Circular choosability

Tobias Müller (EURANDOM)
(joint work with F. Havet, R.J. Kang and J.-S. Sereni)

31 January 2007

The circular chromatic number of a graph is defined as follows. A t-circular colouring of a graph G is a map $c: V(G) \rightarrow S(t)$, where $S(t)$ denotes a circle of circumference t, such that the length of the arc between $c(v)$ and $c(w)$ is at least one whenever $v w \in E(G)$. The circular chromatic number $\chi_{c}(G)$ of G is the infimum of all t for which there is a t-circular colouring. It satisfies $\chi(G)=\left\lceil\chi_{c}(G)\right\rceil$, where χ denotes the chromatic number, and can thus be said to be a refinement of the ordinary chromatic number. The circular chromatic number has received considerable attention since its introduction by Vince in 1988.

More recently Mohar introduced a "list version" of the circular chromatic number, the circular choosability, denoted by $\operatorname{cch}(G)$. I will give a survey of known results and open problems on circular choosability (after stating the definition properly of course). One question that I will address in particular is the following. Mohar asked for the value of

$$
\tau:=\sup \{\operatorname{cch}(G): G \text { is planar }\},
$$

stating that he thought it would be between 4 and 5 . I will show that, on the contrary, it is between 6 and 8.

