Background

Smartcards are tamper-resistant miniature computers carrying secret material. They play a vital role in ICT security, e.g., as bank cards, cash cards, GSM SIM cards, and the new biometric passport.

Smartcards are not 100% secure: there is an ongoing arms race in which new attacks on smartcards and countermeasures alternate. Therefore smartcards are subjected to rigorous security evaluations by independent evaluators.

Trends

- The main threat to smartcards today are side-channel attacks on underlying hardware:
 - passive side-channel attacks, which attempt to retrieve secret cryptographic keys by monitoring physical characteristics, e.g., timing, power consumption (SPA/DPA), EM radiation, …
 - active side-channel attacks or fault injections, where cards are manipulated to induce faults, to by-pass security mechanisms or retrieve keys, e.g., manipulating power supply or clock pulse, subjecting chip surface to heat or light (e.g., using lasers), or EM radiation, …
- Smartcard software is increasingly often written in the high-level programming language Java

Research Questions and Goals

Can we predict and prevent vulnerabilities of Java Cards to passive and active side-channel attacks?

Planned steps in answering these questions:

- a software simulator to easily observe vulnerabilities before software is implemented on a smartcard;
- coding guidelines to avoid vulnerabilities;
- program analysis tools to help detecting vulnerabilities.

Initial results:

- The PINPAS tool, a software simulator for side-channel analysis developed within the project, currently handles SPA and DPA, and provides multiple key-management.
- A simple yet effective operation-based metric has been proposed for the vulnerability evaluations of instructions to DPA attacks.
- Compliance to JavaCard 2.1.1 up to 2.2.1 and Global Platform has been assessed for a number of commercially available JavaCards. Deviation from the standards may lead to vulnerabilities.
- Successful verification of security properties w.r.t. faults caused by card tears has been conducted based on a case-study of counting failed PIN tries. The specification languages involved are JML and temporal logic with verification support from model checkers and the KIV tool. Some promising first steps have been taken towards formal verification of the JavaCard transaction mechanism using and KIV.

More info

Project webpage: www.win.tue.nl/pinpasjc/

PINPAS JC is financially supported by:

- Technology Foundation STW
- NWO
- Dutch Ministry of Economic Affairs