Implementing and integrating plugins

in the process mining framework

Date:

September 9, 2004

Author:
Peter van den Brand

Table of Contents

21
Introduction

22
Setting up your environment

22.1
Setting up SourceSafe

32.2
Setting up Borland JBuilder 9.0

42.3
A note on using SourceSafe

43
Coding standards

54
Plugins

55
Mining plugins

55.1
Overview

55.1.1
Setting the options for the mining plugin

65.1.2
Running the mining plugin

75.1.3
Viewing the mining results

95.2
Implementing your own plugin

95.2.1
Getting started

95.2.2
Telling the framework that your plugin exists

105.2.3
Implementing the main miner class

135.2.4
Implementing the user interface

145.2.5
Creating a subclass of MiningResult

156
Export plugins

156.1
Getting started

166.2
Telling the framework that your plugin exists

166.3
Implementing the main export class

177
Import plugins

187.1
Getting started

187.2
Telling the framework that your plugin exists

197.3
Implementing the main import class

208
Analysis plugins

208.1
Getting started

208.2
Telling the framework that your plugin exists

218.3
Implementing the main class

229
Conversion plugins

229.1
Getting started

229.2
Telling the framework that your plugin exists

239.3
Implementing the main conversion class

Introduction

The goal of the framework is to provide an environment in which you can easily implement your own algorithms, without having to reinvent the wheel all the time. It provides the following:

· A user interface for opening log files, setting mining parameters and viewing the mining results.

· Importing, exporting, converting and analysing various models.

· Classes to read log files and to deliver their contents in Java objects.

· Various data structures based on graphs, for representing the output or intermediate results. Currently, Petri nets and EPCs are available.

· Visualization of graphs.

Furthermore, it uses a few third-party libraries. The most useful one for implementing your own algorithms is the COLT scientific library. It provides many standard data structures, like various kinds of matrices. It also provides many algorithms to work with these data structures.

Since the goal of the framework is to minimize the work you need to do to implement a specific algorithm, we advise you to see if the framework already provides the functionality you need, before you start implementing it yourself straight away. If you feel you need some general functionality that’s not available yet and that it could be shared with other algorithms, please notify the framework developers. They will then decide whether it should be a part of the framework or a part of your algorithm. In this way, we can keep it a real framework, instead of a collection of loosely coupled reinventions of the same wheels.

The next section describes how to set up the development environment. Then, the coding conventions are outlined briefly. After that, the general concept of plugins in the framework is presented. After that, there is one section for each of the various types of plugins that are supported at the moment.

1 Setting up your environment

First, you need to get your environment set up. All source code and project files are located in a SourceSafe database, so you will need to install SourceSafe on your own computer. Then, you need to install a suitable Java development environment. We use Borland JBuilder 9.0 and we recommend strongly that you use it as well.

1.1 Setting up SourceSafe

Visual SourceSafe 6.0 is included in the Microsoft Visual Studio 6.0 package. Please ask Eric or Boudewijn for the CDs. It’s not necessary to install the whole package, only SourceSafe will do. Simply follow the installation instructions, it’s very straightforward.

Note however that there’s a small possibility that your particular Windows version can cause problems. If the setup program doesn’t work properly, then please ask Boudewijn for assistance.

Please follow these steps to configure SourceSafe:

· Ask Eric to create a username and password for you. It is convenient to use the same username as the one you use to log in to your computer, because SourceSafe uses that one as a default.

· Map a network drive to the network folder \\tmitwww\shared (this is needed for JBuilder later on)

· Start Visual SourceSafe (Programs => Microsoft Visual Studio 6.0 => Microsoft Visual SourceSafe => Microsoft Visual SourceSafe 6.0)

· Click on File => Open SourceSafe database...

· Click Browse...

· Browse for a database and select the following folder:
< network drive to \\tmitwww\shared >\ProcessMining\SourceSafe

· Enter your username and password from step 1 when asked

· Press Ok

· Now you need to set a working folder. This folder is the folder on your hard disk where your local copies of the files will be stored.

· Right-click on the root node on the left side ($/)

· Choose Set working folder...

· Choose a folder on your hard disk and click Ok

· Now get a local copy of all files in SourceSafe:

· Right-click on the root node on the left side ($/) again, and choose Get latest version...

· Check Recursive and press Ok

· Now all files are being copied, this can take some time

1.2 Setting up Borland JBuilder 9.0

Borland JBuilder 9.0 can be found in the public folders of Outlook, which point to this folder: \\campusfp1\Software3\borland\jbuilder\9. Start the appropriate installation program (install_windows.exe for Windows) from there and follow the instructions.

After installing JBuilder, it’s a good idea to install the update also. It can be found in the public folders as well, or at \\campusfp1\Software3\borland\jbuilder\9upd2.

Now, perform the following steps to configure JBuilder:

· Start JBuilder (Programs => Borland JBuilder 9.0 Enterprise => Borland JBuilder 9.0 Enterprise)

· Choose Team => Select Project VCS...

· Select Visual SourceSafe and press Ok

· Choose Team => Configure Visual SourceSafe and enter the following settings:

· Visual SourceSafe bin directory: probably
C:\Program Files\Microsoft Visual Studio\Common\VSS\win32

· Visual SourceSafe database directory:
<network drive to \\tmitwww\shared>\ProcessMining\SourceSafe

· Visual SourceSafe project name:
$/ProcessMining

· Username and password: use your own SourceSafe login

1.3 A note on using SourceSafe

Because there will be some people working on this project simultaneously, it is very important to make sure that you don’t cause unnecessary trouble for the other people working with the process mining framework. Therefore, please adhere to the following principle:

Do not check in anything that does not compile!!

If you check in some source file that doesn’t compile and other people get the latest version of your source code, they also cannot compile their own work and cannot continue working with the process mining framework. It may not always be possible to avoid these problems, but please be careful and make sure you can compile the source code on your computer at least before you check it in.

Furthermore, if you check out a file, you are the only one who can edit it. No one else can edit that file until you check it in again. So, if you want to work on a source code file that is used by multiple people, please check it back in as soon as possible and don’t leave it checked out for weeks. Of course, if you’re sure you are the only one working on a particular file, this is not very important.

2 Coding standards

We use the standard Sun Java Code Conventions, which can be found at http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html. However, we don’t follow all the formatting rules. JBuilder provides automatic code formatting and the settings for this are stored in the project file. Please use this feature of JBuilder to format your code in the standard way, and don’t change the settings.

We summarize the main points of the Code Conventions here:

· in a class definition, first list the instance variables, then the constructors and finally the methods. They are all ordered from public to private.

· do not make variables public unless there’s a very good reason

· one declaration per line is recommended

· one statement per line is recommended

· put variable declarations at the beginning of blocks

· always use braces after if statements, while loops etc, even if they have only one statement

· package names are lowercase

· class and interface names are mixed case, with the first letter uppercase

· method and variable names are mixed case, with the first letter lowercase

· constants are all uppercase letters, with underscores to separate words

3 Plugins

The framework can be extended with plugins. Plugins are implementations of an algorithm that can be loaded dynamically at startup of the tool. The framework provides an infrastructure to load and use plugins. Furthermore, the framework provides a way to exchange information between plugins, i.e. to use the output of one or more plugins as the input of another plugin.

Currently, there are 5 different types of plugins:

· Mining plugins, for mining workflow logs

· Export plugins, for exporting various objects like petri nets

· Import plugins, for importing from various file formats

· Analysis plugins, for various analysis techniques

· Conversion plugins, for converting from one representation to another

The next few sections will describe the details on how to implement plugins of each type.

4 Mining plugins

A mining plugin is an implementation of an algorithm for mining workflow logs.

4.1 Overview

We first give an overview of the main steps that have to be implemented, without giving too much technical details. These details are given in section 5.2.

4.1.1 Setting the options for the mining plugin

When the user wants to mine a workflow log using your plugin, your plugin will have to provide a small user interface that allows the user to adjust the settings of the particular plugin. Below is an example of the options screen for the Alpha plugin:

[image: image1.png]2 @]

T ’7
i e

Part of the Part of your

framework algorithm

Frnopes
orae @ cuse ascaaintance

The part on the left side of the red line is defined by the framework and is common for all plugins. In this part, the user can specify which processes and event types should be filtered out. This filtering is implemented completely in the framework and your plugin does not have to concern itself with this.

However, the part on the right side of the red line is specific to the mining plugin that the user wants to use. Your implementation will have to supply this part of the user interface. Here you can put various user interface elements for the user to set the options for the plugin. At this point, some information has been extracted from the log already and it’s made available to your implementation for constructing this user interface. The next section will discuss the technical details of this.

4.1.2 Running the mining plugin

When the user presses the Start mining button, your mining plugin will be executed, that is, a certain method that you defined will be called. This method has a parameter, which has methods to read the log and to get summarized information about the log. This summarized information is exactly the same information that was available for building the user interface for the options.

The object to read the log has an interface that you can use to sequentially read all process instances, one by one. This object will only provide the process instances that are accepted by the filtering settings (the left side of the options window). The audit trail entries (cases) in these process instances will have been filtered already as well. The contents of the log file will be delivered to your plugin in nice Java objects with well-defined interfaces.

Another important source of input are the user options for your particular plugin. The idea is that your implementation will obtain the settings directly from the user interface components. See the next section for the details.

4.1.3 Viewing the mining results

The results of the mining plugin can be visualized in a window. Below is an example for a social network mining plugin (handover of work):

[image: image2.png]) Resuts - exampte papor e Sacal etwork miner)
Joba | Lucia | Way | Pewr |
TR i Y 13
i L

The contents of this window are completely defined by the implementation of your mining plugin. In other words, you can visualize anything here. In the example we see a table, a graph that visualizes the contents of the table and a button to save the results to a file.

Fortunately, the framework provides various useful components to make the task of implementing this easier, especially for visualizing graphs. The framework defines data structures for various types of graphs. Currently, Petri nets and EPCs are available and they can be visualized as well.

To visualize any kind of graph, you can use a combination of dot and the grappa package (this is also what the Petri net implementation does). First, you write a dot file containing your graph. Then, you run dot with this file as input. Finally, with grappa you read the output of dot and this gives you a graph visualization like in the figure above. The standard grappa visualization provides much functionality, like zooming, selection of nodes, printing, etc.

If your plugin does not visualize anything on screen, but only wants to write its results to a file, then there’s a standard way to this in the framework. In that case, the user will not see a new window, but only a ‘save file dialog’ will be shown and the results will be saved to the selected file. Please see the next section for the technical details.

In summary, you need to implement the following items:

· A small user interface for the user to adjust the settings for your particular mining plugin, before the mining plugin is executed.

· The mining plugin itself, using the objects defined by the framework to read the log file.

· Visualize the results, using functionality provided by the framework.

4.2 Implementing your own plugin

This section will describe step by step how to implement your own plugin. We will use social network mining as a running example.

4.2.1 Getting started

We start by creating the main class for the new mining plugin. This class, and all other classes that we create specifically for this plugin, should be placed in a sub package of org.processmining.mining. The sub package should contain exactly one family of plugins. For instance, all social network mining plugins are placed in org.processmining.mining.snamining.

The main class of every plugin has to implement the MiningPlugin interface. In our example, we call the new class SocialNetworkMiner. The skeleton of our new class is then:

package org.processmining.mining.snamining;

import org.processmining.mining.*;

import org.processmining.log.*;

public class SocialNetworkMiner implements MiningPlugin {

public SocialNetworkMiner() {

}

public String getName() {

}

public JPanel getOptionsPanel(LogSummary summary) {

}

public MiningResult mine(LogReader log) {

}

}

4.2.2 Telling the framework that your plugin exists

You need to tell the framework that your plugin exists and where it can be found (which class). At start-up, the framework will look for files called mining.ini in the following places:

· the current working directory

· the user’s home directory

· in the directory specified by the Java system property processmining.home
These files contain a list of all known plugins. There is one line per plugin and it has the form PluginName=ClassName.

The class name should be the fully qualified class name, for instance:

org.processmining.mining.snamining.SocialNetworkMiner
Note that the PluginName is not the ‘official’ name, since that is already determined by the return value of the getName method of the plugin implementation. The PluginName is only used to sort the list of plugins.

Furthermore, you can specify a list of class names (separated by semicolons) in the Java system property processmining.mining. The framework will attempt to load these classes and add them to the list of plugins. Note that you can’t specify the sort order using this property (there’s no PluginName= part).

4.2.3 Implementing the main miner class

We should implement at least the methods mentioned in the skeleton above.

The constructor

You can use the default constructor (the constructor without any arguments) to initialize new instances of this class, but this is probably not necessary. Note that objects of this class are only instantiated using the default constructor, so the framework will not use any other constructors.

String getName();

This method should return the name of this plugin. It is used in the user interface for selecting the plugin. The following code snippet will suffice:

public String getName() {

return "Social network miner or whatever";

}

String getHtmlDescription();
This method should return a description of this plugin in HTML. The string returned by this method should only contain the contents of the body of the html page, so the html, head and body tags should not be used. This HTML page is displayed in the help system or as context sensitive help.

JPanel getOptionsPanel(LogSummary summary);

This method should return a JPanel that contains a user interface for setting the options that are specific for this plugin, as mentioned in the previous section. It’s a good idea to make a separate class that encapsulates this user interface and place this class in the same package. If the plugin does not require a user interface, this method can simply return null. In our example we created a separate class SocialNetworkOptions and implemented the getOptionsPanel method as follows:

private SocialNetworkOptions ui = null;

public JPanel getOptionsPanel(LogSummary summary) {

if (ui == null) {

ui = new SocialNetworkOptions(summary);

}

return ui;

}

This method should return the same instance of the options panel every time. Furthermore, the class should store the panel in a field, because it’s the only way that the mine method will be able to find out the user settings later on (in our example, the mine method will use the ui variable). The details of implementing the options panel itself will be discussed later.

The LogSummary object provides information about the log file that will be mined. This information can be used to customize the options panel to properties of the specific log that will be mined. See the javadoc documentation for details about what information is provided by the LogSummary object.

MiningResult mine(LogReader log);

This method executes the real mining plugin. The plugin has two separate sources of input:

· the user interface for setting plugin specific options: in our example, this can be found in the ui variable.

· the process instances and their audit trail entries: this is given in the log parameter. The log object provides methods to read the log sequentially. See the documentation of the LogReader class for more details.

The plugin returns its output as an instance of MiningResult. In case the output is a Petrinet or EPC, you can use the PetrinetResult or EPCResult provided by the framework. If you simply want to write results to a file (in any format), you should use the FileResult class.

Other standard result types may be added in the future. However, if you have results in a different form, then you will probably want to create a subclass of MiningResult. This will be discussed in more detail later.

In our social network mining example, we created a subclass of MiningResult, called SocialNetworkResults. We implement the mine method as follows:

public MiningResult mine(LogReader log) {

DoubleMatrix2D matrix = null;

switch (ui.getSelectedMetrics()) {

case SocialNetworkOptions.SUBCONTRACTING:

matrix = calculateSubcontracting(log);

break;

case SocialNetworkOptions.HANDOVER_OF_WORK:

matrix = calculateHandoverOfWork(log);

break;

// ...other cases...

}

return new SocialNetworkResults(matrix);

}

The implementation of calculateHandoverOfWork would be:

public DoubleMatrix2D calculateHandoverOfWork(LogReader log) {

String[] users = log.getSummary().getOriginators();

DoubleMatrix2D D = DoubleFactory2D.sparse.make(

users.length, users.length, 0);

while (log.hasNext()) {

ProcessInstance pi = log.next();

AuditTrailEntries ates = pi.getAuditTrailEntries();

AuditTrailEntry ate, ate2;

if (ates.hasNext()) {

ate = ates.next();

while (ates.hasNext()) {

int row, column;

ate2 = ates.next();

row = Arrays.binarySearch(users,

ate.getOriginator());

column = Arrays.binarySearch(users,

ate2.getOriginator());

D.set(row, column,

D.get(row, column) + 1.0);

ate = ate2;

}

}

}

return normalize(D, info.getModelElements().length);

}

These example implementations show some important points.

First, you can see how the user interface options are used. In our class SocialNetworkOptions we implemented a method getSelectedMetrics() that returns the metric that the user selected. This is used in the mine method to decide which specific plugin to execute.

Second, in the mine method you see how a result is returned. The matrix contains the real results, but these results are encapsulated in an object of our SocialNetworkResults class. See below for details on implementing this class.

Third, you see in the calculateHandoverOfWork method how the log is read. All mining plugins will essentially contain the following loop to read the log file:

while (log.hasNext()) {

ProcessInstance pi = log.next();

AuditTrailEntries ates = pi.getAuditTrailEntries();

while (ates.hasNext()) {

AuditTrailEntry ate = ates.next();

// process ate here

}

}

4.2.4 Implementing the user interface

As mentioned above, it is recommended to make a separate class for the user interface of the mining plugin options. This helps to avoid cluttering the plugin implementation with user interface details.

The only requirement is that this class is a subclass of JPanel. You create the user interface panel like any other Java user interface object. You can also use the JBuilder designer without problems.

It is possible to use information about the log to build the user interface. For instance, you can already display a list of model elements and let the user select them. The information is available in the summary parameter of the getOptionsPanel method and can be passed to this class via the constructor.

We create the class SocialNetworkOptions for our example:

package org.processmining.mining.snamining;

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

import org.processmining.log.*;

import java.util.*;

public class SocialNetworkOptions extends JPanel {

private LogSummary summary;

public SocialNetworkOptions(LogSummary summary) {

this.summary = summary;

try {

jbInit();

} catch (Exception ex) {

ex.printStackTrace();

}

}

private void jbInit() throws Exception {

// this method is created by JBuilder when

// you create a new subclass of JPanel

// you can initialize the widgets here

// and you can use the summary variable

}

}

4.2.5 Creating a subclass of MiningResult

First of all, check if the framework already offers a suitable subclass of MiningResult that can represent your result, because this would save you a lot of work. Currently, the following subclasses are provided:

· FileResult: for all plugins that only write the results to a file. This subclass is somewhat special, because it doesn’t have a visualization. The mining plugin can simply write its results to a FileResult object and return it. The framework will then ask the user where the results should be saved (using a file save dialog) and saves them to the designated file.

· PetrinetResult: for all plugins that output petrinets. Simply instantiate a PetrinetResult giving it the resulting petrinet and return it. The framework will then visualize the net and provide some options for saving it to a file etc.

· EPCResult: the same as PetrinetResult, but then for EPCs.

In case these standard subclasses are not suitable for your specific mining plugin, you have to implement your own subclass of MiningResult.

Since a social network can not be represented adequately by a Petrinet or an EPC, we create the class SocialNetworkResults (which is also placed in the snamining package, together with the SocialNetworkMiner and SocialNetworkOptions classes). The skeleton of this class looks as follows:

package org.processmining.mining.snamining;

import javax.swing.*;

import org.processmining.mining.*;

import org.processmining.log.*;

public class SocialNetworkResults extends JPanel

implements MiningResult {

public SocialNetworkResults(DoubleMatrix2D matrix) {

// initialize user interface here

}

public JComponent getVisualization() {

return this;

}

}

The MiningResult only has a single method, called getVisualization. It should return a component that represents the visualization of the result. This can include any Swing widget, so you can build a complete user interface for working with the result if you want.

5 Export plugins

An export plugin can export a particular object (e.g. a petri net) to a specific file format (e.g. PNML).

5.1 Getting started

We start by creating the main class for the new plugin. This class, and all other classes that we create specifically for this plugin, should be placed in a sub package of org.processmining.exporting. The sub package should contain exactly one family of plugins. For instance, all petri net exporting plugins are placed in org.processmining.exporting.petrinet.

The main class of every plugin has to implement the ExportPlugin interface. In our example, we call the new class PnmlExport. The skeleton of our new class is then:

package org.processmining.exporting.petrinet;

import ...;

public class PnmlExport implements ExportPlugin {

public PnmlExport() {}

public String getName() {

return "Pnml";

}

public boolean accepts(ProvidedObject object) {

// ...

}

public void export(ProvidedObject object,

OutputStream output) throws IOException {

// ...

}

public String getFileExtension() {

return "pnml";

}

public String getHtmlDescription() {

return "...";

}

}

5.2 Telling the framework that your plugin exists

You need to tell the framework that your plugin exists and where it can be found (which class). At start-up, the framework will look for files called export.ini in the following places:

· the current working directory

· the user’s home directory

· in the directory specified by the Java system property processmining.home
These files contain a list of all known plugins. There is one line per plugin and it has the form PluginName=ClassName.

The class name should be the fully qualified class name, for instance:

org.processmining.exporting.petrinet.PnmlExport
Note that the PluginName is not the ‘official’ name, since that is already determined by the return value of the getName method of the plugin implementation. The PluginName is only used to sort the list of plugins.

Furthermore, you can specify a list of class names (separated by semicolons) in the Java system property processmining.export. The framework will attempt to load these classes and add them to the list of plugins. Note that you can’t specify the sort order using this property (there’s no PluginName= part).

5.3 Implementing the main export class

We should implement at least the methods mentioned in the skeleton above.

The constructor

You can use the default constructor (the constructor without any arguments) to initialize new instances of this class, but this is probably not necessary. Note that objects of this class are only instantiated using the default constructor, so the framework will not use any other constructors.

String getName();

This method should return the name of this plugin. It is used in the user interface for selecting the plugin. The following code snippet will suffice:

public String getName() {

return "My export plugin name or whatever";

}

String getHtmlDescription();
This method should return a description of this plugin in HTML. The string returned by this method should only contain the contents of the body of the html page, so the html, head and body tags should not be used. This HTML page is displayed in the help system or as context sensitive help.

String getFileExtension();

This method should return the file name extension of the exported file. It is used in the user interface in the open file dialog. The following code will suffice:

public String getFileExtension() {

return "ext";

}

boolean accepts(ProvidedObject object);

When the user requests a list with all possible export possibilities for a certain object, then the framework will query each export plugin whether it is able to export that particular object. The framework will then call the accepts method with the given object. The export plugin should return true if and only if the plugin can actually export the object. For instance, if the plugin can export petri nets, the follwoing code could be used to test whether the given object contains a petri net:

public boolean accepts(ProvidedObject object) {

Object[] o = object.getObjects();

for (int i = 0; i < o.length; i++) {

if (o[i] instanceof PetriNet) {

return true;

}

}

return false;

}

void export(ProvidedObject object, OutputStream output)

throws IOException;

When the user decides to actually export a particular object with this export plugin, the export method will be called by the framework. The object to export will be passed in the object parameter. The output file has already been chosen by the user and will be available as an OutputStream. The plugin can throw an IOException at any time when something goes wrong and it will be caught by the framework.

Important: if you decide to use threads in the export method, make sure that these threads have finished before returning from the export method! You can do this by using the myNewThread.join(); statement. If you do not wait for the thread to be finished, the framework may close the output stream while your plugin is still trying to write to it.

6 Import plugins

An import plugin can import a particular object (e.g. a petri net) from a specific file format (e.g. PNML).

6.1 Getting started

We start by creating the main class for the new plugin. This class, and all other classes that we create specifically for this plugin, should be placed in a sub package of org.processmining.importing. For instance, the PNML import plugin is placed in org.processmining.importing.pnml.

The main class of every plugin has to implement the ImportPlugin interface. In our example, we call the new class PnmlImport. The skeleton of our new class is then:

package org.processmining.importing.pnml;

import ...;

public class PnmlImport implements ImportPlugin {

public PnmlImport() {}

public String getName() {

return "PNML file";

}

public javax.swing.filechooser.FileFilter getFileFilter() {

return new GenericFileFilter("pnml");

}

public MiningResult importFile(InputStream input)

throws IOException {

// ...

}

public String getHtmlDescription() {

return "...";

}

}

6.2 Telling the framework that your plugin exists

You need to tell the framework that your plugin exists and where it can be found (which class). At start-up, the framework will look for files called import.ini in the following places:

· the current working directory

· the user’s home directory

· in the directory specified by the Java system property processmining.home
These files contain a list of all known plugins. There is one line per plugin and it has the form PluginName=ClassName.

The class name should be the fully qualified class name, for instance:

org.processmining.importing.pnml.PnmlImport
Note that the PluginName is not the ‘official’ name, since that is already determined by the return value of the getName method of the plugin implementation. The PluginName is only used to sort the list of plugins.

Furthermore, you can specify a list of class names (separated by semicolons) in the Java system property processmining.import. The framework will attempt to load these classes and add them to the list of plugins. Note that you can’t specify the sort order using this property (there’s no PluginName= part).

6.3 Implementing the main import class

We should implement at least the methods mentioned in the skeleton above.

The constructor

You can use the default constructor (the constructor without any arguments) to initialize new instances of this class, but this is probably not necessary. Note that objects of this class are only instantiated using the default constructor, so the framework will not use any other constructors.

String getName();

This method should return the name of this plugin. It is used in the user interface for selecting the plugin. The following code snippet will suffice:

public String getName() {

return "My import plugin name or whatever";

}

String getHtmlDescription();
This method should return a description of this plugin in HTML. The string returned by this method should only contain the contents of the body of the html page, so the html, head and body tags should not be used. This HTML page is displayed in the help system or as context sensitive help.

javax.swing.filechooser.FileFilter getFileFilter();

This method should return a suitable FileFilter object, which is used in the ‘Open file’ dialog. See documentation on the FileFilter object for details. There are a few helper classes in org.processmining.framework.ui.filters for single extension filters.

MiningResult importFile(InputStream input) throws IOException;

When the user has selected a file (with an extension allowed by the getFileFilter method), the framework calls the importFile method with an input stream for the chosen file. The plugin can throw an IOException at any time when something goes wrong and it will be caught by the framework.

The result of the importFile method is a MiningResult object. All available descendants of MiningResult (e.g. PetriNetResult, EPCResult, etc) can be used here. In case you need a kind of result that is not provided by the framework yet, please see section 5.2.5 or contact the framework maintainer.

7 Analysis plugins

An analysis plugin can analyse a particular object (e.g. a petri net) and display the results in its own window.

7.1 Getting started

We start by creating the main class for the new plugin. This class, and all other classes that we create specifically for this plugin, should be placed in a sub package of org.processmining.analysis. For instance, the log replay analysis plugin is placed in org.processmining.analysis.petrinet.LogReplayAnalysis.

The main class of every plugin has to implement the AnalysisPlugin interface. In our example, we call the new class LogReplayAnalysis. The skeleton of our new class is then:

package org.processmining.analysis.petrinet;

import ...;

public class LogReplayAnalysis implements AnalysisPlugin {

public LogReplayAnalysis() {}

public String getName() {

return ("Log Replay Analysis");

}

public AnalysisInputItem[] getInputItems() {

// ...

}

public JComponent analyse(AnalysisInputItem[] inputs) {

// ...

}

public String getHtmlDescription() {

return "...";

}

}

7.2 Telling the framework that your plugin exists

You need to tell the framework that your plugin exists and where it can be found (which class). At start-up, the framework will look for files called analyses.ini in the following places:

· the current working directory

· the user’s home directory

· in the directory specified by the Java system property processmining.home
These files contain a list of all known plugins. There is one line per plugin and it has the form PluginName=ClassName.

The class name should be the fully qualified class name, for instance:

org.processmining.analysis.petrinet.LogReplayAnalysis
Note that the PluginName is not the ‘official’ name, since that is already determined by the return value of the getName method of the plugin implementation. The PluginName is only used to sort the list of plugins.

Furthermore, you can specify a list of class names (separated by semicolons) in the Java system property processmining.analyses. The framework will attempt to load these classes and add them to the list of plugins. Note that you can’t specify the sort order using this property (there’s no PluginName= part).

7.3 Implementing the main analysis class

We should implement at least the methods mentioned in the skeleton above.

The constructor

You can use the default constructor (the constructor without any arguments) to initialize new instances of this class, but this is probably not necessary. Note that objects of this class are only instantiated using the default constructor, so the framework will not use any other constructors.

String getName();

This method should return the name of this plugin. It is used in the user interface for selecting the plugin. The following code snippet will suffice:

public String getName() {

return "My analysis plugin name or whatever";

}

String getHtmlDescription();
This method should return a description of this plugin in HTML. The string returned by this method should only contain the contents of the body of the html page, so the html, head and body tags should not be used. This HTML page is displayed in the help system or as context sensitive help.

AnalysisInputItem[] getInputItems();

This method should return a list of items that are required as input of the analysis plugin. The framework uses this information to construct a user interface that allows the user to select appropriate inputs of the analysis plugin. Each element in the array describes one input item. Such an input item has a name, a minimum and maximum number of objects that can be selected for this input item and finally it should implement a custom accepts method.

For example, if our plugin accepts objects that can both provide a petri net and a workflow log, we could implement the getInputItems() method as follows:

public AnalysisInputItem[] getInputItems() {

AnalysisInputItem[] items = {

new AnalysisInputItem("Mined petrinet") {

public boolean accepts(ProvidedObject object) {

Object[] o = object.getObjects();

boolean hasLogReader = false;

boolean hasPetriNet = false;

for (int i = 0; i < o.length; i++) {

if (o[i] instanceof LogReader) {

hasLogReader = true;

} else if (o[i] instanceof

PetriNet) {

hasPetriNet = true;

}

}

return hasLogReader && hasPetriNet;

}

}

} ;

return items;

}

Note that we make an anonymous inner class that is derived from AnalysisInputItem, so we can override the accepts method. Furthermore, the name of the input item is set in the constructor (“Mined petrinet”).

It is also possible to specify that the user should select a certain minimum and maximum number of objects of the same type (i.e. that are all accepted by the accept method). To do this, use the constructor AnalysisInputItem(String caption, int min, int max). If you don’t specify these numbers, they will both be set to 1.

JComponent analyse(AnalysisInputItem[] inputs);

When the user has selected the appropriate inputs, the framework calls the analyse method with the selected inputs. This inputs array is the same one as the array returned by the getInputItems method, but then the getProvidedObjects method of the AnalysisInputItem’s can be used to obtain the inputs that were selected by the user.

The result is just a JComponent. If the return value is null, then the analysis window is not closed and nothing else is shown. If the return value is not null, then the analysis window is closed and the returned component is shown in its own window. You can show anything you want in this window, including buttons etc to let the user interact with the analysis plugin.

8 Conversion plugins

A conversion plugin can convert a particular object (e.g. a petri net) to another object (e.g. an EPC).

8.1 Getting started

We start by creating the main class for the new plugin. This class, and all other classes that we create specifically for this plugin, should be placed in the package org.processmining.converting. For instance, the PNML to EPC conversion plugin is placed in org.processmining.converting.

The main class of every plugin has to implement the ConversionPlugin interface. In our example, we call the new class EPCToPetriNetConverter. The skeleton of our new class is then:

package org.processmining.converting;

import ...;

public class EPCToPetriNetConverter implements ConvertingPlugin {

public String getName() {

return "EPC to Petrinet";

}

public String getHtmlDescription() {

return "...";

}

public boolean accepts(ProvidedObject original) {

// ...

}

public MiningResult convert(ProvidedObject original) {

// ...

}

}

8.2 Telling the framework that your plugin exists

You need to tell the framework that your plugin exists and where it can be found (which class). At start-up, the framework will look for files called conversion.ini in the following places:

· the current working directory

· the user’s home directory

· in the directory specified by the Java system property processmining.home
These files contain a list of all known plugins. There is one line per plugin and it has the form PluginName=ClassName.

The class name should be the fully qualified class name, for instance:

org.processmining.importing.pnml.PnmlImport
Note that the PluginName is not the ‘official’ name, since that is already determined by the return value of the getName method of the plugin implementation. The PluginName is only used to sort the list of plugins.

Furthermore, you can specify a list of class names (separated by semicolons) in the Java system property processmining.convert. The framework will attempt to load these classes and add them to the list of plugins. Note that you can’t specify the sort order using this property (there’s no PluginName= part).

8.3 Implementing the main conversion class

We should implement at least the methods mentioned in the skeleton above.

The constructor

You can use the default constructor (the constructor without any arguments) to initialize new instances of this class, but this is probably not necessary. Note that objects of this class are only instantiated using the default constructor, so the framework will not use any other constructors.

String getName();

This method should return the name of this plugin. It is used in the user interface for selecting the plugin. The following code snippet will suffice:

public String getName() {

return "My conversion plugin name or whatever";

}

String getHtmlDescription();
This method should return a description of this plugin in HTML. The string returned by this method should only contain the contents of the body of the html page, so the html, head and body tags should not be used. This HTML page is displayed in the help system or as context sensitive help.

boolean accepts(ProvidedObject original);

When the user requests a list with all possible conversion possibilities for a certain object, then the framework will query each conversion plugin whether it is able to export that particular object. The framework will then call the accepts method with the given object. The plugin should return true if and only if the plugin can actually convert the object to something else. For instance, if the plugin can convert petri nets to EPCs, the follwoing code could be used to test whether the given object contains a petri net:

public boolean accepts(ProvidedObject original) {

Object[] o = original.getObjects();

for (int i = 0; i < o.length; i++) {

if (o[i] instanceof PetriNet) {

return true;

}

}

return false;

}

MiningResult convert(ProvidedObject original);

When the user has selected an object to convert and a plugin to convert it with, the framework calls the convert method on the appropriate plugin with the given object. The result of the convert method is a MiningResult object. All available descendants of MiningResult (e.g. PetriNetResult, EPCResult, etc) can be used here. In case you need a kind of result that is not provided by the framework yet, please see section 5.2.5 or contact the framework maintainer.

