
Chapter 2

Control charts

In this chapter we present the mathematical background of techniques to detect deviations in
a production process that would lead to non-conforming items. Such deviations may lead to
reduction of production costs or rework costs. The key factor to success is to accurately assess
variability in production processes. If we accurately know the variability of a production process
that is in control, then we are able to detect observations that indicate that the process has gone
out of control. These procedures are known under the name control charts. The simplest and
most widely used control chart is the Shewhart X-chart, which should be used together with an
R-chart, an S-chart or an S2-chart. Shewhart introduced these charts in 1924 as simple tools to
be used by workers in production lines. In spite of their simplicity, these charts turned out to
be highly effective in practice. When properly set up, these charts quickly detect large changes
in process means. In the 1950’s CUSUM (Cumulative Sum) control charts were introduced to
detect small process changes. Although they are mathematically optimal in a certain sense, it is
hard to set them up correctly since they are very sensitive to small changes in the parameters. A
convenient alternative is the EWMA chart (Exponentially Weighted Moving Average) which has
its roots in time series analysis. The EWMA chart is easy to implement and not very sensitive to
both parameter changes and non-normality of data, while it performs almost as good as a CUSUM
chart for detecting small process changes.

It is important to note that there are two different uses of control charts in general. In
retrospective or Phase I use (sometimes called Initial Study), observations are analyzed after they
have all been collected. Usually this is done during a pilot study of a production process, when
one needs to estimate in-control process behaviour. This is input to a capability analysis. The
other use is on-line or Phase II (sometimes called Control to Standard), in which in-control process
parameters are assumed to be known or estimated from Phase I. In this use analysis of data is
performed sequentially, that is repeatedly after each observation.

This chapter is organized as follows. In Section 2.1 we discuss Shewhart X control charts,
including extensions with warning zones and runs rules. Shewhart charts for the variance are
discussed in Section 2.2. In Section 2.3 we show a simple way to calculate run length distributions,
as well as a general Markov chain approach by Brook and Evans. CUSUM charts and EWMA
charts are discussed in Sections 2.4 and 2.5, respectively.

2.1 The Shewhart X chart

The basic data collection scheme for a Shewhart chart is as follows. At equidistant points in time
one takes a small sample (usually of size 4 or 5) of a product characteristic. Such samples are called
rational subgroups. We denote the observations in rational subgroups by Xij , i = 1, 2, . . . , and
j = 1, . . . , n, where n is the size of the rational subgroups. The rational subgroup should be chosen
in such a way that the observations are independent and represent the short-term variability. The
Shewhart X control chart basically is a time sequence plot of the averages Xi of the rational
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Figure 2.1: Shewhart X-chart with control lines.

subgroups, together with the following 3 horizontal lines that indicate the process location and
spread. Assume that µ is the mean E (X) of the quality characteristic and that σ2 is the variance
V (X) of the quality characteristic. Since E (Xi) = µ and V (Xi) = σ2/n for all i, the standard
deviation of Xi equals σ/

√
n. The centre line (CL) is placed at the process mean µ of the quality

characteristic. The other two lines are placed at distance 3σ/
√

n of the centre line. These lines are
called the upper control limit (UCL) and the lower control limit (LCL), respectively. The control
charts signals an alarm if an observation falls outside the region (µ− 3σ/

√
n, µ + 3σ/

√
n).

If we assume that Xi is normally distributed with mean µ and variance σ2/n, then the prob-
ability of a false alarm equals

1− P (LCL < Xi < UCL | µ = µ0) = Φ(−3) + (1− Φ(3)) = 2(1− Φ(3)) ≈ 0.00270 ≈ 1
370

.

If however the process mean shifts over a distance σ/
√

n, then (see Exercise 2.2)

1− P (LCL < Xi < UCL | µ = µ0 ± σ√
n

) ≈ 0.02278 ≈ 1
44

.

In Phase I use of control charts, the centre line is placed at the overall mean of the observations.
The control limits are computed using (pooled) estimates of the variance from rational subgroups,
often in terms of the range rather than the sample standard deviation. The relation between the
range and the standard deviation is explored in detail in Section 2.2. In Phase II use of control
charts, the values µ and σ are either known from historical data or estimated from a capability
study. In the latter case, it is not correct to apply the above calculation, although this is usually
being ignored. For the effect of estimated parameters on the false alarm probability we refer
to Exercise 2.3. Shewhart based his choice for placing UCL and LCL at distance 3 times the
standard deviation of group averages on practical experience. It provides a good compromise to a
low false alarm rate and an quick detection of out-of-control situations. Explicit calculations will
be discussed in Section 2.3.

2.1.1 Additional stopping rules for the X control chart

The decision rule to signal an alarm when a group average falls below the LCL or above the UCL is
based on the current rational subgroup and ignores information from previous rational subgroups.
In order to increase the detection performance of an X control chart, several additional stopping
rules have been proposed.

Sometimes warning limits are added at distance 2σ/
√

n of centre line. The idea of basing
control charts on different regions of observation values is also used in so-called zone control
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charts; for an example see Exercise 2.1 One of the proposed stopping rules using warning limits is
to signal an alarm if either a single group average falls outside the control limits or two successive
group averages both fall either above the upper warning limit or below the lower warning limit.
Such a stopping rule is known in the SPC literature as a runs rule. Examples of other runs
rules include eight successive group averages below or above the centre line or eight increasing or
decreasing group averages in a row. Often a combination of such rules is used. It is obvious that
such combinations should be used with care, because they lead to an increase in the false alarm
rate. Explicit computations can be found in Section 2.3.

2.2 Shewhart charts for the variance

Since the normal distribution is completely specified by the parameters µ (mean) and σ2 (variance),
it does not suffice to monitor the mean of a production process. Therefore it is good practice to
set up a control chart for the process variance in addition to the X control chart. Both charts
use the same rational subgroups. One would expect that the sample variance is the natural choice
for the statistic be monitored. However, because control charts were devised by Shewhart in the
pre-computer era, a simpler statistic, the range, was and is the standard choice. The range R of
a sample Y1, . . . , Yn is defined as

R := max
1≤i≤n

Yi − min
1≤i≤n

Yi = Y(n) − Y(1),

where Y(i) denotes the ith order statistic. It can be shown that for small sample sizes, the range is
performing almost as good as the standard deviation (see Exercise 2.6 which requires results from
Subsection 2.2.1). Before we define control charts for the variance, we need to study the range
and standard deviation.

2.2.1 The mean and variance of the standard deviation and the range

In this subsection we derive expression for the mean and variance of the standard deviation and
the range. These expressions are needed to set up control limits. If the observations Xij are
independent and normally distributed with mean µ and variance σ2, then the statistic (n−1)S2

i /σ2

is χ2
n−1 distributed. The expectation of

√
n− 1 Si/σ is therefore equal to

∫ ∞

0

√
t

1
2(n−1)/2 Γ((n− 1)/2)

t(n−1)/2−1e−t/2dt =
√

2
Γ(n/2)

Γ((n− 1)/2)
.

Hence,

E (Si) =
√

2√
n− 1

Γ(n/2)
Γ((n− 1)/2)

σ.

In particular, we have

c4(n) =
√

2√
n− 1

Γ(n/2)
Γ((n− 1)/2)

.

Recall that Γ(1) = 1, Γ(1/2) =
√

π and Γ(x+1) = xΓ(x) for x 6= 0,−1,−2, . . .. This immediately
yields the following recursion for c4(n):

c4(n + 1) =
√

n− 1√
n c4(n)

,

with the initial condition c4(2) =
√

2/
√

π. Note that the variance of Si can also be expressed in
terms of c4(n), because

V (Si) = E (S2
i )− (ESi)

2 = σ2 − c2
4(n)σ2 =

(
1− c2

4(n)
)
σ2. (2.1)
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We proceed by deriving an integral expression for d2(n).. Let F be the cumulative distribution
function of Xij . Then the distribution function of maxj(Xij) at y equals F (y)n and of minj(Xij)
at y equals 1 − (1 − F (y))n. We thus see that the expectation of Ri = maxj(Xij) − minj(Xij)
equals

E (Ri) =
∫ ∞

−∞
y

∂

∂y
(F (y)n)− y

∂

∂y
(1− (1− F (y))n) dy =

∫ ∞

−∞
1− F (y)n − (1− F (y))n dy,

where the second equality follows from integration by parts. Note that the cumulative distribution
function F of a normal distribution with mean µ and variance σ2 equals F (y) = Φ

(
y−µ

σ

)
. We

thus obtain

E (Ri) =
∫ ∞

−∞
1− F (y)n − (1− F (y))n dy =

∫ ∞

−∞
1− Φ

(
y − µ

σ

)n

−
(

1− Φ
(

y − µ

σ

))n

dy.

Hence, a simple change of variables yields

d2(n) =
∫ ∞

−∞
1− Φ(y)n − (1− Φ(y))n dy.

We conclude this subsection with the calculation of the variance of the range. It suffices to calculate
E (R2), because V (R) = E (R2)−E (R)2. Therefore we need to determine the joint distribution G
of (maxj(Xij), minj(Xij)). As before we denote with F (x) and f(x), the cumulative distribution
function and the density, respectively of the X ′

ijs. We thus may write

G(x, y) = P{max
j

(Xij) ≤ x and min
j

(Xij) ≤ y}
= P{max

j
(Xij) ≤ x} − P{max

j
(Xij) ≤ x and min

j
(Xij) > y}

= F (x)n − (F (x)− F (y))n I{y<x}, (2.2)

where I{y<x} denotes the indicator function of the set {y < x}, which equals1 if y < x and 0 if
y ≥ x. The joint density thus equals

∂2

∂x∂y
G(x, y) = n(n− 1)(F (x)− F (y))n−2f(x)f(y) I{y<x}.

Hence,

E (R2) =
∫ ∞

−∞

∫ ∞

y

(x− y)2n(n− 1)(F (x)− F (y))n−2f(x)f(y) dxdy

= −
∫ ∞

−∞

∫ ∞

y

2(x− y)n[(F (x)− F (y))n−1 − (1− F (y))n−1]f(y) dxdy

=
∫ ∞

−∞

∫ x

−∞
2[(F (x)− F (y))n − (1− F (y))n + 1− F (x)n] dydx

= 2
∫ ∞

−∞

∫ ∞

0

(F (y + r)− F (y))n − (1− F (y))n + 1− F (y + r)n drdy,

where the second and third equalities follow from integration by parts (note the special choice
of primitives, which causes some terms to vanish). If we take for F the cumulative distribution
function Φ of the standard normal distribution, then we obtain that the expectation of R2 is
proportional to σ2. One usually writes

E (R2) =
(
C(n)2 + d2(n)2

)
σ2,

so that V (R) = C(n)2σ2. Numerical calculation of the double integral E (R2) leads to values of
C(n).
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n c4 d2 A2 D3 D4 D.001 D.999

2 0.7979 1.128 1.880 0.000 3.267
3 0.8862 1.693 1.023 0.000 2.575
4 0.9213 2.059 0.729 0.000 2.282 0.199 5.309
5 0.9400 2.326 0.577 0.000 2.115 0.367 5.484
6 0.9515 2.534 0.483 0.000 2.004 0.535 5.619
7 0.9594 2.704 0.419 0.076 1.924 0.691 5.730

Table 2.1: Control chart constants.

2.2.2 The R control chart

The R control chart contains 3 lines. The centre line is placed at the expectation R0 of R, the
range of a rational subgroup. If R0 is unknown, then one uses the estimator R of a phase I
study. In order to imitate the 3σ limits of the X control chart, it is convenient introduce some
notation. We throughout assume that the individual observation are independent and normally
distributed with mean µ and variance σ2. We will prove in this subsection that both the mean
and the standard deviation of the range are proportional to the standard deviation of individual
observations. The proportionality constants are denoted by d2(n) and C(n), respectively. I.e.,

E (R) = d2(n)σ (2.3)
V (R) = C(n)2σ2. (2.4)

The upper and lower control limits are placed at 3 times the standard deviation of R. The upper
control limit, UCL, is placed at

R0 + 3
√

V (R) = R0 + 3C(n)σ =
(

1 +
C(n)
d2(n)

)
R0.

One often writes D4(n) = 1 + 3C(n)/d2(n). The lower control limit, LCL, is similarly placed
at D3(n)R0 with D3(n) = max(1 − 3C(n)/d2(n), 0). For an X control chart with control limits
based on ranges one often uses A2(n) = 3/(

√
nd2(n)), so that the control limits are placed at

µ±A2(n)R. The range R is not normally distributed, so that alarm probabilities are not equal to
0.0027 as is the case for the X chart with known parameters. An alternative way to set up control
limits is based on quantiles of the range. These control limit are called probabilistic control limits,
defined as

UCL = D.999(n) R
d2(n) (2.5)

LCL = D.001(n) R
d2(n) . (2.6)

These limits are set up in such a way that the upper control limit UCL will be exceeded with
probability 0.001 The same holds for the lower control limit LCL. There exist tables of values for
Dγ(n). It would be logical to use the values Dγ and D1−γ with γ = 1 − Φ(3) ≈ 0.00135. The
exceedance probabilities for both control limits are then equal. In practice this is not done, because
tables for Dγ usually do not include these values. The control limits based on the .001 and .999
quantiles should be compared with 3.09 standard deviation control limits, because Φ(3.09) ≈ 0.999.
We conclude this subsection with Table 2.1, which gives values of some control chart constants.

2.2.3 The S and S2 control charts

Alternatively, one may use the statistics S2
i or Si to set up an S2 control chart or an S control

chart, respectively. The control limits for the S2 control chart follow easily because (n− 1)S2/σ2

follows a χ2
n−1 distribution. One may set up control limits at distance 3 times the standard

deviation of S2 (cf. Exercise 2.7). An alternative is to use probabilistic control limits as for the R
control chart (see Exercise 2.7).
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Control limits for the S control chart may be set up using (2.1). The centre line is placed at
the expectation σ̃ of Si, the range of a rational subgroup. If this expectation is unknown, then
one uses the estimator S of a phase I study. The UCL is placed at σ̃ + 3

√
1− c4(n)2 σ̃

c4(n) = B4σ̃.

Likewise the LCL placed at σ̃ − 3
√

1− c4(n)2 σ̃
c4(n) = B3σ̃. Probabilistic control limits may be

obtained by taking square roots of the endpoints of two-sided confidence intervals for S2
i and

replacing σ by σ̃/c4(n) (see Exercise 2.8).
By setting up appropriate control limits, all three types of control charts for the variance have

comparable false alarm probabilities. The difference in performance between these charts is the
ability to detect changes in the process variance. This is the topic of the next section.

2.3 Calculation of run lengths for Shewhart charts

A good control chart in Phase II should have a low false alarm rate and the ability to quickly
detect out-of-control situations. The goal of this section is to put these properties into quantitative
terms. We will present two ways to perform calculations.

The way control charts are used is a special way of hypothesis testing. The difference with
ordinary one-sample testing is that control charts in phase II involve sequential testing, since each
time a new rational subgroup has been observed we again check whether the control chart signals.
In that sense the false alarm probability of an individual point on the control chart is related to the
type I error in hypothesis testing. The ability to detect process changes is related to the power of
the test and thus to the type II error. For detailed discussions on the differences between control
charts and hypothesis testing, we refer to [6, 20, 23, 24]. In order to incorporate the sequential
character of control charts in phase II, the notions of type I and II error are replaced by properties
of the run length N , defined as the number of rational subgroups observed until the control chart
signals an alarm. The most widely studied property of the run length is its mean. In the SPC
literature one usually uses the term Average Run Length (ARL). One distinguishes between an
in-control ARL (ARLin) and an out-of-control (ARL (ARLout). Obviously, ARLin should be large
(low false alarm rate) and ARLin should be small (fast detection of changes).

It is obvious that if the process is in control (i.e., the distribution of the observations does not
change), each group average of an X-chart has equal probability to fall outside the control limits.
We denote this probability by p. Obviously P (N = n) = (1− p)n−1p for p = 1, 2, . . .. Thus in this
case N has a geometric distribution. Note that P (N > n) = (1− p)n. Hence,

E X =
∞∑

n=0

P (N > n) =
∞∑

n=0

(1− p)n =
1
p
.

Thus ARLin of an X control chart equals 1/p = (Φ(−3)+1−Φ(3))−1 ≈ 370. A similar calculation
yields that V N = (1−p)/p2. Note that if p is small as is usual the case for control charts, then the
standard deviation of N almost equals its mean. The practical implication is that it may be very
misleading to judge the performance of a control chart by considering ARL’s only. Run length
distributions are usually highly skewed with large variability. The above calculation also holds for
the R, S and S2 control charts if we use the appropriate values for p. Since it is recommended to use
the X chart in conjunction with one of these three control charts for the variance, this drastically
changes the run length distribution (see Exercise 2.2 for an explicit calculation). Before we proceed
by discussing run lengths of control charts with runs rules, we present a general lemma, that may
be useful for calculating the probability generating function of non-negative lattice distributions.

Lemma 2.3.1 Let X be a discrete random variable taking values on 1, 2, . . . and define

P̃ (z) :=
∞∑

j=1

P (X ≥ j) zj .

Then we have:
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1. P (z) = 1 +
z − 1

z
P̃ (z) and P̃ (z) = z

P (z)− 1
z − 1

,

where P (z) is the probability generating function of X.

2. E X(m) = P (m)(1) = −
m−1∑

k=0

m!
k!

(−1)m−kP̃ (k)(1),

where E X(m) = EX(X − 1)(X − 2) · · · (X −m + 1) is the mth factorial moment of X and
P (n) denotes the nth derivative of P .

In particular, E X = P ′(1) = P̃ (1) and V (X) = 2P̃ ′(1)− P̃ (1)− (P̃ (1))2.

Proof.

1. We have

P̃ (z) =
∞∑

j=1

∞∑

k=j

P (X = k)zj

=
∞∑

k=1

k∑

j=1

P (X = k)zj

=
∞∑

k=1

P (X = k)
zk+1 − z

z − 1

=
z

z − 1

( ∞∑

k=1

P (X = k)
(
zk − 1

)
)

=
z

z − 1
(P (z)− 1).

Rewriting the above formula yields a).

2. The first equality is a basic property of probability generating functions. The second equality
follows by applying Leibniz’s formula for derivatives of products:

(f · g)(m) =
m∑

k=0

(
m

k

)
f (k)g(m−k)

to a) and evaluating at z = 1. ¤

It has been mentioned in Subsection 2.1.1 that adding runs rules changes the ARL’s of a control
chart. We start with a simple example that can be analyzed directly using a recursion. Suppose
we have an X chart with warning limits for which we agree that the chart signals if a point is
outside the control limits or when there are two successive points beyond either of the warning
limits. Let p be the probability that a point of the control charts falls outside the control limits,
q be the probability that a point falls between a control limit and the nearby warning limit (the
warning region), and r be the probability that a point is between the two warning limits (the
“safe” region). Obviously p + q + r = 1. Let L denote the remaining ARL after a point in the
good region and L′ the corresponding ARL after a point in the warning region. If we start with
a point in the safe region, then there are three possibilities:

1. the next point is safe again, with probability r, and we expect L more points before an alarm

2. the next point is in the warning region, with probability q, and we expect L′ more points
before an alarm

3. the next point falls outside the control limits, with probability p, and we stop.
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Note that we use that the points of a Shewhart chart are independent. Combining these three
possibilities, we obtain

L = r(1 + L) + q(1 + L′) + p.

In a similar way we obtain
L′ = r(1 + L) + q + p.

Combining these two equations, we obtain two linear equations with two unknowns. Hence, we
may solve for L and L′. The ARL is then given by p + q(L + 1) + r(L′ + 1). Note that since we
did not specify p, q and r the above derivation holds for both ARLin and ARLout. A similar way
of reasoning yields ARL’s for other runs rules.

In order to obtain more detailed results on run length distributions, a different approach is
necessary. We present a method of Brook and Evans (see [2]), which was first presented in the
context of run lengths for CUSUM charts. However, the method is very general and may also be
applied to run lengths of Shewhart charts. The key in this approach is to represent the control
chart as a simple Markov chain. In order to illustrate the method, we consider an X control chart
with the runs rule “two successive points outside the same warning limit”. The Markov chain has
four states:

State 1 Current point is in the safe region.

State 2 Current point is in the lower warning region, and the previous point was not.

State 3 Current point is in the upper warning region, and the previous point was not.

State 4 Current point is outside the control limits, or is in the same warning region as the previous
point (hence, the control chart signals).

Note that State 4 is an absorbing state. The probabilities of a point to fall into a certain region
are denoted as follows: p1: safe region, p2: upper warning region, p3: lower warning region, and
p4 = 1− p1 − p2 − p3 the action region. We thus have the following transition matrix, where the
rows denote the state before observing a new rational subgroup and the columns after observing
a new rational subgroup:

P =




p1 p2 p3 p4

p1 0 p3 p2 + p4

p1 p2 0 p3 + p4

0 0 0 1




Now let Sk = (Sk,1, Sk,2, Sk,3, Sk,4 be the distribution of the state space after n observed rational
subgroups. Because of the Markov property, we have fork ≥ 1 that

Sk = PSk−1 = P k−1S1,

where S1 = (p1, p2, p3, p4) is distribution after the first observed rational subgroup. Of course,
other starting conditions can be easily incorporated. The run length distribution of N may now
be computed from the relation

P (N ≤ k) = Sk,4.

This relation can be easily programmed. It may be advantageous to partition the transition matrix
P by singling out the absorbing state 4 as follows:

P =
(

R p
0 1

)
,

where 0 denotes a vector of zeros. Hence, we have P k =
(

Rk c
0 1

)
. Since the rows of a transition

matrix sum to 1, it follows that c = 1 − Rk1 = (I − Rk)1. Thus ith element of (I − Rk)1
gives P (N ≤ k | first point is in state i. This Markov chain can also be used to obtain expression
for the moments of N , i.e. the moment of the run length distribution. Since N is a discrete
random variable, it is convenient to study the factorial moments For more calculations of run
length distributions for Shewhart charts with runs rules, we refer to [4, 7].



2.4. CUSUM PROCEDURES 9

2.4 CUSUM Procedures

2.5 EWMA control charts



10 CHAPTER 2. CONTROL CHARTS

2.6 Exercises

Exercise 2.1 Let L < U be given real numbers. Assume that instead of the actual outcomes
X1, . . . , Xn of the sample we only have information on the numbers of outcomes that fall below L,
fall between U and L, and fall above U . Find MLE’s for µ and σ2 based on this information only.
This is used in so-called gauge control charts in statistical process control. The idea goes back to
Stephens (see [19]; for modern accounts we refer to [10, 11]).

Exercise 2.2 Consider the standard assumptions of the Shewhart X-chart with rational subgroups
of size n.

a) What is the probability that 2 out of 3 consecutive observations fall in the region (µ0 −
2σ/

√
n, µ0+2σ/

√
n), if the individual observations are independent and normally distributed

with expectation µ0 and variance σ2?

b) What is the alarm probability for a single group mean Xi if Xi is normally distributed with
expectation µ0 + σ/

√
n and variance σ2/n?

c) We would like to change the control limits µ0 ± 3σ/
√

n into µ0 ± kσ/
√

n. Which value
should we choose for k in order to achieve that the probability of a single group mean Xi

falling outside the control limits equals 0.01? Assume that Xi is normally distributed with
expectation µ0 and variance σ2/n.

Exercise 2.3 Assume that a capability study has been performed with N observations, subdivided
into m rational subgroups of size n = N/m. In the subsequent Phase II, a Shewhart X chart has
been set up based on rational subgroups of size n. The control limits are set at set at a distance of

3S =
√

1
N

∑
i = 1m S2

i .

a) Assume that the centre line is set at the known process mean. Compute the probability that
a group average falls outside the control limits. Compare your result with the well-known
probability 0.0027 when N ranges from 50 to 100.

b) Repeat your calculations for the case that the centre line is set at the overall mean from the
capability study. Compare your results with a) and the standard 0.0027 probability for the
same ranges of N .

c) The above results are independent of n. May we therefore conclude that the choice of n is
unimportant?

Exercise 2.4 A standard Shewhart X chart has an in-control ARL equal to 370. What is the
ARL of a combined Shewhart X and S2-chart?

Exercise 2.5 Use a computer to produce of table of d2(n).

Exercise 2.6 Study the relative efficiency (i.e., the ratio of the variances) of the unbiased esti-
mators S/c4(n) and R/d2(n) for σ when we sample from a normal distribution. For which values
is R/d2(n) a reasonable alternative for S/c4(n)?

Exercise 2.7 a) Show that V S2 = σ4/(n− 1)2 when the observations form a sample of size n
from a normal distribution. Use this to derive control limits placed at a distance of 3 times
the standard deviation of the sample variance.

b) Derive probabilistic control limits for the S2 control chart.

Exercise 2.8 a) Set up an S control chart by placing control limits at a distance of 3 times
the standard deviation of the sample standard deviation.
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b) Derive probabilistic control limits for the S control chart. Hint: use a two-sided confidence
interval for the variance and take square roots of the end-points.

Exercise 2.9 Use a computer to produce of table of D0.00135 and D0.99875.

Exercise 2.10 Give a formal justification of the conditional arguments with average run lengths
in the first halve of Section 2.3.

Exercise 2.11 Compute ARLin for an X control chart with the extra runs rule “two out of three
successive point outside either warning limit”.

Exercise 2.12 A quality characteristic of a certain production process is known to be normally
distributed with σ = 4. In order to obtain a good quality of the products, it is required to detect
changes in the mean of 4 units. Currently rational subgroups are taken every 15 minutes.

a) What is the necessary minimum size of the rational subgroups if the mean detection time is
1 hour?

b) What should be the sampling frequency if the producer wishes to be 90% certain of detecting
changes in the mean of 4 units within 1 hour?

Exercise 2.13 An EWMA control charts is defined in terms of moving averages as follows: Zn =
(1− λ)Zn−1 + λXn, where Z0 = µ and 0 < λ < 1. Prove that

Z3 = (1− λ)3µ + λ(1− λ)2X1 + λ(1− λ)X2 + λX3.

Assume that the observations X1, X2, X3 are independent with expectation µ and variance σ2.
Calculate the expectation and variance of Z3.
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