Problem #51 (Solved !)

Originator: Hubert Comon, Max Dauchet
Date: June 1993

Summary: Is the first order theory of one-step rewriting decidable?

For an arbitrary finite term rewriting system R, is the first order theory of one-step rewriting (\rightarrow^1_R) decidable? Decidability would imply the decidability of the first-order theory of encompassment (that is, being an instance of a subterm) [CCD93], as well as several known decidability results in rewriting. (It is well known that the theory of \rightarrow^*_R is in general undecidable.)

Remark

This has been answered negatively in [Tre96, Tre98]. Sharper undecidability results have been obtained for the following subclasses of rewrite systems:

- linear, shallow, $\exists^*\forall^*$-fragment ([STT97], [STTT01]);
- linear, terminating, $\exists^*\forall^*\exists^*$-fragment ([Vor97]), $\exists^*\forall^*$-fragment ([Mar97]).
- right-ground, terminating, $\exists^*\forall^*$-fragment ([Mar97]).

Decidability results have been obtained for

- the positive existential theory ([NPR97])
- unary signatures ([Jac96])
- left-linear right-ground systems ([Tis90])

http://rtaloop.pps.jussieu.fr
Bibliography

Sergei Vorobyov. The first-order theory of one step rewriting in linear noetheran systems is undecidable. In Comon [Com97], pages 254–268.