Approximation Limits of Linear Programs (Beyond Hierarchies)
Samuel Fiorini (UniversitĂ© Libre de Bruxelles)
We develop a framework for approximation limits of polynomial-size linear
programs from lower bounds on the nonnegative ranks of suitably defined
matrices. This framework yields unconditional impossibility results that are
applicable to any linear program as opposed to only programs generated by
hierarchies. Using our framework, we prove that O(n^{1/2-eps})-approximations
for CLIQUE require linear programs of size 2^{n^\Omega(eps)}. (This lower bound
applies to linear programs using a certain encoding of CLIQUE as a linear
optimization problem.) Moreover, we establish a similar result for
approximations of semidefinite programs by linear programs. Our main ingredient
is a quantitative improvement of Razborov's rectangle corruption lemma for the
high error regime, which gives strong lower bounds on the nonnegative rank of
certain perturbations of the unique disjointness matrix.
This is joint work with GĂˇbor Braun (Leipzig), Sebastian Pokutta (Erlangen),
David Steurer (Cornell)