
Micro Event Extension

Background

Many current Business Process Management Suites (BPMS) can define nested activities
in order to provide a summary view and an abstract flow by hiding the nested activities.
The nested activities may also be called sub activities, micro activities, sub process,
and so on. Several BPMSs support nested activities [1-3]. Examples of nested activities
include executions of web services, web pages, and manual processes. For example, in
IBM BPM [1], a process designer first defines an abstract flow of activities. Then he selects
one of the activities, moves to the nested activity view, and defines web pages that actually
conduct the selected parent activity.

In order to correctly analyse the behaviour of such nested activities, the execution of every
nested activity must be recorded in an event log. For this reason we use the XES micro
extension. The micro extension assumes that every event has an id through the identity
extension. As such, the micro extension requires the identity extension. The micro
extension then assigns a required level and an optional parent ID to each event. These
attributes and their values must be interpreted as follows:

• If the parent ID is present, then the event has the event with that ID as parent.
The event must be at the next-higher level than this parent, that is, if the parent
is at level 𝑋𝑋, then the event must be at level 𝑋𝑋 + 1.

• If the parent ID is not present, then the level must be 1, that is, the lowest level.
Only events at the lowest level have no parent.

For sake of convenience, we also introduce an optional length attribute, which holds the
number of child events, that is the number of events that have this event as parent event.

Definition

The micro event extension defines a nesting level, a nesting parent, and the number of
nested children for events within a log.

The extension is defined as shown in the table below:
Extension definition
Name Micro
Prefix micro
Extension URI http://www.xes-standard.org/micro.xesext
XML
representation

<extension name="Micro" prefix="micro"
uri="http://www.xes-standard.org/micro.xesext"/>

The extension defines the following attributes:
No XES

Attribute key
Definition XES

datatype
Occ. Allowed values, examples, other

constraints
1 level Event level int 1 A positive integer.
2 parentId Id of parent event id 0-1 May not be present if level equals

1. Must be present for all other
levels. If present, then this event
must have a level that is one
higher than the event with the
specified id.

No XES
Attribute key

Definition XES
datatype

Occ. Allowed values, examples, other
constraints

3 length Number of child
events

int 0-1 The number of child events, that
is, the number of events that have
this event as parent event. If not
present, the number of child
events must be retrieved from the
event log.

XES extension

<xesextension
 name="Micro"
 prefix="micro"
 uri="http://www.xes-standard.org/micro.xesext">
 <event>
 <int key="level">
 <alias mapping="EN" name="Micro level of this event"/>
 </int>
 <id key="parentId">
 <alias mapping="EN" name="Id of parent event of this event"/>
 </int>
 <int key="length">
 <alias mapping="EN" name="Number of child events for this event"/>
 </int>
 </event>
</xesextension>

Example

Assume that a top level activity 'Register' consists of three nested activities,
'input_customer_info’, 'input_insurance_app', and 'input_etc'. The execution of these
micro events are stored as separate events with the top level activity as parent. The parent
event of a micro event can define attributes that are valid for all micro events. For
example, the total number of micro events for event 'Register' is 3.

<log>
<extension
name="Concept"
prefix="concept"
uri="http://www.xes-standard.org/concept.xesext"/>

<extension
name="Time"
prefix="time"
uri="http://www.xes-standard.org/time.xesext"/>

<extension
name="Micro"
prefix="micro"
uri="http://www.xes-standard.org/micro.xesext"/>

 <trace>
 <event>
 <id key=”identity:id” value=”3d2aa460-98dc-11e5-805c-0002a5d5c51b” />
 <string key=”concept:name” value=”Register” />
 <string key=”concept:instance” value=”My case” />
 <string key=”lifecycle:transition” value=”started” />
 <date key=”time:timestamp” value=”2015-04-13T14:02:30.287Z” />
 <int key=”micro:level” value=”1” />
 <int key=”micro:length” value=”3” />
 </event>
 <event>

 <string key=”concept:name” value=”input_customer_info” />
 <date key=”time:timestamp” value=”2015-04-13T14:02:31.199Z” />
 <int key=”micro:level” value=”2” />
 <int key=”micro:parentId” value=”3d2aa460-98dc-11e5-805c-
0002a5d5c51b” />
 </event>
 <event>
 <string key=”concept:name” value=” input_insurance_app” />
 <date key=”time:timestamp” value=”2015-04-13T14:02:41.032Z” />
 <int key=”micro:level” value=”2” />
 <int key=”micro:parentId” value=”3d2aa460-98dc-11e5-805c-
0002a5d5c51b” />
 </event>
 <event>
 <string key=”concept:name” value=”input_etc” />
 <date key=”time:timestamp” value=”2015-04-13T14:02:49.729Z” />
 <int key=”micro:level” value=”2” />
 <int key=”micro:parentId” value=”3d2aa460-98dc-11e5-805c-
0002a5d5c51b” />
 </event>
 <event>
 <string key=”concept:name” value=”Register” />
 <string key=”concept:instance” value=”My case” />
 <string key=”lifecycle:transition” value=”completed” />
 <date key=”time:timestamp” value=”2015-04-13T14:02:51.453Z” />
 <int key=”micro:level” value=”1” />
 </event>
 </trace>
</log>

Note that because the level attribute is mandatory, it is straightforward to filter in (or out)
all events at certain levels. As an example, it we only want to have the top level events,
we can filter in only those events that have level 1. For this filtering, existing attribute-
based filters can be used.

Relation with existing XES extensions

The micro extension requires the identity extension to be able to assign identities to
events.

The micro extension also has a relation with the concept and lifecycle extensions. In
a way, the concept extension (concept:name) and certain values for the lifecycle extension
(lifecycle:transition, like started and completed) can be used to capture events on level 1,
whereas the other values for the lifecycle extension (like input_customer_info,
input_insurance_app, and input_etc) can be used to capture events on level 2. As before,
the concept:instance attribute is then used to correlate different events. The example
would look like follows:

<log>
<extension
name="Concept"
prefix="concept"
uri="http://www.xes-standard.org/concept.xesext"/>

<extension
name="Time"
prefix="time"
uri="http://www.xes-standard.org/time.xesext"/>

 <string key=”lifecycle:model” value=”My model” />
 <trace>
 <event>

 <string key=”concept:name” value=”Register” />
 <string key=”concept:instance” value=”My case” />
 <string key=”lifecycle:transition” value=”started” />
 <date key=”time:timestamp” value=”2015-04-13T14:02:30.287Z” />
 </event>
 <event>
 <string key=”concept:name” value=”Register” />
 <string key=”concept:instance” value=”My case” />
 <string key=”lifecycle:transition” value=”input_customer_info” />
 <date key=”time:timestamp” value=”2015-04-13T14:02:31.199Z” />
 </event>
 <event>
 <string key=”concept:name” value=”Register” />
 <string key=”concept:instance” value=”My case” />
 <string key=”lifecycle:transition” value=”input_insurance_app” />
 <date key=”time:timestamp” value=”2015-04-13T14:02:41.032Z” />
 </event>
 <event>
 <string key=”concept:name” value=”Register” />
 <string key=”concept:instance” value=”My case” />
 <string key=”lifecycle:transition” value=”input_etc” />
 <date key=”time:timestamp” value=”2015-04-13T14:02:49.729Z” />
 </event>
 <event>
 <string key=”concept:name” value=”Register” />
 <string key=”lifecycle:transition” value=”completed” />
 <string key=”concept:instance” value=”My case” />
 <date key=”time:timestamp” value=”2015-04-13T14:02:51.453Z” />
 </event>
 </trace>
</log>

This requires knowledge on a very specific lifecycle transition model. Filtering the events
then needs to take this model into account. For example, the equivalent of filtering in only
the top level events requires the knowledge that, in the example, only the started and
completed transitions need to be filtered in. This knowledge, and hence all possible
lifecycle models, then need to be encoded in the lifecycle extension. As such, this approach
is less flexible than using the micro extension.

References

[1] IBM BPM, “Modeling your business processes with IBM WebSphere Lombardi Edition,
Part 3: Advanced modeling”
http://www.ibm.com/developerworks/websphere/library/techarticles/1112_wang/1112_
wang.html
[2] Bizagi , “Creating a sub-process”
http://help.bizagi.com/processmodeler/en/index.html?creating_a_sub_process.htm
[3] Oracle BPM, “Using Subprocesses to Organize Your Process”
http://docs.oracle.com/cd/E25178_01/doc.1111/e15176/model_bus_procs_bpmpd.htm
#CJADJBHC

http://www.ibm.com/developerworks/websphere/library/techarticles/1112_wang/1112_wang.html
http://www.ibm.com/developerworks/websphere/library/techarticles/1112_wang/1112_wang.html
http://help.bizagi.com/processmodeler/en/index.html?creating_a_sub_process.htm
http://docs.oracle.com/cd/E25178_01/doc.1111/e15176/model_bus_procs_bpmpd.htm#CJADJBHC
http://docs.oracle.com/cd/E25178_01/doc.1111/e15176/model_bus_procs_bpmpd.htm#CJADJBHC

