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Outline

1 Stochastic analysis of static and evolving manifolds
2 Characterizing Ricci curvature by functional inequalities
3 Heat equations under geometric flows and entropy formulas
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I. Motivation: Heat equation on a Riemannian manifold

Let (M,g) be a complete Riemannian manifold (M,g) and

L = ∆ + Z with Z ∈ Γ(TM)

u be a positive solution to

∂

∂t
u = Lu on M×R+

(Gradient estimate) Want to bound

|∇u| or
|∇u|

u
.

(Harnack inequalities) Want to compare

u(x,s) and u(y, t).

Why is Ricci curvature important for such questions?
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Stationary solutions to the Laplace equation

Cheng-Yau (1975)
Let M be complete and D be some open, relatively compact
domain D in M. Assume that u is a positive harmonic function
on D:

∆u = 0

Then
|∇u|

u
(x) ≤ c(n)

[
√

K +
1

r(x)

]
if Ric|D ≥ −K , K ≥ 0 (where r(x) = dist(x,∂D) and
n = dimM).

The formula is easy to prove by probabilistic methods, e.g.
Arnaudon, Driver, Th. (2007).
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For L = ∆ + Z let u be a solution to
∂

∂t
u = Lu.

There is an exact formula for the differential

(∇u)(·, t)x

in terms of an L -diffusion starting from x:

Xt = Xx
t , t < ζ(x).

Recall that L -diffusions Xt on M are defined by the property
that for each f ∈ C∞c (M),

d(f(Xt ))− (Lf)(Xt )dt = 0

(mod differentials of loc mart.)
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Denote by
RicZ = Ric−∇Z

the Bakry-Émery Ricci tensor, i.e.

RicZ (X ,Y) := Ric(X ,Y)−〈∇X Z ,Y〉 .

Let
RicZ

//t
:= //−1

t ◦RicZ
Xt
◦ //t ∈ End(TxM)

where //t : TxM→ TXt
M is parallel transport along Xt = Xx

t :

TxM TxM

TXt M TXt M

RicZ
//t

//t //−1
t

RicZ
Xt

By convention RicZ
x (v) = RicZ

x (·,v)] for v ∈ TxM.
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Damped parallel transport

For x ∈M define a linear transformation

Qt : TxM→ TxM

as solution to the pathwise ODEdQt = −Qt RicZ
//t

dt

Q0 = idTx M

In the sequel we need

Qt ◦ //
−1
t : TXt

M→ TxM

(“damped parallel transport” along Xt )
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Theorem (Gradient formulas)

Let f ∈Bb(M) and u(x, t) = Pt f(x) be the (minimal) solution to
∂
∂t u = Lu, u|t=0 = f .

(Semigroup formula) Then Pt f(x) = E[f(Xx
t )1{t<ζ(x)}].

(Derivative formula) If f ∈ C1
b (M) and RicZ bounded below,

(∇Pt f)(x) = E
[
Qt//

−1
t ∇f(Xx

t )
]

(Bismut formula) If f ∈Bb(M) (no assumption on Ric), then

〈(∇Pt f)x ,v〉= −E

[
f(Xx

t )1{t<ζ(x)}

∫ τ

0

〈
Q∗s ˙̀s ,dBs

〉]
for each v ∈ TxM, where

τ = τD(x)∧ t with τD(x) the first exit time of Xx
t from some

relatively compact neighbourhood D of x
B is a Brownian motion in TxM
`t is any adapted process in TxM with absolutely continuous
paths of finite energy such that `0 = v and `τ = 0.
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A first observation

Suppose that

CD(K ,∞) RicZ (X ,X) ≥ K |X |2, X ∈ TM,

for some constant K .

Then
|Qt | ≤ e−Kt , t ≥ 0.

Hence,

(gradient estimate) |∇Pt f | ≤ e−KtPt |∇f |2, f ∈ C1
b (M).

Actually the gradient estimate is equivalent to CD(K ,∞).
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II. Stochastic flows
Let L be a second order PDO on M, e.g.

L = A0 +
r∑

i=1

A2
i ,

where A0,A1, . . . ,Ar ∈ Γ(TM) for some r ∈ N.

Let
Xx

. ≡ (Xx
t )t≥0

be an M-valued L-diffusion (or flow process to L ) with starting
point x in the sense that Xx

0 = x and for all f ∈ C∞c (M), the process

Nf
t (x) :=f(Xx

t )− f(x)−

∫ t

0
(Lf)(Xx

s )ds, t ≥ 0,

is a martingale, i.e.

EFs

[
f(Xx

t )− f(Xx
s )−

∫ t

s
(Lf)(Xx

r )dr
]

︸                                     ︷︷                                     ︸
= Nf

t (x)−Nf
s(x)

= 0, for all s ≤ t .
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Recall Let Z be a Brownian motion on Rr . Then solutions X to the
Stratonovich SDE on M:

dX = A0(X)dt +
r∑

i=1
Ai(X)◦dZ i

are L -diffusions to the operator

L = A0 +
r∑

i=1

A2
i
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Brownian motions and moving frames

Brownian motions on M are L -diffusions (stochastic flows) to the
Laplace-Beltrami operator ∆ on M.

Good: We have a method to construct Brownian motions.

Bad: There is no canonical way to write ∆ in Hörmander form as
a sum of squares.

Notation. Let π : P →M be the G-principal bundle of orthonormal
frames with G = O(n). The fibre Px consists of the linear
isometries u : Rn→ TxM where u ∈ Px is identified with the R-basis

(u1, . . . ,un) := (ue1, . . . ,uen).

Write P = O(TM).
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The Levi-Civita connection in TM induces canonically a
G-connection in P given as a G-invariant differentiable splitting h
of the following exact sequence of vector bundles over P:

0 kerdπ TP π∗TM 0.
dπ

h

The splitting gives a decomposition of TP:

TP = V ⊕H := kerdπ⊕h(π∗TM).

For u ∈ P, the space Hu is called the horizontal space at u and
Vu = {v ∈ TuP : (dπ)v = 0} the vertical space at u.
The bundle isomorphism

h : π∗TM ∼
−→ H ↪→ TP

is the horizontal lift of the G-connection; fibrewise it reads as

hu : Tπ(u)M ∼
−→ Hu.
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The orthonormal frame bundle P = O(TM), considered as a
manifold, is parallelizable.

The horizontal subbundle H is trivialized by the
standard-horizontal vector fields H1, . . . ,Hn in Γ(TP) defined
by

Hi(u) := hu(uei).

The canonical second order partial differential operator
on O(TM),

∆hor :=
n∑

i=1

H2
i ,

is called Bochner’s horizontal Laplacian.
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(a) Let Z be a semimartingale on Rn. Solve the following SDE on
the frame bundle P = O(TM):

dU =
n∑

i=1

Hi(U)◦dZ i , U0 = u0.

(b) Project U onto the manifold M:

X = π◦U

(c) From X we can recover again Z via Z =
∫

U ϑ where U is the
unique horizontal lift of X to P with U0 = u0 and

ϑ ∈ Γ(T∗P ⊗Rn), ϑu(Xu) := u−1(dπXu), u ∈ P,

the canonical 1-form.

We call X on M stochastic development of Z . The frame U moves
along X by stochastic parallel transport.
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Theorem (Stochastic development)

The following three conditions are equivalent:

Z is a Brownian motion on Rn (diffusion with generator ∆Rn ).

U is an L-diffusion on P = O(TM) to

L = ∆hor =
n∑

i=1

H2
i .

X is a Brownian motion on M (diffusion with generator the
Laplace-Beltrami operator ∆ on M).

Indeed: Use that
∆hor(f ◦π) = (∆f)◦π
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Definition (Parallel transport along a semimartingale)

For 0 ≤ s ≤ t , consider

TXs M TXt M

Rn

∼

Us Ut

The isometries

//s,t := Ut ◦U−1
s : TXs M→ TXt M

are called stochastic parallel transport along X .
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III. Derivative formulas

(Process) Xt is an L -diffusion where

L = ∆ + Z with Z ∈ Γ(TM)

Let RicZ = Ric−∇Z , i.e.

RicZ (X ,Y) = Ric(X ,Y)−〈∇X Z ,Y〉.

Corresponding semigroup:

Pt f(x) = E[f(Xx
t ) 1{t<ζ(x)}], t ≥ 0.

Goal: Stochastic formula for ∇Pt f !
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Basic observation

Let Qt be the Aut(TxM)-valued process defined by

d
dt

Qt = −Qt (RicZ )//t
, Q0 = idTx M .

Fix t > 0. Then,

Ns := Qs//
−1
s (∇Pt−s f)Xx

s
, 0 ≤ s ≤ t ,

is a local martingale in TxM.
How to check? Write everything as functions on O(TM), e.g.
to a ∈ Γ(TM) consider

Fa : O(TM)→ Rn, Fa(u) = u−1aπ(u).

Letting at := ∇Pt f , we have

Ns = (QsU0) ·Fat−s (Us).

Use Itô’s formula to calculate dNs .
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Suppose that

Ns = Qs//
−1
s (∇Pt−s f)Xx

s
, 0 ≤ s ≤ t ,

is a true martingale.

Then the equality E[N0] = E[Nt ] gives the following
derivative formula

(∇Pt f)(x) = E
[
Qt//

−1
t ∇f(Xx

t )
]
, t ≥ 0.

This formula clearly requires conditions on boundedness of
RicZ from below. It can not hold in case of explosion of the
(∆ + Z)-diffusion.
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Fix t > 0. Since Ns = Qs//
−1
s (∇Pt−s f)Xx

s
is a local martingale, for

any adapted process `s with absolutely continuous paths,

ns : = 〈Ns , `s〉−

∫ s

0
〈Nr ,d`r〉

=
〈
(∇Pt−s f)Xx

s
, //s Q∗s `s

〉
−

∫ s

0

〈
(∇Pt−r f)Xx

r
, //r Q∗r ˙̀r

〉
dr

is a local martingale as well (0 ≤ s ≤ t). Thus

n′s := 〈(∇Pt−s f)Xx
s
, //s Q∗s `s〉−

∫ s

0

〈
(∇Pt−r f)Xx

r
, //r dBr

〉∫ s

0
〈Q∗s ˙̀r ,dBr〉

is a local martingale. But since

(Pt−s f)(Xx
s ) =

∫ s

0
〈(∇Pt−r f)Xx

r
, //r dBr〉,

we finally see that

〈(∇Pt−s f)Xx
s
, //sQ∗s `s〉− (Pt−s f)(Xx

s )

∫ s

0
〈Q∗r ˙̀r ,dBr〉, 0 ≤ s ≤ t ,

is a local martingale.
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Choose `s such that the local martingale n′s is a true
martingale, and further such that `0 = v and `t = 0.

This can always be achieved by taking `s = 0 for s ≥ t ∧τ(x)
where τ(x) is the first exit time of Xx

s from a relatively compact
neighborhood of x.

The equality
E[n′0] = E[n′t∧τ(x)]

then gives the Bismut formula

(∇Pt f)x v = E

f(Xx
t )1{t<ζ(x)}

∫ t∧τ(x)

0
〈Q∗r ˙̀r ,dBr〉


This formula doesn’t require any assumption on the geometry;
explosion of the diffusion is allowed.
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