. Illies and W. Schindler, A Note on Practical Value of Single Hash Collisions for Special File For-
mats, NIST First Cryptographic Hash Workshop, October/November 2005, csrc.nist.gov/pki/HashWorkshop/
2005/Oct31%5FPresentations/Illies%5FNIST%5F05.pdf.

5. R. Housley, W. Polk, W. Ford and D. Solo, Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, IETF RFC 3280, April 2002, www.ietf.org/rfc/rfc3280.txt.

6. Philip Hawkes, Michael Paddon and Gregory G. Rose, Musings on the Wang et al. MD5 Collision, Cryptology
ePrint Archive, Report 2004/264, eprint.iacr.org/2004/264.

7. P. Hoffman and B. Schneier, Attacks on Cryptographic Hashes in Internet Protocols, IETF RFC 4270, November
2005, www.ietf.org/rfc/rfc4270.txt.

8. D. Kaminsky, MD5 to be considered harmful someday, December 2004, www.doxpara.com/md5%5Fsomeday.pdf.
9. Vlastimil Klima, Tunnels in Hash Functions: MD5 Collisions Within a Minute, Cryptology ePrint Archive,

Report 2006/105, eprint.iacr.org/2006/105.
10. A.K. Lenstra, X. Wang and B.M.M. de Weger, Colliding X.509 certificates, Cryptology ePrint Archive, Report

2005/067, eprint.iacr.org/2005/067. An updated version has been published as an appendix to [11].
11. A.K. Lenstra and B.M.M. de Weger, On the possibility of constructing meaningful hash collisions for public keys,

ACISP 2005, Springer LNCS 3574 (2005), 267–279.
12. O. Mikle, Practical Attacks on Digital Signatures Using MD5 Message Digest, Cryptology ePrint Archive, Report

2004/356, eprint.iacr.org/2004/356.
13. Paul C. van Oorschot and Michael J. Wiener, Parallel collision search with cryptanalytic applications, Journal of

Cryptology 12(1), 1–28, 1999.
14. Marc Stevens, Arjen Lenstra and Benne de Weger, Target Collisions for MD5 and Colliding X.509 Certificates

for Different Identities, Cryptology ePrint Archive, Report 2006/360, eprint.iacr.org/2006/360.
15. Marc Stevens, Fast Collision Attack on MD5, Cryptology ePrint Archive, Report 2006/104, eprint.iacr.org/

2006/104.
16. Marc Stevens, TU Eindhoven MSc thesis, in preparation. See www.win.tue.nl/hashclash/.
17. X. Wang and H. Yu, How to Break MD5 and Other Hash Functions, EuroCrypt 2005, Springer LNCS 3494

(2005), 19–35.

18

