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The entire function F(x,y) = Z x—' y”(”_l)/Q
n!

n=0

e Defined for complex x and y satistfying |y| < 1
e Analytic in C x D, continuous in C x D
e F(-,y) is entire for each y € D

e Valiron (1938): “from a certain viewpoint the simplest entire
function after the exponential function”

Applications:
e Statistical mechanics: Partition function of one-site lattice gas

e Combinatorics: Generating function for Tutte polynomials on K,
(also acyclic digraphs, inversions of trees, .. .)

e Functional-differential equation: F'(x) = F(yx) where " = 9/0x

e Complex analysis: Whittaker and Goncharov constants



Application to Tutte polynomials of complete graphs

e Finite graph G = (V, F)

e Multivariate Tutte polynomial Zs(q, v Z q H
ACFE ecA

where k(A) = # connected components in (V, A)

e Connected-spanning-subgraph polynomial C(v) = lin’(l) q_lZ(;(q, V)
q—>

e Write Z;(q,v) and Cg(v) if v, = v for all edges e
[standard Tutte polynomial is Zg(q, v) in different variables]

Specialization to complete graphs K,:

Zn(qav) - Zan,m,kvmqk

m,k
Cn(v) = ch,mvm
m

Exponential generating functions:

N Zug,v) = Fla,1+ )
0 n!
=1

[see Tutte (1967) and Scott—A.D.S., arXiv:0803.1477]

C’n = log F(z,1+ v)

QI&

e Usually considered as formal power series

e But series are convergent if |1 +v| <1
[see also Flajolet—Salvy—Schaeffer (2004 )]
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Elementary analytic properties of F'(z,y) = Z — y (=12
n!

n=0

ey=0 F(z,0)=1+2x

e 0 < |y| < 1. F(-,y) is a nonpolynomial entire function

of order O: N
T

i 2k(y)
where > |z (y)| ™ < oo for every av > 0

ey=1 F(x,1)=¢"

e ly| =1 with y # 1: F(-,y) is an entire function of order 1
and type 1:

F(z,y) = exH <1 o )ex/xk;(y) .

s i (y)

where Y |z (y)| ™ < oo for every a > 1

[see also Alander (1914) for y a root of unity; Valiron (1938) and
Eremenko-Ostrovskii (2007) for y not a root of unity]

e |y| > 1: The series F'(-,y) has radius of convergence 0



Consequences for C,(v)

e Make change of variables y = 1 4 v:
Culy) = Culy — 1)

e Then for |y| < 1 we have

xn

]2

n!
n=1

Culy) = log Flz,y) = zk:log@ - :vk(y))

and hence

Culy) = —(n—1)! Zxk(y)_" for all n > 1
k
(also holds for n > 2 when |y| = 1)

e This is a convergent expansion for Un(y)

e In particular, gives large-n asymptotic behavior

Culy) = —(n =10 ao(y) ™" [1 + O(e™)]

whenever F'(-,y) has a unique root zo(y) of minimum modulus

Question: What can we say about the roots zx(y)?



Small-y expansion of roots x(y)

e For small |y|, we have F'(z,y) = 14+ 2 4+ O(y), so we expect a
convergent expansion

no(y) = =1 = > any"
n=1

(easy proof using Rouché: valid for |y| < 0.441755)
e More generally, for each integer k& > 0, write z = &y~ and
study

5_7: y(n—k)(n—k—l)/Q
n!

WK

F&y) = y"EIRE(Ey™ y) =

i
)

k + 1; gives root

wi(y) = —(k+ 1y [1 + f:a,(f)y"]

Sum is dominated by terms n = k£ and n

Rouché argument valid for |y| < 0.207875 uniformly in k:
all roots are simple and given by convergent expansion xy(y)

e Can also use theta function in Rouché (Eremenko)



Might these series converge for all |y| < 17

Two ways that xx(y) could fail to be analytic for |y| < 1:

1. Collision of roots (— branch point)
2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in
the open unit disc ID.

In fact, for any compact subset K C ID and any € > 0, there exists
an integer kg such that for all y € K ~ {0} we have:

(a) The function F'( -, y) has exactly kg zeros (counting multiplicity)
in the disc |z| < k0|y\_(k0_%), and

(b) In the region |z| > ko\y|_<k0_%>, the function F(-,y) has a
simple zero within a factor 1+ ¢ of —(k+1)y~* for each k > ky,
and no other zeros.

e Proof is based on comparison with a theta function (whose roots
are known by virtue of Jacobi’s product formula)

e Conjecture that roots cannot escape to infinity even in the closed
unit disc except at y =1

Big Conjecture #1. All roots of F'(-,y) are simple for |y| < 1.
land also for |y| = 1, T suspect]

Consequence of Big Conjecture #1. FEach root xy(y) is
analytic in |y| < 1.



But I conjecture more . ..

Big Conjecture #2. The roots of F(-,y) are non-crossing
in modulus for |y| < 1:

[zo(y)] < lz(y)] < lzaly)] < ...
land also for |y| = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually
separated in modulus by a factor at least |y|, i.e.

[ze(y)| < |yl lzkaly)|  forallk >0
PROOF. Apply the Schwarz lemma to zx(y)/xr1(y).

Consequence for the zeros of C),(y)

Recall

Culy) = —(n =1 axly)™

and use a variant of the Beraha—Kahane-Weiss theorem [A.D.S.,
arXiv:cond-mat /0012369, Theorem 3.2] == the limit points of
zeros of C,, are the values y for which the zero of minimum modulus
of F(-,y) is nonunique.

Soif F'(-,y) has a unique zero of minimum modulus for all y € D
(a weakened form of Big Conjecture #2), then the zeros of C,, do
not accumulate anywhere in the open unit disc.

[ actually conjecture more (based on computations up to n & 80):

Big Conjecture #3. For each n, C,,(y) has no zeros with |y| < 1.
land, T suspect, no zeros with |y| = 1 except the point y = 1]



What is the evidence for these conjectures?

Evidence #1: Behavior at real y.

Theorem (Laguerre): For 0 < y < 1, all the roots of F(-,y)
are simple and negative real.

Corollary: Each root x;(y) is analytic in a complex neighborhood
of the interval [0, 1).

[Real-variables methods give further information about the roots
z(y) for 0 <y < 1: see Langley (2000).]

Now combine this with

Evidence #2: From numerical computation of the
series Tx(y) ...



Three methods for computing the series xj(y)

L. Insert xp(y) = —(k+1)y [14—2 ”] and solve term-by-term

2. Use “explicit implicit function theorem” (generalization of
Lagrange inversion formula) given in arXiv:0902.0069:

solve z = G(z,w) with G(0,0) = 0 and |— (0 O)| < 1 by

o0 1 .
T ey

and more generally

H(p(w),w) = H(0,w) + Z% m=l aH(if )G(C,w)m

Methods 1 and 2 work symbolically in k.

3. Use
Culy) = —(n=11) ax(y)™
k
together with recursion
n—1 |
Toly) = (” - ) (y) =P 1)/2
j=1 ) =1

cf. Leroux (1988) and Scott—A.D.S.; arXiv:0803.1477]
— can go to very high n, at least for small &



And let MATHEMATICA run for a weekend . ..

4

11,3 11y 4+ 1_76y5 + 1_76y6

—zo(y) = 1+ 5y + 39" + 5" + 5

493 .7 | 163,8 , 323,9 | 1603, 10 57283 11
T 1Y t oY T WY Tt o3swY T 1352009

170921 12 |, 34017113 . 22565 14
+ 114720 T Som0Y T F5206

+ ... 4 terms through order y5%

and all the coefficients (so far) are nonnegative!

Big Conjecture #4. For each k, the series —xx(y) has all
nonnegative coeflicients.

Combine this with the known analyticity for 0 < y < 1, and Vivanti—
Pringsheim gives:

Consequence of Big Conjecture #4. FEach root xy(y) is
analytic in the open unit disc.

NEED TO DO: Extended computations for £ = 1,2, ... and for
symbolic k.

11



But more is true ...

Look at the reciprocal of xy(y):
1

_ _ 1,12 1,3 _ 1,4 1,5 7,6
70(y) =1-3 1Y 12Y 16Y =Y 783Y
1.7 7.8 49 .9 113 .10 17 11
96Y 7689 69129 930409 16089
293 .12 737 .13 3107 14
921609 9764309 1658330 Y

— ... — terms through order y%

and all the coefficients (so far) beyond the constant term are nonpositive!
Big Conjecture #5. For each k, the series —(k + 1)y~ /z1(y)
has all nonpositive coefficients after the constant term 1.

[This implies the preceding conjecture, but is stronger.|
e Relative simplicity of the coefficients of —1/xy(y) compared to
those of —xg(y) — simpler combinatorial interpretation?
e Note that z(y) — —oo as y T 1 (this is fairly easy to prove).
So 1/xp(y) — 0. Therefore:

Consequence of Big Conjecture #5. For each k, the coeffi-
cients (after the constant term) in the series —(k + 1)y =% /a1 (y) are
the probabilities for a positive-integer-valued random variable.

What might such a random variable be??7?
Could this approach be used to prove Big Conjecture #57

AGAIN NEED TO DO: Extended computations for k = 1,2, ...
and for symbolic k.

12



But I conjecture that even more is true . ..

Define D, (y) = and recall that —zo(y) = lim D, (y)~"/"

(—1)”_1(n — 1)' n—00

Big Conjecture #6. For each n,
(a) the series D, (y)~"/" has all nonnegative coefficients,
and even more strongly,

(b) the series D, (y)"/™ has all nonpositive coefficients after the
constant term 1.

Since D,(y) > 0 for 0 < y < 1, Vivanti-Pringsheim shows that
Big Conjecture #6a implies Big Conjecture #3:

For each n, C,,(y) has no zeros with |y| < 1.

Moreover, Big Conjecture #6b == for each n, the coefficients
(after the constant term) in the series D,,(y)"/" are the probabilities
for a positive-integer-valued random variable.

Such a random variable would generalize the one for —1/z¢(y) in
roughly the same way that the binomial generalizes the Poisson.

13



Roots z1(y) computed symbolically in k
1
S|

where I have computed up to n = 21:

w(y) = —(k+1y™"

P(k) =1

Py(k) = 2+ 6k + 3k°

Py(k) = 114 29k + 63k* + 65k° + 28k* + 4k°
Py(k)

= 22 + 146k + 273k> + 359k> + 355k* + 211k° + 63k° + Tk”

J

Qu(k) = (k+1)" [k + ) jLn/ (3)]
7=2

e P,(k) has nonnegative coefficients for n < 9 but not for n =
10, 15, 16, 18, 19, 20, 21

o P,(k) > Oforall real k > 0for n < 14 but not forn = 15, 18,19, 21
e But ... P,(k) > 0 for all integer k > 0 at least for n < 21
which gives evidence that Big Conjecture #4 holds for all &:

For each k, the series —xy(y) has all nonnegative coefficients.

14



Reciprocals of roots x(y) computed symbolically in k

—(k+ 1yt [1 I paily y]

where I have computed up to n = 21:

— 1
1+ 6k + 3k°

= 2 — 10k + 33k? + 59k3 + 28k + 4K°

— 3+ 71k + 24k* + 82k% + 236k* + 194k° + 63k° + 7kT

e decieck
~—— 5 ~——
I

and @, (k) are the same as before
° }A)n(k) does not have nonnegative coefficients (except for n =
L,

(
e But ... ﬁn(k) > 0 for all integer k > 0 at least for n < 21

which gives evidence that Big Conjecture #5 holds for all &:

For each k, the series —(k+1)y =" /x4 (y) has all nonpositive
coefficients after the constant term 1.

15



Ratios of roots x(y)/xr11(y)

The series
noy) _
z1(y)

has nonnegative coefficients at least up to order y'3°

3y + 69 + 729 + 2169 + 12963/ + -

(But its reciprocal does not have any fixed signs.)

Big Conjecture #7. The series z¢(y)/x1(y) has all nonnegative
coefficients.

Consequence of Big Conjecture #7. Since hm zo(y)/x1(y) =

Big Conjecture #7 implies that |xo(y)| < |z1(y )\ for all y € D (a
special case of Big Conjecture #2 on the separation in modulus of
roots).

e But unfortunately ... the series

?_Ey) = W+ Y ooy Y ey

2(y)

has a negative coefficient at order y'3. This doesn’t contradict
the conjecture that |z1(y)/x2(y)| < 1 in the unit disc, but it
does rule out the simplest method of proof.

e Symbolic computation of x4 (y)/xri1(y) shows that, up to order
y*2, the only cases of a negative coefficient for integer k > 0 are
the coefficient of y'? for k = 1,2,3; y'7 for k = 2; and 3", y*!
for k =2, 3, 4.

e The series 4y *2¢(y)/z1(y) has nonnegative coefficients for all
integer k£ > 0 through at least order y*!

16
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Asymptotics of roots as y — 1

Write y = e™7 with Rey > 0.
Want to study v — 0 (non-tangentially in the right half-plane).

[ believe I will be able to prove that
1
—zp(e”?) = 57_1 + cm_l/?’ + ...

for suitable constants ¢y < ¢ < ¢ < ... . But I have not yet
worked out all the details.

Overview of method:

1. Develop an asymptotic expansion for F'(x,e™) when v — 0 and
x is taken to be of order y7!, because this is the regime where
the zeros will be found.

2. Use this expansion for F(x,e™”) to deduce an expansion for
xp(e™).

Sketch of step #1: Insert Gaussian integral representation for
e~3"" to obtain

Fla,e) = (2my) 2 / explg(t)] di
with
t2
g(t) = — > + ze?2el

17



Saddle-point equation ¢'(t) = 0 is —ite ™ = ~ve?/?x, so it makes

sense to make the change of variables
r = v e we"

which puts the saddle point at ¢y = 7w. (Note that this brings in
the Lambert W function, i.e. the inverse function to w +— we®.) We
then have
7 2
t v
F(y te 7 Pwe”, e) = (217y) Y2 / dt exp [—2— + ﬁe”]
& &

—00

Now shift the contour to go through the saddle point (parallel to the
real axis) and make the change of variables t = s + iw: we have

2

F(y e Pwe”, e™) = (2my) Y2 exp [;U—Jrgl /ds explh(s)]
T

—00

where

1 : 2
h(s) = _| +w)32 + E<e”—1—i3+8—)
27y v 2

and the integration goes along the real s axis.

These formulae should allow computation of asymptotics
(a) ¥ — 0 (in a suitable way) for (suitable values of) fixed w; and
(b) w — oo (in a suitable direction) for (suitable values of) fixed 7.

Focus for now on (a).

18



Recall that

1 . 2
h(s) = — ( +w)32 + E<e” —1 —i3+8—)
2y Y 2
Consider for simplicity v and x real. There seem to be three regimes:

e “High temperature”: w > —1 (i.e. we" > —1/e).
Easiest case: s = 0 saddle point is Gaussian, and can compute
the asymptotics to all orders in terms of 3-associated Stirling

subset numbers {;‘1}>3. [Still need to justify this formal calcula-
tion by showing that only the s = 0 saddle point contributes.]

e “Low temperature”: w = —ncotn+ni with —7 <n <=
(i.e. we® < —1/e).

Saddle points at s = 0 and s = 2n contribute; I think this is all.

e “Critical regime”: w = —(1 + &y'/?) with ¢ fixed, which
corresponds to

P P

= 5 y
— At the “critical point” & = 0: Dominant behavior at s = 0
saddle point is no longer Gaussian (it vanishes) but rather
the cubic term 7s%/(67y). Can compute the asymptotics to
all orders in terms of 4-associated Stirling subset numbers

{:%}2 , (at least formally).

— In the critical regime (£ arbitrary): Expect to have Airy
asymptotics as in Flajolet—Salvy—Schaeffer (2004). This is
where the roots will lie.

[ would appreciate help with the details!!!

19



N
N
The polynomials Py(z,w) = E ( )x”w”(N”)
n
n=0

e Partition function of Ising model on complete graph Ky,

with z = 2" and w = e 2/

e Related to binomial (14 2)" in same way as our F'(z,y)
is related to exponential e*
[but we have written w™N=") instead of y""~1)/?]

cwlN ,
o]\}gnooPN< ~ ,w) = F(z,w *) when |w| > 1

e So results about zeros of Py generalize those about F
(just as results about the binomial generalize those about the
exponential function)

e Lee—Yang theorem: In ferromagnetic case (0 < w < 1), all zeros
are on the unit circle |z| = 1

e Laguerre: In antiferromagnetic case (w > 1), all zeros are real
and negative

e What about “complex antiferromagnetic” case |w| > 177

Big Conjecture #8. For |w| > 1, all zeros of Py(-,w) are
separated in modulus (by at least a factor |w|?).

Taking N — oo, this implies Big Conjecture #2 about the separation
in modulus of the zeros of F(-,y).

20



N
N
Differential-equation approach to Py (z,w) = Z ( ) 2=
n=0

N
On the space of polynomials Qn(x) = > a,z" of degree N with ag # 0,
define the semigroup n=0

(AtQN Zanxn tn(N—n)

Roots of A;Q y evolve according to an autonomous differential equation,
which is best expressed in terms of logarithms of roots (; = log x;:

dCZ Z f

J7i

where

f(z) = coth(z/2)

These are first-order (“Aristotelian”) equations of motion for a system
of n “particles” (in R or C) with a translation-invariant “force” f.

Moreover, the specific force f = coth is a Calogero-Moser—Sutherland

system, much studied in the theory of integrable systems.

For polynomials () with real roots and real t > 0, this approach
gives interesting results on separation of zeros. (In particular, it gives
a new proof of Laguerre’s theorem.)

Is this approach useful for complex t with Ret > 0777
Can it be used to prove Big Conjecture #87

21



A more general approach to the leading root zo(y)

e Consider a formal power series

_ Z a, 2" yn(n—l)/2
n=0

normalized to oy = a1 = 1, or more generally

=S am)e
where
(a) ao(0) = a1(0) =
(b) (O) =0 for n > 2; and
O(y"

") with lim v, = oo.
n—0o0

—~
@
~
/\

<
~—
| |

[t makes sense to study the “leading root” xy(y) in this generality.

e Example: The “partial theta function”

E{xn nnl

beloved of g-series practitioners (going back at least to Ramanujan).

e More generally, consider
0 o yn(n—l) /2

é ) Y -
(SUQQ) <1+q)(1+q+q2)...(1+q—|—...—|—qn_1)

n=0

which reduces to ©y when ¢ = 0, and to /' when g = 1.

22



A more general approach, continued . ..

e A power series for the leading root xy(y) can be computed from
the power-series expansion of log f(x,y), generalizing Method 3
above for F(z,y). This is extremely efficient!

e Example: For ©) we have
—zoly) = 14y+2y°+49°+9y* +21y°+52y5+133y +351¢y5+. . .
with strictly positive coefficients at least through order y%%.

e More generally, for }NB(:E, Y, q) it can be proven that

_ _ - Pu(q) n
ro(y,q) = 1+ ;Qn@y
where 3
Qula) = [T +q+...+ ¢ HE)
k=2

and P, (q) is a self-inversive polynomial with integer coefficients.

[ have verified for n < 349 that P,(q) has two interesting positivity
properties:

(a) P,(q) has all nonnegative coefficients. Indeed, all the
coefficients are strictly positive except [q'] P5(q) = 0.

(b) P.(q) > 0 for ¢ > —1.

Can any of this be proven???

Yes, some of it ...

23



The leading root z(y), general theory

e Start from a formal power series

floy) = ) an(y) 2"

(¢) an(y) = O(y") with lim v, = oo

n—:oo

and coeflicients lie in a commutative ring-with-identity-element R.

e By (c), each power of y is multiplied by only finitely many
powers of x.

e That is, f is a formal power series in y whose coefficients are
polynomials in x, i.e. f € Rlz|[ly]].

e Hence, for any formal power series X (y) with coefficients in R
[not necessarily with zero constant term|, the composition f(X(y), y)
makes sense as a formal power series in y.

e Not hard to see (by the implicit function theorem for formal
power series or by a direct inductive argument) that there exists a
unique formal power series zo(y) € R||y|] satisfying f(zo(y),y) = 0.

e We call z((y) the leading root of f.

e Since x((y) has constant term —1, we will write z¢(y) = —&(y)
where §(y) =1+ O(y).

24



How to compute &y(y)?

1. Elementary method: Insert & (y) =1+ Y b,y" into
n=1
f(—=&o(y),y) = 0 and solve term-by-term.

2. Method based on the explicit implicit function formula.

3. Method based on the exponential formula and expansion of log f(x, y).

e Methods #2 and #3 are computationally very efficient.

e Can they also be used to give proofs?

25



Tools I: The explicit implicit function formula

e See A.D.S., arXiv:0902.0069 or Stanley, vol. 2, Exercise 5.59
e (Almost trivial) generalization of Lagrange inversion formula
e Comes in analytic-function and formal-power-series versions

e Recall Lagrange inversion: If f(z) = > 7 a,a" with a1 # 0
(as either analytic function or formal power series), then

- ym m—1 C "
-
= 2
where [("]g(() denotes the coefficient of (" in the power series g(().
More generally, if h(x) = > °  b,x", we have

h(f ) = +Zy "G (%)m

e Rewrite this in terms of g(z) = x/f(x): then f(x) = y becomes
x = g(x)y, and its solution x = p(y) = f(y) is given by the
power series

and

e There is also an alternate form

h(e(y) = h(0) + > y" ¢ [9(O)" = ¢d'(g(¢)™ ]

26



The explicit implicit function formula, continued

e Generalize z = g(x)y to x = G(x,y), where

— G(0,0) =0and |(0G/0x)(0,0)| < 1 (analytic-function version)
— G(0,0) = 0and (0G/0x)(0,0) = 0 (formal-power-series version)

e Then there is a unique ¢(y) with zero constant term satisfying
p(y) = G(p(y), y), and it is given by

oly) = 3 [ IG(C )"
9G (G, y)

ey — ¢ a ]

(e 10

m=1

More generally, for any H(x,y) we have

o

Hew).) = HOw) + Y 1012 Gy
= H0.9) + S CHC [0 - ¢ FEEP Gy

3
&

e [irst versions are slightly more convenient but require R to
contain the rationals as a subring.

e Proof imitates standard proof of the Lagrange inversion formula;
the variables y simply “go for the ride”.

e Alternate interpretation: Solving fixed-point problem for the
family of maps x — G(x,y) parametrized by y. Variables y
again “go for the ride”.

27



Application to leading root of f(x,y)

e Start from a formal power series f(x,y) = >~ a,(y) " satisfying
properties (a)—(c) above.

o Write out f(—&p(y),y) = 0 and add &(y ) to both sides:

fly) = anly) — arly) — Vély +zan

o Insert £y(y) = 1+(y) where (y) has zero constant term. Then
p(y) = Gle(y), y) where

Glzy) = > (=1 au(y) (1 +2)"

n=0
and

N ap(y) —1 forn=0,1

an(y) =
an(y) for n > 2

And ¢(y) is the unique formal power series with zero constant
term satisfying this fixed-point equation.

e Since this G satisfies G(0,0) = 0 and (0G/0%2)(0,0) = 0 [indeed
it satisfies the stronger condition G(z,0) = 0], we can apply the
explicit implicit function formula to obtain an explicit formula

for &(y):

D (Z(—l)’“ 1) (1+¢)" )

m=1 n=0
More generally, for any formal power series H(z,y), we have
H(&(y) —1,9)
LOH(Cy) [~ o o
H(0.y) + Z ry P (Z(—n (y) (14 ) )
n=0

28



Application to leading root of f(x,y), continued

e In particular, by taking H(z,y) = (1 + z)” we can obtain an
explicit formula for an arbitrary power of &y(y):

e Important special case: ag(y) = ai(y) = 1 and a,(y) = o, y™
(n > 2) where A, > 1 and lim A, = oo. Then

60 ﬁ—l - 1 S 5—1+Zni =
gL T (P
fARZ:N

e Can this formula be used for proofs of nonnegativity???
e Empirically I know that the RHS is > 0 when A, = n(n—1)/2:

— For § > —2 with «,, = 1 (partial theta function)
— For g > —1 with a, = 1/n! (deformed exponential function)
— For g > —1 with o, = (1 — ¢)"/(q; ¢), and ¢ > —1

e And I can prove this (by a different method!) for the partial
theta function.

e How can we see these facts from this formula???
lopen combinatorial problem]|
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Tools II: Variants of the exponential formula

e Let R be a commutative ring containing the rationals.

o Let A(x) = >~ a, x" be a formal power series (with coefficients
in R) satisfying ag = 1.

e Now consider C(z) =log A(x) = > 7 cpa™
e It is well known (and easy to prove) that

n
k
a, = Zﬁcka’”—k forn >1
k=1

This allows {a,} to be calculated given {c,}, or vice versa.

e Sometimes useful to introduce 5’n = nc,, which are the coefficients

:UA’ ZC’:E

e See Scott-Sokal, arXiv:0803.1477 for generalizations to A(x)*
and applications to the multivariate Tutte polynomial

n

e Now specialize to R = Ry[[y]] and A(z,y) = >~ an(y) 2"
where ag(y) =1

e Assume further that a,(0) =1 and a,(0) =0 for n > 2
[conditions (a) and (b) for our f(z,y)]

e Then
:z:A’ (x y Z
Chl(

where ' denotes 0/0x and C’n(y) has constant term (—1)""1.
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Application to leading root of f(x,y)

0

e Start from a formal power series f(x,y) =1+ 2z + > a,(y)x

n=2

n

satisfying
an(y) = Oy forn > 2

for some real o > 0. [This is a bit stronger than (a)—(c).]
e Define {C,(y)}22, by

Pfe) g
T 200

where " denotes 0/0x.

e Theorem: We have

~

Coly) = (=1)" " &(y)™ + O(y™)

or equivalently
&ly) = (1" "Caly) ™" + O@y™)

e This theorem provides an extraordinarily efficient method for
computing the series &(y):

— Compute the C,(y) inductively using the recursion

~

n—1 _
Cn = nap — Z Ck Ap—f
k=1

— Take the power —1/n to extract £y(y) through order y(o”ﬂ_l

e This abstracts the recursive method shown earlier for the special
X n
x

case F(x,y) = Z — yn=D/2.

n=0
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Proof of Theorem (via complex analysis)

e Use complex-analysis argument to prove Theorem when R = C
and f is a polynomial.

e Infer general validity by some abstract nonsense.

Lemma. Fix a real number o > 0, and let P(z,y) = 1 + x +
SV an(y)z” where the {a,(y)}Y_, are polynomials with complex
coefficients satisfying a,(y) = O(y*"~Y). Then there exist numbers
p > 0 and v > 0 such that P(-,y) has precisely one root in the disc
x| < ~v|y|~* whenever |y| < p.

Idea of proof: Apply Rouché’s theorem to f(x) = x and g(z) =
14+ 3% a,(y)z" on the circle |z| = ~|y| .

Proof of Theorem when R = C and f is a polynomial:

Write
k(y)

Py = 10 )

1=1

with k(y) < N. Therefore

k(y)

x Plz,y) —z/Xi(y)
P(z,y) ;1 — z/Xi(y)

and hence
_ k(y)
Coly) = =) Xily)™.
i=1

Now, for small enough |y|, one of the roots is given by the convergent
series —&y(y) and is smaller than ~|y|~™® in magnitude, while the
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other roots have magnitude > ~|y|™ by the Lemma. We therefore
have

Caly) = (=1)""&(y) ™" < (N = 1)y "[y|™

for small enough |y|, as claimed. [J

Proof of Theorem in general case: Write
(0.9}

an(y) — Z Anm ym

m=la(n-1)]

Work in the ring R = Z[a] where @ = {aun}n>2 m>[a(n-1)] are
treated as indeterminates. Then the claim of the Theorem amounts
to a series of identities between polynomials in @ with integer coethi-
cients. We have verified these identities when evaluated on collections
a of complex numbers of which only finitely many are nonzero; and
this is enough to prove them as identities in Z|a]. [

There is also a direct formal-power-series proof (due to Ira Gessel)
at least in the case a = 1. I don’t know whether it extends to
arbitrary real a > 0.
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Computational use of Theorem

e Can compute &(y) through order y¥=! by computing C ~N(Y)

e Do this by computing én(y) for 1 <n < N using recursion

e Observe that all C,(y) can be truncated to order yV—!

[no need to keep the full polynomial of degree n(n — 1)/2)]

e For I, have done N = 900
[N = 400 takes a minute, N = 900 takes less than 6 hours;
but N = 900 needs 24 GB memory!]

e For Oy, have done N = 7000
[NV = 500 takes a minute, N = 1500 takes less than an hour;
N = 7000 took 11 days and 21 GB memory]

~

e For R, have done N = 350
[N = 50 takes a minute, N = 100 takes less than an hour;
N = 350 took a month and 10 GB memory]
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Some positivity properties of formal power series

e Consider formal power series with real coefficients
fly) =1+ iamym
m=1
e For a € R, define the class S, to consist of those f for which
f(y);: -1 i () "
m=1

has all nonnegative coefficients (with a suitable limit when ac = 0).
e In other words:

— For a > 0 (resp. a = 0), the class S, consists of those f for
which f¢ (resp. log f) has all nonnegative coefficients.

— For a < 0, the class S, consists of those f for which f* has
all nonpositive coefficients after the constant term 1.

e Containment relations among the classes S, are given by the
following fairly easy result:

Proposition (Scott—A.D.S., unpublished):
Let o, 8 € R. Then &, C Sp if and only if either

(a) « <0and B > a, or
(b) @ > 0 and § € {a, 2v, 3, . . . }.

Moreover, the containment is strict whenever o # (3.
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Application to deformed exponential function F’

As mentioned earlier, it seems that &y(y) € Si:

_ 1 1.2 , 11.3 | 11 4 7.5 , 1.6
Soy) =1+ 3y +3y + 9y + 3y + 5y + 16y
493 7 , 163.8 , 323.9 | 1603 10 57283 11
t1Y T3V T Y T oY T 13sa0Y
170921 12 , 340171 13 , 22565 14
+ a0Y T T S20a0Y T 55206Y

+ ... + terms through order y®%

and indeed that &(y) € S_1:

-1 2 3 4 5) 7 .6
W) =1 -3y — W — 5V — 1Y — 1Y — gV

1.7 7.8 49 .9 113 10 17 11
96Y 763Y 69129 230409 1608 Y
203 012 737 13 3107 , 14
921607 976430 Y 1658330 Y

899

— ... — terms through order y

But I have no proof of either of these conjectures!!!
e Note that &(y) is analytic on 0 < y < 1 and diverges as y T 1

like 1/[e(1 — y)].
e It follows that &y(y) ¢ S, for a < —1.
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Application to partial theta function ©

It seems that &(y) € Sy

Eo(y) = 1+y+ 2% +49° + 9y* + 219° + 525 + 133y" + 3513°
+948y” +2610y" + ... + terms through order 5%

and indeed that &(y) € S_1:

Soly) ' = 1—-y—y =y’ —2y" — 4y’ — 10y° — 25y" — 66y°
—178y” — 490y'Y — ... — terms through order y5%

and indeed that &(y) € S_o:

S =1-2y—y —y' =2 — Ty — 18y — 504"
—138y” — 386y'Y — ... — terms through order y5%

Here I do have a proof of these properties (see below).

e Note that

Soly)* — 1 — oyt a—;g;f n (OHFZL(OHL?)Z/?) + 0@

e So & (y) & S, for a < —2.
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7zz/n(nr—1)/2
(I4+q) - Q+qg+...+qg"

0
Application to R (x,9,q Z
n=0

e Can use explicit implicit function formula to prove that

Syig) = 1+ SZ% y"

where
0

Qu(a) = [[1+q+...+ g/ (3)

k=2
and P,(q) is a self-inversive polynomial in ¢ with integer coefficients.

e Empirically P,(q) has two interesting positivity properties:

(a) P,(q) has all nonnegative coefficients. Indeed, all the
coefficients are strictly positive except [¢'] P5(q) = 0.

(b) P.(q) > 0 for ¢ > —1.

o Empirically & (y;q) € S_1 for all ¢ > —1:

~15 )

~2.04

7 -2.5+

/// 3

i 2 2N
=J.U

-351

\\
L 1 I I I | I I I I I I I I | q
-1.0 -0.5 0.0 2.0




Identities for the partial theta function

e Use standard notation for g-shifted factorials:

n—1

(a;q)n = [J(1— ag’)

(g = [[0—ag) forlg <1

e A pair of identities for the partial theta function:

(0. 9]

Zéﬁ” MR = (g y)o (=21 Y)oc —

n=0
00 00 ( ZC)n yn2
n, nin—1)/2 -
X = (—7,Y )
nz:; e nz:; (Y: Y)n (=290

as formal power series and as analytic functionson (x,y) € C x D

e Rewrite these as

Z:c” MO = (Y )o (— 25 U)o

o 00 n o n2
n,nn-1)/2 _ (—ZC) Y ]

> o'y = (—2yy)e |14+ 2+ ) —

n=>0 n—1 (y,y)n (_xyay)n—l

e The first identity goes back to Heine (1847).

e The second identity can be found in Andrews and Warnaar

(2007).
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Proof that &, € &; for the partial theta function

e Let’s say we use the first identity:

O0(2,y) = (Wi Y)oo (7Y Yoo |1+ T+ Y  — :

e So O(z,y) = 0 is equivalent to “brackets = 0.
e Insert x = —&,(y) and bring &y(y) to the LHS:

fly) = 1+ — v
n=1 131(1 — ) 131[1 — y7&(y)]

e This formula can be used iteratively to determine &y(y),
and in particular to prove the strict positivity of its coefficients:

e Decfine the map F: Zlly]| — Z[[y]] by

FOy) =1+ v

n n—1

[T —=w) [1[1 =€)l

j=1 j=1

e Define a sequence féo), fél), ... € Z[lyl]] by 580) =1 and fékﬂ) = fgék)-

e Then 5(()0) < fél) <...=& and fék)(y) = &(y) + O(yPFH).

e In particular, klim gé“(y) = &o(y), and &y(y) has strictly positive

coefficients.

e Thomas Prellberg has a combinatorial interpretation of &,(y)
and & (y).

e Proofsof §y € S_1and &y € S_5 use second identity in a similar way:.
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Elementary proof of the first identity

e Proof uses nothing more than Euler’s first and second identities
(£ ) (4 9)

(@)oo = Z_; (¢:q)n

valid for (t,q) € D x D and (¢, q) € C x D, respectively.
° Write

an n(n—1)/ an nn12(. (y;y)oo

YY) (YY) s

e Insert Euler’s first identity for 1/(y n+l.

Oy(z,y) = (y;y)oozx y.

S
2

Mf
<

= By xy)oo —~ (y: )k (=21 Y

e This identity goes back to Heine (1847), but does not seem to
be very well known.

e [t can be found in Fine (1988) and Andrews and Warnaar (2007).
e Did anyone know it between 1847 and 1988777
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Proof of the first and second identities

e A simple limiting case of Heine’s first and second transformations

(0; @)oo (@25 q) o
(€ @)oo (27 Qe

2¢1(a7 b7 ¢ q, Z) - 2¢1(C/b7 z,az;q, b)

(¢/a;q)o (a2; )
(€ @)oo (25 @)oc

for the basic hypergeometric function

201(a,b;cq,2) = 2¢1(abz/c,a;az;q,¢/a)

2¢1(a’7 b; c; q, Z) = ( . <

n

I

o
—~
o
)
~—
3

e Just set b = ¢ and z = —x/a, then take a — oo and ¢ — 0.
e This is how Heine (1847) proved the first identity.

e Heine didn’t know his second transformation, which is apparently
due to Rogers (1893).

e Who first wrote the second identity for the partial
theta function???

e Surely it must have been known before Andrews and Warnaar
(2007)!17?!
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Can any of this be generalized?

e Recall our friend

e n(n—1)/2
"y
ZC
Y0 Zl+q -(I+qg+...+g" )

n:O

e Can this proof be extended to cases ¢ #£ 07
e Here is a general identity:

y n(n—1)/2

(4 @)n oo

1)t gle+1)/2

Z @0(55(16, y)

(=0

ng

e Can deduce generalizations of the first and second identities for
the partial theta function:

0 o yn(n—l)/Q B
—~ (¢

(1Y) o~ (Z1) V2 y"

(@ @)oc ; (a:9) ( ; (Y y)n (=" )
i o yn(n—l)/Q B
—~  (¢:q)n

1 X (—1) q€(€+1)/2 0 —:Uqf n yn2
> = (—2¢"; ) ~q)

(@D = (€0 (YY) (—2¢"y)n

e But I don’t know what to do with these formulae, because of the
factors (—1)°.
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