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The entire function F (x, y) =

∞∑

n=0

xn

n!
yn(n−1)/2

• Defined for complex x and y satisfying |y| ≤ 1

• Analytic in C × D, continuous in C × D

• F ( · , y) is entire for each y ∈ D

• Valiron (1938): “from a certain viewpoint the simplest entire

function after the exponential function”

Applications:

• Statistical mechanics: Partition function of one-site lattice gas

• Combinatorics: Generating function for Tutte polynomials on Kn

(also acyclic digraphs, inversions of trees, . . . )

• Functional-differential equation: F ′(x) = F (yx) where ′ = ∂/∂x

• Complex analysis: Whittaker and Goncharov constants
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Application to Tutte polynomials of complete graphs

• Finite graph G = (V, E)

• Multivariate Tutte polynomial ZG(q,v) =
∑

A⊆E

qk(A)
∏

e∈A

ve

where k(A) = # connected components in (V, A)

• Connected-spanning-subgraph polynomial CG(v) = lim
q→0

q−1ZG(q,v)

• Write ZG(q, v) and CG(v) if ve = v for all edges e

[standard Tutte polynomial is ZG(q, v) in different variables]

Specialization to complete graphs Kn:

Zn(q, v) =
∑

m,k

an,m,kv
mqk

Cn(v) =
∑

m

cn,mvm

Exponential generating functions:
∞∑

n=0

xn

n!
Zn(q, v) = F (x, 1 + v)q

∞∑

n=1

xn

n!
Cn(v) = log F (x, 1 + v)

[see Tutte (1967) and Scott–A.D.S., arXiv:0803.1477]

• Usually considered as formal power series

• But series are convergent if |1 + v| ≤ 1

[see also Flajolet–Salvy–Schaeffer (2004)]
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Elementary analytic properties of F (x, y) =

∞∑

n=0

xn

n!
yn(n−1)/2

• y = 0: F (x, 0) = 1 + x

• 0 < |y| < 1: F ( · , y) is a nonpolynomial entire function

of order 0:

F (x, y) =
∞∏

k=0

(
1 −

x

xk(y)

)

where
∑

|xk(y)|−α < ∞ for every α > 0

• y = 1: F (x, 1) = ex

• |y| = 1 with y 6= 1: F ( · , y) is an entire function of order 1

and type 1:

F (x, y) = ex
∞∏

k=0

(
1 −

x

xk(y)

)
ex/xk(y) .

where
∑

|xk(y)|−α < ∞ for every α > 1

[see also Ålander (1914) for y a root of unity; Valiron (1938) and

Eremenko–Ostrovskii (2007) for y not a root of unity]

• |y| > 1: The series F ( · , y) has radius of convergence 0
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Consequences for Cn(v)

• Make change of variables y = 1 + v:

Cn(y) = Cn(y − 1)

• Then for |y| < 1 we have

∞∑

n=1

xn

n!
Cn(y) = log F (x, y) =

∑

k

log
(
1 −

x

xk(y)

)

and hence

Cn(y) = −(n − 1)!
∑

k

xk(y)−n for all n ≥ 1

(also holds for n ≥ 2 when |y| = 1)

• This is a convergent expansion for Cn(y)

• In particular, gives large-n asymptotic behavior

Cn(y) = −(n − 1)! x0(y)−n
[
1 + O(e−ǫn)

]

whenever F ( · , y) has a unique root x0(y) of minimum modulus

Question: What can we say about the roots xk(y)?
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Small-y expansion of roots xk(y)

• For small |y|, we have F (x, y) = 1 + x + O(y), so we expect a

convergent expansion

x0(y) = −1 −

∞∑

n=1

any
n

(easy proof using Rouché: valid for |y| . 0.441755)

• More generally, for each integer k ≥ 0, write x = ξy−k and

study

Fk(ξ, y) = yk(k+1)/2F (ξy−k, y) =
∞∑

n=0

ξn

n!
y(n−k)(n−k−1)/2

Sum is dominated by terms n = k and n = k + 1; gives root

xk(y) = −(k + 1)y−k

[
1 +

∞∑

n=1

a(k)
n yn

]

Rouché argument valid for |y| . 0.207875 uniformly in k:

all roots are simple and given by convergent expansion xk(y)

• Can also use theta function in Rouché (Eremenko)
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Might these series converge for all |y| < 1?

Two ways that xk(y) could fail to be analytic for |y| < 1:

1. Collision of roots (→ branch point)

2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in

the open unit disc D.

In fact, for any compact subset K ⊂ D and any ǫ > 0, there exists

an integer k0 such that for all y ∈ K r {0} we have:

(a) The function F ( · , y) has exactly k0 zeros (counting multiplicity)

in the disc |x| < k0|y|
−(k0−

1

2
), and

(b) In the region |x| ≥ k0|y|
−(k0−

1

2
), the function F ( · , y) has a

simple zero within a factor 1+ ǫ of −(k +1)y−k for each k ≥ k0,

and no other zeros.

• Proof is based on comparison with a theta function (whose roots

are known by virtue of Jacobi’s product formula)

• Conjecture that roots cannot escape to infinity even in the closed

unit disc except at y = 1

Big Conjecture #1. All roots of F ( · , y) are simple for |y| < 1.

[and also for |y| = 1, I suspect]

Consequence of Big Conjecture #1. Each root xk(y) is

analytic in |y| < 1.
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But I conjecture more . . .

Big Conjecture #2. The roots of F ( · , y) are non-crossing

in modulus for |y| < 1:

|x0(y)| < |x1(y)| < |x2(y)| < . . .

[and also for |y| = 1, I suspect]

Consequence of Big Conjecture #2. The roots are actually

separated in modulus by a factor at least |y|, i.e.

|xk(y)| < |y| |xk+1(y)| for all k ≥ 0

Proof. Apply the Schwarz lemma to xk(y)/xk+1(y).

Consequence for the zeros of Cn(y)

Recall

Cn(y) = −(n − 1)!
∑

k

xk(y)−n

and use a variant of the Beraha–Kahane–Weiss theorem [A.D.S.,

arXiv:cond-mat/0012369, Theorem 3.2] =⇒ the limit points of

zeros of Cn are the values y for which the zero of minimum modulus

of F ( · , y) is nonunique .

So if F ( · , y) has a unique zero of minimum modulus for all y ∈ D

(a weakened form of Big Conjecture #2), then the zeros of Cn do

not accumulate anywhere in the open unit disc.

I actually conjecture more (based on computations up to n ≈ 80):

Big Conjecture #3. For each n, Cn(y) has no zeros with |y| < 1.

[and, I suspect, no zeros with |y| = 1 except the point y = 1]
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What is the evidence for these conjectures?

Evidence #1: Behavior at real y.

Theorem (Laguerre): For 0 ≤ y < 1, all the roots of F ( · , y)

are simple and negative real.

Corollary: Each root xk(y) is analytic in a complex neighborhood

of the interval [0, 1).

[Real-variables methods give further information about the roots

xk(y) for 0 ≤ y < 1: see Langley (2000).]

Now combine this with

Evidence #2: From numerical computation of the
series xk(y) . . .
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Three methods for computing the series xk(y)

1. Insert xk(y) = −(k+1)y−k

[
1+

∞∑

n=1

a(k)
n yn

]
and solve term-by-term

2. Use “explicit implicit function theorem” (generalization of

Lagrange inversion formula) given in arXiv:0902.0069:

solve z = G(z, w) with G(0, 0) = 0 and
∣∣∣
∂G

∂z
(0, 0)

∣∣∣ < 1 by

z = ϕ(w) =

∞∑

m=1

1

m
[ζm−1]G(ζ, w)m

and more generally

H(ϕ(w), w) = H(0, w) +
∞∑

m=1

1

m
[ζm−1]

∂H(ζ, w)

∂ζ
G(ζ, w)m

Methods 1 and 2 work symbolically in k.

3. Use

Cn(y) = −(n − 1)!
∑

k

xk(y)−n

together with recursion

Cn(y) = yn(n−1)/2 −
n−1∑

j=1

(
n − 1

j − 1

)
Cj(y) y(n−j)(n−j−1)/2

[cf. Leroux (1988) and Scott–A.D.S., arXiv:0803.1477]

— can go to very high n, at least for small k
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And let Mathematica run for a weekend . . .

−x0(y) = 1 + 1
2
y + 1

2
y2 + 11

24
y3 + 11

24
y4 + 7

16
y5 + 7

16
y6

+ 493
1152

y7 + 163
384

y8 + 323
768

y9 + 1603
3840

y10 + 57283
138240

y11

+ 170921
414720

y12 + 340171
829440

y13 + 22565
55296

y14

+ . . . + terms through order y899

and all the coefficients (so far) are nonnegative!

Big Conjecture #4. For each k, the series −xk(y) has all

nonnegative coefficients.

Combine this with the known analyticity for 0 ≤ y < 1, and Vivanti–

Pringsheim gives:

Consequence of Big Conjecture #4. Each root xk(y) is

analytic in the open unit disc.

NEED TO DO: Extended computations for k = 1, 2, . . . and for

symbolic k.
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But more is true . . .

Look at the reciprocal of x0(y):

−
1

x0(y)
= 1 − 1

2y − 1
4y

2 − 1
12y

3 − 1
16y

4 − 1
48y

5 − 7
288y

6

− 1
96

y7 − 7
768

y8 − 49
6912

y9 − 113
23040

y10 − 17
4608

y11

− 293
92160y

12 − 737
276480y

13 − 3107
1658880y

14

− . . . − terms through order y899

and all the coefficients (so far) beyond the constant term are nonpositive !

Big Conjecture #5. For each k, the series −(k + 1)y−k/xk(y)

has all nonpositive coefficients after the constant term 1.

[This implies the preceding conjecture, but is stronger.]

• Relative simplicity of the coefficients of −1/x0(y) compared to

those of −x0(y) −→ simpler combinatorial interpretation?

• Note that xk(y) → −∞ as y ↑ 1 (this is fairly easy to prove).

So 1/xk(y) → 0. Therefore:

Consequence of Big Conjecture #5. For each k, the coeffi-

cients (after the constant term) in the series −(k + 1)y−k/xk(y) are

the probabilities for a positive-integer-valued random variable.

What might such a random variable be???
Could this approach be used to prove Big Conjecture #5?

AGAIN NEED TO DO: Extended computations for k = 1, 2, . . .

and for symbolic k.
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But I conjecture that even more is true . . .

Define Dn(y) =
Cn(y)

(−1)n−1(n − 1)!
and recall that−x0(y) = lim

n→∞
Dn(y)−1/n

Big Conjecture #6. For each n,

(a) the series Dn(y)−1/n has all nonnegative coefficients,

and even more strongly,

(b) the series Dn(y)1/n has all nonpositive coefficients after the

constant term 1.

Since Dn(y) > 0 for 0 ≤ y < 1, Vivanti–Pringsheim shows that

Big Conjecture #6a implies Big Conjecture #3:

For each n, Cn(y) has no zeros with |y| < 1.

Moreover, Big Conjecture #6b =⇒ for each n, the coefficients

(after the constant term) in the series Dn(y)1/n are the probabilities

for a positive-integer-valued random variable.

Such a random variable would generalize the one for −1/x0(y) in

roughly the same way that the binomial generalizes the Poisson.
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Roots xk(y) computed symbolically in k

xk(y) = −(k + 1)y−k

[
1 +

∞∑

n=1

Pn(k)

Qn(k)
yn

]

where I have computed up to n = 21:

P1(k) = 1

P2(k) = 2 + 6k + 3k2

P3(k) = 11 + 29k + 63k2 + 65k3 + 28k4 + 4k5

P4(k) = 22 + 146k + 273k2 + 359k3 + 355k4 + 211k5 + 63k6 + 7k7

...

Qn(k) = (k + 1)n
∞∏

j=2

(k + j)⌊n/(j
2)⌋

• Pn(k) has nonnegative coefficients for n ≤ 9 but not for n =

10, 15, 16, 18, 19, 20, 21

• Pn(k) ≥ 0 for all real k ≥ 0 for n ≤ 14 but not for n = 15, 18, 19, 21

• But . . . Pn(k) ≥ 0 for all integer k ≥ 0 at least for n ≤ 21

which gives evidence that Big Conjecture #4 holds for all k:

For each k, the series −xk(y) has all nonnegative coefficients.
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Reciprocals of roots xk(y) computed symbolically in k

−(k + 1)y−k

xk(y)
=

[
1 −

∞∑

n=1

P̂n(k)

Qn(k)
yn

]

where I have computed up to n = 21:

P̂1(k) = 1

P̂2(k) = 1 + 6k + 3k2

P̂3(k) = 2 − 10k + 33k2 + 59k3 + 28k4 + 4k5

P̂4(k) = 3 + 71k + 24k2 + 82k3 + 236k4 + 194k5 + 63k6 + 7k7

...

and Qn(k) are the same as before

• P̂n(k) does not have nonnegative coefficients (except for n =

1, 2, 4)

• P̂n(k) ≥ 0 for all real k ≥ 0 for n = 1, 2, 3, 4, 5, 7, 8 but not in

general

• But . . . P̂n(k) ≥ 0 for all integer k ≥ 0 at least for n ≤ 21

which gives evidence that Big Conjecture #5 holds for all k:

For each k, the series −(k+1)y−k/xk(y) has all nonpositive

coefficients after the constant term 1.
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Ratios of roots xk(y)/xk+1(y)

The series
x0(y)

x1(y)
= 1

2y + 1
6y

2 + 5
72y

3 + 11
216y

4 + 29
1296y

5 + . . .

has nonnegative coefficients at least up to order y136.

(But its reciprocal does not have any fixed signs.)

Big Conjecture #7. The series x0(y)/x1(y) has all nonnegative

coefficients.

Consequence of Big Conjecture #7. Since lim
y↑1

x0(y)/x1(y) = 1,

Big Conjecture #7 implies that |x0(y)| < |x1(y)| for all y ∈ D (a

special case of Big Conjecture #2 on the separation in modulus of

roots).

• But unfortunately . . . the series

x1(y)

x2(y)
= 2

3
y + 1

18
y2 + 17

216
y3 + 23

810
y4 + 343

17280
y5 + . . .

has a negative coefficient at order y13. This doesn’t contradict

the conjecture that |x1(y)/x2(y)| < 1 in the unit disc, but it

does rule out the simplest method of proof.

• Symbolic computation of xk(y)/xk+1(y) shows that, up to order

y22, the only cases of a negative coefficient for integer k ≥ 0 are

the coefficient of y13 for k = 1, 2, 3; y17 for k = 2; and y19, y21

for k = 2, 3, 4.

• The series y−kx0(y)/xk(y) has nonnegative coefficients for all

integer k ≥ 0 through at least order y21.
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Asymptotics of roots as y → 1

Write y = e−γ with Re γ > 0.

Want to study γ → 0 (non-tangentially in the right half-plane).

I believe I will be able to prove that

−xk(e
−γ) ≈

1

e
γ−1 + ckγ

−1/3 + . . .

for suitable constants c0 < c1 < c2 < . . . . But I have not yet

worked out all the details.

Overview of method:

1. Develop an asymptotic expansion for F (x, e−γ) when γ → 0 and

x is taken to be of order γ−1, because this is the regime where

the zeros will be found.

2. Use this expansion for F (x, e−γ) to deduce an expansion for

xk(e
−γ).

Sketch of step #1: Insert Gaussian integral representation for

e−
γ
2
n2

to obtain

F (x, e−γ) = (2πγ)−1/2

∞∫

−∞

exp[g(t)] dt

with

g(t) = −
t2

2γ
+ xeγ/2eit
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Saddle-point equation g′(t) = 0 is −ite−it = γeγ/2x, so it makes

sense to make the change of variables

x = γ−1e−γ/2wew ,

which puts the saddle point at t0 = iw. (Note that this brings in

the Lambert W function, i.e. the inverse function to w 7→ wew.) We

then have

F (γ−1e−γ/2wew, e−γ) = (2πγ)−1/2

∞∫

−∞

dt exp

[
−

t2

2γ
+

wew

γ
eit

]

Now shift the contour to go through the saddle point (parallel to the

real axis) and make the change of variables t = s + iw: we have

F (γ−1e−γ/2wew, e−γ) = (2πγ)−1/2 exp

[
w2

2γ
+

w

γ

] ∞∫

−∞

ds exp[h(s)]

where

h(s) = −
(1 + w)

2γ
s2 +

w

γ

(
eis − 1 − is +

s2

2

)

and the integration goes along the real s axis.

These formulae should allow computation of asymptotics

(a) γ → 0 (in a suitable way) for (suitable values of) fixed w; and

(b) w → ∞ (in a suitable direction) for (suitable values of) fixed γ.

Focus for now on (a).
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Recall that

h(s) = −
(1 + w)

2γ
s2 +

w

γ

(
eis − 1 − is +

s2

2

)

Consider for simplicity γ and x real. There seem to be three regimes:

• “High temperature”: w > −1 (i.e. wew > −1/e).

Easiest case: s = 0 saddle point is Gaussian, and can compute

the asymptotics to all orders in terms of 3-associated Stirling

subset numbers
{

n
m

}
≥3

. [Still need to justify this formal calcula-

tion by showing that only the s = 0 saddle point contributes.]

• “Low temperature”: w = −η cot η + ηi with −π < η < π

(i.e. wew < −1/e).

Saddle points at s = 0 and s = 2η contribute; I think this is all.

• “Critical regime”: w = −(1 + ξγ1/3) with ξ fixed, which

corresponds to

x = −
1

eγ

[
1 −

ξ2

2
γ2/3 + O(γ)

]

– At the “critical point” ξ = 0: Dominant behavior at s = 0

saddle point is no longer Gaussian (it vanishes) but rather

the cubic term is3/(6γ). Can compute the asymptotics to

all orders in terms of 4-associated Stirling subset numbers{
n
m

}
≥4

(at least formally).

– In the critical regime (ξ arbitrary): Expect to have Airy

asymptotics as in Flajolet–Salvy–Schaeffer (2004). This is

where the roots will lie.

I would appreciate help with the details!!!
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The polynomials PN(x, w) =
N∑

n=0

(
N

n

)
xnwn(N−n)

• Partition function of Ising model on complete graph KN ,

with x = e2h and w = e−2J

• Related to binomial (1 + x)N in same way as our F (x, y)

is related to exponential ex

[but we have written wn(N−n) instead of yn(n−1)/2]

• lim
N→∞

PN

(
xw1−N

N
, w

)
= F (x, w−2) when |w| > 1

• So results about zeros of PN generalize those about F

(just as results about the binomial generalize those about the

exponential function)

• Lee–Yang theorem: In ferromagnetic case (0 ≤ w ≤ 1), all zeros

are on the unit circle |x| = 1

• Laguerre: In antiferromagnetic case (w ≥ 1), all zeros are real

and negative

• What about “complex antiferromagnetic” case |w| > 1??

Big Conjecture #8. For |w| > 1, all zeros of PN( · , w) are

separated in modulus (by at least a factor |w|2).

Taking N → ∞, this implies Big Conjecture #2 about the separation

in modulus of the zeros of F ( · , y).
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Differential-equation approach to PN(x, w) =
N∑

n=0

(
N

n

)
xnwn(N−n)

On the space of polynomials QN(x) =
N∑

n=0
anx

n of degree N with a0 6= 0,
define the semigroup

(AtQN)(x) ≡
N∑

n=0

anx
netn(N−n)

Roots ofAtQN evolve according to an autonomous differential equation,

which is best expressed in terms of logarithms of roots ζi = log xi:

dζi

dt
=
∑

j 6=i

f(ζi − ζj)

where

f(z) = coth(z/2)

These are first-order (“Aristotelian”) equations of motion for a system

of n “particles” (in R or C) with a translation-invariant “force” f .

Moreover, the specific force f = coth is a Calogero–Moser–Sutherland

system, much studied in the theory of integrable systems.

For polynomials QN with real roots and real t > 0, this approach

gives interesting results on separation of zeros. (In particular, it gives

a new proof of Laguerre’s theorem.)

Is this approach useful for complex t with Re t > 0???

Can it be used to prove Big Conjecture #8?
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A more general approach to the leading root x0(y)

• Consider a formal power series

f(x, y) =
∞∑

n=0

αn xn yn(n−1)/2

normalized to α0 = α1 = 1, or more generally

f(x, y) =
∞∑

n=0

an(y) xn

where

(a) a0(0) = a1(0) = 1;

(b) an(0) = 0 for n ≥ 2; and

(c) an(y) = O(yνn) with lim
n→∞

νn = ∞.

It makes sense to study the “leading root” x0(y) in this generality.

• Example: The “partial theta function”

Θ0(x, y) =

∞∑

n=0

xn yn(n−1)/2

beloved of q-series practitioners (going back at least to Ramanujan).

• More generally, consider

R̃(x, y, q) =
∞∑

n=0

xn yn(n−1)/2

(1 + q)(1 + q + q2) · · · (1 + q + . . . + qn−1)

which reduces to Θ0 when q = 0, and to F when q = 1.
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A more general approach, continued . . .

• A power series for the leading root x0(y) can be computed from

the power-series expansion of log f(x, y), generalizing Method 3

above for F (x, y). This is extremely efficient!

• Example: For Θ0 we have

−x0(y) = 1+y+2y2+4y3+9y4+21y5+52y6+133y7+351y8+. . .

with strictly positive coefficients at least through order y6999.

• More generally, for R̃(x, y, q) it can be proven that

−x0(y, q) = 1 +
∞∑

n=1

Pn(q)

Qn(q)
yn

where

Qn(q) =
∞∏

k=2

(1 + q + . . . + qk−1)⌊n/(k
2)⌋

and Pn(q) is a self-inversive polynomial with integer coefficients.

I have verified for n ≤ 349 that Pn(q) has two interesting positivity

properties:

(a) Pn(q) has all nonnegative coefficients. Indeed, all the

coefficients are strictly positive except [q1] P5(q) = 0.

(b) Pn(q) > 0 for q > −1.

Can any of this be proven???

Yes, some of it . . .
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The leading root x0(y), general theory

• Start from a formal power series

f(x, y) =
∞∑

n=0

an(y) xn

where

(a) a0(0) = a1(0) = 1

(b) an(0) = 0 for n ≥ 2

(c) an(y) = O(yνn) with lim
n→∞

νn = ∞

and coefficients lie in a commutative ring-with-identity-element R.

• By (c), each power of y is multiplied by only finitely many

powers of x.

• That is, f is a formal power series in y whose coefficients are

polynomials in x, i.e. f ∈ R[x][[y]].

• Hence, for any formal power series X(y) with coefficients in R

[not necessarily with zero constant term], the composition f(X(y), y)

makes sense as a formal power series in y.

• Not hard to see (by the implicit function theorem for formal

power series or by a direct inductive argument) that there exists a

unique formal power series x0(y) ∈ R[[y]] satisfying f(x0(y), y) = 0.

• We call x0(y) the leading root of f .

• Since x0(y) has constant term −1, we will write x0(y) = −ξ0(y)

where ξ0(y) = 1 + O(y).
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How to compute ξ0(y)?

1. Elementary method: Insert ξ0(y) = 1 +
∞∑

n=1
bny

n into

f(−ξ0(y), y) = 0 and solve term-by-term.

2. Method based on the explicit implicit function formula.

3. Method based on the exponential formula and expansion of log f(x, y).

• Methods #2 and #3 are computationally very efficient.

• Can they also be used to give proofs?
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Tools I: The explicit implicit function formula

• See A.D.S., arXiv:0902.0069 or Stanley, vol. 2, Exercise 5.59

• (Almost trivial) generalization of Lagrange inversion formula

• Comes in analytic-function and formal-power-series versions

• Recall Lagrange inversion: If f(x) =
∑∞

n=1 anx
n with a1 6= 0

(as either analytic function or formal power series), then

f−1(y) =
∞∑

m=1

ym

m
[ζm−1]

(
ζ

f(ζ)

)m

where [ζn]g(ζ) denotes the coefficient of ζn in the power series g(ζ).

More generally, if h(x) =
∑∞

n=0 bnx
n, we have

h(f−1(y)) = h(0) +

∞∑

m=1

ym

m
[ζm−1] h′(ζ)

(
ζ

f(ζ)

)m

• Rewrite this in terms of g(x) = x/f(x): then f(x) = y becomes

x = g(x)y, and its solution x = ϕ(y) = f−1(y) is given by the

power series

ϕ(y) =
∞∑

m=1

ym

m
[ζm−1]g(ζ)m

and

h(ϕ(y)) = h(0) +

∞∑

m=1

ym

m
[ζm−1]h′(ζ)g(ζ)m

• There is also an alternate form

h(ϕ(y)) = h(0) +
∞∑

m=1

ym [ζm]h(ζ)
[
g(ζ)m − ζg′(ζ)g(ζ)m−1

]
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The explicit implicit function formula, continued

• Generalize x = g(x)y to x = G(x, y), where

– G(0, 0) = 0 and |(∂G/∂x)(0, 0)| < 1 (analytic-function version)

– G(0, 0) = 0 and (∂G/∂x)(0, 0) = 0 (formal-power-series version)

• Then there is a unique ϕ(y) with zero constant term satisfying

ϕ(y) = G(ϕ(y), y), and it is given by

ϕ(y) =
∞∑

m=1

1

m
[ζm−1]G(ζ, y)m

=
∞∑

m=1

[ζm−1]
[
G(ζ, y)m − ζ

∂G(ζ, y)

∂ζ
G(ζ, y)m−1

]

More generally, for any H(x, y) we have

H(ϕ(y), y) = H(0, y) +
∞∑

m=1

1

m
[ζm−1]

∂H(ζ, y)

∂ζ
G(ζ, y)m

= H(0, y) +

∞∑

m=1

[ζm]H(ζ, y)
[
G(ζ, y)m − ζ

∂G(ζ, y)

∂ζ
G(ζ, y)m−1

]

• First versions are slightly more convenient but require R to

contain the rationals as a subring.

• Proof imitates standard proof of the Lagrange inversion formula:

the variables y simply “go for the ride”.

• Alternate interpretation: Solving fixed-point problem for the

family of maps x 7→ G(x, y) parametrized by y. Variables y

again “go for the ride”.
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Application to leading root of f(x, y)

• Start from a formal power series f(x, y) =
∑∞

n=0 an(y) xn satisfying

properties (a)–(c) above.

• Write out f(−ξ0(y), y) = 0 and add ξ0(y) to both sides:

ξ0(y) = a0(y) − [a1(y) − 1]ξ0(y) +
∞∑

n=2

an(y) (−ξ0(y))n

• Insert ξ0(y) = 1+ϕ(y) where ϕ(y) has zero constant term. Then

ϕ(y) = G(ϕ(y), y) where

G(z, y) =
∞∑

n=0

(−1)n ân(y) (1 + z)n

and

ân(y) =

{
an(y) − 1 for n = 0, 1

an(y) for n ≥ 2

And ϕ(y) is the unique formal power series with zero constant

term satisfying this fixed-point equation.

• Since this G satisfies G(0, 0) = 0 and (∂G/∂z)(0, 0) = 0 [indeed

it satisfies the stronger condition G(z, 0) = 0], we can apply the

explicit implicit function formula to obtain an explicit formula

for ξ0(y):

ξ0(y) = 1 +
∞∑

m=1

1

m
[ζm−1]

(
∞∑

n=0

(−1)n ân(y) (1 + ζ)n

)m

More generally, for any formal power series H(z, y), we have

H(ξ0(y) − 1, y)

= H(0, y) +
∞∑

m=1

1

m
[ζm−1]

∂H(ζ, y)

∂ζ

(
∞∑

n=0

(−1)n ân(y) (1 + ζ)n

)m
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Application to leading root of f(x, y), continued

• In particular, by taking H(z, y) = (1 + z)β we can obtain an

explicit formula for an arbitrary power of ξ0(y):

ξ0(y)β = 1 +

∞∑

m=1

β

m

∑

n1,...,nm≥0

(
β − 1 +

∑
ni

m − 1

) m∏

i=1

(−1)niâni
(y)

• Important special case: a0(y) = a1(y) = 1 and an(y) = αn yλn

(n ≥ 2) where λn ≥ 1 and lim
n→∞

λn = ∞. Then

[yN ]
ξ0(y)β − 1

β
=

∞∑

m=1

1

m

∑

n1, . . . , nm ≥ 2
m∑

i=1

λni
= N

(−1)
∑

ni

(
β − 1 +

∑
ni

m − 1

) m∏

i=1

αni

• Can this formula be used for proofs of nonnegativity???

• Empirically I know that the RHS is ≥ 0 when λn = n(n−1)/2:

– For β ≥ −2 with αn = 1 (partial theta function)

– For β ≥ −1 with αn = 1/n! (deformed exponential function)

– For β ≥ −1 with αn = (1 − q)n/(q; q)n and q > −1

• And I can prove this (by a different method!) for the partial

theta function.

• How can we see these facts from this formula???

[open combinatorial problem]
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Tools II: Variants of the exponential formula

• Let R be a commutative ring containing the rationals.

• Let A(x) =
∑∞

n=0 an xn be a formal power series (with coefficients

in R) satisfying a0 = 1.

• Now consider C(x) = log A(x) =
∑∞

n=1 cn xn.

• It is well known (and easy to prove) that

an =

n∑

k=1

k

n
ck an−k for n ≥ 1

This allows {an} to be calculated given {cn}, or vice versa.

• Sometimes useful to introduce C̃n = ncn, which are the coefficients

in
x A′(x)

A(x)
=

∞∑

n=1

C̃n xn

• See Scott–Sokal, arXiv:0803.1477 for generalizations to A(x)λ

and applications to the multivariate Tutte polynomial

• Now specialize to R = R0[[y]] and A(x, y) =
∑∞

n=0 an(y) xn

where a0(y) = 1

• Assume further that a1(0) = 1 and an(0) = 0 for n ≥ 2

[conditions (a) and (b) for our f(x, y)]

• Then
x A′(x, y)

A(x, y)
=

∞∑

n=1

C̃n(y) xn

where ′ denotes ∂/∂x and C̃n(y) has constant term (−1)n−1.
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Application to leading root of f(x, y)

• Start from a formal power series f(x, y) = 1 + x +
∞∑

n=2
an(y) xn

satisfying

an(y) = O(yα(n−1)) for n ≥ 2

for some real α > 0. [This is a bit stronger than (a)–(c).]

• Define {C̃n(y)}∞n=1 by

x f ′(x, y)

f(x, y)
=

∞∑

n=1

C̃n(y) xn

where ′ denotes ∂/∂x.

• Theorem: We have

C̃n(y) = (−1)n−1 ξ0(y)−n + O(yαn)

or equivalently

ξ0(y) = [(−1)n−1C̃n(y)]−1/n + O(yαn)

• This theorem provides an extraordinarily efficient method for

computing the series ξ0(y):

– Compute the C̃n(y) inductively using the recursion

C̃n = nan −
n−1∑
k=1

C̃k an−k

– Take the power −1/n to extract ξ0(y) through order y⌈αn⌉−1

• This abstracts the recursive method shown earlier for the special

case F (x, y) =
∞∑

n=0

xn

n!
yn(n−1)/2 .
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Proof of Theorem (via complex analysis)

• Use complex-analysis argument to prove Theorem when R = C

and f is a polynomial.

• Infer general validity by some abstract nonsense.

Lemma. Fix a real number α > 0, and let P (x, y) = 1 + x +∑N
n=2 an(y)xn where the {an(y)}N

n=2 are polynomials with complex

coefficients satisfying an(y) = O(yα(n−1)). Then there exist numbers

ρ > 0 and γ > 0 such that P ( · , y) has precisely one root in the disc

|x| < γ|y|−α whenever |y| ≤ ρ.

Idea of proof: Apply Rouché’s theorem to f(x) = x and g(x) =

1 +
∑N

n=2 an(y)xn on the circle |x| = γ|y|−α.

Proof of Theorem when R = C and f is a polynomial:

Write

P (x, y) =

k(y)∏

i=1

(
1 −

x

Xi(y)

)

with k(y) ≤ N . Therefore

x P ′(x, y)

P (x, y)
=

k(y)∑

i=1

−x/Xi(y)

1 − x/Xi(y)

and hence

C̃n(y) = −

k(y)∑

i=1

Xi(y)−n .

Now, for small enough |y|, one of the roots is given by the convergent

series −ξ0(y) and is smaller than γ|y|−α in magnitude, while the
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other roots have magnitude ≥ γ|y|−α by the Lemma. We therefore

have ∣∣C̃n(y) − (−1)n−1ξ0(y)−n
∣∣ ≤ (N − 1)γ−n|y|αn

for small enough |y|, as claimed. �

Proof of Theorem in general case: Write

an(y) =
∞∑

m=⌈α(n−1)⌉

anm ym

Work in the ring R = Z[a] where a = {anm}n≥2, m≥⌈α(n−1)⌉ are

treated as indeterminates. Then the claim of the Theorem amounts

to a series of identities between polynomials in a with integer coeffi-

cients. We have verified these identities when evaluated on collections

a of complex numbers of which only finitely many are nonzero; and

this is enough to prove them as identities in Z[a]. �

There is also a direct formal-power-series proof (due to Ira Gessel)

at least in the case α = 1. I don’t know whether it extends to

arbitrary real α > 0.
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Computational use of Theorem

• Can compute ξ0(y) through order yN−1 by computing C̃N(y)

• Do this by computing C̃n(y) for 1 ≤ n ≤ N using recursion

• Observe that all C̃n(y) can be truncated to order yN−1

[no need to keep the full polynomial of degree n(n − 1)/2]

• For F , have done N = 900

[N = 400 takes a minute, N = 900 takes less than 6 hours;

but N = 900 needs 24 GB memory!]

• For Θ0, have done N = 7000

[N = 500 takes a minute, N = 1500 takes less than an hour;

N = 7000 took 11 days and 21 GB memory]

• For R̃, have done N = 350

[N = 50 takes a minute, N = 100 takes less than an hour;

N = 350 took a month and 10 GB memory]
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Some positivity properties of formal power series

• Consider formal power series with real coefficients

f(y) = 1 +
∞∑

m=1

am ym

• For α ∈ R, define the class Sα to consist of those f for which

f(y)α − 1

α
=

∞∑

m=1

bm(α) ym

has all nonnegative coefficients (with a suitable limit when α = 0).

• In other words:

– For α > 0 (resp. α = 0), the class Sα consists of those f for

which fα (resp. log f) has all nonnegative coefficients.

– For α < 0, the class Sα consists of those f for which fα has

all nonpositive coefficients after the constant term 1.

• Containment relations among the classes Sα are given by the

following fairly easy result:

Proposition (Scott–A.D.S., unpublished):

Let α, β ∈ R. Then Sα ⊆ Sβ if and only if either

(a) α ≤ 0 and β ≥ α, or

(b) α > 0 and β ∈ {α, 2α, 3α, . . .}.

Moreover, the containment is strict whenever α 6= β.
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Application to deformed exponential function F

As mentioned earlier, it seems that ξ0(y) ∈ S1:

ξ0(y) = 1 + 1
2
y + 1

2
y2 + 11

24
y3 + 11

24
y4 + 7

16
y5 + 7

16
y6

+ 493
1152y

7 + 163
384y

8 + 323
768y

9 + 1603
3840y

10 + 57283
138240y

11

+ 170921
414720y

12 + 340171
829440y

13 + 22565
55296y

14

+ . . . + terms through order y899

and indeed that ξ0(y) ∈ S−1:

ξ0(y)−1 = 1 − 1
2
y − 1

4
y2 − 1

12
y3 − 1

16
y4 − 1

48
y5 − 7

288
y6

− 1
96y

7 − 7
768y

8 − 49
6912y

9 − 113
23040y

10 − 17
4608y

11

− 293
92160

y12 − 737
276480

y13 − 3107
1658880

y14

− . . . − terms through order y899

But I have no proof of either of these conjectures!!!

• Note that ξ0(y) is analytic on 0 ≤ y < 1 and diverges as y ↑ 1

like 1/[e(1 − y)].

• It follows that ξ0(y) /∈ Sα for α < −1.
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Application to partial theta function Θ0

It seems that ξ0(y) ∈ S1:

ξ0(y) = 1 + y + 2y2 + 4y3 + 9y4 + 21y5 + 52y6 + 133y7 + 351y8

+948y9 + 2610y10 + . . . + terms through order y6999

and indeed that ξ0(y) ∈ S−1:

ξ0(y)−1 = 1 − y − y2 − y3 − 2y4 − 4y5 − 10y6 − 25y7 − 66y8

−178y9 − 490y10 − . . . − terms through order y6999

and indeed that ξ0(y) ∈ S−2:

ξ0(y)−2 = 1 − 2y − y2 − y4 − 2y5 − 7y6 − 18y7 − 50y8

−138y9 − 386y10 − . . . − terms through order y6999

Here I do have a proof of these properties (see below).

• Note that

ξ0(y)α − 1

α
= y +

α + 3

2
y2 +

(α + 2)(α + 7)

6
y3 + O(y4)

• So ξ0(y) /∈ Sα for α < −2.
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Application to R̃(x, y, q) =
∞∑

n=0

xn yn(n−1)/2

(1 + q) · · · (1 + q + . . . + qn−1)

• Can use explicit implicit function formula to prove that

ξ0(y; q) = 1 +
∞∑

n=1

Pn(q)

Qn(q)
yn

where

Qn(q) =

∞∏

k=2

(1 + q + . . . + qk−1)⌊n/(k
2)⌋

and Pn(q) is a self-inversive polynomial in q with integer coefficients.

• Empirically Pn(q) has two interesting positivity properties:

(a) Pn(q) has all nonnegative coefficients. Indeed, all the

coefficients are strictly positive except [q1] P5(q) = 0.

(b) Pn(q) > 0 for q > −1.

• Empirically ξ0(y; q) ∈ S−1 for all q > −1:

2

3

4

5

6

7

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

q

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

Α
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Identities for the partial theta function

• Use standard notation for q-shifted factorials:

(a; q)n =
n−1∏

j=0

(1 − aqj)

(a; q)∞ =

∞∏

j=0

(1 − aqj) for |q| < 1

• A pair of identities for the partial theta function:

∞∑

n=0

xn yn(n−1)/2 = (y; y)∞ (−x; y)∞

∞∑

n=0

yn

(y; y)n (−x; y)n

∞∑

n=0

xn yn(n−1)/2 = (−x; y)∞

∞∑

n=0

(−x)n yn2

(y; y)n (−x; y)n

as formal power series and as analytic functions on (x, y) ∈ C × D

• Rewrite these as

∞∑

n=0

xn yn(n−1)/2 = (y; y)∞ (−xy; y)∞

[
1 + x +

∞∑

n=1

yn

(y; y)n (−xy; y)n−1

]

∞∑

n=0

xn yn(n−1)/2 = (−xy; y)∞

[
1 + x +

∞∑

n=1

(−x)n yn2

(y; y)n (−xy; y)n−1

]

• The first identity goes back to Heine (1847).

• The second identity can be found in Andrews and Warnaar

(2007).
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Proof that ξ0 ∈ S1 for the partial theta function

• Let’s say we use the first identity:

Θ0(x, y) = (y; y)∞ (−xy; y)∞

[
1 + x +

∞∑

n=1

yn

(y; y)n (−xy; y)n−1

]

• So Θ0(x, y) = 0 is equivalent to “brackets = 0”.

• Insert x = −ξ0(y) and bring ξ0(y) to the LHS:

ξ0(y) = 1 +
∞∑

n=1

yn

n∏
j=1

(1 − yj)
n−1∏
j=1

[1 − yjξ0(y)]

• This formula can be used iteratively to determine ξ0(y),

and in particular to prove the strict positivity of its coefficients:

• Define the map F : Z[[y]] → Z[[y]] by

(Fξ)(y) = 1 +
∞∑

n=1

yn

n∏
j=1

(1 − yj)
n−1∏
j=1

[1 − yjξ(y)]

• Define a sequence ξ
(0)
0 , ξ

(1)
0 , . . . ∈ Z[[y]] by ξ

(0)
0 = 1 and ξ

(k+1)
0 = Fξ

(k)
0 .

• Then ξ
(0)
0 � ξ

(1)
0 � . . . � ξ0 and ξ

(k)
0 (y) = ξ0(y) + O(y3k+1).

• In particular, lim
k→∞

ξ
(k)
0 (y) = ξ0(y), and ξ0(y) has strictly positive

coefficients.

• Thomas Prellberg has a combinatorial interpretation of ξ0(y)

and ξ
(k)
0 (y).

• Proofs of ξ0 ∈ S−1 and ξ0 ∈ S−2 use second identity in a similar way.
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Elementary proof of the first identity

• Proof uses nothing more than Euler’s first and second identities

1

(t; q)∞
=

∞∑

n=0

tn

(q; q)n

(t; q)∞ =
∞∑

n=0

(−t)n qn(n−1)/2

(q; q)n

valid for (t, q) ∈ D × D and (t, q) ∈ C × D, respectively.

• Write
∞∑

n=0

xn yn(n−1)/2 =

∞∑

n=0

xn yn(n−1)/2 (y; y)∞
(y; y)n (yn+1; y)∞

• Insert Euler’s first identity for 1/(yn+1; y)∞:

Θ0(x, y) = (y; y)∞

∞∑

n=0

xn yn(n−1)/2

(y; y)n

∞∑

k=0

y(n+1)k

(y; y)k

= (y; y)∞

∞∑

k=0

yk

(y; y)k

∞∑

n=0

(xyk)n yn(n−1)/2

(y; y)n

= (y; y)∞

∞∑

k=0

yk

(y; y)k
(−xyk; y)∞ by Euler’s second identity

= (y; y)∞ (−x; y)∞

∞∑

k=0

yk

(y; y)k (−x; y)k

• This identity goes back to Heine (1847), but does not seem to

be very well known.

• It can be found in Fine (1988) and Andrews and Warnaar (2007).

• Did anyone know it between 1847 and 1988???
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Proof of the first and second identities

• A simple limiting case of Heine’s first and second transformations

2φ1(a, b; c; q, z) =
(b; q)∞ (az; q)∞
(c; q)∞ (z; q)∞

2φ1(c/b, z; az; q, b)

2φ1(a, b; c; q, z) =
(c/a; q)∞ (az; q)∞

(c; q)∞ (z; q)∞
2φ1(abz/c, a; az; q, c/a)

for the basic hypergeometric function

2φ1(a, b; c; q, z) =
∞∑

n=0

(a; q)n (b; q)n
(q; q)n (c; q)n

zn

• Just set b = q and z = −x/a, then take a → ∞ and c → 0.

• This is how Heine (1847) proved the first identity.

• Heine didn’t know his second transformation, which is apparently

due to Rogers (1893).

• Who first wrote the second identity for the partial

theta function???

• Surely it must have been known before Andrews and Warnaar

(2007)!?!
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Can any of this be generalized?

• Recall our friend

R̃(x, y, q) =
∞∑

n=0

xn yn(n−1)/2

(1 + q) · · · (1 + q + . . . + qn−1)

• Can this proof be extended to cases q 6= 0?

• Here is a general identity:

∞∑

n=0

xn yn(n−1)/2

(q; q)n
=

1

(q; q)∞

∞∑

ℓ=0

(−1)ℓ qℓ(ℓ+1)/2

(q; q)ℓ
Θ0(xqℓ, y)

• Can deduce generalizations of the first and second identities for

the partial theta function:

∞∑

n=0

xn yn(n−1)/2

(q; q)n
=

(y; y)∞
(q; q)∞

∞∑

ℓ=0

(−1)ℓ qℓ(ℓ+1)/2

(q; q)ℓ
(−xqℓ; y)∞

∞∑

n=0

yn

(y; y)n (−xqℓ; y)n

∞∑

n=0

xn yn(n−1)/2

(q; q)n
=

1

(q; q)∞

∞∑

ℓ=0

(−1)ℓ qℓ(ℓ+1)/2

(q; q)ℓ
(−xqℓ; y)∞

∞∑

n=0

(−xqℓ)n yn2

(y; y)n (−xqℓ; y)n

• But I don’t know what to do with these formulae, because of the

factors (−1)ℓ.
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