Brownian motion, Ricci curvature, functional inequalities and geometric flows

Anton Thalmaier
University of Luxembourg

Mark Kac Seminar
Utrecht, Netherlands

March 2, 2018

Outline

(1) Stochastic analysis of static and evolving manifolds
(2) Characterizing Ricci curvature by functional inequalities
(3) Heat equations under geometric flows and entropy formulas
I. Motivation: Heat equation on a Riemannian manifold

- Let (M, g) be a complete Riemannian manifold (M, g) and

$$
L=\Delta+Z \quad \text { with } Z \in \Gamma(T M)
$$

- u be a positive solution to

$$
\frac{\partial}{\partial t} u=L u \quad \text { on } \quad M \times \mathbb{R}_{+}
$$

- (Gradient estimate) Want to bound

$$
|\nabla u| \text { or } \frac{|\nabla u|}{u} .
$$

- (Harnack inequalities) Want to compare

$$
u(x, s) \text { and } u(y, t)
$$

- Why is Ricci curvature important for such questions?

Stationary solutions to the Laplace equation

- Cheng-Yau (1975)

Let M be complete and D be some open, relatively compact domain D in M. Assume that u is a positive harmonic function on D :

$$
\Delta u=0
$$

Then

$$
\frac{|\nabla u|}{u}(x) \leq c(n)\left[\sqrt{K}+\frac{1}{r(x)}\right]
$$

if $\operatorname{Ric} \mid D \geq-K, K \geq 0$ (where $r(x)=\operatorname{dist}(x, \partial D)$ and $n=\operatorname{dim} M$).

The formula is easy to prove by probabilistic methods, e.g. Arnaudon, Driver, Th. (2007).

- For $L=\Delta+Z$ let u be a solution to $\frac{\partial}{\partial t} u=L u$.

There is an exact formula for the differential

$$
(\nabla u)(\cdot, t)_{x}
$$

in terms of an L-diffusion starting from x :

$$
X_{t}=X_{t}^{x}, \quad t<\zeta(x)
$$

- Recall that L-diffusions X_{t} on M are defined by the property that for each $f \in C_{c}^{\infty}(M)$,

$$
d\left(f\left(X_{t}\right)\right)-(L f)\left(X_{t}\right) d t=0
$$

(mod differentials of loc mart.)

- Denote by

$$
\operatorname{Ric}^{Z}=\operatorname{Ric}-\nabla Z
$$

the Bakry-Émery Ricci tensor, i.e.

$$
\operatorname{Ric}^{Z}(X, Y):=\operatorname{Ric}(X, Y)-\left\langle\nabla_{X} Z, Y\right\rangle
$$

- Let

$$
\operatorname{Ric}_{/ / t}^{Z}:=/ /_{t}^{-1} \circ \operatorname{Ric}_{X_{t}}^{Z} \circ / /{ }_{t} \in \operatorname{End}\left(T_{x} M\right)
$$

where $/ /_{t}: T_{x} M \rightarrow T_{X_{t}} M$ is parallel transport along $X_{t}=X_{t}^{x}$:

By convention $\operatorname{Ric}_{x}^{Z}(v)=\operatorname{Ric}_{x}^{Z}(\cdot, v)^{\sharp}$ for $v \in T_{x} M$.

Damped parallel transport

- For $x \in M$ define a linear transformation

$$
Q_{t}: T_{x} M \rightarrow T_{x} M
$$

as solution to the pathwise ODE

$$
\left\{\begin{aligned}
d Q_{t} & =-Q_{t} \operatorname{Ric}_{/ / t}^{z} d t \\
Q_{0} & =\operatorname{id}_{T_{x} M}
\end{aligned}\right.
$$

- In the sequel we need

$$
Q_{t} \circ / /_{t}^{-1}: T_{X_{t}} M \rightarrow T_{x} M
$$

("damped parallel transport" along X_{t})

Theorem (Gradient formulas)

Let $f \in \mathscr{B}_{b}(M)$ and $u(x, t)=P_{t} f(x)$ be the (minimal) solution to

$$
\frac{\partial}{\partial t} u=L u,\left.u\right|_{t=0}=f .
$$

- (Semigroup formula) Then $P_{t} f(x)=\mathbb{E}\left[f\left(X_{t}^{x}\right) 1_{\{t<\zeta(x)\}}\right]$.
- (Derivative formula) If $f \in C_{b}^{1}(M)$ and Ric^{Z} bounded below,

$$
\left(\nabla P_{t} f\right)(x)=\mathbb{E}\left[Q_{t} / /_{t}^{-1} \nabla f\left(X_{t}^{x}\right)\right]
$$

- (Bismut formula) If $f \in \mathscr{B}_{b}(M)$ (no assumption on Ric), then

$$
\left\langle\left(\nabla P_{t} f\right)_{x}, v\right\rangle=-\mathbb{E}\left[f\left(X_{t}^{x}\right) \mathbb{1}_{\{t<\zeta(x)\}} \int_{0}^{\tau}\left\langle Q_{s}^{*} \dot{\ell}_{s}, d B_{s}\right\rangle\right]
$$

for each $v \in T_{x} M$, where

- $\tau=\tau_{D}(x) \wedge t$ with $\tau_{D}(x)$ the first exit time of X_{t}^{x} from some relatively compact neighbourhood D of x
- B is a Brownian motion in $T_{x} M$
- ℓ_{t} is any adapted process in $T_{x} M$ with absolutely continuous paths of finite energy such that $\ell_{0}=v$ and $\ell_{\tau}=0$.

A first observation

- Suppose that

$$
\mathrm{CD}(K, \infty) \quad \operatorname{Ric}^{Z}(X, X) \geq K|X|^{2}, \quad X \in T M
$$

for some constant K.

- Then

$$
\left|Q_{t}\right| \leq e^{-K t}, \quad t \geq 0
$$

- Hence,

$$
\text { (gradient estimate) } \quad\left|\nabla P_{t} f\right| \leq e^{-K t} P_{t}|\nabla f|^{2}, \quad f \in C_{b}^{1}(M) \text {. }
$$

- Actually the gradient estimate is equivalent to $\mathrm{CD}(K, \infty)$.

II. Stochastic flows

Let L be a second order PDO on M, e.g.

$$
L=A_{0}+\sum_{i=1}^{r} A_{i}^{2},
$$

where $A_{0}, A_{1}, \ldots, A_{r} \in \Gamma(T M)$ for some $r \in \mathbb{N}$.
Let

$$
X_{.}^{x} \equiv\left(X_{t}^{x}\right)_{t \geq 0}
$$

be an M-valued L-diffusion (or flow process to L) with starting point x in the sense that $X_{0}^{x}=x$ and for all $f \in C_{c}^{\infty}(M)$, the process

$$
N_{t}^{f}(x):=f\left(X_{t}^{x}\right)-f(x)-\int_{0}^{t}(L f)\left(X_{s}^{x}\right) d s, \quad t \geq 0
$$

is a martingale, i.e.

$$
\mathbb{E}^{\mathscr{F}_{s}} \underbrace{\left[f\left(X_{t}^{x}\right)-f\left(X_{s}^{x}\right)-\int_{s}^{t}(L f)\left(X_{r}^{X}\right) d r\right]}_{=N_{t}^{f}(x)-N_{s}^{f}(x)}=0, \quad \text { for all } s \leq t .
$$

Recall Let Z be a Brownian motion on \mathbb{R}^{r}. Then solutions X to the Stratonovich SDE on M:

$$
d X=A_{0}(X) d t+\sum_{i=1}^{r} A_{i}(X) \circ d Z^{i}
$$

are L-diffusions to the operator

$$
L=A_{0}+\sum_{i=1}^{r} A_{i}^{2}
$$

Brownian motions and moving frames

Brownian motions on M are L-diffusions (stochastic flows) to the Laplace-Beltrami operator Δ on M.

Good: We have a method to construct Brownian motions.
Bad: There is no canonical way to write Δ in Hörmander form as a sum of squares.

Notation. Let $\pi: P \rightarrow M$ be the G-principal bundle of orthonormal frames with $G=O(n)$. The fibre P_{x} consists of the linear isometries $u: \mathbb{R}^{n} \rightarrow T_{x} M$ where $u \in P_{x}$ is identified with the \mathbb{R}-basis

$$
\left(u_{1}, \ldots, u_{n}\right):=\left(u e_{1}, \ldots, u e_{n}\right)
$$

Write $P=\mathrm{O}(T M)$.

The Levi-Civita connection in TM induces canonically a G-connection in P given as a G-invariant differentiable splitting h of the following exact sequence of vector bundles over P :

The splitting gives a decomposition of $T P$:

$$
T P=V \oplus H:=\operatorname{ker} d \pi \oplus h\left(\pi^{*} T M\right) .
$$

For $u \in P$, the space H_{u} is called the horizontal space at u and $V_{u}=\left\{v \in T_{u} P: \quad(d \pi) v=0\right\}$ the vertical space at u.
The bundle isomorphism

$$
h: \pi^{*} T M \xrightarrow{\sim} H \hookrightarrow T P
$$

is the horizontal lift of the G-connection; fibrewise it reads as

$$
h_{u}: T_{\pi(u)} M \xrightarrow{\sim} H_{u} .
$$

- The orthonormal frame bundle $P=\mathrm{O}(T M)$, considered as a manifold, is parallelizable.
- The horizontal subbundle H is trivialized by the standard-horizontal vector fields H_{1}, \ldots, H_{n} in $\Gamma(T P)$ defined by

$$
H_{i}(u):=h_{u}\left(u e_{i}\right) .
$$

- The canonical second order partial differential operator on $\mathrm{O}(T M)$,

$$
\Delta^{\mathrm{hor}}:=\sum_{i=1}^{n} H_{i}^{2}
$$

is called Bochner's horizontal Laplacian.
(a) Let Z be a semimartingale on \mathbb{R}^{n}. Solve the following SDE on the frame bundle $P=\mathrm{O}(T M)$:

$$
d U=\sum_{i=1}^{n} H_{i}(U) \circ d Z^{i}, \quad U_{0}=u_{0}
$$

(b) Project U onto the manifold M :

$$
X=\pi \circ U
$$

(c) From X we can recover again Z via $Z=\int_{U} \vartheta$ where U is the unique horizontal lift of X to P with $U_{0}=u_{0}$ and

$$
\vartheta \in \Gamma\left(T^{*} P \otimes \mathbb{R}^{n}\right), \quad \vartheta_{u}\left(X_{u}\right):=u^{-1}\left(d \pi X_{u}\right), \quad u \in P
$$

the canonical 1-form.
We call X on M stochastic development of Z. The frame U moves along X by stochastic parallel transport.

Theorem (Stochastic development)

The following three conditions are equivalent:

- Z is a Brownian motion on \mathbb{R}^{n} (diffusion with generator $\Delta_{\mathbb{R}^{n}}$).
- U is an L-diffusion on $P=\mathrm{O}(T M)$ to

$$
L=\Delta^{\mathrm{hor}}=\sum_{i=1}^{n} H_{i}^{2}
$$

- X is a Brownian motion on M (diffusion with generator the Laplace-Beltrami operator Δ on M).

Indeed: Use that

$$
\Delta^{\mathrm{hor}}(f \circ \pi)=(\Delta f) \circ \pi
$$

Definition (Parallel transport along a semimartingale)

For $0 \leq s \leq t$, consider

The isometries

$$
/_{s, t}:=U_{t} \circ U_{s}^{-1}: T_{X_{s}} M \rightarrow T_{X_{t}} M
$$

are called stochastic parallel transport along \boldsymbol{X}.

III. Derivative formulas

- (Process) X_{t} is an L-diffusion where

$$
L=\Delta+Z \quad \text { with } Z \in \Gamma(T M)
$$

- Let $\operatorname{Ric}^{Z}=\operatorname{Ric}-\nabla Z$, i.e.

$$
\operatorname{Ric}^{Z}(X, Y)=\operatorname{Ric}(X, Y)-\left\langle\nabla_{X} Z, Y\right\rangle
$$

- Corresponding semigroup:

$$
P_{t} f(x)=\mathbb{E}\left[f\left(X_{t}^{x}\right) \mathbb{1}_{\{t<\zeta(x)\}}\right], \quad t \geq 0 .
$$

Goal: Stochastic formula for $\nabla P_{t} f$!

- Basic observation

Let Q_{t} be the $\operatorname{Aut}\left(T_{x} M\right)$-valued process defined by

$$
\frac{d}{d t} Q_{t}=-Q_{t}\left(\operatorname{Ric}_{Z}\right)_{/ / t}, \quad Q_{0}=\operatorname{id}_{T_{x} M}
$$

Fix $t>0$. Then,

$$
N_{s}:=Q_{s} / /_{s}^{-1}\left(\nabla P_{t-s} f\right)_{X_{s}^{x}}, \quad 0 \leq s \leq t
$$

is a local martingale in $T_{x} M$.

- How to check? Write everything as functions on $\mathrm{O}(T M)$, e.g. to $a \in \Gamma(T M)$ consider

$$
F_{a}: \mathrm{O}(T M) \rightarrow \mathbb{R}^{n}, \quad F_{a}(u)=u^{-1} a_{\pi(u)}
$$

Letting $a_{t}:=\nabla P_{t} f$, we have

$$
N_{s}=\left(Q_{s} U_{0}\right) \cdot F_{a_{t-s}}\left(U_{s}\right)
$$

Use Itô's formula to calculate $d N_{s}$.

- Suppose that

$$
N_{s}=Q_{s} / /_{s}^{-1}\left(\nabla P_{t-s} f\right)_{X_{s}^{\times}}, \quad 0 \leq s \leq t
$$

is a true martingale.

- Then the equality $\mathbb{E}\left[N_{0}\right]=\mathbb{E}\left[N_{t}\right]$ gives the following derivative formula

$$
\left(\nabla P_{t} f\right)(x)=\mathbb{E}\left[Q_{t} / /_{t}^{-1} \nabla f\left(X_{t}^{x}\right)\right], \quad t \geq 0
$$

- This formula clearly requires conditions on boundedness of Ric^{Z} from below. It can not hold in case of explosion of the $(\Delta+Z)$-diffusion.

Fix $t>0$. Since $N_{s}=Q_{s} / /_{s}^{-1}\left(\nabla P_{t-s} f\right)_{X_{s}^{x}}$ is a local martingale, for any adapted process ℓ_{s} with absolutely continuous paths,

$$
\begin{aligned}
n_{s}: & =\left\langle N_{s}, \ell_{s}\right\rangle-\int_{0}^{s}\left\langle N_{r}, d \ell_{r}\right\rangle \\
& =\left\langle\left(\nabla P_{t-s} f\right)_{X_{s}^{x}}, / / /_{s} Q_{s}^{*} \ell_{s}\right\rangle-\int_{0}^{s}\left\langle\left(\nabla P_{t-r} f\right)_{X_{r}^{x}}, / / r Q_{r}^{*} \dot{\ell}_{r}\right\rangle d r
\end{aligned}
$$

is a local martingale as well $(0 \leq s \leq t)$. Thus
$n_{s}^{\prime}:=\left\langle\left(\nabla P_{t-s} f\right)_{X_{s}^{\times}}, / /{ }_{s} Q_{s}^{*} \ell_{s}\right\rangle-\int_{0}^{s}\left\langle\left(\nabla P_{t-r} f\right)_{X_{r}^{\times}}, / / r d B_{r}\right\rangle \int_{0}^{s}\left\langle Q_{s}^{*} \dot{\theta}_{r}, d B_{r}\right\rangle$
is a local martingale. But since

$$
\left(P_{t-s} f\right)\left(X_{s}^{x}\right)=\int_{0}^{s}\left\langle\left(\nabla P_{t-r} f\right)_{X_{r}^{x}}, / / r d B_{r}\right\rangle,
$$

we finally see that

$$
\left\langle\left(\nabla P_{t-s} f\right)_{X_{s}^{x}}, / / s Q_{s}^{*} \ell_{s}\right\rangle-\left(P_{t-s} f\right)\left(X_{s}^{x}\right) \int_{0}^{s}\left\langle Q_{r}^{*} \dot{\ell}_{r}, d B_{r}\right\rangle, \quad 0 \leq s \leq t
$$

is a local martingale.

- Choose ℓ_{s} such that the local martingale n_{s}^{\prime} is a true martingale, and further such that $\ell_{0}=v$ and $\ell_{t}=0$.
- This can always be achieved by taking $\ell_{s}=0$ for $s \geq t \wedge \tau(x)$ where $\tau(x)$ is the first exit time of X_{s}^{x} from a relatively compact neighborhood of x.
- The equality

$$
\mathbb{E}\left[n_{0}^{\prime}\right]=\mathbb{E}\left[n_{t \wedge \tau(x)}^{\prime}\right]
$$

then gives the Bismut formula

$$
\left(\nabla P_{t} f\right)_{x} v=\mathbb{E}\left[f\left(X_{t}^{x}\right) \mathbb{1}_{\{t<\zeta(x)\}} \int_{0}^{t \wedge \tau(x)}\left\langle Q_{r}^{*} \dot{\ell}_{r}, d B_{r}\right\rangle\right]
$$

- This formula doesn't require any assumption on the geometry; explosion of the diffusion is allowed.

