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Preface

Algebraic graph theoryis the branch of mathematics that studies graphs by using
algebraic properties of associated matrices. More in particular,spectral graph the-
ory studies the relation between graph properties and the spectrum of the adjacency
matrix or Laplace matrix. And the theory ofassociation schemesandcoherent con-
figurationsstudies the algebra generated by associated matrices.

Spectral graph theory is a useful subject. The founders of Google computed the
Perron-Frobenius eigenvector of the web graph and became billionaires. The second
largest eigenvalue of a graph gives information about expansion and randomness
properties. The smallest eigenvalue gives information about independence number
and chromatic number. Interlacing gives information aboutsubstructures. The fact
that eigenvalue multiplicities must be integral provides strong restrictions. And the
spectrum provides a useful invariant.

This book gives the standard elementary material on spectrain Chapter 1. Important
applications of graph spectra involve the largest or secondlargest or smallest eigen-
value, or interlacing, topics that are discussed in Chapters 3–4. Afterwards, special
topics such as trees, groups and graphs, Euclidean representations, and strongly
regular graphs are discussed. Strongly related to stronglyregular graphs are regular
two-graphs, and Chapter 10 mainly discusses Seidel’s work on sets of equiangular
lines. Strongly regular graphs form the first nontrivial case of (symmetric) asso-
ciation schemes, and Chapter 11 gives a very brief introduction to this topic, and
Delsarte’s Linear Programming Bound. Chapter 12 very briefly mentions the main
facts on distance-regular graphs, including some major developments that occurred
since the monograph [51] was written (proof of the Bannai-Ito conjecture, construc-
tion by Van Dam & Koolen of the twisted Grassmann graphs, determination of the
connectivity of distance-regular graphs). Instead of working overR, one can work
overFp or Z and obtain more detailed information. Chapter 13 considersp-ranks
and Smith Normal Forms. Finally, Chapters 14 and 15 return tothe real spectrum
and consider in what cases a graph is determined by its spectrum, and when it has
only few eigenvalues.
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vi Preface

In Spring 2006 both authors gave a series of lectures at IPM, the Institute for Studies
in Theoretical Physics and Mathematics, in Tehran. The lecture notes were com-
bined and published as an IPM report. Those notes grew into the present text, of
which the on-line version still is calledipm.pdf . We aim at researchers, teach-
ers, and graduate students interested in graph spectra. Thereader is assumed to be
familiar with basic linear algebra and eigenvalues, but we did include a chapter on
some more advanced topics in linear algebra, like the Perron-Frobenius theorem and
eigenvalue interlacing. The exercises at the end of the Chapters vary from easy but
interesting applications of the treated theory, to little excursions into related topics.

This book shows the influence of Seidel. For other books on spectral graph theory,
see Chung [89], Cvetković, Doob & Sachs [111] and Cvetković, Rowlinson & Simíc
[116]. For more algebraic graph theory, see Biggs [28], Godsil [164] and Godsil &
Royle [169]. For association schemes and distance-regulargraphs, see Bannai & Ito
[19] and Brouwer, Cohen & Neumaier [51].

Amsterdam, Andries Brouwer
December 2010 Willem Haemers
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Chapter 1
Graph spectrum

This chapter presents some simple results on graph spectra.We assume the reader
to be familiar with elementary linear algebra and graph theory. ThroughoutJ will
denote the all-1 matrix, and1 is the all-1 vector.

1.1 Matrices associated to a graph

Let Γ be a graph without multiple edges. Theadjacency matrixof Γ is the 0-1 ma-
trix A indexed by the vertex setVΓ of Γ , whereAxy = 1 when there is an edge from
x to y in Γ andAxy = 0 otherwise. Occasionally we consider multigraphs (possibly
with loops) in which caseAxy equals the number of edges fromx to y.

Let Γ be an undirected graph without loops. The (vertex-edge)incidence matrix
of Γ is the 0-1 matrixM, with rows indexed by the vertices and columns indexed by
the edges, whereMxe= 1 when vertexx is an endpoint of edgee.

Let Γ be a directed graph without loops. Thedirected incidence matrixof Γ
is the 0-1 matrixN, with rows indexed by the vertices and columns by the edges,
whereNxe=−1,1,0 whenx is the head ofe, the tail ofe, or not one, respectively.

Let Γ be an undirected graph without loops. TheLaplace matrixof Γ is the
matrix L indexed by the vertex set ofΓ , with zero row sums, whereLxy =−Axy for
x 6= y. If D is the diagonal matrix, indexed by the vertex set ofΓ such thatDxx is the
degree (valency) ofx, thenL = D−A. The matrixQ= D+A is called thesignless
Laplace matrixof Γ .

An important property of the Laplace matrixL and the signless Laplace matrix
Q is that they are positive semidefinite. Indeed, one hasQ= MM⊤ andL = NN⊤ if
M is the incidence matrix ofΓ andN the directed incidence matrix of the directed
graph obtained by orienting the edges ofΓ in an arbitrary way. It follows that for
any vectoru one hasu⊤Lu = ∑xy(ux−uy)

2 andu⊤Qu= ∑xy(ux+uy)
2, where the

sum is over the edges ofΓ .

1



2 1 Graph spectrum

1.2 The spectrum of a graph

The (ordinary)spectrumof a finite graphΓ is by definition the spectrum of the
adjacency matrixA, that is, its set of eigenvalues together with their multiplicities.
TheLaplace spectrumof a finite undirected graph without loops is the spectrum of
the Laplace matrixL.

The rows and columns of a matrix of ordern are numbered from 1 ton, while A
is indexed by the vertices ofΓ , so that writing downA requires one to assign some
numbering to the vertices. However, the spectrum of the matrix obtained does not
depend on the numbering chosen. It is the spectrum of the linear transformationA
on the vector spaceKX of maps fromX into K, whereX is the vertex set, andK is
some field such asR orC.

Thecharacteristic polynomialof Γ is that ofA, that is, the polynomialpA defined
by pA(θ) = det(θ I −A).

Example Let Γ be the pathP3 with three vertices and two edges. Assigning some
arbitrary order to the three vertices ofΓ , we find that the adjacency matrixA be-
comes one of 


0 1 1
1 0 0
1 0 0


 or




0 1 0
1 0 1
0 1 0


 or




0 0 1
0 0 1
1 1 0


 .

The characteristic polynomial ispA(θ) = θ 3− 2θ . The spectrum is
√

2, 0,−
√

2.
The eigenvectors are:

c

√
2

c

2
c

√
2

c

1
c

0
c

−1
c

√
2

c

−2
c

√
2

Here, for an eigenvectoru, we writeux as a label at the vertexx. One hasAu= θu
if and only if ∑y←x uy = θux for all x. The Laplace matrixL of this graph is one of




2 −1 −1
−1 1 0
−1 0 1


 or




1 −1 0
−1 2−1

0 −1 1


 or




1 0−1
0 1−1
−1 −1 2


 .

Its eigenvalues are 0, 1 and 3. The Laplace eigenvectors are:

c

1
c

1
c

1
c

1
c

0
c

−1
c

1
c

−2
c

1

One hasLu= θu if and only if ∑y∼x uy = (dx−θ)ux for all x, wheredx is the degree
of the vertexx.

Example Let Γ be the directed triangle with adjacency matrix

A=




0 1 0
0 0 1
1 0 0


 .
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ThenA has characteristic polynomialpA(θ) = θ 3−1 and spectrum 1,ω, ω2, where
ω is a primitive cube root of unity.

Example Let Γ be the directed graph with two vertices and a single directededge.

ThenA =

[
01
00

]
with pA(θ) = θ 2. SoA has the eigenvalue 0 with geometric mul-

tiplicity (that is, the dimension of the corresponding eigenspace) equal to 1 and
algebraic multiplicity (that is, its multiplicity as a rootof the polynomialpA) equal
to 2.

1.2.1 Characteristic polynomial

Let Γ be a directed graph onn vertices. For any directed subgraphC of Γ that
is a union of directed cycles, letc(C) be its number of cycles. Then the charac-
teristic polynomialpA(t) = det(tI −A) of Γ can be expanded as∑citn−i , where
ci = ∑C(−1)c(C), with C running over all regular directed subgraphs with in- and
outdegree 1 oni vertices.

(Indeed, this is just a reformulation of the definition of thedeterminant as
detM = ∑σ sgn(σ)M1σ(1) · · ·Mnσ(n). Note that when the permutationσ with n− i
fixed points is written as a product of non-identity cycles, its sign is(−1)e wheree
is the number of even cycles in this product. Since the numberof odd non-identity
cycles is congruent toi (mod 2), we have sgn(σ) = (−1)i+c(σ).)

For example, the directed triangle hasc0 = 1, c3 = −1. Directed edges that do
not occur in directed cycles do not influence the (ordinary) spectrum.

The same description ofpA(t) holds for undirected graphs (with each edge
viewed as a pair of opposite directed edges).

Since d
dt det(tI −A) = ∑x det(tI −Ax) whereAx is the submatrix ofA obtained

by deleting row and columnx, it follows that p′A(t) is the sum of the characteristic
polynomials of all single-vertex-deleted subgraphs ofΓ .

1.3 The spectrum of an undirected graph

SupposeΓ is undirected and simple withn vertices. SinceA is real and symmetric,
all its eigenvalues are real. Also, for each eigenvalueθ , its algebraic multiplicity
coincides with its geometric multiplicity, so that we may omit the adjective and just
speak about ‘multiplicity’. Conjugate algebraic integershave the same multiplicity.
SinceA has zero diagonal, its trace trA, and hence the sum of the eigenvalues is
zero.

Similarly, L is real and symmetric, so that the Laplace spectrum is real. More-
over,L is positive semidefinite and singular, so we may denote the eigenvalues by
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µ1, . . . ,µn, where 0= µ1 ≤ µ2 ≤ . . . ≤ µn. The sum of these eigenvalues is trL,
which is twice the number of edges ofΓ .

Finally, alsoQ has real spectrum and nonnegative eigenvalues (but is not neces-
sarily singular). We have trQ= trL.

1.3.1 Regular graphs

A graphΓ is calledregularof degree (or valency)k, when every vertex has precisely
k neighbors. So,Γ is regular of degreek precisely when its adjacency matrixA has
row sumsk, i.e., whenA1= k1 (or AJ= kJ).

If Γ is regular of degreek, then for every eigenvalueθ we have|θ | ≤ k. (One way
to see this, is by observing that if|t|> k then the matrixtI −A is strictly diagonally
dominant, and hence nonsingular, so thatt is not an eigenvalue ofA.)

If Γ is regular of degreek, thenL = kI−A. It follows that if Γ has ordinary
eigenvaluesk= θ1≥ . . .≥ θn and Laplace eigenvalues 0= µ1≤ µ2≤ . . .≤ µn, then
θi = k−µi for i = 1, . . . ,n. The eigenvalues ofQ= kI+A are 2k,k+θ2, . . . ,k+θn.

1.3.2 Complements

The complementΓ of Γ is the graph with the same vertex set asΓ , where two
distinct vertices are adjacent whenever they are nonadjacent in Γ . So, if Γ has ad-
jacency matrixA, thenΓ has adjacency matrixA = J− I −A and Laplace matrix
L = nI−J−L.

Because eigenvectors ofL are also eigenvectors ofJ, the eigenvalues ofL are
0,n−µn, . . . ,n−µ2. (In particular,µn≤ n.)

If Γ is regular we have a similar result for the ordinary eigenvalues: if Γ is k-
regular with eigenvaluesθ1 ≥ . . .≥ θn, then the eigenvalues of the complement are
n−k−1,−1−θn, . . . ,−1−θ2.

1.3.3 Walks

From the spectrum one can read off the number of closed walks of a given length.

Proposition 1.3.1 Let h be a nonnegative integer. Then(Ah)xy is the number of
walks of length h from x to y. In particular,(A2)xx is the degree of the vertex x, and
trA2 equals twice the number of edges ofΓ ; similarly, trA3 is six times the number
of triangles inΓ .
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1.3.4 Diameter

We saw that all eigenvalues of a single directed edge are zero. For undirected graphs
this does not happen.

Proposition 1.3.2 LetΓ be an undirected graph. All its eigenvalues are zero if and
only if Γ has no edges. The same holds for the Laplace eigenvalues and the signless
Laplace eigenvalues.

More generally, we find a lower bound for the diameter:

Proposition 1.3.3 LetΓ be a connected graph with diameter d. ThenΓ has at least
d+1 distinct eigenvalues, at least d+1 distinct Laplace eigenvalues, and at least
d+1 distinct signless Laplace eigenvalues.

Proof. Let M be any nonnegative symmetric matrix with rows and columns in-
dexed byVΓ and such that for distinct verticesx,y we haveMxy > 0 if and only if
x ∼ y. Let the distinct eigenvalues ofM beθ1, . . . ,θt . Then(M−θ1I) · · ·(M−θt I) =
0, so thatMt is a linear combination ofI ,M, . . . ,Mt−1. But if d(x,y) = t for two ver-
ticesx,y of Γ , then(Mi)xy= 0 for 0≤ i ≤ t−1 and(Mt)xy> 0, contradiction. Hence
t > d. This applies toM = A, to M = nI−L and toM = Q, whereA is the adjacency
matrix,L is the Laplace matrix andQ is the signless Laplace matrix ofΓ . �

Distance-regular graphs, discussed in Chapter 12, have equality here. For an upper
bound on the diameter, see§4.6.

1.3.5 Spanning trees

From the Laplace spectrum of a graph one can determine the number of spanning
trees (which will be nonzero only if the graph is connected).

Proposition 1.3.4 Let Γ be an undirected (multi)graph with at least one vertex,
and Laplace matrix L with eigenvalues0= µ1≤ µ2≤ . . .≤ µn. Letℓxy be the(x,y)-
cofactor of L. Then the number N of spanning trees ofΓ equals

N = ℓxy = det(L+
1
n2 J) =

1
n

µ2 · · ·µn for any x,y∈VΓ .

(The(i, j)-cofactorof a matrixM is by definition(−1)i+ j detM(i, j), whereM(i, j)
is the matrix obtained fromM by deleting rowi and columnj. Note thatℓxy does
not depend on an ordering of the vertices ofΓ .)

Proof. Let LS, for S⊆VΓ , denote the matrix obtained fromL by deleting the rows
and columns indexed byS, so thatℓxx = detL{x}. The equalityN = ℓxx follows by
induction onn, and for fixedn> 1 on the number of edges incident withx. Indeed,
if n= 1 thenℓxx = 1. Otherwise, ifx has degree 0 thenℓxx = 0 sinceL{x} has zero
row sums. Finally, ifxy is an edge, then deleting this edge fromΓ diminishesℓxx
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by detL{x,y}, which by induction is the number of spanning trees ofΓ with edge
xy contracted, which is the number of spanning trees containing the edgexy. This
showsN = ℓxx.

Now det(tI − L) = t ∏n
i=2(t − µi) and (−1)n−1µ2 · · ·µn is the coefficient oft,

that is, is d
dt det(tI −L)|t=0. But d

dt det(tI −L) = ∑x det(tI −L{x}) so thatµ2 · · ·µn =

∑xℓxx = nN.
Since the sum of the columns ofL is zero, so that one column is minus the sum of

the other columns, we haveℓxx= ℓxy for anyx,y. Finally, the eigenvalues ofL+ 1
n2 J

are 1
n andµ2, . . . ,µn, so det(L+ 1

n2 J) = 1
nµ2 · · ·µn. �

For example, the multigraph of valencyk on 2 vertices has Laplace matrixL =[
k −k
−k k

]
so thatµ1 = 0, µ2 = 2k, andN = 1

2.2k= k.

If we consider the complete graphKn, thenµ2 = . . . = µn = n, and thereforeKn

hasN = nn−2 spanning trees. This formula is due to Cayley [81]. Proposition 1.3.4
is implicit in Kirchhoff [232] and known as theMatrix-Tree Theorem.

There is a ‘1-line proof’ of the above result using theCauchy-Binet formula.

Proposition 1.3.5 (Cauchy-Binet)Let A and B be m×n matrices. Then

detAB⊤ = ∑
S

detASdetBS

where the sum is over the
(n

m

)
m-subsets S of the set of columns, and AS (BS) is the

square submatrix of order m of A (resp. B) with columns indexed by S.

2nd proof of Proposition 1.3.4(sketch) LetNx be the directed incidence matrix of
Γ , with row x deleted. Thenlxx= detNxN⊤x . Apply Cauchy-Binet to getlxx as a sum
of squares of determinants of sizen−1. These determinants vanish unless the setS
of columns is the set of edges of a spanning tree, in which casethe determinant is
±1. �

1.3.6 Bipartite graphs

A graphΓ is calledbipartitewhen its vertex set can be partitioned into two disjoint
partsX1,X2 such that all edges ofΓ meet bothX1 andX2. The adjacency matrix of

a bipartite graph has the formA=

[
0 B

B⊤ 0

]
. It follows that the spectrum of a bipartite

graph is symmetric w.r.t. 0: if
[

u
v

]
is an eigenvector with eigenvalueθ , then

[
u
−v

]

is an eigenvector with eigenvalue−θ . (The converse also holds, see Proposition
3.4.1.)

For the ranks one has rkA= 2rkB. If ni = |Xi | (i = 1,2) andn1≥ n2, then rkA≤
2n2, so thatΓ has eigenvalue 0 with multiplicity at leastn1−n2.
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One cannot, in general, recognize bipartiteness from the Laplace or signless Laplace
spectrum. For example,K1,3 andK1+K3 have the same signless Laplace spectrum
and only the former is bipartite. And Figure 14.4 gives an example of a bipartite
and non-bipartite graph with the same Laplace spectrum. However, by Proposition
1.3.10 below, a graph is bipartite precisely when its Laplace spectrum and signless
Laplace spectrum coincide.

1.3.7 Connectedness

The spectrum of a disconnected graph is easily found from thespectra of its con-
nected components:

Proposition 1.3.6 LetΓ be a graph with connected componentsΓi (1≤ i ≤ s). Then
the spectrum ofΓ is the union of the spectra ofΓi (and multiplicities are added). The
same holds for the Laplace and the signless Laplace spectrum. �

Proposition 1.3.7 The multiplicity of 0 as a Laplace eigenvalue of an undirected
graphΓ equals the number of connected components ofΓ .

Proof. We have to show that a connected graph has Laplace eigenvalue0 with
multiplicity 1. As we saw earlier,L = NN⊤, whereN is the incidence matrix of an
orientation ofΓ . NowLu= 0 is equivalent toN⊤u= 0 (since 0= u⊤Lu= ||N⊤u||2),
that is, for every edge the vectoru takes the same value on both endpoints. SinceΓ
is connected that means thatu is constant. �

Proposition 1.3.8 Let the undirected graphΓ be regular of valency k. Then k is
the largest eigenvalue ofΓ , and its multiplicity equals the number of connected
components ofΓ .

Proof. We haveL = kI−A. �

One cannot see from the spectrum alone whether a (nonregular) graph is connected:
bothK1,4 andK1+C4 have spectrum 21, 03, (−2)1 (we write multiplicities as expo-
nents). And botĥE6 andK1+C6 have spectrum 21, 12, 0, (−1)2, (−2)1.
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Fig. 1.1 Two pairs of cospectral graphs

Proposition 1.3.9 The multiplicity of 0 as a signless Laplace eigenvalue of an undi-
rected graphΓ equals the number of bipartite connected components ofΓ .
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Proof. Let M be the vertex-edge incidence matrix ofΓ , so thatQ = MM⊤. If
MM⊤u= 0 thenM⊤u= 0, so thatux =−uy for all edgesxy, and the support ofu is
the union of a number of bipartite components ofΓ . �

Proposition 1.3.10 A graphΓ is bipartite if and only if the Laplace spectrum and
the signless Laplace spectrum ofΓ are equal.

Proof. If Γ is bipartite, the Laplace matrixL and the signless Laplace matrixQ
are similar by a diagonal matrixD with diagonal entries±1 (that is,Q= DLD−1).
ThereforeQ andL have the same spectrum. Conversely, if both spectra are the same,
then by Propositions 1.3.7 and 1.3.9 the number of connectedcomponents equals
the number of bipartite components. HenceΓ is bipartite. �

1.4 Spectrum of some graphs

In this section we discuss some special graphs and their spectra. All graphs in this
section are finite, undirected and simple. Observe that the all-1 matrix J of ordern
has rank 1, and that the all-1 vector1 is an eigenvector with eigenvaluen. So the
spectrum isn1, 0n−1. (Here and throughout we write multiplicities as exponents
where that is convenient and no confusion seems likely.)

1.4.1 The complete graph

Let Γ be the complete graphKn onn vertices. Its adjacency matrix isA= J− I , and
the spectrum is(n−1)1, (−1)n−1. The Laplace matrix isnI−J, which has spectrum
01, nn−1.

1.4.2 The complete bipartite graph

The spectrum of the complete bipartite graphKm,n is±√mn, 0m+n−2. The Laplace
spectrum is 01, mn−1, nm−1, (m+n)1.

1.4.3 The cycle

Let Γ be the directedn-cycleDn. Eigenvectors are(1,ζ ,ζ 2, . . . ,ζ n−1)⊤ whereζ n =
1, and the corresponding eigenvalue isζ . Thus, the spectrum consists precisely of
the complexn-th roots of unitye2π i j/n ( j = 0, . . . ,n−1).
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Now consider the undirectedn-cycleCn. If B is the adjacency matrix ofDn, then
A= B+B⊤ is the adjacency matrix ofCn. We find the same eigenvectors as before,
with eigenvaluesζ +ζ−1, so that the spectrum consists of the numbers 2cos(2π j/n)
( j = 0, . . . ,n−1).

This graph is regular of valency 2, so the Laplace spectrum consists of the num-
bers 2−2cos(2π j/n) ( j = 0, . . . ,n−1).

1.4.4 The path

Let Γ be the undirected pathPn with n vertices. The ordinary spectrum con-
sists of the numbers 2cos(π j/(n+ 1)) ( j = 1, . . . ,n). The Laplace spectrum is
2−2cos(π j/n) ( j = 0, . . . ,n−1).

The ordinary spectrum follows by looking atC2n+2. If u(ζ ) = (1,ζ ,ζ 2, . . . ,
ζ 2n+1)⊤ is an eigenvector ofC2n+2, whereζ 2n+2 = 1, thenu(ζ ) andu(ζ−1) have
the same eigenvalue 2cos(π j/(n+1)), and hence so hasu(ζ )−u(ζ−1). This latter
vector has two zero coordinates distancen+1 apart and (forζ 6= ±1) induces an
eigenvector on the two paths obtained by removing the two points where it is zero.

Eigenvectors ofL with eigenvalue 2−ζ −ζ−1 are(1+ζ 2n−1, . . . ,ζ j +ζ 2n−1− j ,
. . . ,ζ n−1+ζ n) whereζ 2n = 1. One can check this directly, or considerPn the result
of folding C2n where the folding has no fixed vertices. An eigenvector ofC2n that is
constant on the preimages of the folding yields an eigenvector of Pn with the same
eigenvalue.

1.4.5 Line graphs

Theline graph L(Γ ) of Γ is the graph with the edge set ofΓ as vertex set, where two
vertices are adjacent if the corresponding edges ofΓ have an endpoint in common.
If N is the incidence matrix ofΓ , thenN⊤N−2I is the adjacency matrix ofL(Γ ).
SinceN⊤N is positive semidefinite, the eigenvalues of a line graph arenot smaller
than−2. We have an explicit formula for the eigenvalues ofL(Γ ) in terms of the
signless Laplace eigenvalues ofΓ .

Proposition 1.4.1 SupposeΓ has m edges, and letρ1 ≥ . . . ≥ ρr be the positive
signless Laplace eigenvalues ofΓ , then the eigenvalues of L(Γ ) are θi = ρi −2 for
i = 1, . . . , r, andθi =−2 if r < i ≤m.

Proof. The signless Laplace matrixQ of Γ , and the adjacency matrixB of L(Γ )
satisfyQ=NN⊤ andB+2I =N⊤N. BecauseNN⊤ andN⊤N have the same nonzero
eigenvalues (multiplicities included), the result follows. �

Example Since the pathPn has line graphPn−1, and is bipartite, the Laplace and
the signless Laplace eigenvalues ofPn are 2+2cosπ i

n , i = 1, . . . ,n.
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Corollary 1.4.2 If Γ is a k-regular graph (k≥ 2) with n vertices, e= kn/2 edges
and eigenvaluesθi (i = 1, . . . ,n), then L(Γ ) is (2k− 2)-regular with eigenvalues
θi +k−2 (i = 1, . . . ,n) and e−n times−2. �

The line graph of the complete graphKn (n≥ 2), is known as thetriangular graph
T(n). It has spectrum 2(n− 2)1, (n− 4)n−1, (−2)n(n−3)/2. The line graph of the
regular complete bipartite graphKm,m (m≥ 2), is known as thelattice graph L2(m).

It has spectrum 2(m−1)1, (m−2)2m−2, (−2)(m−1)2. These two families of graphs,
and their complements, are examples of strongly regular graphs, which will be the
subject of Chapter 9. The complement ofT(5) is the famousPetersen graph. It has
spectrum 31 15 (−2)4.

1.4.6 Cartesian products

Given graphsΓ and∆ with vertex setsV andW, respectively, theirCartesian prod-
uct Γ �∆ is the graph with vertex setV×W, where(v,w) ∼ (v′,w′) when either
v = v′ and w ∼ w′ or w = w′ and v ∼ v′. For the adjacency matrices we have
AΓ �∆ = AΓ ⊗ I + I ⊗A∆ .

If u andv are eigenvectors forΓ and∆ with ordinary or Laplace eigenvaluesθ
andη , respectively, then the vectorw defined byw(x,y) = uxvy is an eigenvector of
Γ �∆ with ordinary or Laplace eigenvalueθ +η .

For example,L2(m) = Km�Km.
For example, thehypercube2n, also calledQn, is the Cartesian product ofn

factorsK2. The spectrum ofK2 is 1,−1, and hence the spectrum of 2n consists of
the numbersn−2i with multiplicity

(n
i

)
(i = 0,1, . . . ,n).

1.4.7 Kronecker products and bipartite double

Given graphsΓ and∆ with vertex setsV andW, respectively, theirKronecker prod-
uct (or direct product, or conjunction) Γ ⊗∆ is the graph with vertex setV ×W,
where(v,w) ∼ (v′,w′) whenv ∼ v′ andw ∼ w′. The adjacency matrix ofΓ ⊗∆ is
the Kronecker product of the adjacency matrices ofΓ and∆ .

If u andv are eigenvectors forΓ and∆ with eigenvaluesθ andη , respectively,
then the vectorw= u⊗v (with w(x,y) = uxvy) is an eigenvector ofΓ ⊗∆ with eigen-
valueθη . Thus, the spectrum ofΓ ⊗∆ consists of the products of the eigenvalues
of Γ and∆ .

Given a graphΓ , its bipartite doubleis the graphΓ ⊗K2 (with for each vertexx
of Γ two verticesx′ andx′′, and for each edgexyof Γ two edgesx′y′′ andx′′y′). If Γ
is bipartite, its double is just the union of two disjoint copies. If Γ is connected and
not bipartite, then its double is connected and bipartite. If Γ has spectrumΦ , then
Γ ⊗K2 has spectrumΦ ∪−Φ .
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The notationΓ ×∆ is used in the literature both for the Cartesian product and for
the Kronecker product of two graphs. We avoid it here.

1.4.8 Strong products

Given graphsΓ and∆ with vertex setsV andW, respectively, theirstrong product
Γ ⊠∆ is the graph with vertex setV ×W, where two distinct vertices(v,w) and
(v′,w′) are adjacent wheneverv andv′ are equal or adjacent inΓ , andw andw′

are equal or adjacent in∆ . If AΓ andA∆ are the adjacency matrices ofΓ and∆ ,
then ((AΓ + I)⊗ (A∆ + I))− I is the adjacency matrix ofΓ ⊠ ∆ . It follows that
the eigenvalues ofΓ ⊠∆ are the numbers(θ +1)(η +1)−1, whereθ andη run
through the eigenvalues ofΓ and∆ , respectively.

Note that the edge set of the strong product ofΓ and∆ is the union of the edge
sets of the Cartesian product and the Kronecker product ofΓ and∆ .

For example,Km+n = Km⊠Kn.

1.4.9 Cayley graphs

Let G be an abelian group andS⊆ G. TheCayley graphon G with difference set
S is the (directed) graphΓ with vertex setG and edge setE = {(x,y) | y− x∈ S}.
Now Γ is regular with in- and outvalency|S|. The graphΓ will be undirected when
S=−S.

It is easy to compute the spectrum of finite Cayley graphs (on an abelian group).
Let χ be a character ofG, that is, a mapχ : G→C∗ such thatχ(x+y) = χ(x)χ(y).
Then∑y∼x χ(y) = (∑s∈Sχ(s))χ(x) so that the vector(χ(x))x∈G is a right eigenvec-
tor of the adjacency matrixA of Γ with eigenvalueχ(S) := ∑s∈Sχ(s). Then= |G|
distinct characters give independent eigenvectors, so oneobtains the entire spectrum
in this way.

For example, the directed pentagon (with in- and outvalency1) is a Cayley graph
for G = Z5 andS= {1}. The characters ofG are the mapsi 7→ ζ i for some fixed
5-th root of unityζ . Hence the directed pentagon has spectrum{ζ | ζ 5 = 1}.

The undirected pentagon (with valency 2) is the Cayley graphfor G = Z5 and
S= {−1,1}. The spectrum of the pentagon becomes{ζ + ζ−1 | ζ 5 = 1}, that is,
consists of 2 and12(−1±

√
5) (both with multiplicity 2).

1.5 Decompositions

Here we present two non-trivial applications of linear algebra to graph decomposi-
tions.
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1.5.1 DecomposingK10 into Petersen graphs

An amusing application ([32, 294]) is the following. Can theedges of the com-
plete graphK10 be colored with three colors such that each color induces a graph
isomorphic to the Petersen graph?K10 has 45 edges, 9 on each vertex, and the Pe-
tersen graph has 15 edges, 3 on each vertex, so at first sight this might seem possi-
ble. Let the adjacency matrices of the three color classes beP1, P2 andP3, so that
P1+P2+P3 = J− I . If P1 andP2 are Petersen graphs, they both have a 5-dimensional
eigenspace for eigenvalue 1, contained in the 9-space1⊥. Therefore, there is a com-
mon 1-eigenvectoru andP3u = (J− I)u−P1u−P2u = −3u so thatu is an eigen-
vector forP3 with eigenvalue−3. But the Petersen graph does not have eigenvalue
−3, so the result of removing two edge-disjoint Petersen graphs fromK10 is not a
Petersen graph. (In fact, it follows thatP3 is connected and bipartite.)

1.5.2 DecomposingKn into complete bipartite graphs

A famous result is the fact that for any edge-decomposition of Kn into complete
bipartite graphs one needs to use at leastn−1 summands. SinceKn has eigenvalue
−1 with multiplicity n−1, this follows directly from the following:

Proposition 1.5.1 (H. S. Witsenhausen; Graham & Pollak [173])Suppose a graph
Γ with adjacency matrix A has an edge decomposition into r complete bipartite
graphs. Then r≥ n+(A) and r≥ n−(A), where n+(A) and n−(A) are the numbers
of positive (negative) eigenvalues of A.

Proof. Let the i-th complete bipartite graph have a bipartition whereui and vi

are the characteristic vectors of both sides of the bipartition, so that its adjacency
matrix is Di = uiv⊤i + viu⊤i , andA = ∑Di . Let w be a vector orthogonal to allui .
Thenw⊤Aw= 0 and it follows thatw cannot be chosen in the span of eigenvectors
of A with positive (negative) eigenvalue. �

1.6 Automorphisms

An automorphismof a graphΓ is a permutationπ of its point setX such thatx ∼ y
if and only if π(x) ∼ π(y). Givenπ, we have a linear transformationPπ onV defined
by (Pπ(u))x = uπ(x) for u ∈ V, x ∈ X. Thatπ is an automorphism is expressed by
APπ = PπA. It follows thatPπ preserves the eigenspaceVθ for each eigenvalueθ of
A.

More generally, ifG is a group of automorphisms ofΓ then we find a linear
representation of degreem(θ) = dimVθ of G.

We denote the group of all automorphisms ofΓ by Aut Γ . One would expect that
when AutΓ is large, thenm(θ) tends to be large, so thatΓ has only few distinct
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eigenvalues. And indeed, the arguments below will show thata transitive group of
automorphisms does not go very well together with simple eigenvalues.

Suppose dimVθ = 1, sayVθ = 〈u〉. SincePπ preservesVθ we must havePπu=
±u. So eitheru is constant on the orbits ofπ, or π has even order,Pπ(u) =−u, and
u is constant on the orbits ofπ2. For the Perron-Frobenius eigenvector (cf.§2.2) we
are always in the former case.

Corollary 1.6.1 If all eigenvalues are simple, thenAut Γ is an elementary abelian
2-group.

Proof. If π has order larger than two, then there are two distinct verticesx, y in an
orbit of π2, and all eigenvectors have identicalx- andy-coordinates, a contradiction.
�

Corollary 1.6.2 LetAut Γ be transitive on X. (ThenΓ is regular of degree k, say.)

(i) If m(θ) = 1 for some eigenvalueθ 6= k, then v= |X| is even, andθ ≡ k
(mod 2). If Aut Γ is moreover edge-transitive thenΓ is bipartite andθ =−k.

(ii) If m(θ) = 1 for two distinct eigenvaluesθ 6= k, then v≡ 0 (mod 4).
(iii) If m(θ) = 1 for all eigenvaluesθ , thenΓ has at most two vertices.

Proof. (i) SupposeVθ = 〈u〉. Thenu induces a partition ofX into two equal parts:
X = X+ ∪X−, whereux = a for x ∈ X+ and ux = −a for x ∈ X−. Now θ = k−
2|Γ (x)∩X−| for x∈ X+.

(ii) If m(k) = m(θ) = m(θ ′) = 1, then we find 3 pairwise orthogonal(±1)-
vectors, and a partition ofX into four equal parts.

(iii) There are not enough integersθ ≡ k (mod 2) between−k andk. �

For more details, see Cvetković, Doob & Sachs [111], Chapter 5.

1.7 Algebraic connectivity

Let Γ be a graph with at least two vertices. The second smallest Laplace eigenvalue
µ2(Γ ) is called thealgebraic connectivityof the graphΓ . This concept was intro-
duced by Fiedler [150]. Now, by Proposition 1.3.7,µ2(Γ )≥ 0, with equality if and
only if Γ is disconnected.

The algebraic connectivity is monotone: it does not decrease when edges are
added to the graph:

Proposition 1.7.1 LetΓ and∆ be two edge-disjoint graphs on the same vertex set,
andΓ ∪∆ their union. We haveµ2(Γ ∪∆)≥ µ2(Γ )+µ2(∆)≥ µ2(Γ ).

Proof. Use thatµ2(Γ ) = minu{u⊥Lu | (u,u) = 1, (u,1) = 0}. �

The algebraic connectivity is a lower bound for the vertex connectivity:

Proposition 1.7.2 Let Γ be a graph with vertex set X. Suppose D⊂ X is a set
of vertices such that the subgraph induced byΓ on X\D is disconnected. Then
|D| ≥ µ2(Γ ).
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Proof. By monotonicity we may assume thatΓ contains all edges betweenD and
X \D. Now a nonzero vectoru that is 0 onD and constant on each component of
X \D and satisfies(u,1) = 0, is a Laplace eigenvector with Laplace eigenvalue|D|.
�

1.8 Cospectral graphs

As noted above (in§1.3.7), there exist pairs of nonisomorphic graphs with the same
spectrum. Graphs with the same (adjacency) spectrum are called cospectral(or
isospectral). The two graphs of Figure 1.2 below are nonisomorphic and cospectral.
Both graphs are regular, which means that they are also cospectral for the Laplace
matrix, and any other linear combination ofA, I , andJ, including the Seidel matrix
(see§1.8.2), and the adjacency matrix of the complement.
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Fig. 1.2 Two cospectral regular graphs
(Spectrum: 4, 1,(−1)4,±

√
5, 1

2(1±
√

17))

Let us give some more examples and families of examples. A more extensive
discussion is found in Chapter 14.

1.8.1 The 4-cube

The hypercube 2n is determined by its spectrum forn < 4, but not forn≥ 4. In-
deed, there are precisely two graphs with spectrum 41, 24, 06, (−2)4, (−4)1 (Hoff-
man [209]). Consider the two binary codes of word length 4 anddimension 3 given
by C1 = 1⊥ andC2 = (0111)⊥. Construct a bipartite graph, where one class of the
bipartition consists of the pairs(i,x) ∈ {1,2,3,4}× {0,1} of coordinate position
and value, and the other class of the bipartition consists ofthe code words, and code
word u is adjacent to the pairs(i,ui) for i ∈ {1,2,3,4}. For the codeC1 this yields
the 4-cube (tesseract), and forC2 we get its unique cospectral mate.
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Fig. 1.3 Tesseract and cospectral switched version

1.8.2 Seidel switching

TheSeidel adjacency matrixof a graphΓ with adjacency matrixA is the matrixS
defined by

Suv =





0 if u= v
−1 if u ∼ v

1 if u 6∼ v

so thatS= J− I −2A. TheSeidel spectrumof a graph is the spectrum of its Sei-
del adjacency matrix. For a regular graph onn vertices with valencyk and other
eigenvaluesθ , the Seidel spectrum consists ofn−1−2k and the values−1−2θ .

Let Γ have vertex setX, and letY ⊂ X. Let D be the diagonal matrix indexed by
X with Dxx = −1 for x∈Y, andDxx = 1 otherwise. ThenDSDhas the same spec-
trum asS. It is the Seidel adjacency matrix of the graph obtained fromΓ by leaving
adjacency and nonadjacency insideY andX \Y as it was, and interchanging adja-
cency and nonadjacency betweenY andX \Y. This new graph, Seidel-cospectral
with Γ , is said to be obtained bySeidel switchingwith respect to the set of vertices
Y.

Being related by Seidel switching is an equivalence relation, and the equivalence
classes are calledswitching classes. Here are the three switching classes of graphs
with 4 vertices.

s s

s s ∼ s s

s s

� ∼ s s

s s
/ s s

s s ∼ s s

s s ∼ s s

s s ∼ s s

s s

� ∼ s s

s s

� / s s

s s ∼ s s

s s

� ∼ s s

s s

�@

The Seidel matrix of the complementary graphΓ is −S, so that a graph and its
complement have opposite Seidel eigenvalues.

If two regular graphs of the same valency are Seidel cospectral, then they are also
cospectral.

Figure 1.2 shows an example of two cospectral graphs relatedby Seidel switch-
ing (with respect to the four corners). These graphs are nonisomorphic: they have
different local structure.
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The Seidel adjacency matrix plays a rôle in the description of regular two-graphs
(see§§10.1–10.3) and equiangular lines (see§10.6).

1.8.3 Godsil-McKay switching

Let Γ be a graph with vertex setX, and let{C1, . . . ,Ct ,D} be a partition ofX such
that {C1, . . . ,Ct} is an equitable partition ofX \D (that is, any two vertices inCi

have the same number of neighbors inCj for all i, j), and for everyx∈ D and every
i ∈ {1, . . . , t} the vertexx has either 0,12|Ci | or |Ci | neighbors inCi . Construct a
new graphΓ ′ by interchanging adjacency and nonadjacency betweenx∈ D and the
vertices inCi wheneverx has 1

2|Ci | neighbors inCi . ThenΓ andΓ ′ are cospectral
([168]).

Indeed, letQm be the matrix2
mJ− I of orderm, so thatQ2

m= I . Letni = |Ci |. Then
the adjacency matrixA′ of Γ ′ is found to beQAQ whereQ is the block diagonal
matrix with blocksQni (1≤ i ≤ t) andI (of order|D|).

The same argument also applies to the complementary graphs,so that also the
complements ofΓ and Γ ′ are cospectral. Thus, for example, the second pair of
graphs in Figure 1.1 is related by GM-switching, and hence has cospectral comple-
ments. The first pair does not have cospectral complements and hence does not arise
by GM-switching.

The 4-cube and its cospectral mate (Figure 1.3) can be obtained from each other
by GM-switching with respect to the neighborhood of a vertex. Figure 1.2 is also an
example of GM-switching. Indeed, when two regular graphs ofthe same degree are
related by Seidel switching, the switch is also a case of GM-switching.

1.8.4 Reconstruction

The famous Kelly-Ulam conjecture (1941) asks whether a graph Γ can be recon-
structed when the (isomorphism types of) then vertex-deleted graphsΓ \ x are
given. The conjecture is still open (see Bondy [31] for a discussion), but Tutte
[322] showed that one can reconstruct the characteristic polynomial of Γ , so that
any counterexample to the reconstruction conjecture must be a pair of cospectral
graphs.

1.9 Very small graphs

Let us give various spectra for the graphs on at most 4 vertices. The columns with
headingA, L, Q, S give the spectrum for the adjacency matrix, the Laplace matrix
L = D−A (whereD is the diagonal matrix of degrees), the signless Laplace matrix
Q= D+A and the Seidel matrixS= J− I −2A.
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label picture A L Q S
0.1

1.1 s 0 0 0 0

2.1 s s 1,−1 0,2 2,0 −1,1

2.2 s s 0,0 0,0 0,0 −1,1

3.1 s s

s

�A 2,−1,−1 0,3,3 4,1,1 −2,1,1

3.2 s s

s

�A
√

2,0,−
√

2 0,1,3 3,1,0 −1,−1,2

3.3 s s

s

1,0,−1 0,0,2 2,0,0 −2,1,1

3.4 s s

s

0,0,0 0,0,0 0,0,0 −1,−1,2

4.1 s s

s s

�@ 3,−1,−1,−1 0,4,4,4 6,2,2,2 −3,1,1,1

4.2 s s

s s

� ρ ,0,−1,1−ρ 0,2,4,4 2+2τ,2,2,4−2τ −
√

5,−1,1,
√

5

4.3 s s

s s

2,0,0,−2 0,2,2,4 4,2,2,0 −1,−1,−1,3

4.4 s s

s s

� θ1,θ2,−1,θ3 0,1,3,4 2+ρ ,2,1,3−ρ −
√

5,−1,1,
√

5

4.5 s s

s s

�
√

3,0,0,−
√

3 0,1,1,4 4,1,1,0 −1,−1,−1,3

4.6 s s

s s

τ,τ−1,1−τ,−τ 0,4−α ,2,α α ,2,4−α ,0 −
√

5,−1,1,
√

5

4.7 s s

s s

� 2,0,−1,−1 0,0,3,3 4,1,1,0 −3,1,1,1

4.8 s s

s s √
2,0,0,−

√
2 0,0,1,3 3,1,0,0 −

√
5,−1,1,

√
5

4.9 s s

s s

1,1,−1,−1 0,0,2,2 2,2,0,0 −3,1,1,1

4.10 s s

s s

1,0,0,−1 0,0,0,2 2,0,0,0 −
√

5,−1,1,
√

5

4.11 s s

s s

0,0,0,0 0,0,0,0 0,0,0,0 −1,−1,−1,3

Table 1.1 Spectra of very small graphs

Hereα = 2+
√

2 andτ = (1+
√

5)/2 andρ = (1+
√

17)/2 andθ1 ≈ 2.17009,
θ2≈ 0.31111,θ3≈−1.48119 are the three roots ofθ 3−θ 2−3θ +1= 0.

1.10 Exercises

Exercise 1Show that no graph has eigenvalue−1/2. Show that no undirected graph

has eigenvalue
√

2+
√

5. (Hint: consider the algebraic conjugates of this number.)

Exercise 2 Let Γ be an undirected graph with eigenvaluesθ1, . . . ,θn. Show that for
any two verticesa andb of Γ there are constantsc1, . . . ,cn such that the number of
walks of lengthh from a to b equals∑ciθ h

i for all h.

Exercise 3 Let Γ be a directed graph with constant outdegreek > 0 and without
directed 2-cycles. Show thatΓ has a non-real eigenvalue.
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Exercise 4 (i) Let Γ be a directed graph onn vertices, such that there is ah with the
property that for any two verticesa andb (distinct or not) there is a unique directed
path of lengthh from a to b. Prove thatΓ has constant in-degree and out-degreek,
wheren= kh, and has spectrumk1 0n−1.

(ii) The de Bruijn graphof order m is the directed graph with as vertices the
2m binary sequences of lengthm, where there is an arrow froma1 . . .am to b1 . . .bm

when the taila2 . . .am of the first equals the headb1 . . .bm−1 of the second. (For
m= 0 a single vertex with two loops.) Determine the spectrum of the de Bruijn
graph.

(iii) A de Bruijn cycleof orderm≥ 1 ([67, 68, 154]) is a circular arrangement of
2m zeros and ones such that each binary sequence of lengthm occurs once in this
cycle. (In other words, it is a Hamiltonian cycle in the de Bruijn graph of orderm, an
Eulerian cycle in the de Bruijn graph of orderm−1.) Show that there are precisely
22m−1−m de Bruijn cycles of orderm.

Exercise 5([40, 290]) LetΓ be atournament, that is, a directed graph in which there
is precisely one edge between any two distinct vertices, in other words, of which the
adjacency matrixA satisfiesA⊤+A= J− I .

(i) Show that all eigenvalues have real part not less than−1/2.
(ii) The tournamentΓ is calledtransitiveif (x,z) is an edge whenever both(x,y)

and(y,z) are edges. Show that all eigenvalues of a transitive tournament are
zero.

(iii) The tournamentΓ is calledregular when each vertex has the same number
of out-arrows. Clearly, when there aren vertices, this number of out-arrows
is (n− 1)/2. Show that all eigenvaluesθ have real part at most(n− 1)/2,
and that Re(θ) = (n−1)/2 occurs if and only ifΓ is regular (and thenθ =
(n−1)/2).

(iv) Show thatA either has full rankn or has rankn−1, and thatA has full rank
whenΓ is regular andn> 1.

(Hint: for a vectoru, consider the expression ¯u⊤(A⊤+A)u.)

Exercise 6 Let Γ be bipartite and consider its line graphL(Γ ).

(i) Show thatΓ admits a directed incidence matrixN such thatN⊤N−2I is the
adjacency matrix ofL(Γ ).

(ii) Give a relation between the Laplace eigenvalues ofΓ and the ordinary eigen-
values ofL(Γ ).

(iii) Verify this relation in caseΓ is the pathPn.

Exercise 7([98]) Verify (see§1.2.1) that both graphs pictured here have character-
istic polynomialt4(t4−7t2+9), so that these two trees are cospectral.
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Note how the coefficients of the characteristic polynomial of a tree count partial
matchings (sets of pairwise disjoint edges) in the tree.

Exercise 8([16]) Verify that both graphs pictured here have characteristic polyno-
mial (t − 1)(t + 1)2(t3− t2− 5t + 1) by computing eigenvectors and eigenvalues.
Use the observation (§1.6) that the image of an eigenvector under an automorphism
is again an eigenvector. In particular, when two verticesx,y are interchanged by an
involution (automorphism of order 2), then a basis of the eigenspace exists consist-
ing of vectors where thex- andy-coordinates are either equal or opposite.

s s
s

s
s s�HH�
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s
s
s
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s
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Exercise 9 Show that the disjoint unionΓ +∆ of two graphsΓ and∆ has charac-
teristic polynomialp(x) = pΓ (x)p∆ (x).

Exercise 10If Γ is regular of valencyk onn vertices, then show that its complement
Γ has characteristic polynomial

p(x) = (−1)n x−n+k+1
x+k+1

pΓ (−x−1).

Exercise 11 Let theconeover a graphΓ be the graph obtained by adding a new
vertex and joining that to all vertices ofΓ . If Γ is regular of valencyk onn vertices,
then show that the cone overΓ has characteristic polynomial

p(x) = (x2−kx−n)pΓ (x)/(x−k).

Exercise 12 Let the join of two graphsΓ and∆ be Γ +∆ , the result of joining
each vertex ofΓ to each vertex of (a disjoint copy of)∆ . If Γ and∆ are regular of
valenciesk andℓ, and havem andn vertices, respectively, then the join ofΓ and∆
has characteristic polynomial

p(x) = ((x−k)(x− ℓ)−mn)
pΓ (x)p∆ (x)
(x−k)(x− ℓ)

.

Exercise 13 Show that the Seidel adjacency matrixSof a graph onn vertices has
rankn−1 orn. (Hint: detS≡ n−1 (mod 2).)

Exercise 14 Prove that the complete graphK55 is not the union of three copies of
the triangular graphT(11).





Chapter 2
Linear algebra

In this chapter we present some less elementary, but relevant results from linear
algebra.

2.1 Simultaneous diagonalization

LetV be a complex vector space with finite dimension, and fix a basis. Then we can
define an inner product onV by putting(x,y) = ∑xiyi = x⊤y for x,y∈V, where the
bar denotes complex conjugation. IfA is Hermitean, i.e., if (Ax,y) = (x,Ay) for all
x,y ∈ V, then all eigenvalues ofA are real, andV admits an orthonormal basis of
eigenvectors ofA.

Proposition 2.1.1 SupposeA is a collection of commuting Hermitean linear trans-
formations on V (i.e., AB= BA for A,B ∈ A ), then V has a basis consisting of
common eigenvectors of all A∈A .

Proof. Induction on dimV. If eachA∈ A is a multiple of the identityI , then all
is clear. Otherwise, letA∈ A not be a multiple ofI . If Au= θu andB∈ A , then
A(Bu) = BAu= θBu so thatB acts as a linear transformation on the eigenspace
Vθ for the eigenvalueθ of A. By the induction hypothesis we can choose a basis
consisting of common eigenvectors for eachB∈A in each eigenspace. The union
of these bases is the basis ofV we were looking for. �

Given a square matrixA, we can regardAas a linear transformation on a vector space
(with fixed basis). Hence the above concepts apply. The matrix A will be Hermitean
precisely whenA= Ā⊤; in particular, a real symmetric matrix is Hermitean.

21
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2.2 Perron-Frobenius Theory

Let T be a realn× n matrix with nonnegative entries.T is calledprimitive if for
somek we haveTk > 0; T is calledirreducible if for all i, j there is ak such that
(Tk)i j > 0. Here, for a matrix (or vector)A, A> 0 (≥ 0) means that all its entries
are positive (nonnegative).

The matrixT = (ti j ) is irreducible if and only if the directed graphΓT with ver-
tices{1, . . . ,n} and edges(i, j) wheneverti j > 0 is strongly connected.

(A directed graph(X,E) is strongly connectedif for any two verticesx,y there
is a directed path fromx to y, i.e., there are verticesx0 = x,x1, . . . ,xm = y such that
(xi−1,xi) ∈ E for 1≤ i ≤m.)

Note that ifT is irreducible, thenI +T is primitive.
The period d of an irreducible matrixT is the greatest common divisor of the

integersk for which (Tk)ii > 0. It is independent of thei chosen.

Theorem 2.2.1 Let T ≥ 0 be irreducible. Then there is a (unique) positive real
numberθ0 with the following properties:

(i) There is a real vector x0 > 0 with Tx0 = θ0x0.
(ii) θ0 has geometric and algebraic multiplicity one.

(iii) For each eigenvalueθ of T we have|θ | ≤ θ0. If T is primitive, then|θ | =
θ0 implies θ = θ0. In general, if T has period d, then T has precisely d
eigenvaluesθ with |θ | = θ0, namelyθ = θ0e2π i j/d for j = 0,1, . . . ,d−1. In
fact the entire spectrum of T is invariant under rotation of the complex plane
over an angle2π/d about the origin.

(iv) Any nonnegative left or right eigenvector of T has eigenvalueθ0. More gen-
erally, if x≥ 0, x 6= 0 and Tx≤ θx, then x> 0 andθ ≥ θ0; moreover,θ = θ0

if and only if Tx= θx.
(v) If 0≤ S≤ T or if S is a principal minor of T , and S has eigenvalueσ , then
|σ | ≤ θ0; if |σ |= θ0, then S= T.

(vi) Given a complex matrix S, let|S| denote the matrix with elements|S|i j = |Si j |.
If |S| ≤ T and S has eigenvalueσ , then |σ | ≤ θ0. If equality holds, then
|S|= T, and there are a diagonal matrix E with diagonal entries of absolute
value 1 and a constant c of absolute value 1, such that S= cETE−1.

Proof. (i) Let P=(I+T)n−1. ThenP> 0 andPT=TP. LetB= {x | x≥ 0 andx 6=
0}. Define forx∈ B:

θ(x) = max{θ | θ ∈ R, θx≤ Tx}= min{ (Tx)i

xi
| 1≤ i ≤ n, xi 6= 0}.

Now θ(αx) = θ(x) for α ∈R, α > 0, and (x≤ y, x 6= y impliesPx<Py, so)θ(Px)≥
θ(x); in fact θ(Px) > θ(x) unlessx is an eigenvector ofT. PutC = {x | x≥ 0 and
‖x‖= 1}. Then sinceC is compact andθ(.) is continuous onP[C] (but not in general
onC !), there is anx0 ∈ P[C] such that
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θ0 := sup
x∈B

θ(x) = sup
x∈C

θ(x) = sup
x∈P[C]

θ(x) = θ(x0).

Now x0 > 0 andx0 is an eigenvector ofT, soTx0 = θ0x0, andθ0 > 0.
(ii) For a vectorx= (x1, . . . ,xn)

⊤, write x+ = (|x1|, . . . , |xn|)⊤. If Tx= θx, then
by the triangle inequality we haveTx+ ≥ |θ |x+. For nonzerox this means|θ | ≤
θ(x+) ≤ θ0. If, for some vectorz∈ B, we haveTz≥ θ0z, thenz is eigenvector of
T (otherwiseθ(Pz) > θ0), and since 0< Pz= (1+ θ0)

n−1z we havez> 0. If x is
a real vector such thatTx= θ0x, then considery= x0+ εx, whereε is chosen such
thaty≥ 0 but noty> 0; by the foregoingy 6∈ B, so thaty= 0, andx is a multiple of
x0. If x is a nonreal vector such thatTx= θ0x, then both the real and imaginary parts
of x are multiples ofx0. This shows that the eigenspace ofθ0 has dimension 1, i.e.,
that the geometric multiplicity ofθ0 is 1. We shall look at the algebraic multiplicity
later.

(iii) We have seen|θ | ≤ θ0. If |θ |= θ0 andTx= θx, thenTx+ = θ0x+ and we had
equality in the triangle inequality|∑ j ti j x j | ≤ ∑ j ti j |x j |; this means that all numbers
ti j x j (1≤ j ≤ n) have the same angular part (argument). IfT is primitive, then we
can apply this reasoning withTk instead ofT, whereTk > 0, and conclude that all
x j have the same angular part. Consequently, in this casex is a multiple of a real
vector and may be taken real, nonnegative. NowTx= θx shows thatθ is real, and
|θ | = θ0 that θ = θ0. In the general case,Td is a direct sum of primitive matrices
T(0), . . . ,T(d−1), and ifx= (x(0), . . . ,x(d−1)) is the corresponding decomposition of
an eigenvector ofT (with eigenvalueθ ), then(x(0),ζx(1), . . . ,ζ d−1x(d−1)) also is
an eigenvector ofT, with eigenvalueζ θ , for any d-th root of unityζ . (Here we
assume that theT(i) are ordered in such a way that inΓT the arrows point from the
subset corresponding toT(i) to the subset corresponding toT(i+1).) SinceTd has a

unique eigenvalue of maximum modulus (letT(i+1)
(i) be the (nonsquare) submatrix

of T describing the arrows inΓT between the subset corresponding toT(i) to the

subset corresponding toT(i+1); thenT(i) = ∏d−1
j=0 T(i+ j+1)

(i+ j) and if T(i)z= γz, z> 0

thenT(i−1)z′ = γz′ wherez′ = T(i)
(i−1)z 6= 0, so that allT(i) have the same eigenvalue

of maximum modulus), it follows thatT has preciselyd such eigenvalues.
(iv) Doing the above for left eigenvectors instead of right ones, we findy0 >

0 with y⊤0 T = η0y⊤0 . If Tx= θx andy⊤T = ηy⊤, thenηy⊤x = y⊤Tx= θy⊤x. It
follows that eitherθ = η or y⊤x= 0. Takingy∈ B, x= x0 or x∈ B, y= y0 we see
thatθ = η (= θ0 = η0). Similarly, if Tx≤ θx, x∈ B thenθ0y⊤0 x= y⊤0 Tx≤ θy⊤0 x so
thatθ0 ≤ θ ; also 0< Px≤ (1+θ)n−1x, sox> 0. If θ = θ0, theny⊤0 (Tx−θx) = 0
soTx= θx.

(v) If s 6= 0, Ss= σs, thenTs+ ≥ Ss+ ≥ |σ |s+, so|σ | ≤ θ0. But if |σ |= θ0 then
s+ is eigenvector ofT ands+ > 0 and(T−S)s+ = 0, soS= T.

(vi) If s 6= 0, Ss= σs, thenTs+ ≥ |S|s+ ≥ |σ |s+, so |σ | ≤ θ0, and if |σ | = θ0

thens+ is eigenvector ofT ands+ > 0 and|S|= T. Equality in|S|s+ = |σ |s+ means
that |∑Si j sj | = ∑ |Si j |.|sj |, so that giveni all Si j sj have the same angular part. Let
Eii = si/|si | andc= σ/|σ |. ThenSi j = cEii E

−1
j j |Si j |.
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(vii) Finally, in order to prove thatθ0 is a simple root ofχT , the characteristic
polynomial ofT, we have to show thatddθ χT(θ) is nonzero forθ = θ0. But χT(θ) =
det(θ I −T) and d

dθ χT(θ) = ∑i det(θ I −Tii ), and by (v) we have det(θ I −Tii ) > 0
for θ = θ0. �

Remark In caseT ≥ 0 butT not necessarily irreducible, we can say the following.

(i) The spectral radiusθ0 of T is an eigenvalue, and there are nonnegative left
and right eigenvectors corresponding to it.

(ii) If |S| ≤ T andShas eigenvalueσ , then|σ | ≤ θ0.

( Proof. (i) Use continuity arguments; (ii) the old proof still applies. )

For more details, see the exposition of the Perron-Frobenius theory in Gantmacher
[159, Ch. XIII]; cf. also Varga [324], Marcus & Minc [256], Seneta [304, Ch. 1],
Berman & Plemmons [24], or Horn & Johnson [217, Ch. 8].

2.3 Equitable partitions

SupposeA is a symmetric real matrix whose rows and columns are indexedby
X = {1, . . . ,n}. Let {X1, . . . ,Xm} be a partition ofX. The characteristic matrix
S is the n×m matrix whose j th column is the characteristic vector ofXj ( j =
1, . . . ,m). Defineni = |Xi | andK = diag(n1, . . . ,nm). Let A be partitioned accord-
ing to{X1, . . . ,Xm}, that is,

A=




A1,1 . . . A1,m
...

...
Am,1 . . . Am,m


 ,

wherein Ai, j denotes the submatrix (block) ofA formed by rows inXi and the
columns inXj . Letbi, j denote the average row sum ofAi, j . Then the matrixB=(bi, j)
is called thequotient matrix. We easily have

KB= S⊤AS, S⊤S= K.

If the row sum of each blockAi, j is constant then the partition is calledequitable(or
regular) and we haveAi, j1= bi, j1 for i, j = 0, . . . ,d, so

AS= SB.

The following result is well-known and useful.

Lemma 2.3.1 If, for an equitable partition, v is an eigenvector of B for aneigen-
valueλ , then Sv is an eigenvector of A for the same eigenvalueλ .

Proof. Bv= θv impliesASv= SBv= θSv. �
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In the situation of this lemma, the spectrum ofA consists of the spectrum of the
quotient matrixB (with eigenvectors in the column space ofS, i.e., constant on
the parts of the partition) together with the eigenvalues belonging to eigenvectors
orthogonal to the columns ofS(i.e., summing to zero on each part of the partition).
These latter eigenvalues remain unchanged if the blocksAi, j are replaced byAi, j +
ci, jJ for certain constantsci, j .

2.3.1 Equitable and almost equitable partitions of graphs

If in the above the matrixA is the adjacency matrix (or the Laplace matrix) of a
graph, then an equitable partition of the matrixA is a partition of the vertex set into
partsXi such that each vertex inXi has the same numberbi, j of neighbours in part
Xj , for any j (or any j 6= i). Such partitions are called (almost) equitable partitions
of the graph.

For example, the adjacency matrix of the complete bipartitegraphKp,q has an equi-

table partition withm= 2. The quotient matrixB equals
[

0 p
q 0

]
and has eigenvalues

±√pq, which are the nonzero eigenvalues ofKp,q.

More generally, consider thejoin Γ of two vertex-disjoint graphsΓ1 andΓ2, the
graph obtained by inserting all possible edges betweenΓ1 andΓ2. If Γ1 andΓ2 have
n1 resp.n2 vertices and are both regular, say of valencyk1 resp.k2, and have spectra
Φ1 resp.Φ2, thenΓ has spectrumΦ = (Φ1 \ {k1})∪ (Φ2 \ {k2})∪{k′,k′′} where
k′,k′′ are the two eigenvalues of

[
k1 n2

n1 k2

]
.

Indeed, we have an equitable partition of the adjacency matrix of Γ with the above
quotient matrix. The eigenvalues that do not belong to the quotient coincide with
those of the disjoint union ofΓ1 andΓ2.

2.4 The Rayleigh quotient

Let A be a real symmetric matrix and letu be a nonzero vector. TheRayleigh quo-
tientof u w.r.t. A is defined as

u⊤Au
u⊤u

.

Let u1, . . . ,un be an orthonormal set of eigenvectors ofA, say withAui = θiui , where
θ1≥ . . .≥ θn. If u= ∑αiui thenu⊤u= ∑α2

i andu⊤Au= ∑α2
i θi . It follows that
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u⊤Au
u⊤u

≥ θi if u∈ 〈u1, . . . ,ui〉

and
u⊤Au
u⊤u

≤ θi if u∈ 〈u1, . . . ,ui−1〉⊥ .

In both cases, equality implies thatu is aθi-eigenvector ofA. Conversely, one has

Theorem 2.4.1 (Courant-Fischer)Let W be an i-subspace of V . Then

θi ≥ min
u∈W,u6=0

u⊤Au
u⊤u

and

θi+1≤ max
u∈W⊥,u6=0

u⊤Au
u⊤u

.

2.5 Interlacing

Consider two sequences of real numbers:θ1 ≥ . . . ≥ θn, andη1 ≥ . . . ≥ ηm with
m< n. The second sequence is said tointerlacethe first one whenever

θi ≥ ηi ≥ θn−m+i , for i = 1, . . . ,m.

The interlacing istight if there exist an integerk∈ [0,m] such that

θi = ηi for 1≤ i ≤ k and θn−m+i = ηi for k+1≤ i ≤m.

If m= n−1, the interlacing inequalities becomeθ1 ≥ η1 ≥ θ2 ≥ η2 ≥ . . . ≥ ηm≥
θn, which clarifies the name. Godsil [164] reserves the name ‘interlacing’ for this
particular case and calls it generalized interlacing otherwise.

Theorem 2.5.1 Let S be a real n×m matrix such that S⊤S= I. Let A be a real
symmetric matrix of order n with eigenvaluesθ1 ≥ . . . ≥ θn. Define B= S⊤AS and
let B have eigenvaluesη1≥ . . .≥ ηm and respective eigenvectors v1 . . .vm.

(i) The eigenvalues of B interlace those of A.
(ii) If ηi = θi or ηi = θn−m+i for some i∈ [1,m], then B has aηi-eigenvector v

such that Sv is aηi-eigenvector of A.
(iii) If for some integer l,ηi = θi , for i = 1, . . . , l (or ηi = θn−m+i for i = l , . . . ,m),

then Svi is a ηi-eigenvector of A for i= 1, . . . , l (respectively i= l , . . . ,m).
(iv) If the interlacing is tight, then SB= AS.

Proof. Let u1, . . . ,un be an orthonormal set of eigenvectors of the matrixA, where
Aui = θi . For eachi ∈ [1,m], take a nonzero vectorsi in

〈v1, . . . ,vi〉∩
〈

S⊤u1, . . . ,S
⊤ui−1

〉⊥
. (2.1)
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ThenSsi ∈ 〈u1, . . . ,ui−1〉⊥, hence by Rayleigh’s principle,

θi ≥
(Ssi)

⊤A(Ssi)

(Ssi)
⊤(Ssi)

=
si
⊤Bsi

si
⊤si
≥ ηi ,

and similarly (or by applying the above inequality to−A and−B) we getθn−m+i ≤
ηi , proving (i). If θi = ηi , thensi andSsi areθi-eigenvectors ofB andA, respectively,
proving (ii). We prove (iii) by induction onl . AssumeSvi = ui for i = 1, . . . , l −
1. Then we may takesl = vl in (2.1), but in proving (ii) we saw thatSsl is a θl -
eigenvector ofA. (The statement between parentheses follows by considering −A
and−B.) Thus we have (iii). Let the interlacing be tight. Then by (iii), Sv1, . . . ,Svm
is an orthonormal set of eigenvectors ofA for the eigenvaluesη1, . . . ,ηm. So we have
SBvi = ηiSvi = ASvi , for i = 1, . . . ,m. Since the vectorsvi form a basis, it follows
thatSB= AS. �

If we takeS= [I 0]⊤, thenB is just a principal submatrix ofA and we have the
following corollary.

Corollary 2.5.2 If B is a principal submatrix of a symmetric matrix A, then the
eigenvalues of B interlace the eigenvalues of A.

The theorem requires the columns ofSto be orthonormal. If one has a situation with
orthogonal but not necessarily orthonormal vectors, some scaling is required.

Corollary 2.5.3 Let A be a real symmetric matrix of order n. Let x1, . . . ,xm be
nonzero orthogonal real vectors of order n. Define a matrix C= (ci j ) by ci j =

1
||xi ||2

x⊤i Axj .

(i) The eigenvalues of C interlace the eigenvalues of A.
(ii) If the interlacing is tight, then Axj = ∑ci j xi for all j.

(iii) Let x = ∑x j . The number r:= x⊤Ax
x⊤x

lies between the smallest and largest
eigenvalue of C. If x is an eigenvector of A with eigenvalueθ , then also C has
an eigenvalueθ (for eigenvector1).

Proof. Let K be the diagonal matrix withKii = ||xi ||. Let R be then×m matrix
with columnsx j , and putS= RK−1. ThenS⊤S= I , and the theorem applies with
B= S⊤AS= KCK−1. If interlacing is tight we haveAR= RC. With x= ∑x j = R1

andy= K1, we havex⊤Ax
x⊤x

= y⊤By
y⊤y

. �

In particular, this applies when thexi are the characteristic vectors of a partition (or
just a collection of pairwise disjoint subsets).

Corollary 2.5.4 Let C be the quotient matrix of a symmetric matrix A whose rows
and columns are partitioned according to a partitioning{X1, . . . ,Xm}.

(i) The eigenvalues of C interlace the eigenvalues of A.
(ii) If the interlacing is tight, then the partition is equitable. �

Theorem 2.5.1(i) is a classical result; see Courant & Hilbert [103], Vol. 1, Ch. I.
For the special case of a principal submatrix (Corollary 2.5.2), the result even goes
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back to Cauchy and is therefore often referred to as Cauchy interlacing. Interlacing
for the quotient matrix (Corollary 2.5.4) is especially applicable to combinatorial
structures (as we shall see). Payne (see, for instance, [277]) has applied the extremal
inequalitiesθ1≥ ηi ≥ θn to finite geometries several times. He attributes the method
to Higman and Sims and therefore calls it theHigman-Sims technique.

Remark This theorem generalizes directly to complex Hermitean matrices instead
of real symmetric matrices (with conjugate transpose instead of transpose) with vir-
tually the same proof.

For more detailed eigenvalue inequalities, see Haemers [189], [191].

2.6 Schur’s inequality

Theorem 2.6.1 (Schur [291])Let A be a real symmetric matrix with eigenvalues
θ1≥ θ2≥ . . .≥ θn and diagonal elements d1≥ d2≥ . . .≥ dn. Then∑t

i=1di ≤∑t
i=1 θi

for 1≤ t ≤ n.

Proof. Let B be the principal submatrix ofA obtained by deleting the rows and
columns containingdt+1, . . . ,dn. If B has eigenvaluesηi (1≤ i ≤ t) then by interlac-
ing ∑t

i=1di = trB= ∑t
i=1 ηi ≤ ∑t

i=1 θi . �

Remark Again ‘real symmetric’ can be replaced by ‘Hermitean’.

2.7 Schur complements

In this section, the square matrix

A=

[
A11 A12

A21 A22

]

is a square partitioned matrix (over any field), whereA11 is nonsingular. TheSchur
complement A/A11 of A11 in A is the matrixA22−A21A

−1
11 A12. The following result

is a straightforward but important consequence from the definition.

Theorem 2.7.1 (see [336])The Schur complement A/A11 satisfies

(i)

[
I O

−A21A
−1
11 I

][
A11 A12

A21 A22

][
I −A−1

11 A12

O I

]
=

[
A11 O
O A/A11

]
,

(ii) det(A/A11) = detA/detA11,
(iii) rkA= rkA11+ rk(A/A11).

Corollary 2.7.2 If rkA= rkA11, then A22 = A21A
−1
11 A12. �
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2.8 The Courant-Weyl inequalities

Denote the eigenvalues of a Hermitean matrixA, arranged in nonincreasing order,
by λi(A).

Theorem 2.8.1 Let A and B be Hermitean matrices of order n, and let1≤ i, j ≤ n.

(i) If i + j−1≤ n thenλi+ j−1(A+B)≤ λi(A)+λ j(B).
(ii) If i + j−n≥ 1 thenλi(A)+λ j(B)≤ λi+ j−n(A+B).

(iii) If B is positive semidefinite, thenλi(A+B)≥ λi(A).

Proof. (i) Let u1, . . . ,un andv1, . . . ,vn be orthonormal sets of eigenvectors ofA
resp.B, with Aui = λi(A)ui andBvj = λ j(B)v j . Let U = 〈uh | 1≤ h≤ i− 1〉 and
V = 〈vh | 1≤ h≤ j − 1〉, andW = U +V. For w ∈W⊥ we havew⊤(A+B)w≤
(λi(A) + λ j(B))w⊤w. It follows that the space spanned by eigenvectors ofA+B
with eigenvalue larger thanλi(A)+λ j(B) has dimension at mosti + j−2.

(ii) Apply (i) to −A and−B. (iii) Apply the casej = n of (ii). �

Ky Fan [147] shows thatλ (A)+λ (B) dominatesλ (A+B):

Theorem 2.8.2 Let A and B be Hermitean matrices of order n. Then for all t,0≤
t ≤ n, we have∑t

i=1 λi(A+B)≤ ∑t
i=1 λi(A)+∑t

i=1 λi(B).

Proof. ∑t
i=1 λi(A) = maxtr(U∗AU), where the maximum is over alln× t matrices

U with U∗U = I . �

2.9 Gram matrices

Real symmetricn× n-matricesG are in bijective correspondence with quadratic
formsq onRn via the relation

q(x) = x⊤Gx (x∈ Rn).

Two quadratic formsq andq′ onRn arecongruent, i.e., there is a nonsingularn×n-
matrix S such thatq(x) = q′(Sx) for all x ∈ Rn, if and only if their corresponding
matricesG andG′ satisfyG=S⊤G′S. Moreover, this occurs for someSif and only if
G andG′ have the same rank and the same number of nonnegative eigenvalues—this
is Sylvester [315]’s ‘law of inertia for quadratic forms’, cf. Gantmacher [159], Vol.
1, Chapter X,§2. We shall now be concerned with matrices that have nonnegative
eigenvalues only.

Lemma 2.9.1 Let G be a real symmetric n×n-matrix. Equivalent are:

(i) For all x ∈ Rn, x⊤Gx≥ 0.
(ii) All eigenvalues of G are nonnegative.
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(iii) G can be written as G= H⊤H, with H an m×n matrix, where m is the rank
of G.

Proof. There is an orthogonal matrixQ and a diagonal matrixD whose nonzero
entries are the eigenvalues ofG such thatG = Q⊤DQ. If (ii) holds, thenx⊤Gx=
(Qx)⊤D(Qx) ≥ 0 implies (i). Conversely, (ii) follows from (i) by choosingx to be
an eigenvector. IfG = H⊤H thenx⊤Gx= ||Hx||2 ≥ 0, so (iii) implies (i). Finally,
let E = D1/2 be the diagonal matrix that squares toD, and letF be them×n matrix
obtained fromE by dropping the zero rows. ThenG = Q⊤E⊤EQ= Q⊤F⊤FQ =
H⊤H, so that (ii) implies (iii). �

A symmetricn×n-matrix G satisfying (i) or (ii) is calledpositive semidefinite. It is
calledpositive definitewhenx⊤Gx= 0 impliesx= 0, or, equivalently, when all its
eigenvalues are positive. For any collectionX of vectors ofRm, we define itsGram
matrix as the square matrixG indexed byX whose(x,y)-entry Gxy is the inner
product(x,y) = x⊤y. This matrix is always positive semidefinite, and it is definite if
and only if the vectors inX are linearly independent. (Indeed, ifn= |X|, and we use
H to denote them×n-matrix whose columns are the vectors ofX, thenG= H⊤H,
andx⊤Gx= ||Hx||2≥ 0.)

Lemma 2.9.2 Let N be a real m× n matrix. Then the matrices NN⊤ and N⊤N
have the same nonzero eigenvalues (including multiplicities). Moreover,rkNN⊤ =
rkN⊤N = rkN.

Proof. Let θ be a nonzero eigenvalue ofNN⊤. The mapu 7→ N⊤u is an iso-
morphism from theθ -eigenspace ofNN⊤ onto theθ -eigenspace ofN⊤N. Indeed,
if NN⊤u = θu then N⊤NN⊤u = θN⊤u and N⊤u is nonzero for nonzerou since
NN⊤u= θu. The final sentence follows since rkN⊤N≤ rkN, but if N⊤Nx= 0 then
||Nx||2 = x⊤N⊤Nx= 0, so thatNx= 0. �

2.10 Diagonally dominant matrices

A diagonally dominantmatrix is a complex matrixB with the property that we have
|bii | ≥ ∑ j 6=i |bi j | for all i. When all these inequalities are strict, the matrix is called
strictly diagonally dominant.

Lemma 2.10.1 (i) A strictly diagonally dominant complex matrix is nonsingular.
(ii) A symmetric diagonally dominant real matrix with nonnegative diagonal en-

tries is positive semidefinite.
(iii) Let B be a symmetric real matrix with nonnegative row sums and nonpositive

off-diagonal entries. Define a graphΓ on the index set of the rows of B, where two
distinct indices i, j are adjacent when bi, j 6= 0. The multiplicity of the eigenvalue 0
of B equals the number of connected components C ofΓ such that all rows i∈C
have zero row sum.
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Proof. Let B= (bi j ) be diagonally dominant, and letu be an eigenvector, say, with
Bu= bu. Let |ui | be maximal among the|u j |. Then(bii −b)ui =−∑ j 6=i bi j u j . In all
cases the result follows by comparing the absolute values ofboth sides.

In order to prove (i), assume thatB is singular, and thatBu= 0. Take absolute
values on both sides. We find|bii |.|ui | ≤ ∑ j 6=i |bi j |.|u j | ≤ ∑ j 6=i |bi j ||ui | < |bii |.|ui |.
Contradiction.

For (ii), assume thatB has a negative eigenvalueb. Then(bii −b).|ui | ≤ |bii |.|ui |.
Contradiction.

For (iii), take b = 0 again, and see how equality could hold everywhere in
bii .|ui | ≤ ∑ j 6=i |bi j |.|u j | ≤ ∑ j 6=i |bi j ||ui | ≤ bii .|ui |. We see thatu must be constant
on the connected components ofΓ , and zero where row sums are nonzero. �

2.10.1 Geřsgorin circles

The above can be greatly generalized. LetB(c, r) = {z∈ C | |z− c| ≤ r} be the
closed ball inC with centerc and radiusr.

Proposition 2.10.2 Let A= (ai j ) be a complex matrix of order n, andλ an eigen-
value of A. Put ri = ∑ j 6=i |ai j |. Then for some i we haveλ ∈ B(aii , r i). If C is a
connected component of

⋃
i B(aii , r i) that contains m of the aii , then C contains m

eigenvalues of A.

Proof. If Au= λu, then(λ −aii )ui = ∑ j 6=i ai j u j . Let i be an index for which|ui |
is maximal. Then|λ −aii |.|ui | ≤ ∑ j 6=i |ai j |.|ui | so thatλ ∈ B(aii , r i). For the second
part, use that the eigenvalues are continuous functions of the matrix elements. Let
A(ε) be the matrix with the same diagonal asA and with off-diagonal entriesεai j ,
so thatA= A(1). ThenA(0) has eigenvaluesaii , and for 0≤ ε ≤ 1 the matrixA(ε)
has eigenvalues inside

⋃
i B(aii , r i). �

This result is due to Geršgorin [161]. A book-length treatment was given by
Varga [325].

2.11 Projections

Lemma 2.11.1 Let P=

[
Q N

N⊤ R

]
be a real symmetric matrix of order n with two

eigenvalues a and b, partitioned with square Q and R. Let Q have h eigenvaluesθ j

distinct from a and b. Then R has h eigenvalues a+b−θ j distinct from a and b, and
h= mP(a)−mQ(a)−mR(a) = mP(b)−mQ(b)−mR(b), where mM(η) denotes the
multiplicity of the eigenvalueη of M.

Proof. W.l.o.g. a = 1 andb = 0 so thatP is a projection andP2 = P. Now if
Qu= θu then Rv= (1− θ)v for v = N⊤u and NN⊤u = θ(1− θ)u, so that the
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eigenvalues ofQ andR different from 0 and 1 correspond 1-1. The rest follows by
taking traces: 0= trP− trQ− trR= mP(1)−mQ(1)−mR(1)−h. �

2.12 Exercises

Exercise 1 Consider a symmetricn×n matrix A with eigenvaluesθ1, . . . ,θn. Sup-
poseA has an equitable partition{X1, . . . ,Xm}, where all classes have equal size. Let
SandB be the characteristic matrix and the quotient matrix of thispartition, respec-
tively. Assume thatθ1, . . . ,θn are ordered such thatθ1, . . . ,θm are the eigenvalues
of B. Prove thatA andSS⊤ commute and give an expression for the eigenvalues of
A+αSS⊤ for α ∈ R.

Exercise 2 Let B denote the quotient matrix of a symmetric matrixA whose rows
and columns are partitioned according to a partitioning{X1, . . . ,Xm}.

(i) Give an example, where the eigenvalues ofB are a sub(multi)set of the eigen-
values ofA, whilst the partition is not equitable.

(ii) Give an example where the partition is equitable, whilst the interlacing is not
tight.

Exercise 3 Let Γ be an undirected graph with smallest eigenvalue−1. Show that
Γ is the disjoint union of complete graphs.



Chapter 3
Eigenvalues and eigenvectors

In this chapter we apply the linear algebra from the previouschapter to graph spec-
tra.

3.1 The largest eigenvalue

The largest eigenvalue of a graph is also known as itsspectral radiusor index.
The basic information about the largest eigenvalue of a (possibly directed) graph

is provided by Perron-Frobenius theory.

Proposition 3.1.1 Each graphΓ has a real eigenvalueθ0 with nonnegative real
corresponding eigenvector, and such that for each eigenvalueθ we have|θ | ≤ θ0.
The valueθ0(Γ ) does not increase when vertices or edges are removed fromΓ .

Assume thatΓ is strongly connected. Then

(i) θ0 has multiplicity 1.
(ii) If Γ is primitive (strongly connected, and such that not all cycles have a

length that is a multiple of some integer d> 1), then|θ | < θ0 for all eigen-
valuesθ different fromθ0.

(iii) The valueθ0(Γ ) decreases when vertices or edges are removed fromΓ . �

Now letΓ be undirected. By Perron-Frobenius theory and interlacingwe find an
upper and lower bound for the largest eigenvalue of a connected graph. (Note thatA
is irreducible if and only ifΓ is connected.)

Proposition 3.1.2 Let Γ be a connected graph with largest eigenvalueθ1. If Γ is
regular of valency k, thenθ1 = k. Otherwise, we have kmin < k̄ < θ1 < kmax where
kmin, kmax andk̄ are the minimum, maximum and average degree.

Proof. Let 1 be the vector with all entries equal to 1. ThenA1≤ kmax1, and by
Theorem 2.2.1(iv) we haveθ1 ≤ kmax with equality if and only ifA1= θ11, that is,
if and only if Γ is regular of degreeθ1.

33
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Now consider the partition of the vertex set consisting of a single part. By Corol-
lary 2.5.4 we havēk≤ θ1 with equality if and only ifΓ is regular. �

For not necessarily connected graphs, we havek̄≤ θ1≤ kmax, andk̄= θ1 if and only
if Γ is regular. Ifθ1 = kmax then we only know thatΓ has a regular component with
this valency, butΓ need not be regular itself.

As was noted already in Proposition 3.1.1, the largest eigenvalue of a connected
graph decreases strictly when an edge is removed.

3.1.1 Graphs with largest eigenvalue at most 2

As an example of the application of Theorem 2.2.1 we can mention:

Theorem 3.1.3 (Smith [310], cf. Lemmens & Seidel [238]).The only connected
graphs having largest eigenvalue2 are the following graphs (the number of vertices
is one more than the index given).

• • • •

•

Ân (n≥ 2)
1

1 1 1 1

• • •

•

• • •

•

D̂n (n≥ 4)

1 2 2 2 2 1

1 1

• • • • •

•

•

Ê6
1 2 3 2 1

2

1

• • • • • • •

•

Ê7
1 2 3 4 3 2 1

2

• • • • • • • •

•

Ê8
2 4 6 5 4 3 2 1

3

For each graph, the corresponding eigenvector is indicatedby the integers at the
vertices. Moreover, each connected graph with largest eigenvalue less than2 is a
subgraph of one of the above graphs, i.e., one of the graphs An = Pn, the path with
n vertices(n≥ 1), or

• • •

•

• • •

Dn (n≥ 4)

• • • • •

•

E6

• • • • • •

•

E7

• • • • • • •

•

E8
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Finally, each connected graph with largest eigenvalue morethan2 contains one
of Ân, D̂n, Ê6, Ê7, Ê8 as a subgraph.

Proof. The vectors indicated are eigenvectors for the eigenvalue 2. Therefore,Ân,
D̂n andÊm (m= 6,7,8) have largest eigenvalue 2. Any graph containing one of these
as an induced proper subgraph has an eigenvalue larger than 2. So, if Γ has largest
eigenvalue at most 2 and is not one ofÂn or D̂n, thenΓ is a tree without vertices of
degree at least 4 and with at most one vertex of degree three, and the result easily
follows. �

These graphs occur as the Dynkin diagrams and extended Dynkin diagrams of finite
Coxeter groups, cf. [38, 51, 220]. Let us give their eigenvalues:
The eigenvalues ofAn are 2cosiπ/(n+1) (i = 1,2, . . . ,n).
The eigenvalues ofDn are 0 and 2cosiπ/(2n−2) (i = 1,3,5, . . . ,2n−3).
The eigenvalues ofE6 are 2cosiπ/12 (i = 1,4,5,7,8,11).
The eigenvalues ofE7 are 2cosiπ/18 (i = 1,5,7,9,11,13,17).
The eigenvalues ofE8 are 2cosiπ/30 (i = 1,7,11,13,17,19,23,29).
(Indeed, these eigenvalues are 2cos(di −1)π/h (1≤ i ≤ n) whereh is the Coxeter
number, and thedi are the degrees, cf. [51, pp. 84, 308]. Note that in all cases the
largest eigenvalue is 2cosπ/h.)

The eigenvalues of̂Dn are 2, 0, 0,−2 and 2cosiπ/(n−2) (i = 1, . . . ,n−3).
The eigenvalues of̂E6 are 2, 1, 1, 0,−1,−1,−2.
The eigenvalues of̂E7 are 2,

√
2, 1, 0, 0,−1,−

√
2,−2.

The eigenvalues of̂E8 are 2,τ, 1, τ−1, 0,−τ−1,−1,−τ,−2.

Remark It is possible to go a little bit further, and find all graphs with largest

eigenvalue at most
√

2+
√

5 ≈ 2.05817, cf. Brouwer & Neumaier [62]. For the
graphs with largest eigenvalue at most3

2

√
2 ≈ 2.12132, see Woo & Neumaier [333]

and Cioab̆a, van Dam, Koolen & Lee [94].

3.1.2 Subdividing an edge

Let Γ be a graph onn vertices, and consider the graphΓ ′ on n+ 1 vertices ob-
tained fromΓ by subdividingan edgee (that is, by replacing the edgee= xyby the
two edgesxz andzy wherez is a new vertex). The result below relates the largest
eigenvalue ofΓ andΓ ′.

We say thate lies on anendpathif Γ \ e (the graph onn vertices obtained by
removing the edgee from Γ ) is disconnected, and one of its connected components
is a path.

Proposition 3.1.4 (Hoffman-Smith [212])LetΓ be a connected graph, and let the
graphΓ ′ be obtained fromΓ by subdividing an edge e. LetΓ andΓ ′ have largest
eigenvaluesλ and λ ′, respectively. Then if e lies on an endpath, we haveλ ′ > λ ,
and otherwiseλ ′ ≤ λ , with equality only when both equal2.
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Proof. If e lies on an endpath, thenΓ is obtained fromΓ ′ by removing a leaf
vertex, andλ < λ ′ follows by Proposition 3.1.1. Supposee is not on an endpath. By
Theorem 3.1.3,λ ≥ 2. LetA andA′ be the adjacency matrices ofΓ andΓ ′, so that
Au= λu for some vectoru > 0. We use Theorem 2.2.1 (iv) and concludeλ ′ ≤ λ
from the existence of a nonzero vectorv with v≥ 0 andA′v≤ λv. Such a vectorv
can be constructed as follows. Ifz is the new point on the edgee= xy, then we can
takevp = up for p 6= z, andvp = min(ux,uy), provided thatλvp ≥ ux+uy. Suppose
not. W.l.o.g., assumeux ≤ uy, so thatλux < ux +uy, and henceux < uy. We have
0≤ ∑p∼x,p6=yup = λux−uy < ux. If x has degree 2 inΓ , sayx ∼ p,y, then replace
e= xy by e= px to decrease the values ofu on the end points ofe—this does not
changeΓ ′. If x has degreem> 2, then constructv by vx = λux− uy andvz = ux

andvp = up for p 6= x,z. We have to check thatλvx≥ vx+ux, but this follows from
λvx = λ ∑p∼x,p6=yup≥ (m−1)ux≥ 2ux > vx+ux. �

3.1.3 The Kelmans operation

As we saw, adding edges causes the largest eigenvalue to increase. The operation
described below (due to Kelmans [231]) only moves edges, butalso increasesθ1.

Given a graphΓ and two specified verticesu, v construct a new graphΓ ′ by replac-
ing the edgevx by a new edgeux for all x such thatv ∼ x 6∼ u. The new graphΓ ′
obtained in this way has the same number of vertices and edgesas the old graph,
and all vertices different fromu,v retain their valency. The verticesu,v are adja-
cent inΓ ′ if and only if they are adjacent inΓ . An isomorphic graph is obtained if
the r̂oles ofu andv are interchanged: ifN(u) andN(v) are the sets of neighbours
of u,v distinct fromu andv, then in the resulting graph the corresponding sets are
N(u)∪N(v) andN(u)∩N(v).

If Γ denotes the complementary graph ofΓ then alsoΓ ′ is obtained by a Kelmans
operation fromΓ .

Proposition 3.1.5 (Csikvári [106])LetΓ be a graph, and letΓ ′ be obtained fromΓ
by a Kelmans operation. Thenθ1(Γ )≤ θ1(Γ ′). (And hence alsoθ1(Γ )≤ θ1(Γ ′).)

Proof. Let A and A′ be the adjacency matrices ofΓ and Γ ′, and letAx= θ1x
wherex≥ 0, x⊤x= 1. W.l.o.g., letxu ≥ xv. Thenθ1(Γ ′)≥ x⊤A′x= x⊤Ax+2(xu−
xv)∑w∈N(v)\N(u) xw≥ θ1(Γ ). �

Csikvári continues and uses this to show thatθ1(Γ )+θ1(Γ )≤ 1
2(1+

√
3)n.

Earlier, Brualdi & Hoffman [66] had observed that a graph with maximal spectral
radiusρ among the graphs with a given number of vertices and edges hasa vertex
ordering such that ifx ∼ y andz≤ x, w≤ y, z 6= w, thenz ∼ w. Rowlinson [287]
calls the adjacency matrices of these graphs (ordered this way) stepwiseand proves
that the maximal value ofρ among the graphs onn vertices andeedges is obtained
by takingKm+(n−m)K1, wherem is minimal such that

(m
2

)
≥ e, and removing(m

2

)
−eedges on a single vertex.
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It follows from the above proposition that a graph with maximal θ1(Γ )+θ1(Γ )
has stepwise matrix. It is conjectured that in factθ1(Γ )+θ1(Γ )< 4

3n−1.

3.2 Interlacing

By Perron-Frobenius theory, the largest eigenvalue of a connected graph goes down
when one removes an edge or a vertex. Interlacing also gives information about what
happens with the other eigenvalues.

The pictures forA andL differ. The eigenvalues for the adjacency matrixA show
nice interlacing behavior when one removes a vertex, but notwhen an edge is re-
moved. (Cf.§1.9.) The Laplace eigenvalues behave well in both cases. ForA an
eigenvalue can go both up or down when an edge is removed. ForL it cannot in-
crease.

Proposition 3.2.1 (i) LetΓ be a graph and∆ an induced subgraph. Then the eigen-
values of∆ interlace those ofΓ ,

(ii) Let Γ be a graph and let∆ be a subgraph, not necessarily induced, on m
vertices. Then the i-th largest Laplace eigenvalue of∆ is not larger than the i-th
largest Laplace eigenvalue ofΓ (1≤ i ≤m), and the i-th largest signless Laplace
eigenvalue of∆ is not larger than the i-th largest signless Laplace eigenvalue ofΓ
(1≤ i ≤m).

Proof. Part (i) is immediate from Corollary 2.5.2. For part (ii), recall that we have
L = NN⊤ whenN is the directed point-edge incidence matrix obtained by orienting
the edges ofΓ arbitrarily, and thatNN⊤ andN⊤N have the same nonzero eigen-
values. Removing an edge fromΓ corresponds to removing a column fromN, and
leads to a principal submatrix ofN⊤N, and interlacing holds. Removing an isolated
vertex fromΓ corresponds to removing a Laplace eigenvalue 0. The same proof
applies to the signless Laplace matrix. �

3.3 Regular graphs

It is possible to see from the spectrum whether a graph is regular:

Proposition 3.3.1 LetΓ be a graph with eigenvalues k= θ1≥ θ2≥ . . .≥ θn. Equiv-
alent are:

(i) Γ is regular (of degree k),
(ii) AJ = kJ,

(iii) ∑θ 2
i = kn.

Proof. We have seen that (i) and (ii) are equivalent. Also, ifΓ is regular of degree
k, then∑θ 2

i = trA2 = kn. Conversely, if (iii) holds, then̄k= n−1 ∑θ 2
i = θ1 and, by

Proposition 3.1.2,Γ is regular. �
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As we saw above in§1.3.7, it is also possible to see from the spectrum whether a
graph is regular and connected. However, for nonregular graphs it is not possible to
see from the spectrum whether they are connected.

A very useful characterization of regular connected graphswas given by Hoff-
man [209]:

Proposition 3.3.2 The graphΓ is regular and connected if and only if there exists
a polynomial p such that J= p(A).

Proof. If J = p(A), thenJ commutes withA and henceΓ is regular (and clearly
also connected). Conversely, letΓ be connected and regular. Choose a basis such
that the commuting matricesA and J become diagonal. ThenA and J become
diag(k,θ2, . . . ,θn) and diag(n,0, . . . ,0). Hence, if we putf (x) = ∏n

i=2(x−θi), then
J = n f(A)/ f (k), andp(x) = n f(x)/ f (k) satisfies the requirements. �

3.4 Bipartite graphs

Among the connected graphsΓ , those with imprimitiveA are precisely the bipar-
tite graphs (and for these,A has period 2). Consequently we find from Theorem
2.2.1(iii):

Proposition 3.4.1 (i) A graphΓ is bipartite if and only if for each eigenvalueθ of
Γ ,−θ is also an eigenvalue, with the same multiplicity.

(ii) If Γ is connected with largest eigenvalueθ1, thenΓ is bipartite if and only if
−θ1 is an eigenvalue ofΓ .

Proof. For connected graphs all is clear from the the Perron-Frobenius theorem.
That gives (ii) and (by taking unions) the ‘only if’ part of (i). For the ‘if’ part of
(i), let θ1 be the spectral radius ofΓ . Then some connected component ofΓ has
eigenvaluesθ1 and−θ1, and hence is bipartite. Removing its contribution to the
spectrum ofΓ we see by induction on the number of components that all compo-
nents are bipartite. �

3.5 Cliques and cocliques

A clique in a graph is a set of pairwise adjacent vertices. Acoclique in a graph
is a set of pairwise nonadjacent vertices. Theclique numberω(Γ ) is the size of
the largest clique inΓ . The independence numberα(Γ ) is the size of the largest
coclique inΓ .

Let Γ be a graph onn vertices (undirected, simple, and loopless) having an ad-
jacency matrixA with eigenvaluesθ1 ≥ . . . ≥ θn. Both Corollaries 2.5.2 and 2.5.4
lead to a bound forα(Γ ).
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Theorem 3.5.1 α(Γ )≤ n−n− = |{i|θi ≥ 0}| andα(Γ )≤ n−n+ = |{i|θi ≤ 0}|.
Proof. A has a principal submatrixB= 0 of sizeα = α(Γ ). Corollary 2.5.2 gives
θα ≥ ηα = 0 andθn−α−1≤ η1 = 0. �

For example, the Higman-Sims graph (see§9.1.7) has spectrum 221 277 (−8)22.
Each point neighborhood is a coclique of size 22, and equality holds.

Theorem 3.5.2 If Γ is regular of nonzero degree k, then

α(Γ )≤ n
−θn

k−θn
,

and if a coclique C meets this bound, then every vertex not in Cis adjacent to
precisely−θn vertices of C.

Proof. We apply Corollary 2.5.4. The coclique gives rise to a partition of A with
quotient matrix

B=

[
0 k
kα

n−α k− kα
n−α

]
,

whereα = α(Γ ). B has eigenvaluesη1 = k= θ1 (the row sum) andη2 =−kα/(n−
α) (since traceB= k+η2) and soθn≤ η2 gives the required inequality. If equality
holds, thenη2 = θn, and sinceη1 = θ1, the interlacing is tight and hence the partition
is equitable. �

For example, the Petersen graph has spectrum 31 15 (−2)4, and its independence
number is 4. So equality holds in both bounds.

The first bound is due to Cvetković [108]. The second bound is an unpublished
result of Hoffman known as theHoffman boundor ratio bound. The Hoffman bound
was generalized to the nonregular case in [189]:

Proposition 3.5.3 LetΓ have minimum vertex degreeδ . Then

α(Γ )≤ n
−θ1θn

δ 2−θ1θn
. �

3.5.1 Using weighted adjacency matrices

Let us call a real symmetric matrixB a weighted adjacency matrix of a graphΓ
whenB has rows and columns indexed by the vertex set ofΓ , has zero diagonal,
and satisfiesBxy = 0 wheneverx 6∼ y.

The proof of Theorem 3.5.1 applies toB instead ofA, and we get

Theorem 3.5.4 α(Γ )≤ n−n−(B) andα(Γ )≤ n−n+(B).

Similarly, the proof of Theorem 3.5.2 remains valid for weighted adjacency ma-
tricesB with constant row sums.
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Theorem 3.5.5 Let B be a weighted adjacency matrix ofΓ with constant row sums
b and smallest eigenvalue s. Thenα(Γ )≤ n(−s)/(b−s).

3.6 Chromatic number

A proper vertex coloringof a graph is an assignment of colors to the vertices so that
adjacent vertices get different colors. (In other words, a partition of the vertex set
into cocliques.) Thechromatic numberχ(Γ ) is the minimum number of colors of a
proper vertex coloring ofΓ .

Proposition 3.6.1 (Wilf [332]) LetΓ be connected with largest eigenvalueθ1. Then
χ(Γ )≤ 1+θ1 with equality if and only ifΓ is complete or is an odd cycle.

Proof. Putm= χ(Γ ). SinceΓ cannot be colored withm−1 colors, while coloring
vertices of degree less thanm−1 is easy, there must be an induced subgraph∆ of
Γ with minimum degree at leastm− 1. Now θ1 ≥ θ1(∆) ≥ dmin(∆) ≥ m− 1 =
χ(Γ )− 1. If equality holds, then by Perron-FrobeniusΓ = ∆ and∆ is regular of
degreem−1 (by Proposition 3.1.2), and the conclusion follows by Brooks’ theorem.
�

Since each coclique (color class) has size at mostα(Γ ), we haveχ(Γ ) ≥ n/α(Γ )
for a graphΓ with n vertices. Thus upper bounds forα(Γ ) give lower bounds for
χ(Γ ). For instance ifΓ is regular of degreek= θ1 then Theorem 3.5.2 implies that
χ(Γ )≥ 1− θ1

θn
. This bound remains however valid for non-regular graphs.

Theorem 3.6.2 (Hoffman [210]) If Γ is not edgeless thenχ(Γ )≥ 1− θ1

θn
.

Proof. Put m= χ(Γ ). SinceΓ is not edgeless,θn < 0. Now, by part (i) of the
following proposition,θ1+(m−1)θn≤ θ1+θn−m+2+ . . .+θn≤ 0. �

Proposition 3.6.3 Put m= χ(Γ ). Then

(i) θ1+θn−m+2+ . . .+θn≤ 0.
(ii) If n > m, thenθ2+ . . .+θm+θn−m+1≥ 0.

(iii) If n > tm, thenθt+1+ . . .+θt+m−1+θn−t(m−1) ≥ 0.

Proof. Let A have orthonormal eigenvectorsu j , so thatAuj = θ ju j .
(i) Let {X1, . . . ,Xm} be a partition ofΓ into mcocliques, wherem= χ(Γ ). Letx j

be the pointwise product ofu1 with the characteristic vector ofXj , so that∑x j = u1.
Now apply Corollary 2.5.3 to the vectorsx j , after deleting those that are zero. The
matrixC defined there satisfiesC1= θ11, and has zero diagonal, and has eigenvalues
η j interlacing those ofA. Hence

0= tr(C) = η1+ . . .+ηm≥ θ1+θn−m+2+ . . .+θn.

(ii) Put A′ = A− (θ1− θn)u1u⊤1 , thenA′ has the same eigenvectorsu j asA, but
with eigenvaluesθn, θ2, . . ., θn. Pick a non-zero vectory in
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〈un−m+1, . . . ,un〉∩ 〈x1, . . . ,xm〉⊥ .

The two spaces have non-trivial intersection since the dimensions add up ton and
u1 is orthogonal to both. Lety j be the pointwise product ofy with the characteristic
vector ofXj , so that∑y j = y andy⊤j A′y j = 0. Now apply Corollary 2.5.3 to the
matrixA′ and the vectorsy j , after deleting those that are zero. The matrixC defined
there has zero diagonal, and smallest eigenvalue smaller than the Rayleigh quotient
y⊤Ay
y⊤y

, which by choice ofy is at mostθn−m+1. We find

0= tr(C) = η1+ . . .+ηm≤ θ2+θ3+ . . .+θm+θn−m+1.

(iii) The proof is as under (ii), but this time we movet (instead of just one)
eigenvalues away (by subtracting multiples ofu ju⊤j for 1≤ j ≤ t). The vectory
must be chosen orthogonal totmvectors, which can be done inside the(tm− t+1)-
space〈un−tm+t , . . . ,un〉, assuming that this space is already orthogonal tou1, . . . ,ut ,
i.e., assuming thatn> tm. �

The above proof of Theorem 3.6.2 using (i) above appeared in [188].
A coloring that meets the bound of Theorem 3.6.2 is called aHoffman coloring.

For regular graphs, the color classes of a Hoffman coloring are cocliques that meet
Hoffman’s coclique bound. So in this case all the color classes have equal size and
the corresponding matrix partition is equitable.

In [189] more inequalities of the above kind are given. But the ones mentioned
here, especially (i) and (ii), are by far the most useful.

Example The complete multipartite graphKm×a has chromatic numbermand spec-
trum(am−a)1 0m(a−1) (−a)m−1. It has equality in Hoffman’s inequality (and hence
in (i)), and also in (ii).

Example The graph obtained by removing an edge fromKn has chromatic number
n−1 and spectrum1

2(n−3+
√

D), 0,(−1)n−3, 1
2(n−3−

√
D) with D = (n+1)2−

8, with equality in (i).

Example Consider the generalized octagon of order(2,4) on 1755 vertices. It has
spectrum 101 5351 1650 (−3)675 (−5)78. It is not 3-chromatic, as one sees by remov-
ing the largest 352 eigenvalues, i.e., by applying (iii) with t = 352.

The inequality (ii) looks a bit awkward, but can be made more explicit if the
smallest eigenvalueθn has a large multiplicity.

Corollary 3.6.4 If the eigenvalueθn has multiplicity g andθ2 > 0, then

χ(Γ )≥min(1+g,1− θn

θ2
).

Proof. If m := χ(Γ )≤ g, thenθn = θn−m+1, so that(m−1)θ2+θn≥ 0. �

A similar more explicit form for inequality (iii) follows inthe same way.
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3.6.1 Using weighted adjacency matrices

If Γ has anm-coloring, thenΓ �Km has an independent set of sizen, the number of
vertices ofΓ . This means that one can use bounds on the size of an independent set
to obtain bounds on the chromatic number.

Example Consider the generalized octagon of order(2,4) again. Call itΓ , and call
its adjacency matrixA. Now consider the weighted adjacency matrixB of K3�Γ ,
where theK3 is weighted with some numberr, where 1< r < 3

2. For each eigenvalue
θ of A, we find eigenvaluesθ + 2r (once) andθ − r (twice) as eigenvalues ofB.
Applying Theorem 3.5.4 we see thatα(K3�Γ ) ≤ 3(1+351)+650= 1706 while
Γ has 1755 vertices, soΓ is not 3-chromatic.

3.6.2 Rank and chromatic number

The easiest way forA to have low rank, is when it has many repeated rows. But
thenΓ contains large cocliques. People have conjectured that it might be true that
χ(Γ )≤ rkA whenA 6= 0. A counterexample was given by Alon & Seymour [9] who
observed that the complement of the folded 7-cube (on 64 vertices) has chromatic
numberχ = 32 (indeed,α = 2), and rank 29 (indeed, the spectrum of the folded
7-cube is 71 321 (−1)35 (−5)7).

3.7 Shannon capacity

Shannon [307] studied the capacityC0 of the zero-error channel defined by a graph
Γ , where a transmission consists of sending a vertex ofΓ , and two transmissions
can be confused when the corresponding vertices are joined by an edge.

The maximum size of a set of mutually inconfusable messages of length 1 is
α(Γ ), so that one can transmit logα(Γ ) bits by sending one vertex. The maximum
size of a set of mutually inconfusable messages of lengthℓ is the independence
numberα(Γ ℓ), whereΓ ℓ denotes (in this section) the strong productΓ ⊠ℓ of ℓ copies
of Γ , that is, the graph on sequences ofℓ vertices fromΓ , where two sequences are
adjacent when on each coordinate position their elements are equal or adjacent. One
can transmit logα(Γ ℓ) bits by sending a sequence ofℓ vertices, and it follows that
the channel capacity isC0 = logc(Γ ) wherec(Γ ) = supℓ→∞ α(Γ ℓ)1/ℓ. This value
c(Γ ) is called theShannon capacityof Γ .

For example, for the pentagon we findc(Γ ) ≥
√

5 as shown by the 5-coclique
00, 12, 24, 31, 43 inC5⊠C5.

Computingc(Γ ) is a difficult unsolved problem, even for graphs as simple asC7,
the 7-cycle.
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Clearly,α(Γ ) ≤ c(Γ ) ≤ χ(Γ ). (Indeed, ifm= χ(Γ ) thenΓ can be covered by
m cliques, andΓ ℓ can be covered bymℓ cliques, andα(Γ ℓ) ≤mℓ.) In a few cases
this suffices to determinec(Γ ).

One can sharpen the upper bound to the fractional clique covering number. For
example, the vertices ofC5 can be doubly covered by 5 cliques, so the vertices ofCℓ

5
can be covered 2ℓ times by 5ℓ cliques, andα(Cℓ

5)≤ (5/2)ℓ so thatc(C5)≤ 5/2.
If A is the adjacency matrix ofΓ , then⊗ℓ(A+ I)− I is the adjacency matrix of

Γ ℓ.
The Hoffman upper bound for the size of cocliques is also an upper bound for

c(Γ ) (and therefore, when the Hoffman bound holds with equality,also the Shannon
capacity is determined).

Proposition 3.7.1 (Lovász [249])LetΓ be regular of valency k. Then

c(Γ )≤ n(−θn)/(k−θn).

Proof. Use the weighted Hoffman bound (Theorem 3.5.5). IfB = A− θnI , then
⊗ℓB− (−θn)

ℓI has constant row sums(k− θn)
ℓ− (−θn)

ℓ and smallest eigenvalue
−(−θn)

ℓ, so thatα(Γ ℓ)≤ (n(−θn)/(k−θn))
ℓ. �

Usingn= 5, k= 2, θn = (−1−
√

5)/2 we find for the pentagonc(Γ )≤
√

5. Hence
equality holds.

Haemers [186, 187] observed that ifB is a matrix indexed by the vertices ofΓ and
Bxx 6= 0 for all x, andBxy = 0 wheneverx 6∼ y, thenc(Γ ) ≤ rkB. Indeed, for such
a matrixα(Γ ) ≤ rkB since an independent set determines a submatrix that is zero
outside a nonzero diagonal. Now⊗ℓB is a suitable matrix forΓ l , and rk⊗ℓ B =
(rkB)ℓ. The rank here may be taken over any field.

Example The collinearity graphΓ of the generalized quadrangleGQ(2,4) (the
complement of the Schläfli graph, cf.§9.6) on 27 vertices has spectrum 101 120

(−5)6. TakingB= A− I shows thatc(Γ ) ≤ 7. (Andc(Γ ) ≥ α(Γ ) = 6.) The com-
plementΓ hasα(Γ ) = 3, but this is also the Hoffman bound, soc(Γ ) = 3.

Alon [5] proves thatc(Γ +Γ )≥ 2
√

n for all Γ . Combined with the above example,
this shows that the Shannon capacity of the disjoint sum of two graphs can be larger
than the sum of their Shannon capacities.

More detail about the Lov́asz and Haemers bounds forc(Γ ) is given in the following
sections.

3.7.1 Lov́asz’ϑ -function

Consider a simple graphΓ of ordern, and letMΓ be the set of real symmetric
matricesM indexed byVΓ that satisfyMuv = 1 whenu= v or u 6∼ v. TheLovász
parameterϑ(Γ ) is defined by
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ϑ(Γ ) = inf
M∈MΓ

θ1(M) ,

whereθ1(M) denotes the largest eigenvalue ofM. The results below are all due to
Lovász [249].

Lemma 3.7.2 ϑ(Γ ⊠∆)≤ ϑ(Γ )ϑ(∆). �

Proof. If MΓ ∈MΓ andM∆ ∈M∆ , thenMΓ ⊗M∆ ∈MΓ⊠∆ . Moreover,λ1(MΓ ⊗
M∆ ) = λ1(MΓ )λ1(M∆ ). �

Lovász [249] shows that equality holds here.

Theorem 3.7.3 The Shannon capacity c(Γ ) satisfies

α(Γ )≤ c(Γ )≤ ϑ(Γ ).

Proof. Let M ∈M . A coclique of sizeα(Γ ) corresponds to a principal subma-
trix J of orderα(Γ ) in M. Interlacing givesα(Γ ) = θ1(J) ≤ θ1(M), which proves
α(Γ ) ≤ ϑ(Γ ). By Lemma 3.7.2 we now haveα(Γ ℓ) ≤ ϑ(Γ ℓ) ≤ (ϑ(Γ ))ℓ, hence
c(Γ )≤ ϑ(Γ ). �

The upper boundχ(Γ ) for c(Γ ) is also an upper bound forϑ(Γ ):

Theorem 3.7.4 (‘Sandwich’)α(Γ )≤ ϑ(Γ )≤ χ(Γ ) .

Proof. To prove the second inequality, consider a covering ofΓ with χ pairwise
disjoint cliques. DefineMuv= 1−χ if u andv are distinct vertices in the same clique
of the covering, andMuv= 1 otherwise. ThenM ∈MΓ , andθ1(M) = χ. Indeed, the
clique covering gives an equitable partition ofM (see§2.3), and the eigenvectors of
M orthogonal to the characteristic vectors of the partition have eigenvalueχ , whilst
the other eigenvalues are those of the quotient matrixB= JΛ−χΛ +χI , whereΛ is
the diagonal matrix whose diagonal entries are the sizes of the cliques of the cover-
ing. Nowθ1(B)≤ χ becauseB is similar toΛ 1

2 JΛ 1
2 −χΛ +χI , andχΛ −Λ 1

2 JΛ 1
2

is positive semi-definite, sinceχI −J is. �

This is an important result: while computing the independence number and the
chromatic number of a graph are NP-complete,ϑ(Γ ) can be computed to any de-
sired precision in polynomial time (see [176]). In particular, in the cases where
α(Γ ) = χ(Γ ), this value can be found efficiently. For perfect graphs (graphs such
thatα(∆) = χ(∆) for every induced subgraph∆ ) this yields an efficient procedure
to actually find a maximal coclique.

The Hoffman bound for the size of a coclique in a regular graphis also an upper
bound forϑ(Γ ) (and therefore, when the Hoffman bound holds with equality,ϑ(Γ )
is determined).

Proposition 3.7.5 SupposeΓ is regular of valency k, with smallest eigenvalueθn.
Then

ϑ(Γ )≤ −nθn

k−θn
.
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Proof. Let A be the adjacency matrix ofΓ , and defineM = J− n
k−θn

A. ThenM ∈
MΓ , andθ1(M) =−nθn/(k−θn). �

For example, for the Petersen graph we haveα(Γ ) = ϑ(Γ ) = 4. For the pentagon
c(Γ ) = ϑ(Γ ) =

√
5. Lovász [249] proved that equality holds in the above formula

if Γ has an edge transitive automorphism group. Equality also holds if Γ is strongly
regular (see [186]).

Proposition 3.7.6 One hasϑ(Γ )ϑ(Γ )≥ n for a graphΓ of order n. Equality holds
if Γ is vertex transitive. �

Lovász [249] gives several equivalent expressions forϑ(Γ ). The following alterna-
tive definition uses the setNΓ of real symmetric matricesN indexed byVΓ , with
the property thatN is positive semi-definite, trN = 1 andNuv = 0 if u ∼ v.

ϑ(Γ ) = sup
N∈N

trNJ

(note that trNJ equals the sum of the entries ofN). Equivalence of the two defi-
nitions follows from duality in semi-definite programming.It also follows that the
infimum and supremum in the two expressions forϑ(Γ ) are actually a minimum
and a maximum.

3.7.2 The Haemers bound on the Shannon capacity

For a graphΓ , let the integerη(Γ ) (the Haemers invariant) be the smallest rank
of any matrixM (over any field), indexed byVΓ , which satisfiesMuu 6= 0 for all u,
andMuv = 0 if u 6∼ v (see [187]). The following propositions show that this rank
parameter has some similarity withϑ(Γ ).

Lemma 3.7.7 η(Γ ⊠∆)≤ η(Γ )η(∆).

Proof. SupposeMΓ andM∆ are admissible forΓ and∆ with minimum rank. Then
MΓ ⊗M∆ is admissible forΓ ⊠∆ , and rk(MΓ ⊗M∆ ) = η(Γ )η(∆). �

Theorem 3.7.8 The Shannon capacity c(Γ ) satisfies

α(Γ )≤ c(Γ )≤ η(Γ ).

Proof. A coclique inΓ corresponds to a nonsingular diagonal matrix inM. There-
fore α(Γ ) ≤ rkM for every admissibleM, so thatα(Γ ) ≤ η(Γ ). By Lemma 3.7.7
we haveα(Γ ℓ)≤ η(Γ ℓ)≤ (η(Γ ))ℓ, hencec(Γ )≤ η(Γ ). �

Proposition 3.7.9 α(Γ )≤ η(Γ )≤ χ(Γ ).

Proof. To prove the second inequality, fix a cover withχ(Γ ) cliques, and take
Muv= 0 if u andv are in different cliques of the clique cover, andMuv= 1 otherwise.
Then rkM = χ(Γ ). �
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In spite of the above similarity,η(Γ ) andϑ(Γ ) are very different. To begin with,
ϑ(Γ ) need not be an integer, whilstη(Γ ) always is. The computation ofη(Γ )
is probably NP-hard ([278]). The two are not related by an inequality: for some
graphsϑ(Γ ) < η(Γ ) (for example,ϑ(C5) =

√
5 < 3 = η(C5)), whilst for other

graphsη(Γ ) < ϑ(Γ ) (for example, for the collinearity graphΓ of the generalized
quadrangleGQ(2,4) we haveη(Γ )≤ 7< 9= ϑ(Γ )).

Example Consider the graphΓ on the triples from anm-setΣ , adjacent when they
meet in precisely 1 point. LetN be them×

(m
3

)
incidence matrix of symbols and

triples. ThenM = N⊤N is admissible overF2, so thatη(Γ ) ≤ rk2M ≤ m. If 4|m,
then consider a partition ofΣ into 1

4m 4-sets. The triples contained in one of the
parts form a coclique of sizem, so thatα(Γ ) = c(Γ ) = η(Γ ) = m in this case.

Hereθ(Γ ) = m(m−2)(2m−11)
3(3m−14) (for m≥ 7), so thatθ(Γ )> m≥ η(Γ ) for m> 8. Also

η(Γ )≤m, so thatη(Γ )η(Γ )≤m2 <
(m

3

)
= n for m> 8 ([186]).

3.8 Classification of integral cubic graphs

A graph is calledintegralwhen all of its eigenvalues are integral. As an application
of Proposition 3.3.2, let us classify the cubic graphs (graphs, that are regular of va-
lency 3) with integral spectrum. The result is due to Bussemaker & Cvetkovíc [71].
See also Schwenk [293]. There are 13 examples.

case v spectrum description
(i) 6 ±3, 04 K3,3

(ii) 8 ±3, (±1)3 23

(iii) 10 ±3,±2, (±1)2, 02 K∗2,3⊗K2

(iv) 12 ±3, (±2)2,±1, 04 C6�K2

(v) 20 ±3, (±2)4, (±1)5 Π ⊗K2

(vi) 20 ±3, (±2)4, (±1)5 T∗⊗K2

(vii) 24 ±3, (±2)6, (±1)3, 04 Σ ⊗K2

(viii) 30 ±3, (±2)9, 010 GQ(2,2)
(ix) 4 3, (−1)3 K4

(x) 6 3, 1, 02, (−2)2 K3�K2

(xi) 10 3, 15, (−2)4 Π
(xii) 10 3, 2, 13, (−1)2, (−2)3 (Π ⊗K2)/σ
(xiii) 12 3, 23, 02, (−1)3, (−2)3 Σ

A quotient of the hexagonal grid

Let us describe a graph that comes up in the classification. Take a tetrahedron and cut
off each corner. Our graphΣ is the 1-skeleton of the resulting polytope, or, equiva-
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lently, the result of replacing each vertex ofK4 by a triangle (aY−∆ operation). It
can also be described as the line graph of the graph obtained from K4 by subdivid-
ing each edge. The bipartite doubleΣ ⊗K2 of Σ is more beautiful (for example, its
group is a factor 6 larger than that ofΣ ), and can be described as the quotientΛ/6Λ
of the hexagonal gridΛ = 〈a+bω | a,b∈ Z, a+b= 0,1(mod 3)〉 in the complex
plane, withω2+ω +1= 0. NowΣ is found e.g. asΛ/〈3a+6bω | a,b∈ Z〉.

Cubic graphs with loops

For a graphΓ where all vertices have degree 2 or 3, letΓ ∗ be the cubic graph (with
loops) obtained by adding a loop at each vertex of degree 2. Note that the sum of
the eigenvalues ofΓ ∗, the trace of its adjacency matrix, is the number of loops.

The graphK∗2,3 has spectrum 3, 1, 1, 0,−2.
Let T be the graph on the singletons and pairs in a 4-set, where adjacency is

inclusion. ThenT∗ has spectrum 31, 23, 12, (−1)3, (−2)1.

The classification

Let Π be the Petersen graph andΣ , T the graphs described above.
We split the result into two propositions, one for the bipartite and one for the

nonbipartite case.

Proposition 3.8.1 Let Γ be a connected bipartite cubic graph such that all of its
eigenvalues are integral. ThenΓ is one of8 possible graphs, namely (i) K3,3, (ii) 23,
(iii) K ∗2,3⊗K2, (iv) C6�K2, (v) the Desargues graph (that is, the bipartite double
Π ⊗K2 of the Petersen graphΠ ), (vi) T∗ (cospectral with the previous), (vii) the
bipartite double ofΣ , (viii) the point-line incidence graph of the generalized quad-
rangle of order2 (that is, the unique3-regular bipartite graph with diameter4 and
girth 8, also known as Tutte’s8-cage).

Proof. Let Γ have spectrum(±3)1(±2)a(±1)b02c (with multiplicities written as
exponents).

The total number of vertices isv= 2+2a+2b+2c. The total number of edges is
3
2v= 1

2trA2 = 9+4a+b (so that 2b+3c= 6+a). The total number of quadrangles
is q = 9− a− b, as one finds by computing trA4 = 15v+ 8q = 2(81+ 16a+ b).
The total number of hexagons ish = 10+ 2b− 2c, found similarly by computing
trA6 = 87v+96q+12h= 2(729+64a+b).

Somewhat more detailed, letqu be the number of quadrangles on the vertexu,
andquv the number of quadrangles on the edgeuv, and similarly forh. Let uv be an
edge. ThenAuv = 1 and(A3)uv = 5+quv and(A5)uv = 29+2qu+2qv+6quv+huv.

The Hoffman polynomialA(A+3I)(A2− I)(A2−4I) defines a rank 1 matrix with
eigenvalue 720, so thatA(A+3I)(A2− I)(A2−4I) = 720

v J and in particularv|240
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since for an edgexy the xy entry of 720
v J must be divisible by 3. This leaves for

(a,b,c,v) the possibilities a)(0,0,2,6), b) (0,3,0,8), c) (1,2,1,10), d) (2,1,2,12),
e) (3,3,1,16), f) (4,5,0,20), g) (5,1,3,20), h) (6,3,2,24), i) (9,0,5,30).

In case a) we haveK3,3, case (i) of the theorem.
In case b) we have the cube 23, case (ii).
In case c) we have a graph of which the bipartite complement has spectrum

221202(−1)2(−2)2 hence is the disjoint union of a 4-cycle and a 6-cycle, case (iii).
In case d) we haveq = 6 andh = 8. Let uv be an edge, and evaluateA(A+

3I)(A2− I)(A2−4I) = 60J at theuv position to find(A5−5A3+4A)uv = 20 and
2qu+2qv+quv+huv = 12. It follows thatuv cannot lie in 3 or more quadrangles.
Supposeu lies in (at least) 3 quadrangles. Then for each neighborx of u we have
2qx+hux = 4 so thatqx = 2 andhu = 0. The mod 2 sum of two quadrangles onu
is not a hexagon, and it follows that we have aK2,3 on pointsu,w,x,y,z (with u,w
adjacent tox,y,z). The six quadrangles visible in theK2,3 on u,w,x,y,z contribute
6+4+2+0 to 2qu+2qx+qux+hux = 12, and it follows that there are no further
quadrangles or hexagons on these points. So the three further neighborsp,q, r of
x,y,z are distinct and have no common neighbors, impossible sincev = 12. So,
no vertex is in 3 or more quadrangles, and hence every vertexu is in precisely 2
quadrangles. These two quadrangles have an edgeuu′ in common, and we find an
involution interchanging eachu andu′, and preserving the graph. It follows that we
either haveC6�K2 (and this has the desired spectrum, it is case (iv)), or a twisted
version, but that has only 6 hexagons.

In case e) we havev= 16 vertices. For any vertexx, Hoffman’s polynomial yields
(A6)xx−5(A4)xx+4(A2)xx = 45. On the other hand,(A2i)xx is odd for eachi, since
each walk of length 2i from x to x can be paired with the reverse walk, so that the
parity of (A2i)xx is that of the number of self-reverse walksx...zwz...x which is 3i .
Contradiction.

In case f) we havev= 20, q= 0, h= 20. Sincec= 0 we can omit the factorA
from Hoffman’s polynomial and find(A+3I)(A2− I)(A2−4I) = 12J. If u,w have
even distance, then(A4− 5A2 + 4I)uw = 4. In particular, ifd(u,w) = 2 then 9=
(A4)uw= 7+huw so thathuw= 2: each 2-pathuvwlies in two hexagons. If no 3-path
uvwxlies in two hexagons then the graph is distance-regular withintersection array
{3,2,2,1,1; 1,1,2,2,3} (cf. Chapter 12) and hence is the Desargues graph. This is
case (v) of the theorem. Now assume that the 3-pathuvwx lies in two hexagons,
so that there are three pathsu ∼ vi ∼ wi ∼ x (i = 1,2,3). Thevi andwi need one
more neighbor, sayvi ∼ yi andwi ∼ zi (i = 1,2,3). The verticesyi are distinct since
there are no quadrangles, and similarly thezi are distinct. The verticesyi andzj are
nonadjacent, otherwise there would be a quadrangle (ifi = j) or uvjw j would be in
three hexagons (ifi 6= j). Remain 6 more vertices, 3, each adjacent to two vertices
yi , and 3, each adjacent to two verticeszi . Call themsi andti , wheresi ∼ y j and
ti ∼ zj wheneveri 6= j. The final part is a matching between thesi and theti . Now
the 2-pathviwizi is in two hexagons, and these must be of the formt jziwiviyisk with
j 6= i 6= k, and necessarilyj = k, that is, the graph is uniquely determined. This is
case (vi) of the theorem.
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In case g) we havev = 20, q = 3, h = 6. For an edgeuv we have(A5−5A3+
4A)uv= 12, so that 2qu+2qv+quv+huv= 4. But that means that the edgeuvcannot
be in a quadrangle, contradiction.

In case h) we havev= 24, q= 0, h= 12. For an edgeuv we have(A5−5A3+
4A)uv = 10, so thathuv = 2. It follows that each vertex is in 3 hexagons, and each
2-pathvuwis in a unique hexagon. Now one straightforwardly constructs the unique
cubic bipartite graph on 24 vertices without quadrangles and such that each 2-path
is in a unique hexagon. Starting from a vertexu, call its neighborsvi (i = 1,2,3),
call the six vertices at distance twowi j (i, j = 1,2,3 andi 6= j), and letxi (i = 1,2,3)
be the three vertices oppositeu in a hexagon onu, so that the three hexagons onu
areuviwi j xkw ji v j (with distinct i, j,k). Let the third neighbor ofwi j be yi j , and let
the third neighbor ofxk bezk. Necessarilyzk ∼ yk j. Now each vertexyi j still needs a
neighbor and there are two more vertices, says∼ y12,y23,y31 andt ∼ y13,y21,y32.
This is case (vii).

In case i) we havev = 30, q = h = 0 and we have Tutte’s 8-cage. This is case
(viii). �

Proposition 3.8.2 Let Γ be a connected nonbipartite cubic graph such that all of
its eigenvalues are integral. ThenΓ is one of5 possible graphs, namely (ix) K4,
(x) K3�K2, (xi) the Petersen graph, (xii) the graph on10 vertices defined by i∼
(i +1) (mod 10), 0 ∼ 5, 1 ∼ 3, 2 ∼ 6, 4 ∼ 8, 7 ∼ 9 (or, equivalently, the graph
obtained from K3,3 by replacing two nonadjacent vertices by a triangle with a Y−∆
operation), (xiii)Σ .

Proof. ConsiderΓ ⊗K2. It is cubic and has integral eigenvalues, hence is one
of the 8 graphs∆ found in the previous proposition. There is an involutionσ of
∆ = Γ ⊗K2 without fixed edges, that interchanges the two verticesx′ andx′′ for
each vertexx of Γ . Now Γ can be retrieved as∆/σ .

In cases (i), (iii), (viii) the graphΓ would be cubic on an odd number of vertices,
impossible.

In case (ii),σ must interchange antipodes, and the quotient 23/σ is the complete
graphK4. This is case (ix).

In case (iv),C6�K2, σ must interchange antipodes in the same copy ofC6, and
the quotient isK3�K2. This is case (x).

In case (v),Π⊗K2, we get the Petersen graph for aσ that interchanges antipodal
vertices. This is case (xi). The group is Sym(5).2 and has twoconjugacy classes of
suitable involutionsσ . The second one interchangesx′ with (12)x′′, and its quotient
is obtained fromΠ by replacing the hexagon 13∼ 24∼ 15∼ 23∼ 14∼ 25∼ 13
by the two triangles 13,14,15 and 23,24,25. This is case (xii).

In case (vi) there is no suitableσ . (An automorphismσ must interchange the two
verticesu,x found in the previous proof, since this is the only pair of vertices joined
by three 3-paths. But any shortestux-path is mapped byσ into a differentxu-path
(since the path has odd length, andσ cannot preserve the middle edge) so that the
number of such paths, which is 3, must be even.)
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In case (vii) we getΣ . This is case (xiii). (The group ofΣ ⊗K2 has order 144,
six times the order of the group Sym(4) ofΣ , and all possible choices ofσ are
equivalent.) �

Remarks Integral graphs with a small number of vertices have been classified. The
number of nonisomorphic connected integral graphs onn vertices, 1≤ n≤ 11 is 1,
1, 1, 2, 3, 6, 7, 22, 24, 83, 113, see Sloane EIS sequence #A064731. For integral
trees, cf.§5.6 below.

Most graphs have nonintegral eigenvalues: the integral graphs constitute a frac-
tion of at most 2−n/400of all graphs onnvertices ([1]). (Nevertheless, integral graphs
are very common, there are far too many to classify.)

Integral graphs (and certain bipartite graphs) occur in quantum information the-
ory in the description of systems with ‘perfect state transfer’, cf. [289, 166].

All Cayley graphs for the elementary abelian group 2m are integral.

3.9 The largest Laplace eigenvalue

If µ1≤ . . .≤ µn are the Laplace eigenvalues of a simple graphΓ , then 0≤ n−µn≤
. . . ≤ n− µ2 are the the Laplace eigenvalues of the complement ofΓ (see§1.3.2).
Thereforeµn≤ n with equality if and only if the complement ofΓ is disconnected.
If Γ is regular with valencyk we know (by Proposition 3.4.1) thatµn ≤ 2k, with
equality if and only ifΓ is bipartite. More generally:

Proposition 3.9.1 LetΓ be a graph with adjacency matrix A (with eigenvaluesθ1≥
. . . ≥ θn), Laplacian L (with eigenvaluesµ1 ≤ . . . ≤ µn), and signless Laplacian Q
(with eigenvaluesρ1≥ . . .≥ ρn). Then

(i) (Zhang & Luo [338])
µn≤ ρ1.

If Γ is connected, then equality holds if and only ifΓ is bipartite.
(ii) Let dx be the degree of the vertex x. IfΓ has at least one edge then

ρ1≤max
x∼y

(dx+dy).

Equality holds if and only ifΓ is regular or bipartite semiregular.
(iii) (Yan [334])

2θi ≤ ρi (1≤ i ≤ n).

Proof. (i) Apply Theorem 2.2.1 (vi).
(ii) Using Proposition 3.1.2 to bound the largest eigenvalueθ1(L(Γ )) of L(Γ ) by

its max degree maxx∼y (dx + dy− 2), we find ρ1 = θ1(L(Γ ))+ 2≤ maxx∼y (dx +
dy), with equality if and only ifL(Γ ) is regular so thatΓ is regular or bipartite
semiregular.

(iii) Since Q = L + 2A and L is positive semidefinite, this follows from the
Courant-Weyl inequalities (Theorem 2.8.1 (iii)). �
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Corollary 3.9.2 ([10]) LetΓ be a graph on n vertices with at least one edge. Then

µn≤max
x∼y

(dx+dy).

If Γ is connected, then equality holds if and only ifΓ is bipartite regular or semireg-
ular. �

For bipartite graphs,L andQ have the same spectrum (see Proposition 1.3.10). It
follows by Perron-Frobenius that the largest Laplace eigenvalue of a connected bi-
partite graph decreases strictly when an edge is removed.

Interlacing provides a lower bound forµn:

Proposition 3.9.3 ([178]) Let Γ be a graph on n vertices with at least one edge,
and let dx be the degree of the vertex x. Then

µn≥ 1+max
x

dx.

If Γ is connected, then equality holds if and only ifmaxx dx = n−1.

Proof. If Γ has a vertex of degreed, then it has a subgraphK1,d (not necessarily
induced), andµn ≥ d+1. If equality holds, thenΓ does not have a strictly larger
bipartite subgraph. IfΓ is moreover connected, thend = n−1. �

Deriving bounds onµn has become an industry—there are many papers, cf. [39,
130, 182, 240, 241, 248, 265, 337].

3.10 Laplace eigenvalues and degrees

The Schur inequality (Theorem 2.6.1) immediately yields aninequality between
the sum of the largestm Laplace eigenvalues and the sum of the largestm vertex
degrees. Grone [177] gave a slightly stronger result.

Proposition 3.10.1 If Γ is connected, with Laplace eigenvaluesν1 ≥ ν2 ≥ ... ≥
νn = 0 and vertex degrees d1 ≥ d2 ≥ ... ≥ dn > 0, then for1≤m≤ n−1 we have
1+∑m

i=1di ≤ ∑m
i=1 νi .

Proof. Let xi have degreedi and putZ = {x1, . . . ,xm}. Let N(Z) be the set of
vertices outsideZ with a neighbor inZ. Instead of assuming thatΓ is connected
we just use thatN(Z) is nonempty. If we delete the vertices outsideZ∪N(Z) then
∑z∈Z dz does not change, while∑m

i=1 νi does not increase, so we may assumeX =
Z∪N(Z). LetRbe the quotient matrix ofL for the partition{{z} | z∈Z}∪{N(Z)} of
X, and letλ1≥ . . .≥ λm+1 be the eigenvalues ofR. The matrixRhas row sums 0, so
λm+1 = 0. By interlacing (Corollary 2.5.4) we have∑m

i=1 νi ≥ ∑m
i=1 λi = ∑m+1

i=1 λi =
trR= ∑z∈Z dz+Rm+1,m+1 and the desired result follows sinceRm+1,m+1≥ 1. �
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Second proof. We prove the following stronger statement:
For any graphΓ (not necessarily connected) and any subset Z of the vertex set X

of Γ one has h+∑z∈Z dz≤∑m
i=1 νi , where dz denotes the degree of the vertex z inΓ ,

and m= |Z|, and h is the number of connected components of the graphΓZ induced
on Z that are not connected components ofΓ .

We may assume thatΓ is connected, and thatZ andX \Z are nonempty. Nowh
is the number of connected components ofΓZ.

The partition{Z,X \Z} of X induces a partitionL =

[
B −C
−C⊤ E

]
. SinceΓ is con-

nected,B is nonsingular by Lemma 2.10.1(iii). All entries ofB−1 are nonnegative.
(Write B = n(I −T) whereT ≥ 0, thenB−1 = 1

n(I +T +T2+ . . .) ≥ 0. If h = 1,
thenB−1 > 0.)

SinceL is positive semidefinite, we can writeL = MM⊤, whereM =

[
P 0
Q R

]
is

a square matrix. NowB= PP⊤ and−C = PQ⊤. The eigenvalues ofMM⊤ are the
same as those ofM⊤M, and that latter matrix has submatrixP⊤P+Q⊤Q of order
m. By Schur’s inequality we get∑m

i=1 νi ≥ tr(P⊤P+Q⊤Q) = ∑z∈Z dz+ trQ⊤Q, and
it remains to show that trQ⊤Q≥ h.

Now Q⊤Q= P−1CC⊤P−⊤, so trQ⊤Q= trB−1CC⊤. We haveB= LZ+D, where
LZ is the Laplacian ofΓZ, andD is the diagonal matrix of the row sums ofC. Since
CC⊤ ≥D andB−1≥ 0, we have trQ⊤Q≥ trB−1D. If LZu= 0 then(LZ+D)−1Du=
u. SinceLZ has eigenvalue 0 with multiplicityh, B−1D has eigenvalue 1 with multi-
plicity h. Since this matrix is positive semidefinite (sinceD1/2B−1D1/2 is p.s.d.), its
trace is at leasth. �

A lower bound for the individualν j was conjectured by Guo [183] and proved in
Brouwer & Haemers [57].

Proposition 3.10.2 LetΓ be a graph with Laplace eigenvaluesν1≥ ν2≥ ...≥ νn =
0 and with vertex degrees d1 ≥ d2 ≥ ... ≥ dn. Let 1≤m≤ n. If Γ is not Km+(n−
m)K1, thenνm≥ dm−m+2. �

We saw the special casem= 1 in Proposition 3.9.3. The casesm= 2 andm= 3
were proved earlier in [239] and [183].

Examples with equality are given by complete graphsKm with a pending edges
at each vertex (wherea> 0), with Laplace spectrum consisting of 0, 1m(a−1), a+1
and 1

2(m+a+1±
√
(m+a+1)2−4m) with multiplicity m−1 each, so thatνm =

a+1= dm−m+2.
Further examples are complete graphsKm with a pending edges attached at a

single vertex. Heren= m+a, the Laplace spectrum consists ofm+a, mm−2, 1a and
0, so thatνm = 1= dm−m+2.

Any graph contained inKa,a and containingK2,a hasν2 = a= d2, with equality
for m= 2.

Any graph onn vertices withd1 = n−1 has equality form= 1.
More generally, whenever one has an eigenvectoru and verticesx,y with ux = uy,

thenu remains eigenvector, with the same eigenvalue, if we add or remove an edge
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betweenx andy. Many of the above examples can be modified by adding edges.
This leads to many further cases of equality.

3.11 The Grone-Merris Conjecture

3.11.1 Threshold graphs

A threshold graphis a graph obtained from the graphK0 by a sequence of operations
of the form (i) add an isolated vertex, or (ii) take the complement.

Proposition 3.11.1 Let Γ be a threshold graph with Laplace eigenvalues (in non-
increasing order)ν1≥ ν2≥ . . .≥ νn = 0. Let dx be the degree of the vertex x. Then

ν j = #{x | dx≥ j}.

Proof. Induction on the number of construction steps of type (i) or (ii). �

Grone & Merris [178] conjectured that this is the extreme case, and that for all
undirected graphs and allt one has

t

∑
j=1

ν j ≤
t

∑
j=1

#{x | dx ≥ j}.

For t = 1 this is immediate fromν1 ≤ n. For t = n equality holds. This conjecture
was proved in Hua Bai [15], see§3.11.2 below. There is a generalization to higher-
dimensional simplicial complexes, see§3.12 below.

A variation on the Grone-Merris conjecture is the following.

Conjecture (Brouwer) Let Γ be a graph with e edges and Laplace eigenvalues
ν1≥ ν2≥ . . .≥ νn = 0. Then for each t we have∑t

i=1 νi ≤ e+
(t+1

2

)
.

It is easy to see (by induction) that this inequality holds for threshold graphs. In
[194] it is proved for trees, and in caset = 2. In [25] it is shown that there is at
such that thet-th inequality of this conjecture is sharper than thet-th Grone-Merris
inequality if and only if the graph is non-split. In particular, this conjecture holds
for split graphs. It also holds for regular graphs.

3.11.2 Proof of the Grone-Merris Conjecture

Very recently, Hua Bai [15] proved the Grone-Merris Conjecture. We repeat the
statement of the theorem.
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Theorem 3.11.2Let Γ be an undirected graph with Laplace eigenvalues (in non-
increasing order)ν1≥ ν2≥ . . .≥ νn = 0. Let dx be the degree of the vertex x. Then
for all t, 0≤ t ≤ n, we have

t

∑
i=1

νi ≤
t

∑
i=1

#{x | dx ≥ i}. (3.1)

The proof is by reducing to the case of asemi-bipartite graph(or split graph), that
is a graph where the vertex set is the disjoint union of a nonempty subset induc-
ing a clique (complete graph), and a nonempty subset inducing a coclique (edgeless
graph). Then for semi-bipartite graphs a continuity argument proves the crucial in-
equality stated in the following lemma.

Lemma 3.11.3 Let Γ be a semi-bipartite graph with clique of size c and Laplace
eigenvalues beν1 ≥ ν2 ≥ . . . ≥ νn = 0. Let δ be the maximum degree among the
vertices in the coclique, so thatδ ≤ c. If νc > c or νc = c> δ then we have∑c

i=1 νi ≤
∑c

i=1#{x | dx≥ i}.

Proof of Theorem 3.11.2 (assuming Lemma 3.11.3). Consider counterexamples to
(3.1) with minimal possiblet.

Step 1 If Γ is such a counterexample with minimal number of edges, and x,y are
vertices inΓ of degree at most t, then they are nonadjacent.

Indeed, ifx ∼ y then letΓ ′ be the graph obtained fromΓ by removing the edge
xy. Then∑t

i=1#{x | d′x ≥ i}+ 2 = ∑t
i=1#{x | dx ≥ i}. The Laplace matricesL and

L′ of Γ andΓ ′ satisfyL = L′+H whereH has eigenvalues 2, 0n−1. By Theorem
2.8.2 we have∑t

i=1 νi ≤ ∑t
i=1 ν ′i +2, and sinceΓ ′ has fewer edges thanΓ we find

∑t
i=1 νi ≤∑t

i=1 ν ′i +2≤∑t
i=1#{x | d′x≥ i}+2= ∑t

i=1#{x | dx≥ i}, contradiction.�

Step 2There is a semi-bipartite counterexampleΓ for the same t, with clique size
c := #{x | dx ≥ t}.
Indeed, we can form a new graphΓ from theΓ of Step 1 by adding edgesxy for
every pair of nonadjacent verticesx,y, both of degree at leastt. Now ∑t

i=1#{x |
dx ≥ i} does not change, and∑t

i=1 νi does not decrease, and the new graph is semi-
bipartite with the stated clique size. �

This will be our graphΓ for the rest of the proof.

Step 3A semi-bipartite graph∆ of clique size c satisfiesνc+1≤ c≤ νc−1.

Indeed, since∆ contains the complete graphKc with Laplace spectrumcc−1, 0,
we see by the Courant-Weyl inequalities (Theorem 2.8.1 (iii)) that νc−1 ≥ c. And
since∆ is contained in the complete semi-bipartite graph with clique of sizec and
coclique of sizen− c and all edges in-between, with Laplace spectrumnc, cn−c−1,
0, we haveνc+1≤ c. �

Sincet was chosen minimal, we haveνt > #{x | dx≥ t}= c. The previous step then
impliesc≥ t. If c= t thenνc > c and Lemma 3.11.3 gives a contradiction. Soc> t.
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All vertices in the coclique ofΓ have degree at mostt−1 and all vertices in the
clique have degree at leastc−1. So #{x | dx ≥ i} = c for t ≤ i ≤ c−1. From Step
3 we haveνi ≥ νc−1 ≥ c for t ≤ i ≤ c− 1. Since∑t

i=1 νi > ∑t
i=1#{x | dx ≥ i} we

also have∑c−1
i=1 νi > ∑c−1

i=1 #{x | dx ≥ i}. Now if νc ≥ c we contradict Lemma 3.11.3
(since #{x | dx ≥ c} ≤ c). Soνc < c.

Step 4The m-th Grone-Merris inequality for a graphΓ is equivalent to the(n−1−
m)-th Grone-Merris inequality for its complementΓ (1≤m≤ n−1).

Indeed,Γ has Laplace eigenvaluesν i = n− νn−i (1≤ i ≤ n−1) and dual degrees
#{x | dx ≥ i}= n−#{x | dx ≥ n− i}, and∑n

i=1 νi = ∑n
i=1#{x | dx ≥ i}. �

In our caseΓ is semibipartite with clique sizen− c, and by the above we have
νn−c = n− νc > n− c and∑n−c

i=1 ν i > ∑n−c
i=1 #{x | dx ≥ i}. This contradicts Lemma

3.11.3.
This contradiction completes the proof of the Grone-Merrisconjecture, except

that Lemma 3.11.3 still has to be proved.

3.11.2.1 Proof of Lemma 3.11.3

Let Γ be a semi-bipartite graph with clique of sizec and coclique of sizen− c.
The partition of the vertex set induces a partition of the Laplace matrix L =[

K+D −A
−A⊤ E

]
, whereK is the Laplacian of the complete graphKc and A is the

c× (n− c) adjacency matrix between vertices in the clique and the coclique, and
D andE are diagonal matrices with the row and column sums ofA.

Step 5If νc≥ c, then∑c
i=1#{x | dx ≥ i}= c2+ trD.

Indeed, all vertices in the clique have degree at leastc, for if some vertexx in the
clique had degreec−1 then we could move it to the coclique and findνc ≤ c−1
from Step 3, contrary to the assumption. It follows that∑c

i=1#{x | dx ≥ i} =
∑x min(c,dx) = c2+ trE = c2+ trD. �

Step 6Suppose that the subspace W spanned by the L-eigenvectors belonging to

ν1, . . . ,νc is spanned by the columns of

[
I
X

]
. Then L

[
I
X

]
=

[
I
X

]
Z for some matrix

Z, and∑c
i=1 νi = trZ.

Indeed, if

[
U
V

]
has these eigenvectors as columns, thenL

[
U
V

]
=

[
U
V

]
T whereT

is the diagonal matrix with the eigenvalues. Now

[
U
V

]
=

[
I
X

]
U , so thatL

[
I
X

]
=

[
I
X

]
Z whereZ =UTU−1 and trZ = trT = ∑c

i=1 νi . �

Suppose we are in the situation of the previous step, and thatmoreoverX is non-
positive. Letδ be the maximum degree among the vertices in the coclique, so that
δ ≤ c. We have to show that ifνc > c or νc = c> δ then trZ≤ c2+ trD.
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Now L

[
I
X

]
=

[
K+D−AX
−A⊤+EX

]
, soZ = K+D−AX, and trZ = tr(K+D−AX) =

c(c−1)+ trD− tr(AX), and we need tr(AX)≥−c. But sincec< n, the eigenvectors
are orthogonal to1 so thatX has column sums−1. SinceX is nonpositive, tr(AX)≥
−c follows, and we are done.

By interlacingνc+1 is at most the largest eigenvalue ofE, that isδ , which by

hypothesis is smaller thanνc. Hence the subpace of vectors

[
0
∗

]
meetsW trivially,

so thatW has a basis of the required form. Only nonpositivity ofX remains, and the
following lemma completes the proof.

Lemma 3.11.4 If νc > δ , then the invariant subspace W spanned by the L-eigen-

vectors forνi , 1≤ i ≤ c, is spanned by the columns of

[
I
X

]
where X is nonpositive.

Proof. We argue by continuity, viewingL = L(A) andX = X(A) as functions of
the real-valued matrixA, where 0≤ A≤ J. (Now D has the row sums ofA, andE
has the column sums, andδ is the largest element of the diagonal matrixE.) We
write J for thec× (n−c) all-1 matrix, andJc for the all-1 matrix of orderc, so that
JX =−Jc.

Our hypothesisνc > δ holds for all matricesL(α) := L(αA+(1−α)J) = αL+

(1−α)L(0), for 0≤ α ≤ 1. Indeed, letL(α) have eigenvaluesν(α)
i , so thatν(0)

c = n

andν(0)
c+1 = ν(0)

n−1 = c. The matrixL(α) has lower left-hand cornerαE+(1−α)cI

so thatδ (α) = αδ + (1−α)c. The c-spaceW is orthogonal to1, so thatν(α)
c ≥

ανc+(1−α)c (by Theorem 2.4.1), and henceν(α)
c > δ (α) for 0< α ≤ 1, and also

for α = 0, sinceν(0)
c = n andδ (0) = c. It follows thatν(α)

c > ν(α)
c+1 for 0≤ α ≤ 1.

As we used already,L(J) has spectrumnc, cn−c−1, 0, and one checks thatX(J) =
− 1

n−cJ⊤ < 0, as desired. Above we found the conditionXZ=−A⊤+EX onX, that
is,X(K+D−AX)−EX+A⊤= 0, that is,X(K+Jc+D)=XJc+XAX+EX−A⊤=
−X(J−A)X+EX−A⊤. It follows, sinceK +Jc+D is a positive diagonal matrix,
that if X ≤ 0 andA > 0, thenX < 0. The matrixX(A) depends continuously on
A (in the region whereνc+1 < νc) and is strictly negative whenA > 0. Then it is
nonpositive whenA≥ 0. �

3.12 The Laplacian for hypergraphs

Let asimplicial complexon a finite setS be a collectionC of subsets ofS (called
simplices) that is an order ideal for inclusion, that is, is such that ifA∈C andB⊆A
then alsoB∈ C . Let thedimensionof a simplexA be one less than its cardinality,
and let the dimension of a simplicial complex be the maximum of the dimensions of
its simplices. Given a simplicial complexC , let Ci (for i ≥−1) be the vector space
(over any field) that has the simplices of dimensioni as basis. Order the simplices
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arbitrarily (say, using some order onS) and define∂i : Ci → Ci−1 by ∂is0 . . .si =

∑ j(−1) js0 . . . ŝj . . .si . Then∂i−1∂i = 0 for all i ≥ 0.
Let Ni be the matrix of∂i on the standard basis, and putLi = Ni+1N⊤i+1 and

L′i = N⊤i Ni . The matricesLi generalize the Laplacian. Indeed, in the case of a 1-
dimensional simplicial complex (that is, a graph) the ordinary Laplace matrix is just
L0, andL′0 is the all-1 matrixJ.

Since∂i∂i+1 = 0 we haveLiL′i = L′iLi = 0, generalizingLJ = JL= 0.
We have trLi−1 = tr L′i = (i +1)|Ci |. This generalizes the facts that trL is twice

the number of edges, and trJ the number of vertices.
In case the underlying field isR, we have the direct sum decompositionCi =

imNi+1⊕ ker(Li +L′i)⊕ imN⊤i . (Because thenM⊤Mx = 0 if and only if Mx = 0.)
Now kerNi = imNi+1⊕ ker(Li + L′i) so that thei-th reduced homology group is
Hi(C ) := kerNi/imNi+1

∼= ker(Li +L′i).

Example The spectrum of Lm−2 for a simplicial complex containing all m-subsets
of an n-set (the complete m-uniform hypergraph) consists ofthe eigenvalue n with
multiplicity

(n−1
m−1

)
and all further eigenvalues are 0.

Indeed, we may regard simplicess0 . . .sm−1 as elementss0∧ . . .∧sm−1 of an exterior
algebra. Then the expressions0 . . .sm−1 is defined regardless of the order of the
factors, and also when factors are repeated. NowNit0 . . . ti = ∑ j(−1) jt0 . . . t̂ j . . . ti
and for the complete(i+2)-uniform hypergraph we haveN⊤i t0 . . . ti = ∑t tt0 . . . ti , so
that Li + L′i = nI. It follows thatN⊤i+1Ni+1N⊤i+1 = nN⊤i+1, andLi has eigenvalues 0
andn. The multiplicities follow by taking the trace.

Duval & Reiner [143] generalized the Grone-Merris conjecture. Given anm-uniform
hypergraphH , let dx be the number of edges containing the vertexx. Let the spec-
trum of H be that of the matrixLm−2 for the simplicial complex consisting of all
subsets of edges ofH .

Conjecture Let the m-uniform hypergraphH have degrees dx, and Laplace eigen-
valuesνi , ordered such thatν1≥ ν2≥ . . .≥ 0. Then for all t we have

t

∑
j=1

ν j ≤
t

∑
j=1

#{x | dx ≥ j}.

Equality for all t holds if and only ifH is invariant under downshifting.

The part about ‘downshifting’ means the following: Put a total order on the vertices
of H in such a way that ifx≤ y thendx≥ dy. Now H is said to be invariant under
downshifting if whenever{x1, . . . ,xm} is an edge ofH , and{y1, . . . ,ym} is anm-set
with yi ≤ xi for all i, then also{y1, . . . ,ym} is an edge ofH . If this holds for one
total order, then it holds for any total order that is compatible with the degrees.

For m= 2 this is precisely the Grone-Merris conjecture. (And the graphs that are
invariant for downshifting are precisely the threshold graphs.) The ‘if’ part of the
equality case is a theorem:
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Theorem 3.12.1 (Duval & Reiner [143])If H is an m-uniform hypergraph with
degrees dx and Laplace eigenvaluesνi with ν1 ≥ ν2 ≥ . . . ≥ 0, andH is invariant
for downshifting, thenν j = #{x | dx ≥ j} for all t.

In particular it follows that hypergraphs invariant for downshifting have integral
Laplace spectrum.

For example, the completem-uniform hypergraph on an underlying set of sizen
has degrees

(n−1
m−1

)
so thatν j = n for 1≤ j ≤

(n−1
m−1

)
andν j = 0 for

(n−1
m−1

)
< j ≤

(n
m

)
,

as we already found earlier.

Dominance order

The conjecture and the theorem can be formulated more elegantly in terms ofdom-
inance order. Let a = (ai) and b = (bi) be two finite nonincreasing sequences
of nonnegative real numbers. We say thatb dominatesa, and writeaE b, when
∑t

i=1ai ≤ ∑t
i=1bi for all t, and∑∞

i=1ai = ∑∞
i=1bi , where missing elements are taken

to be zero.
For example, in this notation Schur’s inequality (Theorem 2.6.1) says thatdEθ

if d is the sequence of diagonal elements andθ the sequence of eigenvalues of a real
symmetric matrix.

If a= (a j) is a finite nonincreasing sequences of nonnegative integers, thena⊤

denotes the sequence(a⊤j ) with a⊤j = #{i | ai ≥ j}. If a is represented by a Ferrers

diagram, thena⊤ is represented by the transposed diagram.
For example, the Duval-Reiner conjecture says thatµ ′Ed⊤.
If a andb are two nonincreasing sequences, then leta∪b denote the (multiset)

union of both sequences, with elements sorted in nonincreasing order.

Lemma 3.12.2
(i) a⊤⊤ = a,
(ii) (a∪b)⊤ = a⊤+b⊤ and(a+b)⊤ = a⊤∪b⊤,
(iii) aEb if and only ifb⊤Ea⊤. �

3.13 Applications of eigenvectors

Sometimes it is not the eigenvalue but the eigenvector that is needed. We sketch very
briefly some of the applications.
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• • •

• • • •

• •

0.08

0.080.15

0.42

0.42 0.47 0.22

0.52 0.27
θ = 3.35

Fig. 3.1 Graph with Perron-Frobenius eigenvector

3.13.1 Ranking

In a network, important people have many connections. One would like to pick out
the vertices of highest degree and call them the most important. But it is not just the
number of neighbors. Important people have connections to many other important
people. If one models this and says that up to some constant ofproportionality one’s
importance is the sum of the importances of one’s neighbors in the graph, then the
vector giving the importance of each vertex becomes an eigenvector of the graph,
necessarily the Perron-Frobenius eigenvector if importance cannot be negative. The
constant of proportionality is then the largest eigenvalue.

3.13.2 Google Page rank

Google uses a similar scheme to compute the Page Rank [43] of web pages. The
authors described (in 1998) the algorithm as follows:

Suppose pages x1, ..., xm are the pages that link to a page y. Let page xi have di outgoing
links. Then the PageRank of y is given by

PR(y) = 1−α +α ∑
i

PR(xi)

di
.

The PageRanks form a probability distribution:∑x PR(x) = 1. The vector of PageRanks can
be calculated using a simple iterative algorithm, and corresponds to the principal eigenvec-
tor of the normalized link matrix of the web. A PageRank for 26 million web pages can be
computed in a few hours on a medium size workstation. A suitable value forα is α = 0.85.

In other words, letΓ be the directed graph onn vertices consisting of all web
pages found, with an arrow fromx to y when pagex contains a hyperlink to page
y. Let A be the adjacency matrix ofΓ (with Axy = 1 if there is a link fromx to y).
Let D be the diagonal matrix of outdegrees, so that the scaled matrix S= D−1A
has row sums 1, and construct the positive linear combination M = 1−α

n J+αSwith
0 < α < 1. SinceM > 0 the matrixM has a unique positive left eigenvectoru,
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normed so that∑ux = 1. NowM1= 1 and henceuM= u. The PageRank of the web
pagex is the valueux.

A small detail is the question what to do when pagex does not have outgoing
edges, so that rowx in A is zero. One possibility is to do nothing (and takeDxx= 1).
Thenu will have eigenvalue less than 1.

The vectoru is found by starting with an approximation (or just any positive vec-
tor) u0 and then computing the limit of the sequenceui = u0Mi . That is easy: the
matrix M is enormous, butA is sparse: on average a web page does not have more
than a dozen links. The constantα regulates the speed of convergence: convergence
is determined by the 2nd largest eigenvalue, which is bounded by α ([203]). It is
reported that 50 to 100 iterations suffice. A nonzeroα guarantees that the matrix is
irreducible. Anα much less than 1 guarantees quick convergence. But anα close
to 1 is better at preserving the information inA. Intuitively, ux represents the ex-
pectation of finding oneself at pagex after many steps, where each step consists of
either (with probabilityα) clicking on a random link on the current page, or (with
probability 1−α) picking a random internet page. Note that the precise valueof ux

is unimportant—only the ordering among the valuesux is used.
There are many papers (and even books) discussing Google’s PageRank. See e.g.

[69], [26].

3.13.3 Cutting

Often the cheapest way to cut a connected graph into two pieces is by partitioning
it into a single vertex (of minimal valency) and the rest. Butin the area of clustering
(see also below) one typically wants relatively large pieces. Here the second Laplace
eigenvector helps. Without going into any detail, let us trythe same example as
above.

• • •

• • • •

• •

0.52

0.52−0.41

−0.27

−0.27 −0.20 0.04

−0.20 0.25
µ2 = 0.51

Fig. 3.2 Graph with 2nd Laplace eigenvector

We see that cutting the edges where the 2nd Laplace eigenvector changes sign is
fairly successful in this case.
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3.13.4 Graph drawing

Often, a reasonable way to draw a connected graph is to take Laplace eigenvectors
u andv for the 2nd and 3rd smallest Laplace eigenvalues, and draw the vertexx at
the point with coordinates(ux,vx). See, e.g. [235].

One can justify this as follows. Let theenergyof an embeddingρ : Γ → Rm

be the sum of the squared edge lengths∑e||ρ(x)− ρ(y)||2 where the sum is over
all edgese= xy. Let R be them× n matrix of which the columns are the vertex
imagesρ(x). Then the energy ofρ equalsRLR⊤. For graph drawing one would
like to minimize the energy, given some normalization so that not all vertices are
mapped close to the origin or close to some lower-dimensional subspace ofRm.
Pisanski & Shawe-Taylor [281] propose to requireR1= 0 andRR⊤ = I , so that the
origin is the center of mass, and||R⊤v||2 = ||v||2 for all vectorsv∈ Rm: no vector
is almost perpendicular to the entire drawing. In this situation the minimum energy
is ∑m+1

i=2 µi , and this minimum is achieved when the row space ofR contains the
Laplace eigenvectors ofµ2, . . . ,µm+1. The authors also discuss variations of this
setup.

3.13.5 Clustering

Given a large data set, one often wants to cluster it. If the data is given as a set of
vectors in some Euclidean spaceRm, then a popular clustering algorithm isk-means:

Given a set X of N vectors inRm and a number k, find a partition of X into
k subsets X1, . . . ,Xk such that∑k

i=1 ∑x∈Xi
||x− ci ||2 is as small as possible, where

ci = (1/|Xi |)∑x∈Xi
x is the centroid of Xi .

The usual algorithm uses an iterative approach. First choose thek vectorsci in
some way, arbitrary or not. Then takeXi to be the subset ofX consisting of the vec-
tors closer toci than to the otherc j (breaking ties arbitrarily). Then compute new
vectorsci as the centroids of the setsXi , and repeat. In common practical situations
this algorithm converges quickly, but one can construct examples where this takes
exponential time. The final partition found need not be optimal, but since the al-
gorithm is fast, it can be repeated a number of times with different starting points
ci .

Now if the data is given as a graph, one can compute eigenvectors u1, . . . ,um for
the m smallest eigenvaluesµ1, . . . ,µm of the Laplace matrixL, and assign to the
vertexx the vector(ui(x))i and apply a vector space clustering algorithm such as
k-means to the resulting vectors.

This is reasonable. For example, if the graph is disconnected with c connected
components, then the firstc eigenvalues ofL are zero, and the firstc eigenvectors are
(linear combinations of) the characteristic functions of the connected components.

This approach also works when one has more detailed information—not adja-
cent/nonadjacent but a (nonnegative) similarity or closeness measure. (One uses
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an edge-weighted graph, withAxy = w(x,y) anddx = ∑yw(x,y) andD the diago-
nal matrix withDxx = dx, andL = D−A. Again L is positive semidefinite, with
u⊤Lu = ∑w(x,y)(u(x)− u(y))2. The multiplicity of the eigenvalue 0 is the num-
ber of connected components of the underlying graph where pointsx,y are adjacent
whenw(x,y)> 0.)

Especially important is the special case where one searchesfor the cheapest cut
of the graph into two relatively large pieces. If the graph isconnected, then map the
vertices intoR1 usingx 7→ u(x), whereu is the eigenvector for the second smallest
eigenvalue ofL, and then use 2-means to cluster the resulting points. Compare §1.7
on the algebraic connectivity of a graph.

Several matrices related to the Laplacian have been used in this context. It seems
useful to normalize the matrix, and to retain the property that if the graph is dis-
connected the characteristic functions of components are eigenvectors. A suitable
matrix isLnorm= D−1L = I −D−1A.

There is a large body of literature on clustering in general and spectral clustering
in particular. A few references are [181, 253, 313].

3.13.6 Searching an eigenspace

There exists a unique strongly regular graph1 with parameters(v,k,λ ,µ)= (162,56,
10,24) found as the second subconstituent of the McLaughlin graph.Its vertex set
can be split into two halves such that each half induces a strongly regular graph with
parameters(v,k,λ ,µ) = (81,20,1,6). How many such splits are there? Can we find
them all?

In this and many similar situations one can search an eigenspace. The first graph
has spectrum 561 2140 (−16)21 and a split gives an eigenvector with eigenvalue−16
if we take the vector that is 1 on the subgraph and−1 on the rest.

It is easy to construct an explicit basis(ui) for the 21-dimensional eigenspace,
where thej-th coordinate ofui is δi j . Construct the 221 eigenvectors that are±1
on the first 21 coordinates and inspect the remaining coordinates. If all are±1 one
has found a split into two regular graphs of valency 20. In this particular case there
are 224 such subgraphs, 112 splits, and all subgraphs occurring are strongly regular
with the abovementioned parameters.

3.14 Stars and star complements

Consider a graphΓ with vertex setX. By interlacing, the multiplicity of any given
eigenvalue changes by at most 1 if we remove a vertex. But there is always a vertex

1 For strongly regular graphs, see Chapter 9. No properties are used except that the substructure of
interest corresponds to an eigenvector of recognizable shape.
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such that removing it actually decreases the multiplicity.And that means that ifθ is
an eigenvalue of multiplicitym we can find astar subsetfor θ , that is, a subsetSof
X of sizem such thatΓ \Sdoes not have eigenvalueθ . Now X \S is called astar
complement.

Why precisely can we decrease the multiplicity? Letu be aθ -eigenvector ofA,
so that(θ I −A)u= 0, and letx be a vertex withux 6= 0. Then removingx from Γ
decreases the multiplicity ofθ .

Indeed, removingx is equivalent to the two actions: (i) forcingux = 0 for eigen-
vectorsu, and (ii) omitting the condition∑y∼x uy = θux (row x of the matrix equa-
tion (θ I −A)u = 0) for eigenvectorsu. SinceA is symmetric, the column depen-
dency(θ I −A)u= 0 given byu is also a row dependency, and rowx is dependent
on the remaining rows, so that (ii) doesn’t make a difference. But (i) does, as the
vectoru shows. So the multiplicity goes down.

This argument shows that the star sets forθ are precisely the setsS of sizem
such that noθ -eigenvector vanishes on all ofS. Also, that any subgraph without
eigenvalueθ is contained in a star complement.

Proposition 3.14.1 ([144, 113])LetΓ be a graph with eigenvalueθ of multiplicity
m. Let S be a subset of the vertex set X ofΓ , and let the partition{S,X \S} of X

induce a partitionA=

[
B C

C⊤ D

]
of the adjacency matrix A. If S is a star set forθ (i.e.,

if |S|= m and D does not have eigenvalueθ ), then B−θ I =C(D−θ I)−1C⊤.

Proof. The row space ofA− θ I has rankn−m. If S is a star set, then this row
space is spanned by the rows of[C⊤ D−θ I ]. Alternatively, apply Corollary 2.7.2 to
A−θ I . �

This proposition says that the edges inside a star set are determined by the rest of
the graph (and the valueθ ). Especially whenm is large, this may be useful.

Stars and star complements have been used to study exceptional graphs with
smallest eigenvalue not less than−2, see, e.g., [112, 114, 115]. (One starts with the
observation that ifθ is the smallest eigenvalue of a graph, then a star complement
has smallest eigenvalue larger thanθ . But all graphs with smallest eigenvalue larger
than−2 are explicitly known.) Several graphs and classes of graphs have been char-
acterized by graph complement. See, e.g., [224, 114].

A star partition is a partition ofX into star setsSθ for θ , whereθ runs through
the eigenvalues ofΓ . It was shown in [113] that every graph has a star partition.

3.15 Exercises

Exercise 1Consider a graph with largest eigenvalueθ1 and maximum valencykmax.
Use interlacing to show thatθ1≥

√
kmax. When does equality hold?

Exercise 2 Let Γ be ak-regular graph withn vertices and eigenvaluesk = θ1 ≥
. . .≥ θn. LetΓ ′ be an induced subgraph ofΓ with n′ vertices and average degreek′.
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(i) Prove thatθ2≥ nk′−n′k
n−n′ ≥ θn .

(ii) What can be said in case of equality (on either side)?
(iii) Deduce Hoffman’s bound (Theorem 3.5.2) from the aboveinequality.

Exercise 3 ([145]) Let the Ramsey numberR(k1,k2) be the smallest integerr such
that for each coloring of the edgesKr with two colorsc1,c2 there is a subgraph
of sizeki of which all edges have the same colorci for i = 1 or i = 2. Show that
α(Γ ⊠∆)≤ R(α(Γ )+1,α(∆)+1)−1.

Exercise 4 Show that the Lov́asz parameterϑ(Γ ) is the minimum possible value
of s such that there exists a Euclidean representation ofΓ that assigns a unit vector
in Rn to each vertex, where the images of any two nonadjacent vertices have inner
product−1/(s−1).

Exercise 5 Let anorthonormal labelingof a graphΓ be the assignment of a unit
vectorux (in someRm) to each vertexx, where theu⊤x uy = 0 wheneverx 6∼ y. Show
thatϑ(Γ ) = mincmaxx(c⊤ux)

−2, where the minimum is over all unit vectorsc, and
the maximum over all verticesx.
(Hint: consider the matrixM with Mxx = 1 andMxy = 1− u⊤x uy

(c⊤ux)(c⊤uy)
.)

Exercise 6 Show thatϑ(Γ )≤ d(Γ )≤ χ(Γ ), whered(Γ ) is the smallestd such that
Γ has an orthonormal labeling inRd. (Hint: consider the new orthonormal labeling
in Rd2

given by the vectorsux⊗ux, and takec= d−1/2 ∑i ei⊗ei .)

Exercise 7 (cf. [2, 146]) LetKΓ denote the class of real symmetric matricesM
indexed byVΓ such thatMuv= 0 if u 6∼ v, andMuv 6= 0 if u ∼ v (nothing is required
for the diagonal ofM). The parameter

mr(Γ ) = min
M∈KΓ

rkM.

is called theminimum rankof Γ . Show that

(i) mr(Kn) = 1 and thatmr(Γ )≤ n−1 with equality ifΓ is the pathPn.
(ii) mr(∆)≤mr(Γ ) if ∆ is an induced subgraph ofΓ .

(iii) mr(L(Kn)) = n−2.
(iv) mr(L(Γ )) ≤ n− 2 for every line graphL(Γ ) of a graphΓ of ordern, with

equality ifΓ has a Hamilton path.

Exercise 8 ([184, 260]) Theenergy E(Γ ) of a graphΓ , as defined by Gutman, is
∑i |θi |, the sum of the absolute values of the eigenvalues of the adjacency matrixA.
Show that ifΓ hasn vertices andm edges, then

√
2m+n(n−1)|detA|2/n≤ E(Γ )≤

√
2mn.

(Hint: use the arithmetic-geometric mean inequality and Cauchy-Schwarz.)

Exercise 9 ([234]) (i) Let Γ be a graph onn vertices withm edges, so that its
average valency is̄k= 2m/n. If k̄≥ 1 then
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E(Γ )≤ k̄+
√

k̄(n− k̄)(n−1)

with equality if and only ifΓ is mK2, or Kn, or a strongly regular graph with param-
eters(n,k,λ ,µ), whereλ = µ = k(k−1)/(n−1).
(Hint: use Cauchy-Schwarz.)

(ii) Let Γ be a graph onn vertices. Then

E(Γ )≤ 1
2

n(1+
√

n)

with equality if and only ifΓ is a strongly regular graph with parameters(n,k,λ ,µ),
wherek= (n+

√
n)/2 andλ = µ = (n+2

√
n)/4. There are infinitely many exam-

ples with equality.

Exercise 10 Prove the conjecture from Section 3.11.1 for regular graphs.
(Hint: use Cauchy-Schwarz.)





Chapter 4
The second largest eigenvalue

There is a tremendous amount of literature about the second largest eigenvalue of a
regular graph. If the gap between the largest and second largest eigenvalues is large,
then the graph has good connectivity, expansion and randomness properties. (About
connectivity, see also§1.7.)

4.1 Bounds for the second largest eigenvalue

In this connection it is of interest how large this gap can become. Theorems by
Alon-Boppana and Serre say that for large graphsθ2 cannot be much smaller than
2
√

k−1, and that in fact a positive fraction of all eigenvalues is not much smaller.

Proposition 4.1.1 (Alon-Boppana [4])If k ≥ 3 then for k-regular graphs on n ver-
tices one has

θ2≥ 2
√

k−1(1−O(
log(k−1)

logn
)).

Proposition 4.1.2 (Serre [306])For eachε > 0, there exists a positive constant c=
c(ε ,k) such that for any k-regular graphΓ on n vertices, the number of eigenvalues
of Γ larger than(2− ε)

√
k−1 is at least cn.

Quenell gives (weaker) explicit bounds:

Proposition 4.1.3 ([283]) Let Γ be a finite graph with diameter d and minimal
degree k≥ 3. Then for2≤m≤ 1+d/4, the m-th eigenvalue of the adjacency matrix
A ofΓ satisfiesθm > 2

√
k−1cos( π

r+1), where r= ⌊d/(2m−2)⌋.
Alon [4] conjectured, and Friedman [157] proved that large randomk-regular

graphs have second largest eigenvalue smaller than 2
√

k−1+ ε (for fixed k, ε >
0 andn sufficiently large). Friedman remarks that numerical experiments seem to
indicate that randomk-regular graphs in fact satisfyθ2 < 2

√
k−1.

A connectedk-regular graph is called aRamanujan graphwhen|θ | ≤ 2
√

k−1 for
all eigenvaluesθ 6= k. (This notion was introduced in [252].) It is not difficult tofind

67
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such graphs. For example, complete graphs, or Paley graphs,will do. Highly non-
trivial was the construction of infinite sequences of Ramanujan graphs with given,
constant, valencyk and sizen tending to infinity. Lubotzky, Phillips & Sarnak [252]
and Margulis [258] constructed for each primep≡ 1 (mod 4) an infinite series of
Ramanujan graphs with valencyk= p+1.

4.2 Large regular subgraphs are connected

We note the following trivial but useful result,

Proposition 4.2.1 Let Γ be a graph with second largest eigenvalueθ2. Let ∆ be
a nonempty regular induced subgraph with largest eigenvalue ρ > θ2. Then∆ is
connected.

Proof. The multiplicity of the eigenvalueρ of ∆ is the number of connected com-
ponents of∆ , and by interlacing this is 1. �

4.3 Randomness

Let Γ be a regular graph of valencyk on n vertices, and assume that (for some real
constantλ ) we have|θ | ≤ λ for all eigenvaluesθ 6= k. The ratioλ/k determines
randomness and expansion properties ofΓ : the smallerλ/k, the more random, and
the better expanderΓ is.

For example, the following proposition says that most points have approximately
the expected number of neighbors in a given subset of the vertex set. HereΓ (x)
denotes the set of neighbours of the vertexx in the graphΓ .

Proposition 4.3.1 Let R be a subset of size r of the vertex set X ofΓ . Then

∑
x∈X

(|Γ (x)∩R|− kr
n
)2≤ r(n− r)

n
λ 2.

Proof. Apply interlacing toA2 and the partition{R,X \R} of X. The sum of all
entries of the matrixA2 in the (R,R)-block equals the number of pathsy ∼ x ∼ z,
with y,z∈ Randx∈ X, that is,∑x(|Γ (x)∩R|)2. �

Rather similarly, the following proposition, a version of theexpander mixing lemma
from Alon & Chung [7], says that there are about the expected number of edges
between two subsets.

Proposition 4.3.2 Let S and T be two subsets of the vertex set ofΓ , of sizes s and
t, respectively. Let e(S,T) be the number of ordered edges xy with x∈ S and y∈ T.
Then



4.4 Expansion 69

|e(S,T)− kst
n
| ≤ λ

√
st(1− s

n
)(1− t

n
)≤ λ

√
st.

Proof. Write the characteristic vectorsχS andχT of the setsS andT as a linear
combination of a set of orthonormal eigenvectors ofA: χS= ∑αiui andχT = ∑βiui

whereAui = θiui . Thene(S,T) = χ⊤S AχT = ∑αiβiθi . We haveα1 = s/
√

n andβ1 =

t/
√

n andθ1 = k. Now |e(S,T)− kst
n |= |∑i>1 αiβiθi | ≤ λ ∑i>1 |αiβi | and∑i>1 α2

i ≤
(χS,χS)− s2/n = s(n− s)/n, and ∑i>1 β 2

i ≤ t(n− t)/n, so that|e(S,T)− kst
n | ≤

λ
√

st(n−s)(n− t)/n. �

If SandT are equal or complementary, this says that

|e(S,T)− kst
n
| ≤ λ

s(n−s)
n

.

In particular, the average valencykS of an induced subgraphS of size s satisfies
|kS− ks

n | ≤ λ n−s
n . For example, the Hoffman-Singleton graph hasθ2 = 2, θn =−3,

so λ = 3 and we find equality for subgraphsK15 (s= 15, kS = 0), 10K2 (s= 20,
kS= 1) and 5C5 (s= 25,kS= 2).

4.4 Expansion

An expanderis a (preferably sparse) graph with the property that the number of
points at distance at most one from any given (not too large) set is at least a fixed
constant (larger than one) times the size of the given set. Expanders became famous
because of their rôle in sorting networks (cf. Ajtai-Komlós-Szemeŕedi [3]) and have
since found many other applications. Proposition 4.3.1 already implies that there
cannot be too many vertices without neighbors in a given subset of the vertex set. A
better bound was given by Tanner [317] (in order to show that generalized polygons
are good expanders).

Proposition 4.4.1 (cf. Tanner [317])Let Γ be connected and regular of degree k,
and let|θ | ≤ λ for all eigenvaluesθ 6= k ofΓ . Let R be a set of r vertices ofΓ and
let Γ (R) be the set of vertices adjacent to some point of R. Then

|Γ (R)|
n
≥ ρ

ρ + λ 2

k2 (1−ρ)

whereρ = r/n.

Proof. Let χ be the characteristic vector ofR. Write it as a linear combination
of a set of orthonormal eigenvectors ofA: χ = ∑αiui where Aui = θiui . Then
Aχ = ∑αiθiui and(Aχ ,Aχ) = ∑α2

i θ 2
i , so that‖Aχ‖2 ≤ α2

0(θ 2
0 −λ 2)+λ 2 ∑α2

i =

(χ ,u0)
2(k2−λ 2)+λ 2(χ ,χ) = r2

n (k
2−λ 2)+ rλ 2. Now let ψ be the characteristic
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vector ofΓ (R). Thenk2r2 = (Aχ ,1)2 = (Aχ ,ψ)2≤ ‖Aχ‖2‖ψ‖2≤ |Γ (R)|.( r2

n (k
2−

λ 2)+ rλ 2), proving our claim. �

The above used two-sided bounds on the eigenvalues different from the valency.
It suffices to boundθ2. Let theedge expansion constant h(Γ ) (a.k.a.isoperimetric
constantor Cheeger number) of a graphΓ be the minimum ofe(S,T)/|S| where
the minimum is taken over all partitions{S,T} of the vertex set with|S| ≤ |T|, and
wheree(S,T) is the number of edges meeting bothSandT. We have

Proposition 4.4.2 ([266]) LetΓ be regular of degree k, not Kn with n≤ 3. Then

1
2
(k−θ2)≤ h(Γ )≤

√
k2−θ 2

2 .

Proof. For the lower bound, apply interlacing toA and a partition{S,T} of the
vertex set, withs= |S| andt = |T|. Pute= e(S,T). One findsne/st≥ k− θ2, so
thate/s≥ (t/n)(k−θ2) ≥ 1

2(k−θ2). For the upper bound, consider a nonnegative
vectorw indexed by the point setX of Γ , with support of size at most12n. If wx takes
t different nonzero valuesa1 > .. . > at > 0, then letSi = {x | wx ≥ ai} (1≤ i ≤ t),
and letmi = |Si \Si−1| (with S0 = /0). Leth= h(Γ ). Now

h∑
x

wx ≤ ∑
x∼y
|wx−wy|.

Indeed, allSi have size at most12n, so at leasth|Si | edges stick out ofSi , and these
contribute at leasth(m1+ · · ·+mi)(ai−ai+1) to ∑x∼y |wx−wy| (with at+1 = 0). The
total contribution is at leasth∑i miai = h∑x wx.

Let u be an eigenvector ofA with Au= θ2u. We may assume thatux > 0 for at
most 1

2n pointsx (otherwise replaceu by−u). Define a vectorv by vx = max(ux,0).
Since(Av)x = ∑y∼x vy≥∑y∼x uy = (Au)x = θ2ux = θ2vx if vx > 0, we havev⊤Av=

∑x vx(Av)x≥ θ2 ∑v2
x.

Note that∑x∼y(vx±vy)
2 = k∑x v2

x±v⊤Av.
Apply the above to the nonnegative vectorw given bywx = v2

x. We findh∑x v2
x ≤

∑x∼y |v2
x−v2

y| ≤ (∑x∼y(vx−vy)
2.∑x∼y(vx+vy)

2)1/2 = ((k∑x v2
x)

2− (v⊤Av)2)1/2≤
(∑x v2

x)
√

k2−θ 2
2 , assumingθ2≥ 0. �

For similar results for not necessarily regular graphs, see§4.7.

4.5 Toughness and Hamiltonicity

As application of the above ideas, one can give bounds for thetoughness of a graph
in terms of the eigenvalues.

A connected, noncomplete graphΓ is calledt-toughif one has|S| ≥ tc for every
disconnecting set of verticesS such that the graph induced on its complement has
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c≥ 2 connected components. Thetoughnessτ(Γ ) of a graphΓ is the largestt such
thatΓ is t-tough. For example, the Petersen graph has toughness 4/3.

This concept was introduced by Chvátal [90], who hoped thatt-tough graphs
would beHamiltonian (i.e., have a circuit passing through all vertices) for suffi-
ciently larget. People tried to prove this fort = 2, the famous ‘2-tough conjecture’,
but examples were given in [21] oft-tough nonhamiltonian graphs for allt < 9/4.
Whether a larger bound onτ suffices is still open.

Still, being tough seems to help. In [20] it was shown that at-tough graphΓ on
n≥ 3 vertices with minimum degreeδ is Hamiltonian when(t +1)(δ +1)> n.

Proposition 4.5.1 ([47]) Let Γ be a connected noncomplete regular graph of va-
lency k and let|θ | ≤ λ for all eigenvaluesθ 6= k. Thenτ(Γ )> k/λ −2.

This proposition gives the right bound, in the sense that there are infinitely many
graphs withτ(Γ )≤ k/λ . The constant 2 can be improved a little. The result can be
refined by separating out the smallest and the second largesteigenvalue. The main
tool in the proof is Proposition 4.3.1.

See also the remarks following Theorem 9.3.2.

Krivelevich & Sudakov [236] show that, whenn is large enough, a graph onn
vertices, regular of degreek= θ1, and with second largest eigenvalueθ2 satisfying

θ2

θ1
<

(log logn)2

1000lognlog log logn

is Hamiltonian. Pyber [282] shows that it follows that everysufficiently large
strongly regular graph is Hamiltonian.

4.5.1 The Petersen graph is not Hamiltonian

An amusing application of interlacing shows that the Petersen graph is not Hamilto-
nian. Indeed, a Hamilton circuit in the Petersen graph wouldgive an inducedC10

in its line graph. Now the line graph of the Petersen graph hasspectrum 41 25

(−1)4 (−2)5 and by interlacing the seventh eigenvalue 2cos3
5π = (1−

√
5)/2 of

C10 should be at most−1, contradiction. (Cf. [267, 205].)

4.6 Diameter bound

Chung [88] gave the following diameter bound.

Proposition 4.6.1 LetΓ be a connected noncomplete graph on n≥ 2 vertices, reg-
ular of valency k, and with diameter d. Let|θ | ≤ λ for all eigenvaluesθ 6= k. Then

d≤
⌈

log(n−1)
log(k/λ )

⌉
.
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Proof. The graphΓ has diameter at mostm when Am > 0. Let A have or-
thonormal eigenvectorsui with Aui = θiui . ThenA = ∑i θiu⊤i ui . Takeu1 = 1√

n1.

Now (Am)xy=∑i θ m
i (u⊤i ui)xy≥ km

n −λ m∑i>1 |(ui)x|.|(ui)y| and∑i>1 |(ui)x|.|(ui)y| ≤
(∑i>1 |(ui)x|2)1/2(∑i>1 |(ui)y|2)1/2 = (1− |(u1)x|2)1/2(1− |(u1)y|2)1/2 = 1− 1

n, so
that(Am)xy > 0 if km > (n−1)λ m. �

4.7 Separation

Let Γ be a graph with Laplace matrixL and Laplace eigenvalues 0= µ1≤ . . .≤ µn.
The Laplace matrix of a subgraphΓ ′ of Γ is not a submatrix ofL, unlessΓ ′ is a com-
ponent. So the interlacing techniques of§2.5 do not work in such a straightforward
manner here. But we can obtain results if we consider off-diagonal submatrices of
L.

Proposition 4.7.1 Let X and Y be disjoint sets of vertices ofΓ , such that there is
no edge between X and Y. Then

|X||Y|
(n−|X|)(n−|Y|) ≤

(
µn−µ2

µn+µ2

)2

.

Proof. Putµ = 1
2(µn+µ2) and define a matrixA of order 2n by

A=

[
0 L−µ I

L−µ I 0

]
.

Let A have eigenvaluesθ1≥ . . .≥ θ2n. Thenθ2n+1−i =−θi (1≤ i ≤ 2n) andθ1 = µ
andθ2 =

1
2(µn− µ2). The setsX andY give rise to a partitioning ofA (with rows

and columns indexed byY, Y, X, X) with quotient matrix

B=




0 0 −µ 0

0 0 −µ +µ |X|
n−|Y| −µ |X|

n−|Y|
−µ |Y|

n−|X| −µ +µ |Y|
n−|X| 0 0

0 −µ 0 0


 .

Let B have eigenvaluesη1 ≥ . . .≥ η4. Thenη1 = θ1 = µ andη4 = θ2n =−µ , and
η1η2η3η4 = detB= µ4 |X||Y|

(n−|X|)(n−|Y|) > 0. Using interlacing we find

µ2 |X||Y|
(n−|X|)(n−|Y|) =−η2η3≤−θ2θ2n−1 = (1

2(µn−µ2))
2,

which gives the required inequality. �

One can rewrite Tanner’s inequality (applied withR= X, Γ (R) = VΓ \Y) in the
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form |X||Y|/(n− |X|)(n− |Y|) ≤ (λ/k)2 where λ = max(θ2,−θn), and this is
slightly weaker than the above, equivalent only whenθn =−θ2.

The vertex setsX andY with the above property are sometimes calleddiscon-
nected vertex sets. In the complementX andY become sets such that all edges
betweenX andY are present. Such a pair is called abiclique.

For applications another form is sometimes handy:

Corollary 4.7.2 Let Γ be a connected graph on n vertices, and let X and Y be
disjoint sets of vertices, such that there is no edge betweenX and Y. Then

|X||Y|
n(n−|X|− |Y|) ≤

(µn−µ2)
2

4µ2µn
.

Proof. Let K be the constant for which Proposition 4.7.1 says|X||Y| ≤ K(n−
|X|)(n−|Y|). Then|X||Y|(1−K)≤ n(n−|X|− |Y|)K. �

The above proposition gives bounds on vertex connectivity.For edge connectivity
one has

Proposition 4.7.3 (Alon & Milman [8]) Let A and B be subsets of VΓ such that
each point of A has distance at leastρ to each point of B. Let F be the set of edges
which do not have both ends in A or both in B. Then

|F | ≥ ρ2µ2
|A||B|
|A|+ |B| .

For ρ = 1 this yields:

Corollary 4.7.4 LetΓ be a graph on n vertices, A a subset of VΓ , and F the set of
edges with one end in A and one end outside A. Then

|F | ≥ µ2|A|(1−
|A|
n
).

Let χ be the characteristic vector of A. Then equality holds if andonly if χ− |A|n 1 is
a Laplace eigenvector with eigenvalueµ2.

Proof. Let ui be an orthonormal system of Laplace eigenvectors, so thatLui = µiui .
Takeu1 =

1√
n1. Let χ =∑αiui . Now |A|= (χ ,χ) =∑α2

i andα1 = (χ ,u1) =
1√
n|A|.

We find|F |= ∑a∈A,b6∈A,a∼b1= ∑x∼y(χx−χy)
2 = χ⊤Lχ = ∑α2

i µi ≥ (∑i>1 α2
i )µ2.

�

This is best possible in many situations.

Example The Hoffman-Singleton graph has Laplace spectrum 015281021 and we
find |F | ≥ |A||B|/10 and this holds with equality for the 10-40 split into a Petersen
subgraph and its complement.
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4.7.1 Bandwidth

A direct consequence of Proposition 4.7.1 is an inequality of Helmberg, Mohar,
Poljak and Rendl [204], concerning the bandwidth of a graph.A symmetric matrix
M is said to have bandwidthw if (M)i, j = 0 for all i, j satisfying|i− j| > w. The
bandwidthw(Γ ) of a graphΓ is the smallest possible bandwidth for its adjacency
matrix (or Laplace matrix). This number (and the vertex order realizing it) is of
interest for some combinatorial optimization problems.

Theorem 4.7.5 SupposeΓ is not edgeless and define b=
⌈
nµ2

µn

⌉
, then

w(Γ )≥
{

b if n−b is even,
b−1 if n−b is odd.

Proof. Order the vertices ofΓ such thatL has bandwidthw = w(Γ ). If n−w is
even, letX be the first12(n−w) vertices and letY be the last12(n−w) vertices. Then
Proposition 4.7.1 applies and thus we find the first inequality. If n−w is odd, take
for X andY the first and last12(n−w−1) vertices and the second inequality follows.
If b andw have different parity, thenw−b≥ 1 and so the better inequality holds.�

In casen−w is odd, the bound can be improved a little by applying Proposition 4.7.1
with |X| = 1

2(n−w+1) and|Y| = 1
2(n−w−1). It is clear that the result remains

valid if we consider graphs with weighted edges.

4.7.2 Perfect matchings

A more recent application of Proposition 4.7.1 is the following sufficient condition
for existence of a perfect matching (aperfect matchingin a graph is a subset of the
edges, such that every vertex of the graph is incident with exactly one edge of the
subset).

Theorem 4.7.6 ([56]) Let Γ be a graph with n vertices, and Laplace eigenvalues
0= µ1≤ µ2≤ . . .≤ µn. If n is even andµn≤ 2µ2, thenΓ has a perfect matching.

Except for Proposition 4.7.1, we need two more tools. The first one is Tutte’s famous
characterization of graphs with a perfect matching. The second one is an elementary
observation.

Theorem 4.7.7 (Tutte [321])A graphΓ = (V,E) has no perfect matching if and
only if there exists a subset S⊂V, such that the subgraph ofΓ induced by V\S has
more than|S| odd components.

Lemma 4.7.8 Let x1 . . .xn be n positive integers such that∑n
i=1xi = k ≤ 2n− 1.

Then for every integerℓ, satisfying0≤ ℓ≤ k, there exists an I⊂ {1, . . . ,n} such that
∑i∈I xi = ℓ.
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Proof. Induction onn. The casen = 1 is trivial. If n≥ 2, assumex1 ≥ . . . ≥ xn.
Then n− 1 ≤ k− x1 ≤ 2(n− 1)− 1 and we apply the induction hypothesis to
∑n

i=2xi = k−x1 with the sameℓ if ℓ≤ n−1, andℓ−x1 otherwise. �

Proof of Theorem 4.7.6.AssumeΓ = (V,E) has no perfect matching. By Tutte’s
theorem there exists a setS⊂V of sizes (say), such that the subgraphΓ ′ of Γ in-
duced byV \Shasq> s odd components. But sincen is even,s+q is even, hence
q≥ s+2.
First assumen≤ 3s+3. ThenΓ ′ has at most 2s+3 vertices and at leasts+2 com-
ponents. By Lemma 4.7.8,Γ ′ and henceΓ , has a pair of disconnected vertex setsX
andY with |X|= ⌊1

2(n−s)⌋ and|Y|= ⌈1
2(n−s)⌉. Now Proposition 4.7.1 implies

(
µn−µ2

µn+µ2

)2

≥ |X| · |Y|
ns+ |X| · |Y| =

(n−s)2− ε
(n+s)2− ε

,

whereε = 0 if n−s is even andε = 1 if n−s is odd. Usingn≥ 2s+2 we obtain

µn−µ2

µn+µ2
>

n−s−1
n+s

≥ s+1
3s+2

>
1
3
.

Hence 2µ2 < µn.
Next assumen≥ 3s+4. Now Γ ′, and henceΓ , has a pair of disconnected vertex
setsX andY with |X|+ |Y| = n− s and min{|X|, |Y|} ≥ s+ 1, so|X| · |Y| ≥ (s+
1)(n−2s−1)> ns−2s2. Now Proposition 4.7.1 implies

(
µn−µ2

µn+µ2

)2

≥ |X| · |Y|
ns+ |X| · |Y| ≥

ns−2s2

2ns−2s2 =
1
2
− s

2n−2s
>

1
4
,

by use ofn≥ 3s+4. So
µn−µ2

µn+µ2
>

1
2
>

1
3
,

hence 2µ2 < µn. �

The complete bipartite graphsKl ,m with l ≤mhave Laplace eigenvaluesµ2 =mand
µn = n= l +m. This shows that 2µ2 can get arbitrarily close toµn for graphs with
n even and no perfect matching.
If the graph is regular, the result can be improved considerably.

Theorem 4.7.9 ([56, 92]) A connected k-regular graph on n vertices, where n is
even, with (ordinary) eigenvalues k= λ1≥ λ2 . . .≥ λn, which satisfies

λ3≤
{

k−1+ 3
k+1 if k is even,

k−1+ 4
k+2 if k is odd,

has a perfect matching.

Proof. Let Γ = (V,E) be ak-regular graph withn= |V| even and no perfect match-
ing. By Tutte’s Theorem 4.7.7 there exists a setS⊂ V of size s such thatV \S
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induces a subgraph withq≥ s+2 odd componentsΓ1, Γ2, . . . ,Γq (say). Letti denote
the number of edges inΓ betweenSandΓi , and letni be the number of vertices of
Γi . Then clearly∑q

i=1 ti ≤ ks, s≥ 1, andti ≥ 1 (sinceΓ is connected). Henceti < k
andni > 1 for at least three values ofi, sayi = 1, 2 and 3. Letℓi denote the largest
eigenvalue ofΓi , and assumeℓ1 ≥ ℓ2 ≥ ℓ3. Then eigenvalue interlacing applied to
the subgraph induced by the union ofΓ1, Γ2 andΓ3 givesℓi ≤ λi for i = 1, 2, 3.

ConsiderΓ3 with n3 vertices ande3 edges (say). Then 2e3 = kn3−t3≤ n3(n3−1).
We saw thatt3 < k andn3 > 1, hencek< n3. Moreover, the average degreed3 of Γ3

equals 2e3/n3 = k− t3/n3. Becausen3 is odd andkn3− t3 is even,k andt3 have the
same parity, thereforet3 < k impliest3 ≤ k−2. Alsok< n3 impliesk≤ n3−1 if k
is even, andk≤ n3−2 if k is odd. Hence

d3≥
{

k− k−2
k+1 if k is even,

k− k−2
k+2 if k is odd.

Note thatt3 < n3 implies thatΓ3 cannot be regular. Next we use the fact that the
largest adjacency eigenvalue of a graph is bounded from below by the average
degree with equality if and only if the graph is regular (Proposition 3.1.2). Thus
d3 < ℓ3. We saw thatℓ3≤ λ3, which finishes the proof. �

From the above it is clear thatn even andλ2 ≤ k−1 implies existence of a perfect
matching. In terms of the Laplace matrix this translates into:

Corollary 4.7.10 A regular graph with an even number of vertices and algebraic
connectivity at least1 has a perfect matching.

But we can say more. The Laplace matrix of a disjoint union ofn/2 edges has
eigenvalues 0 and 2. This implies that deletion of the edges of a perfect matching of
a graphΓ reduces the eigenvalues of the Laplace matrix ofΓ by at most 2 (by the
Courant-Weyl inequalities 2.8.1). Hence:

Corollary 4.7.11 A regular graph with an even number of vertices and algebraic
connectivityµ2 has at least⌊(µ2+1)/2⌋ disjoint perfect matchings.
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Fig. 4.1 A 3-regular graph with no perfect matching

Cioab̆a, Gregory and Haemers [93] have improved the sufficient condition for a
perfect matching from Theorem 4.7.9 toλ3 < ϑk whereϑ3 = 2.85577... (the largest
root of x3− x2−6x+2), ϑk = (k−2+

√
k2+12)/2 if k≥ 4 and even, andϑk =
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(k−3+
√
(k+1)2+16)/2 if k≥ 5 and odd. They also prove that this bound is best

possible by giving examples ofk-regular graphs withn even, andλ3 = ϑk that have
no perfect matching. The example fork= 3 is presented in Figure 4.1.

4.8 Block designs

In case we have a non-symmetric matrixN (say) we can still use interlacing by
considering the matrix

A=

[
0 N

N⊤ 0

]
.

We find results in terms of the eigenvalues ofA, which now satisfyθi = −θn−i+1

for i = 1, . . . ,n. The positive eigenvalues ofA are the singular values ofN, they are
also the square roots of the non-zero eigenvalues ofNN⊤ (and ofN⊤N).

SupposeN is the 0-1 incidence matrix of an incidence structure(P,B) with point
setP (rows) and block setB (columns). Then we consider the so-calledincidence
graph Γ of (P,B), which is the bipartite graph with vertex setP∪B, where two
vertices are adjacent if they correspond to an incident point-block pair. An edge of
Γ is called aflagof (P,B).

An incidence structure(P,B) is called at-(v,k,λ ) design if |P| = v, all blocks
are incident withk points, and for everyt-set of points there are exactlyλ blocks
incident with allt points. For example(P,B) is a 1-(v,k, r) design precisely whenN
has constant column sumsk (i.e.N⊤1= k1), and constant row sumsr (i.e.N1= r1),
in other wordsΓ is biregular with degreesk andr. Moreover,(P,B) is a 2-(v,k,λ )
design if and only ifN⊤1 = k1 andNN⊤ = λJ+(r − λ )I . Note that fort ≥ 1, a
t-design is also a(t−1)-design. In particular a 2-(v,k,λ ) design is also a 1-(v,k, r)
design withr = λ (v−1)/(k−1).

Theorem 4.8.1 Let (P,B) be a1-(v,k, r) design with b blocks and let(P′,B′) be a
substructure with m′ flags. Define b= |B|, v′ = |P′| and b′ = |B′|. Then

(m′
v
v′
−b′k)(m′

b
b′
−v′r)≤ θ 2

2 (v−v′)(b−b′) .

Equality implies that all four substructures induced by P′ or V \V ′ and B′ or B\B′

form a1-design (possibly degenerate).

Proof. We apply Corollary 2.5.4. The substructure(P′,B′) gives rise to a partition
of A with the following quotient matrix

B=




0 0 m′
v′ r− m′

v′

0 0 b′k−m′
v−v′ r− b′k−m′

v−v′
m′
b′ k− m′

b′ 0 0
v′r−m′
b−b′ k− v′r−m′

b−b′ 0 0


 .
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We easily haveθ1 =−θn = η1 =−η4 =
√

rk and

det(B) = rk

(
m′ v

v′ −b′k

v−v′

)(
m′ b

b′ −v′r

b−b′

)
.

Interlacing gives
det(B)

rk
=−η2η3≤−θ2θn−1 = θ 2

2 ,

which proves the first statement. If equality holds thenθ1 = η1, θ2 = η2, θn−1 = η3

andθn = η4, so we have tight interlacing, which implies the second statement. �

The above result becomes especially useful if we can expressθ2 in terms of the
design parameters. For instance if(P,B) is a 2-(v,k,λ ) design, thenθ 2

2 = r −λ =
λ v−k

k−1 (see exercises) and if(P,B) is a generalized quadrangle of order(s, t), then
λ 2

2 = s+ t (see§9.6). Let us consider two special cases. (A 2-design(P,B) with
|P|= |B| is calledsymmetric.)

Corollary 4.8.2 If a symmetric2-(v,k,λ ) design(P,B) has a symmetric2-(v′,k′,λ ′)
subdesign(P′,B′) (possibly degenerate) then

(k′v−kv′)2≤ (k−λ )(v−v′)2
.

If equality holds, then the subdesign(P′,B\B′) is a2-(v′,v′(k−k′)/(v−v′),λ−λ ′)
design (possibly degenerate).

Proof. In Theorem 4.8.1 takeb= v, r = k, b′ = v′, m′ = v′k′ andθ 2
2 = k−λ . �

Corollary 4.8.3 Let X be a subset of the points and let Y be a subset of the blocks
of a 2-(v,k,λ ) design(P,B), such that no point of X is incident with a block of Y .
Then

kr|X||Y| ≤ (r−λ )(v−|X|)(b−|Y|).
If equality holds then the substructure(X,B′) = (X,B\Y) is a 2-design.

Proof. Takem′ = 0, v′ = |X|, b′ = |Y| andθ 2
2 = r − λ . Now 4.8.1 gives the in-

equality and that(X,B′) is a 1-design. But then(X,B′) is a 2-design, because(P,B)
is. �

An example of a subdesign of a symmetric design is the incidence structure formed
by the absolute point and lines of a polarity in a projective plane of orderq. This
gives a (degenerate) 2-(v′,1,0) design in a 2-(q2+q+1,q+1,1) design. The bound
givesv′ ≤ q

√
q+1. (See also the following section.) The 2-(q

√
q+1,q+1,1) de-

sign, which is obtained in case of equality is called aunital. Other examples of sym-
metric designs that meet the bound can be found in Haemers & Shrikhande [196] or
Jungnickel [227]. Wilbrink used Theorem 4.8.1 to shorten the proof of Feit’s result
on the number of points and blocks fixed by an automorphism group of a symmetric
design (see [64]). The inequality of the second corollary isfor example tight for
hyperovals and (more generally) maximal arcs in finite projective planes.
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4.9 Polarities

A projective planeis a point-line geometry such that any two points are on a unique
line, and any two lines meet in a unique point. It is said to be of order q when all
lines haveq+1 points and all points are onq+1 lines. A projective plane of order
q hasq2+q+1 points and as many lines.

A polarity of a point-block incidence structure is a map of order 2 interchanging
points and blocks and preserving incidence. Anabsolute pointis a point incident
with its image under the polarity.

Suppose we have a projective plane of orderq with a polarityσ . The polarity
enables us to write the point-line incidence matrixN as a symmetric matrix, and then
the number of absolute points is trN. By definition we haveN2 = NN⊤ = J+qI,
which has one eigenvalue equal to(q+1)2 and all other eigenvalues equal toq. That
means thatN has spectrum(q+1)1,

√
qm, −√qn, for certain integersm,n, where

this time exponents indicate multiplicities. The number ofabsolute points equals
a= q+1+(m−n)

√
q. It follows that if q is not a square thenm= n and there are

preciselyq+ 1 absolute points. Ifq is a square, andp is a prime dividingq, then
a≡ 1 (modp) so thata is nonzero.

(This is false in the infinite case: the polarity sending the point (p,q, r) to the line
pX+qY+ rZ = 0 has no absolute points overR.)

With slightly more effort one finds bounds for the number of absolute points:

Proposition 4.9.1 A polarity of a projective plane of order q has at least q+1 and
at most q

√
q+1 absolute points.

Proof. Supposez is a non-absolute point. Nowσ induces a mapτ on the linezσ

defined fory∈ zσ by: yτ is the common point ofyσ andzσ . Now τ2 = 1, andyτ = y
precisely wheny is absolute. This shows that the number of absolute points ona
non-absolute line isq+1 (mod 2).

Now if q is odd, then take an absolute pointx. This observation says that each line
on x different fromxσ contains another absolute point, for a total of at leastq+1.
On the other hand, ifq is even, then each non-absolute line contains an absolute
point, so thatq2+q+1−a≤ aqanda≥ q+1.

For the upper bound, use interlacing: partition the matrixN into absolute / non-

absolute points/lines and find the matrix of average row sums

[
1 q
aq

v−a q+1− aq
v−a

]

wherev = q2+q+1, with eigenvaluesq+1 and 1− aq
v−a. Now interlacing yields

1− aq
v−a ≥−

√
q, that is,a≤ q

√
q+1, just like we found in the previous section.�

The essential part of the proof of the lower bound was to show that there is at least
one absolute point, and this used an eigenvalue argument.
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4.10 Exercises

Exercise 1 Deduce Proposition 3.6.3(iii) (the part that says(m−1)θt+1+θn−t(m−1)
≥ 0) from Theorem 3.5.4.

Exercise 2 Prove the following bipartite version of Proposition 4.4.1. Let Γ be a
connected and bipartite graph, semiregular with degreesk and l . Let |θ | ≤ λ for
every eigenvalueθ 6=±

√
kl. If R is a subset of the setK of vertices of degreek, and

ρ = |R|/|K|, then
|Γ (R)|
|R| ≥

k2

ρ(kl−λ 2)+λ 2 .

(This is the result from Tanner [317].)

Exercise 3 (i) Determine the isoperimetric numberh(Kn).
(ii) Using Proposition 4.4.2, show that then-cube hash(Qn) = 1.

Exercise 4 An (ℓ,m)-biclique in a graphΓ is a complete bipartite subgraphKℓ,m of
Γ (not necessarily induced). Let 0= µ1≤ . . .≤ µn be the Laplace eigenvalues ofΓ .
Show thatℓm/(n− ℓ)(n−m) ≤ ((µn− µ2)/(2n− µ2− µn))

2 if Γ is non-complete
and contains an(ℓ,m)-biclique.

Exercise 5 Let A be the incidence graph of a 2-(v,k,λ ) design withb blocks andr
blocks incident with each point. Express the spectrum ofA in the design parameters
v, k, λ , b andr.

Exercise 6 Let (P,B) is a 2-(v,k,λ ) design, and suppose that some block is repeated
ℓ times (i.e.ℓ blocks are incident with exactly the same set ofk points). Prove that
b≥ ℓv (this is Mann’s inequality).



Chapter 5
Trees

Trees have a simpler structure than general graphs, and we can prove stronger re-
sults. For example, interlacing tells us that the multiplicity of an eigenvalue de-
creases by at most one when a vertex is removed. For trees Godsil’s Lemma gives
the same conclusion also when a path is removed.

5.1 Characteristic polynomials of trees

For a graphΓ with adjacency matrixA, let φΓ (t) := det(tI −A) be its characteristic
polynomial.

Note that since the characteristic polynomial of the disjoint union of two graphs
is the product of their characteristic polynomials, results for trees immediately yield
results for forests as well.

It will be useful to agree thatφT\x,y = 0 if x= y.

Proposition 5.1.1 Let T be a tree, and for x,y∈T, let Pxy be the unique path joining
x and y in T .

(i) Let e= xy be an edge in T that separates T into two subtrees A and B, with
x∈ A and y∈ B. Then

φT = φAφB−φA\xφB\y.

(ii) Let x be a vertex of T . Then

φT(t) = tφT\x(t)− ∑
y∼x

φT\{x,y}(t).

(iii) Let x be a vertex of T . Then

φT\x(t)φT(s)−φT\x(s)φT(t) = (s− t) ∑
y∈T

φT\Pxy(s)φT\Pxy(t).

(iv) Let x be a vertex of T . Then

81
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φT\xφ ′T −φ ′T\xφT = ∑
y∈T

φ2
T\Pxy

.

(v) Let x,y be vertices of T . Then

φT\xφT\y−φT\x,yφT = φ2
T\Pxy

.

(vi) Let x,y,z be vertices of T where z∈ Pxy. Then

φT\x,y,zφT = φT\xφT\y,z−φT\zφT\x,y+φT\yφT\x,z.

(vii) We haveφ ′T = ∑x∈T φT\x.

(viii) Let T have n vertices and cm matchings of size m. Then

φT(t) = ∑
m
(−1)mcmtn−2m.

Proof. Part (i) follows by expansion of the defining determinant. Itcan also be
phrased asφT = φT\e− φT\{x,y}. Part (ii) follows by applying (i) to all edges onx.
Note thatφ{x}(t)= t. Part (iii) follows from (ii) by induction on the size ofT: expand
in the LHSφT(s) andφT(t) using (ii), and then use induction. Part (iv) is immediate
from (iii). Part (vii) follows by taking the derivative of the defining determinant.
Part (viii) is a reformulation of the description in§1.2.1. Note that the only directed
cycles in a tree are those of length 2. Part (v) is true ifT = Pxy, and the general
case follows from part (vi) and induction: the statement remains true when a subtree
S is attached via an edgee at a vertexz∈ Pxy. Finally, part (vi) follows from:if
Γ \z= A+B, thenφΓ = φA∪zφB+φAφB∪z−φAφ{z}φB, where of courseφ{z}(t) = t.
�

Theorem 5.1.2 (‘Godsil’s Lemma’, [165])Let T be a tree andθ an eigenvalue
of multiplicity m> 1. Let P be a path in T . Thenθ is eigenvalue of T\P with
multiplicity at least m−1.

Proof. By parts (iv) and (vii) of the above Proposition we have

φ ′T(t)
2−φ ′′T(t)φT(t) = ∑

x,y∈T
φT\Pxy(t)

2.

Now θ is a root of multiplicity at least 2m−2 of the left hand side, and hence also
of each of the terms on the right hand side. �

As an application of Godsil’s Lemma, consider a treeT with e distinct eigenvalues
and maximum possible diametere−1. LetP be a path of lengthe−1 (that is, withe
vertices) inT. ThenT \P has a spectrum that is independent of the choice ofP: for
each eigenvalueθ with multiplicity m of T, the forestT \P has eigenvalueθ with
multiplicity m−1 (and it has no other eigenvalues).

In particular, all eigenvalues of a path have multiplicity 1.

Note that going fromT to T \ x changes multiplicities by at most 1: they go
up or down by at most one. Godsil’s Lemma is one-sided: going from T to T \P,
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the multiplicities go down by at most one, but they may well goup by more. For
example, if one joins the centersx,y of two copies ofK1,m by an edge, one obtains a
treeT that has 0 as an eigenvalue of multiplicity 2m−2. ForP= xy the forestT \P
has 0 with multiplicity 2m.

5.2 Eigenvectors and multiplicities

For trees we have rather precise information about eigenvectors and eigenvalue mul-
tiplicities (Fiedler [151]).

Lemma 5.2.1 Let T be a tree with eigenvalueθ , and let Z= ZT(θ) be the set
of vertices in T where allθ -eigenvectors vanish. If for some vertex t∈ T some
component S of T\ t has eigenvalueθ (in particular, if someθ -eigenvector of T
vanishes at t), then Z6= /0.

Proof. Consider proper subtreesSof T with eigenvalueθ and with a single edge
st joining some vertexs∈ S with some vertext ∈ T \S, and pick a minimal one.
If |S| = 1, thenθ = 0, andt ∈ Z. Assume|S| > 1. If a θ -eigenvectoru of S is
the restriction toS of a θ -eigenvectorv of T, then v vanishes int. So, if some
θ -eigenvectorv of T does not vanish att then u and v|S are not dependent, and
some linear combination vanishes ins and is aθ -eigenvector ofS\s, contradicting
minimality of S. This shows thatt ∈ Z. �

Note that it is not true that the hypothesis of the lemma implies thatt ∈ Z. For
example, consider the treeT of type D6 given by 1∼ 2 ∼ 3 ∼ 4 ∼ 5,6. It has
Z(0) = {2,4}, and the componentS= {4,5,6} of T \3 has eigenvalue 0, but 36∈
Z(0).

Proposition 5.2.2 Consider a tree T with eigenvalueθ , and let Z= Z(θ) be the
set of vertices in T where allθ -eigenvectors vanish. Let Z0 = Z0(θ) be the set of
vertices in Z that have a neighbor in T\Z.

(i) Let S be a connected component of T\Z. Then S has eigenvalueθ with mul-
tiplicity 1. If u is aθ -eigenvector of S, then u is nowhere zero.

(ii) Let T \Z have c connected components, and let d= |Z0|. Thenθ has multi-
plicity c−d.

The components ofT \Z(θ) are called theeigenvalue componentsof T for θ .

Proof. (i) Supposeθ is eigenvalue ofT with multiplicity greater than 1. Then
some eigenvector has a zero coordinate and hence induces aθ -eigenvector on a
proper subtree.

By Lemma 5.2.1,Z is nonempty.
If S is a connected component ofT \Z then it has eigenvalueθ (otherwiseS⊂

Z, contradiction). Apply Lemma 5.2.1 toS instead ofT to find that if someθ -
eigenvector ofS vanishes on a point ofS, then there is a points∈ S where all of
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its θ -eigenvectors vanish. But the restriction toS of a θ -eigenvector ofT is a θ -
eigenvector ofS, sos∈ Z, contradiction.

(ii) Each point ofZ0 imposes a linear condition, and sinceT is a tree, these
conditions are independent. �

We see that if the multiplicity ofθ is not 1, thenZ contains a vertex of degree at
least three. In particular,Z 6= /0, and henceZ0 6= /0. Deleting a vertex inZ0 from T
increases the multiplicity ofθ .

As an application we see that all eigenvalues of a path have multiplicity 1.

5.3 Sign patterns of eigenvectors of graphs

For a path, thei-th largest eigenvalue has multiplicity 1 and an eigenvector with
i−1 sign changes, that is,i areas of constant sign. It is possible to generalize this
observation to more general graphs.

Given a real vectoru, let thesupportsuppu be the set{i|ui 6= 0}. For ∗ one of
<,>,≤,≥ we also write supp∗u for {i|ui ∗0}. LetN(u) (resp.N∗(u)) be the number
of connected componentsC of the subgraph induced by suppu (resp. supp∗u) such
thatu does not vanish identically onC. Let Nθ (u) be the number of connected com-
ponentsC of the subgraph induced by suppu such thatu (does not vanish identically
onC and) induces an eigenvector with eigenvalueθ onC.

Proposition 5.3.1 Let Γ be a graph with eigenvaluesθ1 ≥ . . . ≥ θn, and letθ =
θ j = θ j+m−1 be an eigenvalue with multiplicity m. Let u be a vector with Au≥ θu.
Let∆ be the subgraph ofΓ induced bysuppu, with eigenvaluesη1≥ . . .≥ ηt . Then

(i)
N>(u)+N<(u)≤ #{i | ηi ≥ θ} ≤ j +m−1

(ii)
N>(u)+N<(u)−Nθ (u)≤ #{i | ηi > θ} ≤ j−1

(iii) if Γ has c connected components, then

N≥(u)+N≤(u)≤ j +c−1.

Proof. For a subsetSof the vertex set ofΓ , let IS be the diagonal matrix with ones
on the positions indexed by elements ofSand zeros elsewhere.

Let C run through the connected components of supp>u and supp<u (resp.
supp≥u and supp≤u). Put uC = ICu. Then the spaceU := 〈uC|C〉 has dimension
N>(u)+N<(u) (resp.N≥(u)+N≤(u)).

Let A be the adjacency matrix of∆ (resp.Γ ). Define a real symmetric matrixB
by BCD = u⊤C (A− θ I)uD. ThenB has nonnegative row sums and nonpositive off-
diagonal entries, soB is positive semidefinite. It follows that fory ∈ U we have
y⊤(A−θ I)y≥ 0. This means thatU intersects the space spanned by the eigenvectors
of A−θ I with negative eigenvalue in 0.
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For (i) N>(u)+N<(u)≤ #{i | ηi ≥ θ} follows.
The vectorsy∈U with y⊤(A−θ I)y= 0 correspond to eigenvectors with eigen-

value 0 ofB, and by Lemma 2.10.1 there are at mostNθ (u) (resp.c) independent
such. This proves (ii) (resp. (iii)). �

Remark For j = 1 the results follow from Perron-Frobenius. (IfΓ is connected,
then the eigenvector forθ1 is nowhere zero and has constant sign.)

Examples a) LetΓ be connected and bipartite, and letθ be the smallest eigenvalue
of Γ . The corresponding eigenvectoru has different signs on the two sides of the
bipartition, so supp>u and supp<u are the two sides of the bipartition,N>(u) +
N<(u) = n andN(u) = 1. We have equality in (i)–(iii).

b) LetΓ be the starK1,s. The spectrum is
√

s1, 0s−1, (−√s)1. Let u be an eigen-
vector with eigenvalueθ = 0 that hast nonzero coordinates. (Then 2≤ t ≤ s.) Now
N>(u)+N<(u) = N(u) = t andN≥(u)+N≤(u) = 2, and fort = sequality holds in
(i)–(iii).

c) Let Γ be the Petersen graph. It has spectrum 31, 15, (−2)4. Let u be an
eigenvector with eigenvalueθ = 1 that vanishes on 4 points, so that suppu in-
duces 3K2 with spectrum 13, (−1)3. We find N>(u) + N<(u) = N(u) = 3 and
N≥(u)+N≤(u) = 2, again equality in (i)–(iii).

d) Let Γ be the pathPn. The eigenvalues areθk = 2cos(kπ/(n+ 1)) for k =
1, . . . ,n. The eigenvectoru corresponding toθk has k− 1 sign changes, so that
N>(u)+N<(u) = k. If gcd(k,n+1) = 1 thenu has no zero entries, so thatN(u) = 1.
Now we have equality in (i)–(iii). Ifgcd(k,n+1) = r, thenu hasr−1 zero entries,
so thatN(u) = r. Also, the eigenvalueθk is thek/r-th of each component of suppu,
so that #{i | ηi ≥ θ}= k and #{i | ηi > θ}= k− r, with equality in (i) and the first
inequality of (ii).

Remark It is not true thatN(u)≤m if m is the multiplicity ofθ for Γ . For example,
in case b) above we haveN(u) = s and m= s− 1. (And in case c) the opposite
happens:N(u) = 3 andm= 5.)

5.4 Sign patterns of eigenvectors of trees

Proposition 5.4.1 Let T be a tree with eigenvalueθ , and put Z= Z(θ). Let T\Z
have eigenvaluesη1 ≥ . . .≥ ηm. Let g= #{i | ηi ≥ θ} and h= #{i | ηi > θ}. Let u
be aθ -eigenvector of T . Then N>(u)+N<(u) = g and N>(u)+N<(u)−N(u) = h.

Proof. SinceN() andg andh are additive over connected components, we may
assume thatZ is empty. Now by Proposition 5.2.2(i),θ has multiplicity 1 andu is
nowhere 0. LetT haven vertices, and let there bep edgesxy with uxuy > 0 and
q edgesxy with uxuy < 0. Then p+ q = n− 1. SinceT is bipartite, also−θ is
an eigenvalue, and an eigenvectorv for −θ is obtained by switching the sign ofu
on one bipartite class. By Proposition 5.3.1 we haveq = N>(u)+N<(u)− 1≤ h
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and p = N>(v) +N<(v)− 1≤ n− h− 1, that isq≥ h, and hence equality holds
everywhere. �

Let asign changefor an eigenvectoru of T be an edgee= xysuch thatuxuy < 0.

Proposition 5.4.2 Let T be a tree with j-th eigenvalueθ . If u is an eigenvector for
θ with s sign changes, and d= |Z0(θ)|, then d+s≤ j−1

Proof. Let T \Z havec connected components, and letu be identically zero onc0

of these. Thens+c−c0 = N>(u)+N<(u). Let θ = θ j = θ j+m−1, wherem= c−d
is the multiplicity ofθ . By Proposition 5.3.1(i) we haves+c−c0≤ j +m−1, that
is, d+s−c0≤ j−1. But we can makec0 zero by adding a small multiple of some
eigenvector that is nonzero on all ofT \Z. �

Example ForT = E6 all eigenvalues have multiplicity 1, andN>(u)+N<(u) takes
the values 1, 2, 3, 4, 4, 6 for the six eigenvectorsu. The sign patterns are:

• • • • •

•

+ + + + +

+

• • • • •

•

+ + 0 − −

0

• • • • •

•

+ + − + +

−

• • • • •

•

+ − − − +

+

• • • • •

•

+ − 0 + −

0

• • • • •

•

+ − + − +

−

We see that a small perturbation that would makeu nonzero everywhere would give
the two zeros in the second eigenvector the same sign, but thetwo zeros in the fifth
eigenvector different sign (becauseθ2 > 0 andθ5 < 0) and for the perturbed vector
u′ we would find 0, 1, 2, 3, 4, 5 sign changes.

5.5 The spectral center of a tree

There are various combinatorial concepts ‘center’ for trees. One has the cen-
ter/bicenter and the centroid/bicentroid. Here we define a concept of center using
spectral methods. Closely related results can be found in Neumaier [272].

Proposition 5.5.1 Let T be a tree (with at least two vertices) with second largest
eigenvalueλ . Then there is a unique minimal subtree Y of T such that no connected
component of T\Y has largest eigenvalue larger thanλ . If Z(λ ) 6= /0 (and in par-
ticular if λ has multiplicity larger than 1) then Y= Z0(λ ) and |Y| = 1. Otherwise
|Y|= 2, and Y contains the endpoints of the edge on which the uniqueλ -eigenvector
changes sign. In this latter case all connected components of T \Y have largest
eigenvalue strictly smaller thanλ .

We call the setY thespectral centerof T.
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Proof. If for some vertexy all connected components ofT \y have largest eigen-
value at mostλ , then pickY = {y}. Otherwise, for each vertexy of T there is a
unique neighbory′ in the unique component ofT \ y that has largest eigenvalue
more thanλ . SinceT is finite, we must havey′′ = y for some vertexy. Now pick
Y = {y,y′}. ClearlyY has the stated property and is minimal.

If Z = /0 thenλ has multiplicity 1 and by Proposition 5.4.2 there is a uniqueedge
e= pq such that the uniqueλ -eigenvector has different signs onp andq, and both
components ofT \e have largest eigenvalue strictly larger thanλ , so thatY must
contain both endpoints ofe.

If Z 6= /0, then all eigenvalue components forλ have eigenvalueλ , and any strictly
larger subgraph has a strictly larger eigenvalue, soY must containZ0. By Proposition
5.4.2 we have|Z0| = 1, sayZ0 = {y}. If Y is not equal to{y}, thenY also contains
y′. This proves uniqueness.

Suppose thatZ0 = {y} andT \y has a component with eigenvalue larger thanλ .
Letube a vector that is 0 ony, and induces an eigenvector with the largest eigenvalue
on each component ofT \y. Let c be the number of connected components ofT \Z.
Proposition 5.3.1(i) now givesc+1≤ 2+(c−1)−1, a contradiction. This shows
that|Y|= 1 whenZ is nonempty.

Finally, suppose thatY = {y,y′} and thatT \Y has largest eigenvalueλ . By
Lemma 5.2.1Z 6= /0, contradiction. �

Example If T is the pathPn with n vertices, thenλ = 2cos2π/(n+1). If n= 2m+1
is odd, thenY consists of the middle vertex, andT \Y is the union of two pathsPm,
with largest eigenvalueλ = 2cosπ/(m+1). If n = 2m is even, thenY consists of
the middle two vertices, andT \Y is the union of two pathsPm−1, with largest
eigenvalue 2cosπ/m< λ .

5.6 Integral trees

An integral treeis a tree with only integral eigenvalues. Such trees are rare. A list
of all integral trees on at most 50 vertices can be found in [49].

A funny result is

Proposition 5.6.1 (Watanabe [329])An integral tree cannot have a perfect match-
ing, that is, must have an eigenvalue0, unless it is K2.

Proof. The constant term of the characteristic polynomial of a treeis, up to sign,
the number of perfect matchings. It is also the product of alleigenvalues. If it is
nonzero, then it is 1, since the union of two distinct perfectmatchings contains a
cycle. But then all eigenvalues are±1 andP3 is not an induced subgraph, so we
haveK2. �

This result can be extended a little. LetSK1,m be the tree on 2m+1 vertices obtained
by subdividing all edges ofK1,m. The spectrum is±

√
m+1 (±1)m−1 0.
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Proposition 5.6.2 (Brouwer [49]) If an integral tree has eigenvalue0 with multi-
plicity 1, then it is SK1,m, where m= t2−1 for some integer t≥ 1. �

For a long time it has been an open question whether there exist integral trees of
arbitrarily large diameter. Recently, this was settled in the affirmative by Csikv́ari.
The construction is as follows. Define treesT ′(r1, . . . , rm) by induction:T ′() is the
tree with a single vertexx0. T ′(r1, . . . , rm) is the tree obtained fromT ′(r1, . . . , rm−1)
by addingrm pendant edges to each vertexu with d(u,x0) = m− 1 (mod 2). The
diameter of this tree is 2m (assumingr1 > 1) and it has 2m+1 distinct eigenvalues:

Proposition 5.6.3 (Csikvári [107]) The tree T′(r1, . . . , rm) has eigenvalues0 and
±√si (1≤ i ≤m), where si = r i + · · ·+ rm.

Now all treesT ′(n2
1 −n2

2 , . . . ,n
2
m−1−n2

m,n
2
m) are integral of diameter 2m when

n1 > n2 > .. . > nm.

A short proof can be given using the following observation. If A andB are trees
with fixed verticesx andy, respectively, then letA∼mBbe the tree constructed on
the union ofA andmcopies ofB, wherex is joined to themcopies ofy. Now Propo-
sition 5.1.1(i) and induction immediately yields thatT = A∼mBhas characteristic
polynomialφT = φm−1

B (φAφB−mφA\xφB\y), where the last factor is symmetric inA
andB.

Proof. Induction onm. The statement holds form≤ 1. With A = T ′(r3, . . .) and
B= T ′(r2, r3, . . .) we haveT ′(r1, r2, r3, . . .) = A∼ r1B andT ′(r1+ r2, r3, . . .) = B∼
r1A. �

5.7 Exercises

Exercise 1 Show that there are 6 integral trees on at most ten vertices, namely (i)
K1, (ii) K2, (iii) K1,4 = D̂4, (iv) D̂5, (v) Ê6, (vi) K1,9. (For notation, cf.§3.1.1.)
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An integral tree on 31 vertices.
What is the spectrum?

Exercise 2 Show that the only trees that have integral Laplace spectrumare the
starsK1,m.
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Exercise 3 ([102, 184]) Theenergy E(Γ ) of a graphΓ , as defined by Gutman, is
∑i |θi |, the sum of the absolute values of the eigenvalues of the adjacency matrixA.
It can be expressed in terms of the characteristic polynomial φ(x) by

E(Γ ) =
1
π

∫ +∞

−∞

[
n−x

d
dx

logφ(ix)
]

dx.

Show that ifT is a tree onn vertices, different from the starS= K1,n−1 and the path
P= Pn, then

E(S)< E(T)< E(P).





Chapter 6
Groups and graphs

6.1 Γ (G,H,S)

Let G be a finite group, andH a subgroup, andSa subset ofG. We can define a graph
Γ (G,H,S) by taking as vertices the cosetsgH (g ∈ G), and callingg1H andg2H
adjacent whenHg−1

2 g1H ⊆ HSH. The groupG acts as a group of automorphisms
on Γ (G,H,S) via left multiplication, and this action is transitive. Thestabilizer of
the vertexH is the subgroupH.

A graphΓ (G,H,S) with H = 1 is called aCayley graph.

Conversely, letΓ be a graph with transitive group of automorphismsG. Let x be
a vertex ofΓ , and letH := Gx be the stabilizer ofx in G. Now Γ can be identified
with Γ (G,H,S), whereS= {g∈G | x ∼ gx}.

If Γ is moreover edge-transitive, thenScan be chosen to have cardinality 1.

Instead of representing each vertex as a coset, one can represent each vertexy by
the subgroupGy fixing it. If H = Gx andy= gx, thenGy = gHg−1, so that nowG
acts by conjugation.

6.2 Spectrum

Let Γ be a graph andG a group of automorphisms. LetM be a matrix with rows
and columns indexed by the vertex set ofΓ , and suppose thatM commutes with all
elements ofG (so thatgM = Mg, or, equivalently,Mxy = Mgx,gy). Now trgM only
depends on the conjugacy class ofg in G, so the mapg 7→ trgM defines a class
function onG.

(Also the spectrum ofgM only depends on the conjugacy class ofg in G, but it is
not clear how the spectrum should be ordered. Having the trace, however, suffices:
one can retrieve the spectrum of a matrixM from the traces of the powersMi . People
also introduce the zeta function of a graphΓ by ζΓ (−s) = ∑λ s = trLs, where the

91
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sum is over the eigenvaluesλ of the LaplacianL, in order to have a single object
that encodes the spectrum.)

If Γ has vertex setX, andV = RX is theR-vector space spanned by the vertices
of Γ , then by Schur’s LemmaM acts as a multiple of the identity on each irreducible
G-invariant subspace ofV. In other words, the irreducibleG-invariant subspaces are
eigenspaces ofM. If M acts likeθ I on the irreducibleG-invariant subspaceW with
characterχ , then trgM|W = θ χ(g).

Example Let Γ be the Petersen graph, with as vertices the unordered pairs from
a 5-set, adjacent when they are disjoint, and letM = A, the adjacency matrix. Now
f (g) := trgA= #{x | x ∼ gx} defines a class function on AutΓ = Sym(5). Below
we showf together with the character table of Sym(5) (with top row indicating the
cycle shape of the element):

1 2 22 3 4 5 2.3
χ1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 1 −1
χ3 4 2 0 1 0 −1 −1
χ4 4 −2 0 1 0 −1 1
χ5 5 1 1 −1 −1 0 1
χ6 5 −1 1 −1 1 0 −1
χ7 6 0 −2 0 0 1 0
f 0 0 4 0 2 5 6

We see thatf = 3χ1−2χ3+χ5. It follows thatΓ has spectrum 31 (−2)4 15, where
the eigenvalues are the coefficients off written as linear combination of irreducible
characters, and the multiplicities are the degrees of thesecharacters. The permuta-
tion character isπ = χ1+ χ3+ χ5 (obtained forM = I ). It is multiplicity free, that
is, no coefficients larger than 1 occur. In the general case the coefficient of an irre-
ducible characterχ in the expression forf will be the sum of the eigenvalues ofM
on the irreducible subspaces with characterχ .

6.3 Nonabelian Cayley graphs

Let G be a group andS⊆G. TheCayley graphCay(G,S) is the (directed) graphΓ
with vertex setG and edge setE = {(g,gs) | g∈G, s∈S} (so thatSis the set of out-
neighbors of 1). NowΓ is regular with in- and outvalency|S|. It will be undirected
if and only if S is symmetric, i.e.,S−1 = S, whereS−1 = {s−1 | s∈ S}.

The graph Cay(G,S) is connected if and only ifSgeneratesG. If H = 〈S〉 is the
subgroup ofG generated byS, then Cay(G,S) consists of|G/H| disjoint copies of
Cay(H,S).

The spectrum of Cayley graphs in an abelian groupG was discussed in§1.4.9.
More generally one has
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Proposition 6.3.1 ([138, 268]) Let G be a finite group and S a subset that is
symmetric and invariant under conjugation. The graphCay(G,S) has eigenvalues
θχ = 1

χ(1) ∑s∈Sχ(s) with multiplicity χ(1)2, whereχ ranges over the irreducible
characters of G.

Proof. SinceS is a union of conjugacy clases ofG, the adjacency matrixA com-
mutes with the elements ofG, and the previous discussion applies. The regular rep-
resentation ofG decomposes into a direct sum of irreducible subspaces, where for
each irreducible characterχ there areχ(1) copies ofVχ . On each copyA acts like
θ I , and dimVχ = χ(1), soθ has multiplicityχ(1)2. We saw that trAg|W = θ χ(g),
so that in particularθ χ(1) = trA|W = ∑s∈Sχ(s), whereW =Vχ . �

For example, the graphK3,3 can be described as the Cayley graph Cay(G,S)
whereG = Sym(3) andS= {(12),(13),(23)}. Its complement 2K3 is the Cayley
graph Cay(G,S′) whereS′ = {(123),(132)}. The character table ofG is

1 2 3
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

and we read off the spectrum 3,−3, 04 of K3,3 from column 2 and the spectrum 2,
2, (−1)4 of 2K3 from column 3.

As an application, Renteln [284] computes the smallest eigenvalue of the derange-
ment graph (the graph on Sym(n) whereg1 ∼ g2 wheng−1

1 g2 has no fixed points),
and findsθmin = −k/(n−1), providing an easy proof for the result that this graph
has independence numberα = (n−1)!.

6.4 Covers

Let a graphΓ = (X,E) consist of a set of verticesX and a set of edgesE and an
incidence relation betweenX andE (such that each edge is incident with one or two
points). An edge incident with one point only is called aloop. A homomorphism
f : Γ → ∆ of graphs is a map that sends vertices to vertices, edges to edges, loops
to loops, and preserves incidence.

For example, the chromatic number ofΓ is the smallest integermsuch that there
is a homomorphism fromΓ to Km.

The mapf is called acoveringwhen it is a surjective homomorphism, and for
each vertexx of Γ and each edgeeof ∆ that is incident withf (x), there is a unique
edgeẽof Γ that is incident withx such thatf (ẽ) = e. NowΓ is called acoverof ∆ .

If f is a covering, then paths in∆ starting at a vertexy of ∆ lift uniquely to paths
starting at a vertexx of Γ , for eachx∈ f−1(y).
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Theuniversal coverof a connected graph∆ is the unique treeT that is a cover. If
a is a fixed vertex of∆ , then the vertices ofT can be identified with the walks in∆
starting ata that never immediately retrace an edge, where two walks are adjacent
when one is the extension of the other by one more edge. The treeT will be infinite
when∆ contains at least one cycle. Iff is the covering map (that assigns to a walk
its final vertex), thenT has a group of automorphismsH acting regularly on the
fibers of f .

Given an arbitrary collection of cyclesC in ∆ , and a positive integernC for
eachC∈ C , one may consider the most general cover satisfying the restriction that
the inverse image of the walk traversingC nC times is closed. (For example, the
‘universal cover modulo triangles’ is obtained by requiring that the preimage of
each triangle is a triangle.) There is a unique such graph, quotient of the universal
cover. Again the covering group (the group preserving the fibers) acts regularly on
the fibers.

Conversely, letΓ be a graph, andH a group of automorphisms. Thequotient
graphΓ /H has as vertices theH-orbits on the vertices ofΓ , as edges theH-orbits
on the edges ofΓ , and a vertexxH is incident with an edgeeH when some element
of xH is incident with some element ofeH .

The natural projectionπ : Γ → Γ /H is a homomorphism. It will be a covering
when no vertexx of Γ is on two edges in an orbiteH . In this case we also say that
Γ is a cover ofΓ /H.

Now letΓ be finite, andf : Γ → ∆ a covering. LetAΓ andA∆ be the adjacency
matrices ofΓ and∆ . Then(A∆ ) f (x),z = ∑y∈ f−1(z)(AΓ )xy. If we view AΓ andA∆ as
linear transformations on the vector spacesVΓ andV∆ spanned by the vertices ofΓ
and∆ , and extendf to a linear map, then this equation becomesA∆ ◦ f = f ◦AΓ . If
u is an eigenvector of∆ with eigenvalueθ , thenu◦ f (defined by(u◦ f )y = uf (y))
is an eigenvector ofΓ with the same eigenvalue, and the same holds for Laplace
eigenvectors and eigenvalues.

(This is immediately clear, but also follows from the fact that the partition ofVΓ
into fibers f−1(z) is an equitable partition.)

For example, letΓ be the path on 6 vertices with a loop added on both sides and
∆ the path on 2 vertices with a loop added on both sides. Then themap sending
vertices 1, 4, 5 ofΓ to one vertex of∆ and 2, 3, 6 to the other, is a covering.
The ordinary spectrum of∆ is 2,0, and hence alsoΓ has these eigenvalues. (It has
spectrum 2,

√
3, 1, 0,−1,−

√
3.)

Thus, the spectrum of∆ is a subset of the spectrum ofΓ . We can be more precise
and indicate which subset.

LetV =RX be the vector space spanned by the vertices ofΓ . LetG be a group of
automorphisms ofΓ . We can view the elementsg∈G as linear transformations ofV
(permuting the basis vectors). LetH be a subgroup ofG, and letW be the subspace
of V fixed byH.

Lemma 6.4.1 Let M be a linear transformation of V that commutes with all g∈G.
Then M preserves W andtrM|W = (1H ,φM|H) = (1G

H ,φM) whereφM is the class
function on G defined byφM(g) = trgM.
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Proof. The orthogonal projectionP from V ontoW is given by

P=
1
|H| ∑

h∈H

h.

If M commutes with allh ∈ H thenMPu= PMu, soM preserves the fixed space
W, and its restrictionM|W has trace trPM. ExpandingP we find trM|W = trPM =

1
|H| ∑h∈H trhM= (1H ,φM|H). The second equality follows by Frobenius reciprocity.
�

Now assume that the mapπ : Γ → Γ /H is a covering. Thenπ ◦AΓ = AΓ /H ◦ π.
One can identify the vector spaceVΓ /H spanned by the vertices ofΓ /H with the
vector spaceW: the vertexxH corresponds to 1√

|H| ∑h∈H xh ∈W. This identification

identifiesAΓ /H with A|W. This means that the above lemma (applied withM = A)
gives the spectrum ofΓ /H. In precisely the same way, forM = L, it gives the
Laplace spectrum ofΓ /H.

We see that for a covering the spectrum of the quotientΓ /H does not depend
on the choice ofH, but only on the permutation character 1G

H . This is Sunada’s
observation, and has been used to construct cospectral graphs, see§14.2.4.

6.5 Cayley sum graphs

In §1.4.9 we discussed Cayley graphs for an abelian groupG. A variation is the
concept ofCayley sum graphwith sum set Sin an abelian groupG. It has vertex set
G, and two elementsg,h∈G are adjacent wheng+h∈ S. (Other terms areaddition
Cayley graphsor justsum graphs.)

It is easy to determine the spectrum of a Cayley sum graph.

Proposition 6.5.1 ([137]) LetΓ be the Cayley sum graph with sum set S in the finite
abelian group G. Letχ run through the n= |G| characters of G. The spectrum of
Γ consists of the numbersχ(S) for each realχ , and±|χ(S)| for each pairχ ,χ of
conjugate non-real characters, whereχ(S) = ∑s∈Sχ(s).

Proof. If χ : G→ C∗ is a character ofG, then ∑y∼x χ(y) = ∑s∈Sχ(s− x) =

(∑s∈Sχ(s))χ(−x) = χ(S)χ(x). Now Γ is undirected, so the spectrum is real. If
χ is a real character, then we found an eigenvectorχ , with eigenvalueχ(S). If χ is
non-real, then pick a constantα so that|χ(S)|=α2χ(S). Then Re(αχ) and Im(αχ)
are eigenvectors with eigenvalues|χ(S)| and−|χ(S)|, respectively.

�

Chung [88] constructs Cayley sum graphs that are good expanders. For further
material on Cayley sum graphs, see [6], [86], [175], [180].
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6.5.1 (3,6)-fullerenes

An amusing application was given by DeVos et al. [137]. A(3,6)-fullereneis a cubic
plane graph whose faces (including the outer face) have sizes 3 or 6. Fowler conjec-
tured (cf. [156]) that such graphs have spectrumΦ ∪{3,−1,−1,−1} (as multiset),
whereΦ =−Φ , and this was proved in [137].

For example, the graph
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5 with eigenvalues 3,−1,−1,−1 together with
the symmetric part±
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The proof goes as follows. Construct the bipartite doubleΓ ⊗K2 of Γ . This is a
cover ofΓ , and both triangles and hexagons lift to hexagons, three at each vertex, so
thatΓ ⊗K2 is a quotient ofH , the regular tesselation of the plane with hexagons.
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Let H have set of verticesH, and letΓ ⊗K2 have vertex setU , and letΓ have
vertex setV. Letπ : H→U andρ :U→V be the quotient maps. The graphΓ ⊗K2 is
bipartite with bipartite halvesU1 andU2, say. Fix a vertexa1 ∈U1 and call it 0. Now
π−1(U1) is a lattice inR2, andπ−1(a1) is a sublattice (because the concatenation
of two walks of even length inΓ starting and ending ina again is such a walk),
so the quotientG= π−1(U1)/π−1(a1) is an abelian group, andG can be naturally
identified withV. The automorphism ofΓ ⊗K2 that for eachu∈V interchanges the
two verticesu1,u2 of ρ−1(u), lifts (for each choice ofa∈ π−1(a2)) to an isometry
of H with itself that is a point reflectionx 7→ v− x (wherev = a). It follows that
if two edgesx1y2 andz1w2 in H are parallel, thenx+ y = z+w. HenceΓ is the
Cayley sum graph forG where the sum setS is the set of three neighbors ofa in Γ .

Now the spectrum follows. By the foregoing, the spectrum consists of the values
±|χ(S)| for non-real charactersχ of G, andχ(S) for real characters. Since trA =
0 andΓ is cubic and not bipartite (it has four triangles) it sufficesto show that
there are precisely four real characters (then the corresponding eigenvalues must be
3,−1,−1,−1). But this is clear since the number of real characters is the number



6.6 Exercises 97

of elements of order 2 inG, an abelian group with (at most) two generators, hence
at most four, and fewer than four would force nonzero trA. This proves Fowler’s
conjecture.

6.6 Exercises

Exercise 1 Show that a (3,6)-fullerene has precisely four triangles.





Chapter 7
Topology

In the discussion of the Shannon capacity (§3.7) we encountered the Haemers in-
variant, the minimum possible rank for certain matrices that fit a given graph. By
far the most famous such invariant is de Colin de Verdière invariant of a graph, an
algebraic invariant that turns out to have a topological meaning.

7.1 Embeddings

An embeddingof a loopless graph inRn consists of a representation of the vertices
by distinct points inRn, and a representation of the edges by curve segments be-
tween the endpoints, such that these curve segments only intersect in endpoints. (A
curve segment betweenx andy is the range of an injective continuous mapφ from
[0,1] toRn with φ(0) = x andφ(1) = y.)

Every finite graph can be embedded inRm if m≥ 3. A graph isplanar if it
admits an embedding inR2. A graph isouterplanarif it admits an embedding in
R2, such that the points are on the unit circle, and the representations of the edges
are contained in the unit disc. A graphΓ is linklessly embeddable, if it admits an
embedding inR3 such that no two disjoint circuits ofΓ are linked. (Two disjoint
Jordan curves inR3 are linked if there is no topological 2-sphere inR3 separating
them.)

Examples of outerplanar graphs are all trees,Cn, andP5. Examples of graphs that
are planar, but not outerplanar are:K4, 3K2, C6 andK2,n−2 for n≥ 5. Examples of
graphs that are not planar, but linklessly embeddable are:K5, andK3,n−3 for n≥ 6.
The Petersen graph, andKn for n≥ 6 are not linklessly embeddable.
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7.2 Minors

A graph minorof a graphΓ is any graph that can be obtained fromΓ by a se-
quence of edge deletions and contractions, and deletion of isolated vertices. Here
thecontractionof an edgeeof the graph(VΓ ,EΓ ) is the operation that merges the
endpoints ofe in VΓ , and deletese from EΓ . A deep theorem of Robertson and
Seymour [285] states that for every graph propertyP that is closed under taking
graph minors, there exists a finite list of graphs such that a graphΓ has property
P if and only if no graph from the list is a graph minor ofΓ . Graph properties
such as being planar, being outerplanar, being embeddable in some given surface,
being linklessly embeddable, are closed under taking graphminors. For example,
the Kuratowski-Wagner theorem states that a graph is planarif and only if no minor
is isomorphic toK5 or K3,3.

The Hadwiger conjecture[185] says that if a graph has chromatic numberm,
then it has aKm minor.

7.3 The Colin de Verdìere invariant

A symmetric real matrixM is said to satisfy theStrong Arnold Hypothesiswhenever
there exists no symmetric nonzero matrixX with zero diagonal, such thatMX = O,
M ◦X = O, where◦ denotes the componentwise (Hadamard, Schur) multiplication.

The Colin de Verdìere parameterµ(Γ ) of a graphΓ is defined by (see [97, 216]):

µ(Γ ) = max
M∈LΓ

corankM

whereLΓ is the set of symmetric real matricesM indexed byVΓ that satisfy (a)
The Strong Arnold Hypothesis, and
(b) Muv < 0 if u ∼ v, andMuv = 0 if u 6∼ v (nothing is required for the diagonal
entries ofM), and
(c) M has exactly one negative eigenvalue, of multiplicity 1.
We agree thatµ(Γ ) = 0 if Γ has no vertices.

Although µ(Γ ) is an algebraic parameter, it is directly related to some important
topological graph properties, as we shall see below. It is easily seen thatµ(Kn) =
n−1 (takeM =−J), and thatµ(Γ ) = 1 if n> 1 andΓ has no edges (M must be a
diagonal matrix with exactly one negative entry, and the Strong Arnold Hypothesis
forbids two or more diagonal entries to be 0). IfΓ has at least one edge, thenµ(Γ +
∆) = max{µ(Γ ),µ(∆)}.

The Colin de Verdìere parameterµ(Γ ) is graph minor monotone, that is, if∆ is
a graph minor ofΓ , thenµ(∆) ≤ µ(Γ ). In other words, for a given integerk, the
propertyµ(Γ )≤ k is closed under taking graph minors (see [216]).

Theorem 7.3.1([97, 250, 286])The Colin de Verdìere parameterµ(Γ ) satisfies:

(i) µ(Γ )≤ 1 if and only ifΓ is the disjoint union of paths,
(ii) µ(Γ )≤ 2 if and only ifΓ is outerplanar,
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(iii) µ(Γ )≤ 3 if and only ifΓ is planar,
(iv) µ(Γ )≤ 4 if and only ifΓ is linklessly embeddable.
(v) If Γ is embeddable in the real projective plane or in the Klein bottle, then

µ(Γ )≤ 5.
(vi) If Γ is embeddable in the torus, thenµ(Γ )≤ 6.

(vii) If Γ is embeddable in a surface S with negative Euler characteristic χ(S),
thenµ(Γ )≤ 4−2χ(S). �

Colin de Verdìere [97] conjectures thatχ(Γ )≤ µ(Γ )+1 for all Γ , whereχ(Γ )
is the chromatic number ofΓ . (This would follow immediately from the Hadwiger
conjecture.) If true, this would imply the 4-color theorem.

7.4 The Van der Holst-Laurent-Schrijver invariant

Van der Holst, Laurent & Schrijver [215] define the graph invariantλ (Γ ) of a graph
Γ = (V,E) as the largest integerd for which there exists ad-dimensional subspace
X of RV such that for each nonzerox∈ X the positive support supp>(x) (cf. §5.3)
induces a (nonempty) connected subgraph ofΓ . (All results in this section are from
[215].)

Lemma 7.4.1 One hasλ (Γ ) = d if and only if there is a mapφ : V→Rd such that
for each open halfspace H inRd the setφ−1(H) induces a (nonempty) connected
subgraph ofΓ .

Proof. Given X, with basisx1, . . . ,xd, let φ(v) = (x1(v), . . . ,xd(v)). Conversely,
given φ , defineX to be the collection of maps sendingv ∈ V to c⊤φ(v), where
c∈ Rd. �

Proposition 7.4.2 If ∆ is a minor ofΓ , thenλ (∆)≤ λ (Γ ).

Proof. Given a suitable mapψ :V(∆)→Rd as above, we construct a suitable map
φ . There are three cases. (i) If∆ arises fromΓ by deletion of an isolated vertexv,
then letφ(u) = ψ(u) for u 6= v, andφ(v) = 0. (ii) If ∆ arises fromΓ by deletion of
an edgee, then letφ = ψ. (iii) If ∆ arises fromΓ by contraction of an edgee= uv
to a single vertexw, then letφ(u) = φ(v) = ψ(w), andφ(z) = ψ(z) for z 6= u,v. �

One hasλ (Kn) = n−1. More generally, ifΓ is the 1-skeleton of ad-dimensional
convex polytope, thenλ (Γ )≥ d. In particular,λ (Γ )≥ 3 if Γ is a 3-connected planar
graph. If∆ is obtained fromΓ by deleting a single vertex, thenλ (Γ ) ≤ λ (∆)+1.
Let V8 be the Cayley graph with vertex setZ8 and difference set{±1,4}. We have

Proposition 7.4.3 (i) λ (Γ )≤ 1 if and only ifΓ has no K3 minor,
(ii) λ (Γ )≤ 2 if and only ifΓ has no K4 minor,

(iii) λ (Γ )≤ 3 if and only ifΓ has no K5 or V8 minor.
(iv) λ (Γ )≤ 4 if Γ is linklessly embeddable.





Chapter 8
Euclidean representations

The main goal of this chapter is the famous result by Cameron,Goethals, Seidel and
Shult [80] characterizing graphs with smallest eigenvaluenot less than−2.

8.1 Examples

We have seen examples of graphs with smallest eigenvalueθmin ≥ −2. The most
important example is formed by the line graphs (see§1.4.5), and people wanted to
characterize line graphs by this condition and possibly some additional hypotheses.

Another series of examples are the so-calledcocktailparty graphs, that is, the
graphsKm×2, i.e., mK2, with spectrum 2m−2, 0m, (−2)m−1. For m≥ 4 these are
not line graphs.

And there are exeptional examples like the Petersen graph (with spectrum 3 15

(−2)4), lots of them. It is easy to see that the Petersen graph is nota line graph.
More generally, no line graph can have a3-claw, that is, an inducedK1,3 subgraph,
as is immediately clear from the definition.

8.2 Euclidean representation

Now supposeΓ has smallest eigenvalueθmin≥−2. ThenA+2I is positive semidef-
inite, so thatA+2I is the Gram matrix of a collection of vectors in some Euclidean
spaceRm (wherem= rk(A+2I)), cf. §2.9.

In this way we obtain a mapx 7→ x̄ from vertices ofΓ to vectors inRm, where

(x̄, ȳ) =





2 if x= y
1 if x ∼ y
0 if x 6∼ y.
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The additive subgroup ofRm generated by the vectors ¯x, for x in the vertex set
X of Γ , is aroot lattice: an integral lattice generated byroots: vectors with squared
length 2. Root lattices have been classified. That classification is the subject of the
next section.

8.3 Root lattices

We start with an extremely short introduction into lattices.

Lattice

A latticeΛ is a discrete additive subgroup ofRn. Equivalently, it is a finitely gener-
ated freeZ-module with positive definite symmetric bilinear form.

Basis

Assume that our latticeΛ has dimensionn, i.e., spansRn. Let {a1, . . . ,an} be aZ-
basis ofΛ . Let A be the matrix with the vectorsai as rows. If we choose a different
Z-basis{b1, . . . ,bn}, so thatbi = ∑si j a j , andB is the matrix with the vectorsbi as
rows, thenB = SA, with S= (si j ). SinceS is integral and invertible, it has deter-
minant±1. It follows that|detA| is uniquely determined byΛ , independent of the
choice of basis.

Volume

Rn/Λ is ann-dimensional torus, compact with finite volume. Its volume is the vol-
ume of the fundamental domain, which equals|detA|.

If Λ ′ is a sublattice ofΛ , then vol(Rn/Λ ′) = vol(Rn/Λ).|Λ/Λ ′|.

Gram matrix

Let G be the matrix(ai ,a j) of inner products of basis vectors for a given basis. Then
G= AA⊤, so vol(Rn/Λ) =

√
detG.

Dual Lattice

The dual Λ ∗ of a latticeΛ is the lattice of vectors having integral inner products
with all vectors inΛ : Λ ∗ = {x∈ Rn | (x, r) ∈ Z for all r ∈Λ}.

It has a basis{a∗1, . . . ,a∗n} defined by(a∗i ,a j) = δi j .
Now A∗A⊤ = I , soA∗ = (A−1)⊤ andΛ ∗ has Gram matrixG∗ = G−1.
It follows that vol(Rn/Λ ∗) = vol(Rn/Λ)−1.
We haveΛ ∗∗ = Λ .

Integral Lattice

The latticeΛ is calledintegralwhen every two lattice vectors have an integral inner
product.
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For an integral latticeΛ one hasΛ ⊆Λ ∗.
The latticeΛ is calledevenwhen(x,x) is an even integer for eachx ∈ Λ . An

even lattice is integral.

Discriminant

Thedeterminant, or discriminant, discΛ of a latticeΛ is defined by discΛ = detG.
WhenΛ is integral, we have discΛ = |Λ ∗/Λ |.

A lattice is calledself-dualor unimodularwhenΛ = Λ ∗, i.e., when it is integral
with discriminant 1. An even unimodular lattice is calledType II, the remaining
unimodular lattices are calledType I.

It can be shown that if there is an even unimodular lattice inRn, thenn is divisible
by 8.

Direct sums

If Λ andΛ ′ are lattices inRm andRn, respectively, thenΛ ⊥ Λ ′, theorthogonal
direct sumof Λ andΛ ′, is the lattice{(x,y) ∈Rm+n | x∈Λ andy∈Λ ′}. A lattice is
calledirreduciblewhen it is not the orthogonal direct sum of two nonzero lattices.

Examples

The latticeZn

r r r r

r r r r

r r r r

The latticeZn is unimodular, type I.

The lattice A2
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The triangular lattice in the planeR2 has basis{r,s}. Choose the scale such thatr has

length
√

2. Then the Gram matrix isG=
(

2 −1
−1 2

)
, so that detG= 3 andp,q∈ A∗2.

A fundamental region forA2 is the parallelogram on 0, r,s. A fundamental region
for A∗2 is the parallelogram on 0, p,q. Note that the area of the former is thrice that
of the latter.
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The representation of this lattice inR2 has nonintegral coordinates. It is easier to
work in R3, on the hyperplane∑xi = 0, and chooser = (1,−1,0), s= (0,1,−1).
ThenA2 consists of the points(x1,x2,x3) with xi ∈ Z and∑xi = 0. The dual lattice
A∗2 consists of the points(x1,x2,x3) with x1 ≡ x2 ≡ x3≡ 0 (mod 1) and∑xi = 0 (so
that 3x1 ∈ Z). It contains for examplep= 1

3(2r +s) = (2
3,−1

3,−1
3).

The lattice E8

Let ρ : Zn→ 2n be coordinatewise reduction mod 2. Given a binary linear code
C, the latticeρ−1(C) is integral, since it is contained inZn, but never unimodular,
unless it is all ofZn, a boring situation.

Now suppose thatC is self-orthogonal, so that any two code words have an
even inner product. Then1√

2
ρ−1(C) is an integral lattice. If dimC = k then we

have vol(Rn/ρ−1(C)) = 2n−k and hence vol(Rn/ 1√
2
ρ−1(C)) = 2

1
2n−k. In particu-

lar, 1√
2
ρ−1(C) will be unimodular whenC is self-dual, and even whenC is ‘doubly

even’, i.e., has weights divisible by 4.
Let C be the [8,4,4] extended Hamming code. Then1√

2
ρ−1(C) is an even uni-

modular 8-dimensional lattice known asE8.
The codeC has weight enumerator 1+14X4+X8 (that is, has one word of weight

0, 14 words of weight 4, and one word of weight 8). It follows that theroots(vectors
r with (r, r) = 2) in this incarnation ofE8 are the 16 vectors± 1√

2
(2,0,0,0,0,0,0,0)

(with 2 in any position), and the 16.14= 224 vectors 1√
2
(±1,±1,±1,±1,0,0,0,0)

with ±1 in the nonzero positions of a weight 4 vector. Thus, there are 240 roots.

Root lattices

A root lattice is an integral lattice generated byroots(vectorsr with (r, r) = 2).
For example,A2 andE8 are root lattices.

The set of roots in a root lattice is a (reduced)root systemΦ , i.e., satisfies
(i) If r ∈Φ andλ r ∈Φ , thenλ =±1.
(ii) Φ is closed under the reflectionwr that sendss to s−2(r,s)

(r,r) r for eachr ∈Φ .

(iii) 2 (r,s)
(r,r) ∈ Z.

SinceΦ generatesΛ andΦ is invariant underW = 〈wr | r ∈Φ〉, the same holds
for Λ , so root lattices have a large group of automorphisms.

A fundamental systemof rootsΠ in a root latticeΛ is a set of roots generatingΛ
and such that(r,s)≤ 0 for distinctr,s∈Π . A reduced fundamental systemof roots
is a fundamental system that is linearly independent. A non-reduced fundamental
system is calledextended.

For example, inA2 the set{r,s} is a reduced fundamental system, and{r,s,−r−
s} is an extended fundamental system.
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TheDynkin diagramof a fundamental systemΠ such that(r,s) 6=−2 for r,s∈Π ,
is the graph with vertex setΠ wherer andsare joined by an edge when(r,s) =−1.
(The case(r,s) = −2 happens only for a non-reduced system withA1 component.
In that case we do not define the Dynkin diagram.)

Every root lattice has a reduced fundamental system: Fix some vectoru, not
orthogonal to any root. PutΦ+(u) = {r ∈Φ | (r,u)> 0} andΠ(u) = {r ∈Φ+(u) | r
cannot be written ass+ t with s, t ∈ Φ+(u)}. ThenΠ(u) is a reduced fundamental
system of roots, and written on this basis each root has only positive or only negative
coefficients.

(Indeed, ifr,s∈Π(u) and(r,s) = 1, then sayr−s∈Φ+(u) andr = (r−s)+s,
contradiction. This shows thatΠ(u) is a fundamental system. If∑γr r = 0, then
separate theγr into positive and negative ones to get∑αr r = ∑βss= x 6= 0 where
all coefficientsαr ,βs are positive. Now 0< (x,x) = ∑αrβs(r,s)< 0, contradiction.
This shows thatΠ(u) is reduced. Now also the last claim follows.)

Proposition 8.3.1 Let Π be a reduced fundamental system.
(i) For all x ∈ Rn there is a w∈W such that(w(x), r)≥ 0 for all r ∈Π .
(ii) Π = Π(u) for some u. (That is, W is transitive on reduced fundamental sys-

tems.)
(iii) If Λ is irreducible, then there is a uniquẽr ∈ Φ such thatΠ ∪ {r̃} is an

extended fundamental system.

Proof. (i) Let G be the Gram matrix ofΠ , and writeA = 2I −G. SinceG is
positive definite,A has largest eigenvalue less than 2. Using Perron-Frobenius, let
γ = (γr)r∈Π be a positive eigenvector ofA. If (x,s) < 0 for somes∈ Π , then put
x′ = ws(x) = x− (x,s)s. Now

(x′,∑
r

γr r) = (x,∑
r

γr r)− (Gγ)s(x,s)> (x,∑
r

γr r).

But W is finite, so after finitely many steps we reach the desired conclusion.
(ii) Induction on |Π |. Fix x with (x, r) ≥ 0 for all r ∈ Π . ThenΠ0 = Π ∩ x⊥

is a fundamental system of a lattice in a lower-dimensional space, so of the form
Π0 = Π0(u0). Takeu= x+ εu0 for smallε > 0. ThenΠ = Π(u).

(iii) If r ∈ Φ+(u) has maximal(r,u), then ˜r = −r is the unique root that can
be added. It can be added, since(r̃,s) ≥ 0 means(r,s) < 0, so thatr + s is a root,
contradicting maximality ofr. And it is unique because linear dependencies of an
extended system correspond to an eigenvector with eigenvalue 2 of the extended
Dynkin diagram, and by Perron-Frobenius up to a constant there is a unique such
eigenvector when the diagram is connected, that is, whenΛ is irreducible. �

Classification

The irreducible root lattices one finds areAn (n≥ 0), Dn (n≥ 4), E6, E7, E8. Each
is defined by its Dynkin diagram.



108 8 Euclidean representations

(1) An: The lattice vectors are:x∈ Zn+1 with ∑xi = 0. There aren(n+1) roots:
ei − ej (i 6= j). The discriminant isn+ 1, andA∗n/An

∼= Zn+1, with the quotient
generated by 1

n+1(e1+ · · ·+en−nen+1) ∈ A∗n.

s

e2−e1

s

e3−e2

s s s

en+1−en

c

(e1−en+1)

��������

HHHHHHHH

(2) Dn: The lattice vectors are:x∈ Zn with ∑xi ≡ 0 (mod 2). There are 2n(n−1)
roots±ei ±ej (i 6= j). The discriminant is 4, andD∗n/Dn is isomorphic toZ4 when
n is odd, and toZ2×Z2 whenn is even.D∗n containse1 and 1

2(e1+ · · ·+en). Note
thatD3

∼= A3.

s

e2−e1

s

e3−e2

s

e1+e2

s s s

en−1−en−2

c

(−en−1−en)

s

en−en−1

(3) E8: (Recall that we already gave a construction ofE8 from the Hamming
code.) The lattice is the span ofD8 and c := 1

2(e1 + · · ·+ e8). There are 240=
112+128 roots, of the forms±ei ±ej (i 6= j) and 1

2(±e1±·· ·±e8) with an even
number of minus signs. The discriminant is 1, andE∗8 = E8.

s

e2−e1

s

e3−e2

s

e4−e3

s

1
2(1,1,1,−1,−1,−1,−1,1)

s

e5−e4

s

e6−e5

s

e7−e6

s

−e7−e8

c

(c)

(4) E7: TakeE7 = E8∩c⊥. There are 126= 56+70 roots. The discriminant is 2,
andE∗7 contains1

4(1,1,1,1,1,1,−3,−3).

c

(e1−e8)
s

e2−e1

s

e3−e2

s

e4−e3

s

1
2(1,1,1,−1,−1,−1,−1,1)

s

e5−e4

s

e6−e5

s

e7−e6

(5) E6: For the vectord =−e7−e8, takeE6 = E8∩{c,d}⊥. There are 72= 32+
40 roots. The discriminant is 3, andE∗6 contains the vector13(1,1,1,1,−2,−2,0,0).
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s

e2−e1

s

e3−e2

s

e4−e3

s
1
2(1,1,1,−1,−1,−1,−1,1)

c (e7−e8)

s

e5−e4

s

e6−e5

That this is all, is an easy consequence of the Perron-Frobenius theorem:A= 2I−G
is the adjacency matrix of a graph, namely the Dynkin diagram, and this graph has
largest eigenvalue at most 2. These graphs were determined in Theorem 3.1.3. The
connected graphs with largest eigenvalue less than 2 are theDynkin diagrams of
reduced fundamental systems of irreducible root systems and the connected graphs
with largest eigenvalue 2 are the Dynkin diagrams of extended root systems.

In the pictures above, the reduced fundamental systems weredrawn with black
dots, and the additional element of the extended system withan open dot (and a
name given in parentheses).

8.4 Cameron-Goethals-Seidel-Shult

Now return to the discussion of connected graphsΓ with smallest eigenvalueθmin≥
−2. In §8.2 we found a mapx 7→ x̄ from the vertex setX of Γ to some Euclidean
spaceRm such that the inner product(x̄, ȳ) takes the value 2, 1, 0 whenx= y, x ∼ y
andx 6∼ y, respectively.

Let Σ be the image ofX under this map. ThenΣ generates a root latticeΛ . Since
Γ is connected, the root lattice is irreducible.

By the classification of root lattices, it follows that the root lattice is one ofAn,
Dn, E6, E7 or E8. Note that the graph is determined byΣ , so that the classification
of graphs withθmin ≥−2 is equivalent to the classification of subsetsΦ of the root
system with the property that all inner products are 2, 1, or 0, i.e., nonnegative.

Now An andDn can be chosen to have integral coordinates, andE6 ⊂ E7 ⊂ E8,
so we have the two cases (i)Σ ⊂ Zm+1, and (ii) Σ ⊂ E8. A graph is calledexcep-
tional in case (ii). SinceE8 has a finite number of roots, there are only finitely many
exceptional graphs.

In case (i) one quickly sees what the structure ofΓ has to be. Something like
a line graph with attached cocktailparty graphs. This structure has been baptised
generalized line graph. The precise definition will be clear from the proof of the
theorem below.

Theorem 8.4.1 (i) Let Γ be a connected graph with smallest eigenvalueθmin≥−2.
Then eitherΓ is a generalized line graph, orΓ is one of finitely many exceptions,
represented by roots in the E8 lattice.
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(ii) A regular generalized line graph is either a line graph or a cocktailparty
graph.

(iii) A graph represented by roots in the E8 lattice has at most36 vertices, and
every vertex has valency at most28.

Proof. (i) Consider the caseΣ ⊂ Zm+1. Roots inZm+1 have shape±ei ± ej . If
someei has the same sign in allσ ∈ Σ in which it occurs, then choose the basis
such that this sign is+. Let I be the set of all such indicesi. Then{x | x̄ = ei +
ej for somei, j ∈ I} induced a line graph inΓ , with x corresponding to the edge
i j on I . If j /∈ I , thenej occurs with both signs, and there areσ ,τ ∈ Σ with σ =
±ei + ej and τ = ±ei′ − ej . Since all inner products inΣ are nonnegative,i = i′

with i ∈ I , andσ = ei + ej , τ = ei − ej . Thus, i is determined byj and we have
a mapφ : j 7→ i from indices outsideI to indices inI . Now for eachi ∈ I the set
{x | x̄= ei±ej for somej with φ( j) = i} induces a cocktailparty graph. Altogether
we see in what wayΓ is a line graph with attached cocktailparty graphs.

(ii) Now let Γ be regular. A vertexx with x̄ = ei −ej is adjacent to all vertices
with imageei±ek different fromei +ej . But a vertexy with ȳ= ei +ek wherei,k∈ I
is adjacent to all vertices with imageei ±ek without exception (and also to vertices
with imageek±el ). SinceΓ is regular both types of vertices cannot occur together,
so thatΓ is either a line graph or a cocktailparty graph.

(iii) SupposeΣ ⊂ E8. Consider the 36-dimensional space of symmetric 8× 8
matrices, equipped with the positive definite inner product(P,Q) = trPQ. Associ-
ated with the 240 rootsr of E8 are 120 rank 1 matricesPr = rr⊤ with mutual inner
products(Pr ,Ps) = tr rr⊤ss⊤ = (r,s)2. The Gram matrix of the set ofPr for r ∈ Σ is
G= 4I +A. SinceG is positive definite (it has smallest eigenvalue≥ 2), the vectors
Pr are linearly independent, and hence|Σ | ≤ 36.

Finally, let r be a root ofE8. The 56 rootss of E8 that satisfy(r,s) = 1 fall into
28 pairss,s′ where(s,s′) = −1. So,Σ can contain at most one member from each
of these pairs, and each vertex ofΓ has valency at most 28. �

The bounds in (ii) are best possible: Take the graphK8+L(K8) and add edges join-
ing i ∈ K8 with jk ∈ L(K8) wheneveri, j,k are distinct. This graph has 36 vertices,
the vertices inK8 have 28 neighbours, and the smallest eigenvalue is−2. A repre-
sentation inE8 is given byi 7→ 1

2(e1+ · · ·+e8)−ei and jk 7→ ej +ek.

There is a large amount of literature on exceptional graphs.

8.5 Exercises

Exercise 1 Show that the following describes a root system of typeE6. Take
the following 72 vectors inR9: 18 vectors±(u,0,0), ±(0,u,0), ±(0,0,u) where
u ∈ {(1,−1,0),(0,1,−1),(−1,0,1)}, and 54 vectors±(u,v,w) where u,v,w ∈
{(2

3,−1
3,−1

3),(−1
3,

2
3,−1

3),(−1
3,−1

3,
2
3)}.
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Exercise 2 Show that the following describes a root system of typeE7. Take the
following 126 vectors inR7: 60 vectors±ei±ej with 1≤ i < j ≤ 6, and 64 vectors
±(x1, . . . ,x6,

1√
2
) with xi =±1

2 where an even number ofxi has+ sign, and 2 vectors

±(0, . . . ,0,
√

2).





Chapter 9
Strongly regular graphs

9.1 Strongly regular graphs

A graph (simple, undirected and loopless) of orderv is calledstrongly regularwith
parametersv, k, λ , µ whenever it is not complete or edgeless and

(i) each vertex is adjacent tok vertices,
(ii) for each pair of adjacent vertices there areλ vertices adjacent to both,

(iii) for each pair of non-adjacent vertices there areµ vertices adjacent to both.

We require that both edges and non-edges occur, so that the parameters are well-
defined.

In association scheme terminology (cf.§11.1), a strongly regular graph is a sym-
metric association scheme with two (nonidentity) classes,in which one relation is
singled out to be the adjacency relation.

9.1.1 Simple examples

Easy examples of strongly regular graphs:
(i) A quadrangle is strongly regular with parameters(4,2,0,2).
(ii) A pentagon is strongly regular with parameters(5,2,0,1).
(iii) The 3× 3 grid, the Cartesian product of two triangles, is strongly regular

with parameters(9,4,1,2).
(iv) The Petersen graph is strongly regular with parameters(10,3,0,1).
(Each of these graphs is uniquely determined by its parameters, so if you do not

know what a pentagon is, or what the Petersen graph is, this defines it.)

Each of these examples can be generalized in numerous ways. For example,
(v) Let q= 4t +1 be a prime power. ThePaley graphPaley(q) is the graph with

the finite fieldFq as vertex set, where two vertices are adjacent when they differ by
a (nonzero) square. It is strongly regular with parameters(4t +1,2t, t−1, t), as we

113
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shall see below. Doing this forq= 5 andq= 9, we find the examples (ii) and (iii)
again. Forq = 13 we find a graph that is locally a hexagon. Forq = 17 we find a
graph that is locally an 8-gon + diagonals.

(vi) Them×mgrid, the Cartesian product of two complete graphs onmvertices,
is strongly regular with parameters(m2,2(m−1),m−2,2) (for m> 1). Form= 2
andm= 3 we find the examples (i) and (iii) again.

(vii) The complete multipartite graphKm×a, with vertex set partitioned intom
groups of sizea, where two points are adjacent when they are from different groups,
is strongly regular with parameters(ma,(m−1)a,(m−2)a,(m−1)a) (for m> 1 and
a> 1). Form= a= 2 we find Example (i) again.

Thecomplementof a graphΓ is the graphΓ̄ with the same vertex set asΓ , where
two vertices are adjacent if and only if they are nonadjacentin Γ . The complement
of a strongly regular graph with parameters(v,k,λ ,µ) is again strongly regular, and
has parameters(v,v−k−1,v−2k+µ−2,v−2k+λ ). (Indeed, we keep the same
association scheme, but now single out the other nonidentity relation.)

(viii) The Paley graph Paley(q) is isomorphic to its complement. (Indeed, an
isomorphism is given by multiplication by a nonsquare.) In particular we see that
the pentagon and the 3×3 grid are (isomorphic to) their own complements.

(ix) The disjoint unionmKa of m complete graphs of sizea is strongly regular
with parameters(ma,a− 1,a− 2,0) (for m> 1 anda > 1). These graphs are the
complements of those in Example (vii).

(x) The triangular graphon the pairs in anm-set, denoted byT(m), or by
(m

2

)
,

has these pairs as vertices, where two pairs are adjacent whenever they meet in one
point. These graphs are strongly regular, with parameters(

(m
2

)
,2(m−2),m−2,4),

if m≥ 4. Form= 4 we findK3×2. Form= 5 we find the complement of the Petersen
graph.

The four parameters are not independent. Indeed, ifµ 6= 0 we find the relation

v= 1+k+
k(k−1−λ )

µ

by counting vertices at distance 0, 1 and 2 from a given vertex.

9.1.2 The Paley graphs

Above we claimed that the Paley graphs (with vertex setFq, whereq is a prime
power congruent 1 mod 4, and where two vertices are adjacent when their difference
is a nonzero square) are strongly regular. Let us verify this.

Proposition 9.1.1 The Paley graphPaley(q) with q= 4t+1 is strongly regular with
parameters(v,k,λ ,µ) = (4t+1,2t, t−1, t). It has eigenvalues k,(−1±√q)/2 with
multiplicities1, 2t, 2t, respectively.
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Proof. The values forv andk are clear. Letχ : Fq→ {−1,0,1} be the quadratic
residue character defined byχ(0) = 0, χ(x) = 1 whenx is a (nonzero) square,
andχ(x) = −1 otherwise. Note that∑x χ(x) = 0, and that for nonzeroa we have
∑zχ(z2−az) = ∑z6=0 χ(1− a

z) =−1. Nowλ andµ follow from

4 ∑
z

x∼z∼y

1= ∑
z6=x,y

(χ(z−x)+1)(χ(z−y)+1) =−1−2χ(x−y)+(q−2).

For the spectrum, see Theorem 9.1.3 below. �

9.1.3 Adjacency matrix

For convenience we call an eigenvaluerestrictedif it has an eigenvector perpendic-
ular to the all-ones vector1.

Theorem 9.1.2 For a simple graphΓ of order v, not complete or edgeless, with
adjacency matrix A, the following are equivalent:

(i) Γ is strongly regular with parameters(v,k,λ ,µ) for certain integers k,λ , µ ,
(ii) A2 = (λ −µ)A+(k−µ)I +µJ for certain real numbers k,λ , µ ,

(iii) A has precisely two distinct restricted eigenvalues.

Proof. The equation in (ii) can be rewritten as

A2 = kI+λA+µ(J− I −A).

Now (i) ⇐⇒ (ii) is obvious.
(ii) ⇒ (iii): Let ρ be a restricted eigenvalue, andu a corresponding eigenvector
perpendicular to1. ThenJu= 0. Multiplying the equation in (ii) on the right by
u yields ρ2 = (λ − µ)ρ + (k− µ). This quadratic equation inρ has two distinct
solutions. (Indeed,(λ −µ)2 = 4(µ−k) is impossible sinceµ ≤ k andλ ≤ k−1.)
(iii) ⇒ (ii): Let r andsbe the restricted eigenvalues. Then(A− rI )(A−sI) = αJ for
some real numberα. SoA2 is a linear combination ofA, I andJ. �

9.1.4 Imprimitive graphs

A strongly regular graph is calledimprimitive if it, or its complement, is discon-
nected, andprimitiveotherwise. Imprimitive strongly regular graphs are boring.

If a strongly regular graph is not connected, thenµ = 0 andk = λ + 1. And
conversely, ifµ = 0 or k = λ + 1 then the graph is a disjoint unionaKm of some
numbera of complete graphsKm. In this casev= am, k= m−1, λ = m−2, µ = 0
and the spectrum is(m−1)a, (−1)a(m−1).
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If the complement of a strongly regular graph is not connected, thenk= µ . And
conversely, ifk = µ then the graph is the complete multipartite graphKa×m, the
complement ofaKm, with parametersv= am, k= µ = (a−1)m, λ = (a−2)mand
spectrum(a−1)m1, 0a(m−1), (−m)a−1.

Let r ands (r > s) be the restricted eigenvalues ofA. For a primitive strongly
regular graph one hask> r > 0 ands<−1.

9.1.5 Parameters

Theorem 9.1.3 Let Γ be a strongly regular graph with adjacency matrix A and
parameters(v,k,λ ,µ). Let r and s(r > s) be the restricted eigenvalues of A and let
f , g be their respective multiplicities. Then

(i) k(k−1−λ ) = µ(v−k−1),
(ii) rs = µ−k, r +s= λ −µ ,

(iii) f , g= 1
2(v−1∓ (r+s)(v−1)+2k

r−s ).
(iv) If r and s are non-integral, then f= g and(v,k,λ ,µ) = (4t +1,2t, t−1, t)

for some integer t.

Proof. (i) Fix a vertexx of Γ . Let Γ (x) and ∆(x) be the sets of vertices adja-
cent and non-adjacent tox, respectively. Counting in two ways the number of edges
betweenΓ (x) and∆(x) yields (i). The equations (ii) are direct consequences of The-
orem 9.1.2(ii), as we saw in the proof. Formula (iii) followsfrom f +g= v−1 and
0 = traceA = k+ f r + gs= k+ 1

2(r + s)( f + g) + 1
2(r − s)( f − g). Finally, when

f 6= g then one can solve forr ands in (iii) (using (ii)) and find thatr ands are ra-
tional, and hence integral. Butf = g implies(µ−λ )(v−1) = 2k, which is possible
only for µ−λ = 1, v= 2k+1. �

These relations imply restrictions for the possible valuesof the parameters. Clearly,
the right hand sides of (iii) must be positive integers. These are the so-calledratio-
nality conditions.

9.1.6 The half case and cyclic strongly regular graphs

The case of a strongly regular graph with parameters(v,k,λ ,µ)= (4t+1,2t, t−1, t)
for some integert is called thehalf case. Such graphs are also calledconference
graphs. If such a graph exists, thenv is the sum of two squares, see Theorem 10.4.2
below. The Paley graphs (§9.1.2,§10.4, §13.6) belong to this case, but there are
many further examples.

A characterization of the Paley graphs of prime order is given by
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Proposition 9.1.4 (Kelly [230], Bridges & Mena [41])A strongly regular graph
with a regular cyclic group of automorphisms is a Paley graphwith a prime number
of vertices.

(See the discussion of translation association schemes in BCN [51], §2.10. This
result has been rediscovered several times.)

9.1.7 Strongly regular graphs without triangles

As an example of the application of the rationality conditions we classify the
strongly regular graphs of girth 5.

Theorem 9.1.5 (Hoffman & Singleton [211])Suppose(v,k,0,1) is the parameter
set of a strongly regular graph. Then(v,k) = (5,2), (10,3), (50,7) or (3250,57).

Proof. The rationality conditions imply that eitherf = g, which leads to(v,k) =
(5,2), or r − s is an integer dividing(r + s)(v−1)+2k. By Theorem 9.1.3(i)–(ii)
we have

s=−r−1, k= r2+ r +1, v= r4+2r3+3r2+2r +2,

and thus we obtainr = 1, 2 or 7. �

The first three possibilities are uniquely realized by the pentagon, the Petersen graph
and the Hoffman-Singleton graph. For the last case existence is unknown (but see
§11.5.1).

More generally we can look at strongly regular graphs of girth at least 4. Seven
examples are known.

(i) Thepentagon, with parameters (5,2,0,1).
(ii) The Petersen graph, with parameters (10,3,0,1). This is the complement of

the triangular graphT(5).
(iii) The folded 5-cube, with parameters (16,5,0,2). This graph is obtained from

the 5-cube 25 on 32 vertices by identifying antipodal vertices. (The complement of
this graph is known as the Clebsch graph.)

(iv) The Hoffman-Singleton graph, with parameters (50,7,0,1). There are many
constructions for this graph, cf., e.g., [51],§13.1. A short one, due to N. Robertson,
is the following. Take 25 vertices(i, j) and 25 vertices(i, j)′ with i, j ∈ Z5, and
join (i, j) with (i, j + 1), (i, j)′ with (i, j + 2)′, and (i,k) with ( j, i j + k)′ for all
i, j,k ∈ Z5. Now the subsets(i,∗) become pentagons, the(i,∗)′ become pentagons
(drawn as pentagrams), and each of the 25 unions of(i,∗) with ( j,∗)′ induces a
Petersen subgraph.

(v) The Gewirtz graph, with parameters (56,10,0,2). This is the graph with as
vertices the 77−21= 56 blocks of the unique Steiner systemS(3,6,22) not con-
taining a given symbol, where two blocks are adjacent when they are disjoint. It is a
subgraph of the following.
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(vi) The M22 graph, with parameters (77,16,0,4). This is the graph with as ver-
tices the 77 blocks of the unique Steiner systemS(3,6,22), adjacent when they are
disjoint. It is a subgraph of the following.

(vii) The Higman-Sims graph, with parameters (100,22,0,6). This is the graph
with as 1+ 22+ 77 vertices an element∞, the 22 symbols ofS(3,6,22), and the
77 blocks ofS(3,6,22). The element∞ is adjacent to the 22 symbols, each symbol
is adjacent to the 21 blocks containing it, and blocks are adjacent when disjoint.
The (rank 3) automorphism group of this graph isHS.2, whereHS is the sporadic
simple group of Higman and Sims. This graph can be partitioned into two halves,
each inducing a Hoffman-Singleton graph, cf. [51],§13.1.

Each of these seven graphs is uniquely determined by its parameters. It is un-
known whether there are any further examples. There are infinitely many feasible
parameter sets. For the parameters(324,57,0,12) nonexistence was shown in Gavri-
lyuk & Makhnev [160] and in Kaski &Österg̊ard [229].

9.1.8 Further parameter restrictions

Except for the rationality conditions, a few other restrictions on the parameters are
known. We mention two of them. TheKrein conditions, due to Scott [295], can be
stated as follows:

(r +1)(k+ r +2rs)≤ (k+ r)(s+1)2,

(s+1)(k+s+2rs)≤ (k+s)(r +1)2.

When equality holds in one of these, the subconstituents of the graph (the induced
subgraphs on the neighbours and on the nonneighbours of a given point) are both
strongly regular (in the wide sense) again. For example, in the Higman-Sims graph
with parameters(v,k,λ ,µ) = (100,22,0,6) andk, r,s= 22,2,−8 the second sub-
constituent of any point has parameters(77,16,0,4).

Seidel’sabsolute boundfor the number of vertices of a primitive strongly regular
graph (see Corollary 10.6.8 below) reads

v≤ f ( f +3)/2, v≤ g(g+3)/2.

For example, the parameter set (28,9,0,4) (spectrum 91 121 (−5)6) is ruled out
both by the second Krein condition and by the absolute bound.

A useful identity is an expression for theFrame quotient(cf. [51], 2.2.4 and 2.7.2).
One has

f g(r−s)2 = vk(v−1−k).

(as is easy to check directly from the expressions forf and g given in Theorem
9.1.3(iii)). From this one immediately concludes that ifv is prime, thenr−s=

√
v

and we are in the ‘half case’(v,k,λ ,µ) = (4t +1,2t, t−1, t).
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The Frame quotient, Krein conditions and absolute bound arespecial cases of gen-
eral (in)equalities for association schemes—see also§11.4 below. In Brouwer & van
Lint [59] one may find a list of known restrictions and constructions. It is a sequel
to Hubaut’s [219] earlier survey of constructions.

Using the above parameter conditions, Neumaier [270] derives theµ-bound:

Theorem 9.1.6 For a primitive strongly regular graphµ ≤ s3(2s+3). If equality
holds, then r=−s2(2s+3).

Examples of equality in theµ-bound are known fors= −2 (the Schl̈afli graph,
with (v,k,λ ,µ)= (27,16,10,8)) ands=−3 (the McLaughlin graph, with(v,k,λ ,µ)
= (275,162,105,81)).

Brouwer & Neumaier [61] showed that a connected partial linear space with
girth at least 5 and more than one line, in which every point iscollinear withmother
points, contains at least1

2m(m+3) points. It follows that a strongly regular graph
with µ = 2 either hask≥ 1

2λ (λ +3) or has(λ +1)|k.
Bagchi [14] showed that anyK1,1,2-free strongly regular graph is either the

collinearity graph of a generalized quadrangle or satisfiesk≥ (λ + 1)(λ + 2). (It
follows that in the above condition onµ = 2 the(λ +1)|k alternative only occurs
for them×mgrid, wherem= λ +2.)

9.1.9 Strongly regular graphs from permutation groups

SupposeG is a permutation group, acting on a setΩ . Therank of the action is the
number of orbits ofG on Ω ×Ω . (These latter orbits are calledorbitals.) If R is an
orbital, or a union of orbitals, then(Ω ,R) is a directed graph that admitsG as group
of automorphisms.

If G is transitive of rank 3 and its orbitals are symmetric (for all x,y ∈ Ω the
pairs(x,y) and(y,x) belong to the same orbital), say with orbitalsI , R, S, where
I = {(x,x) | x ∈ Ω}, then(Ω ,R) and (Ω ,S) is a pair of complementary strongly
regular graphs.

For example, letG be Sym(n) acting on a setΣ of size 5. This action induces an
action on the setΩ of unordered pairs of elements inΣ , and this latter action is rank
3, and gives the pair of graphsT(5) andT(5), where this latter graph is the Petersen
graph.

The rank 3 groups have been classified by the combined effort of many people,
including Foulser, Kantor, Liebler, Liebeck and Saxl, see [228, 242, 243].

9.1.10 Strongly regular graphs from quasisymmetric designs

As an application of Theorem 9.1.2, we show that quasisymmetric block designs
give rise to strongly regular graphs. Aquasisymmetric designis a 2-(v,k,λ ) design
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(see§4.8) such that any two blocks meet in eitherx or y points, for certain fixed
distinctx, y. Given this situation, we may define a graphΓ on the set of blocks, and
call two blocks adjacent when they meet inx points. LetN be the point-block matrix
of the design andA the adjacency matrix ofΓ . ThenN⊤N = kI+xA+y(J− I−A).
Since each ofNN⊤, NJ, andJN is a linear combination ofI and J, we see that
A2 can be expressed in terms ofA, I ,J, so thatΓ is strongly regular by part (ii) of
Theorem 9.1.2. (For an application, see§10.3.2.)

A large class of quasisymmetric block designs is provided bythe 2-(v,k,λ ) de-
signs withλ = 1 (also known as Steiner systemsS(2,k,v)). Such designs have only
two intersection numbers since no two blocks can meet in morethan one point.
This leads to a substantial family of strongly regular graphs, including the trian-
gular graphsT(m) (derived from the trivial design consisting of all pairs from an
m-set).

9.1.11 Symmetric 2-designs from strongly regular graphs

Conversely, some families of strongly regular graphs lead to designs. LetA be the
adjacency matrix of a strongly regular graph with parameters (v,k,λ ,λ ) (i.e., with
λ = µ ; such a graph is sometimes called a(v,k,λ ) graph). Then, by Theorem 9.1.2

AA⊤ = A2 = (k−λ )I +λJ,

which reflects thatA is the incidence matrix of a symmetric 2-(v,k,λ ) design. (And
in this way one obtains precisely all symmetric 2-designs possessing a polarity with-
out absolute points.) For instance, the triangular graphT(6) provides a symmetric
2-(15,8,4) design, the complementary design of the design of points andplanes in
the projective spacePG(3,2). Similarly, if A is the adjacency matrix of a strongly
regular graph with parameters(v,k,λ ,λ +2), thenA+ I is the incidence matrix of a
symmetric 2-(v,k+1,λ +2) design (and in this way one obtains precisely all sym-
metric 2-designs possessing a polarity with all points absolute). For instance, the
Gewirtz graph with parameters (56,10,0,2) provides a biplane 2-(56,11,2).

9.1.12 Latin square graphs

A transversal designof strength tand indexλ is a triple(X,G ,B), whereX is a
set of points,G is a partition ofX into groups, andB is a collection of subsets of
X calledblockssuch that (i)t ≤ |G |, (ii) every block meets every group in precisely
one point, and (iii) everyt-subset ofX that meets each group in at most one point is
contained in preciselyλ blocks.

SupposeX is finite andt < |G |. Then all groupsG∈ G have the same sizem, and
the number of blocks isλmt . Given a pointx0 ∈ X, the groups not onx0 together
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with the blocksB\{x0} for x0 ∈ B∈B form a transversal design of strengtht−1
with the same indexλ .

Equivalent to the concept of transversal design is that oforthogonal array. An
orthogonal array with strengtht and indexλ over an alphabet of sizem is ak×N
array (withN = λmt ) such that for any choice oft rows and prescribed symbols on
these rows there are preciselyλ columns that satisfy the demands.

Whent = 2 the strength is usually not mentioned, and one talks about transversal
designsTDλ (k,m) or orthogonal arraysOAλ (m,k), wherek is the block size andm
the group size.

When λ = 1 the index is suppressed from the notation. Now aTD(k,m) or
OA(m,k) is equivalent to a set ofk− 2 mutually orthogonal Latin squares of or-
derm. (Thek rows of the orthogonal array correspond to row index, columnindex,
and Latin square number; the columns correspond to them2 positions.)

The dual of a transversal design is anet. An (m,k)-net is a set ofm2 points
together withkm lines, partitioned intok parallel classes, where two lines from
different parallel classes meet in precisely one point.

Given a point-line incidence structure, thepoint graphor collinearity graphis the
graph with the points as vertices, adjacent when they are collinear. Dually, theblock
graph is the graph with the lines as vertices, adjacent when they have a point in
common.

The collinearity graph of an(m, t)-net, that is, the block graph of a transversal design
TD(t,m) (note the new use oft here!), is strongly regular with parametersv= m2,
k = t(m−1), λ = m−2+(t−1)(t−2), µ = t(t−1) and eigenvaluesr = m− t,
s= −t. One says that a strongly regular graph ‘is a pseudo Latin square graph’, or
‘has Latin square parameters’ when there aret andm such that(v,k,λ ,µ) have the
above values. One also says that it has ‘OA(m, t) parameters’.

There is extensive literature on nets and transversal designs.

Proposition 9.1.7 SupposeΓ is a strongly regular graph with OA(m, t) parameters
with a partition into cocliques of size m. Then the graph∆ obtained fromΓ by
adding edges so that these cocliques become cliques is againstrongly regular and
has OA(m, t +1) parameters.

Proof. More generally, letΓ be a strongly regular graph with a partition into co-
cliques that meet the Hoffman bound. Then the graph∆ obtained fromΓ by adding
edges so that these cocliques become cliques has spectrumk+ m− 1, (r − 1) f ,
(s+m− 1)h, (s− 1)g−h, wherem is the size of the cocliques, andh = v/m− 1.
The proposition is the special casem= r−s. �

For example, from the Hall-Janko graph withOA(10,4) parameters(100, 36, 12, 14)
and a partition into ten 10-cocliques (which exists) one obtains a strongly regular
graph withOA(10,5) parameters(100,45,20,20), and hence also a symmetric de-
sign 2-(100,45,20). But anOA(10,5) (three mutually orthogonal Latin squares of
order 10) is unknown.
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9.1.13 Partial Geometries

A partial geometrywith parameters(s, t,α) is a point-line geometry (any two points
are on at most one line) such that all lines have sizes+1, there aret+1 lines on each
point, and given a line and a point outside, the point is collinear withα points on the
given line. One calls this structure apg(s, t,α). Note that the dual of apg(s, t,α) is
a pg(t,s,α) (where ‘dual’ means that the names ‘point’ and ‘line’ are swapped).

Partial geometries were introduced by Bose [33].
One immediately computes the number of pointsv= (s+1)(st+α)/α and lines

b= (t +1)(st+α)/α.
The extreme examples of partial geometries aregeneralized quadrangles(partial

geometries withα = 1) and Steiner systemsS(2,K,V) (partial geometries withα =
s+ 1). Many examples are also provided by nets (witht = α) or their duals, the
transversal designs (withs= α).

The collinearity graph of apg(s, t,α) is complete ifα = s+ 1, and otherwise
strongly regular with parametersv = (s+1)(st+α)/α, k = s(t +1), λ = s−1+
t(α−1), µ = α(t +1), and eigenvaluesθ1 = s−α, θ2 =−t−1. (Note: earlier we
useds for the smallest eigenvalue, but hereshas a different meaning!)

A strongly regular graph is calledgeometricwhen it is the collinearity graph of
a partial geometry. It is calledpseudo-geometricwhen there are integerss, t,α such
that the parameters(v,k,λ ,µ) have the above-given values.

Bose [33] showed that a pseudo-geometric graph with givent and sufficiently
larges must be geometric. Neumaier [270] showed that the same conclusion works
in all cases, and hence derives a contradiction in the non-pseudo-geometric case.

Theorem 9.1.8 (Bose-Neumaier)A strongly regular graph with s< −1 and r>
1
2s(s+1)(µ +1)−1 is the block graph of a linear space or transversal design.

It follows immediately (from this and theµ-bound) that

Theorem 9.1.9 For any fixed s=−m there are only finitely many primitive strongly
regular graphs with smallest eigenvalue s, that are not the block graph of a linear
space or transversal design with t+1=−m. �

9.2 Strongly regular graphs with eigenvalue−2

For later use we give Seidel’s classification [299] of the strongly regular graphs with
s=−2.

Theorem 9.2.1 Let Γ be a strongly regular graph with smallest eigenvalue−2.
ThenΓ is one of

(i) the complete n-partite graph Kn×2, with parameters(v,k,λ ,µ) = (2n,2n−
2,2n−4,2n−2), n≥ 2,
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(ii) the lattice graph L2(n) = Kn�Kn, with parameters(v,k,λ ,µ) = (n2,2(n−
1),n−2,2), n≥ 3,

(iii) the Shrikhande graph, with parameters(v,k,λ ,µ) = (16,6,2,2),
(iv) the triangular graph T(n) with parameters(v,k,λ ,µ) = (

(n
2

)
,2(n−2),n−2,

4), n≥ 5,
(v) one of the three Chang graphs, with parameters(v,k,λ ,µ) = (28,12,6,4),

(vi) the Petersen graph, with parameters(v,k,λ ,µ) = (10,3,0,1),
(vii) the Clebsch graph, with parameters(v,k,λ ,µ) = (16,10,6,6),
(viii) the Schl̈afli graph, with parameters(v,k,λ ,µ) = (27,16,10,8).

Proof. If Γ is imprimitive, then we have case (i). Otherwise, theµ-bound gives
µ ≤ 8, and the rationality conditions give(r +2)|(µ−2)(µ−4) and integrality of
v gives µ |2r(r + 1). For µ = 2 we find the parameters ofL2(n), for µ = 4 those
of T(n), and for the remaining values forµ only the parameter sets(v,k,λ ,µ) =
(10,3,0,1), (16,10,6,6), and(27,16,10,8) survive the parameter conditions and
the absolute bound. It remains to show that the graph is uniquely determined by
its parameters in each case. Now Shrikhande [308] proved uniqueness of the graph
with L2(n) parameters, with the single exception ofn= 4, where there is one more
graph, now known as the Shrikhande graph, and Chang [82, 83] proved uniqueness
of the graph withT(n) parameters, with the single exception ofn= 8, where there
are three more graphs, now known as the Chang graphs. In the remaining three cases
uniqueness is easy to see. �

Let us give definitions for the graphs involved.

TheShrikhande graphis the result of Seidel switching the lattice graphL2(4) with
respect to an induced circuit of length 8. It is the complement of the Latin square
graph for the cyclic Latin square of order 4. It is locally a hexagon.

Drawn on a torus:
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The threeChang graphsare the result of switchingT(8) (the line graph ofK8) with
respect to (a) a 4-cocliqueK4, that is, 4 pairwise disjoint edges inK8; (b) K3+K5,
that is, 8 edges forming a triangle and a (disjoint) pentagonin K8; (c) the line graph
of the cubic graph formed by an 8-circuit plus edges between opposite vertices.

TheClebsch graphis the complement of the folded 5-cube.

TheSchl̈afli graphis the complement of the collinearity graph ofGQ(2,4) (cf. §9.6).

9.3 Connectivity

For a graphΓ , let Γi(x) denote the set of vertices at distancei from x in Γ . Instead
of Γ1(x) we writeΓ (x).
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Proposition 9.3.1 If Γ is a primitive strongly regular graph, then for each vertex x
the subgraphΓ2(x) is connected.

Proof. Note thatΓ2(x) is regular of valencyk− µ . If it is not connected, then
its eigenvaluek− µ would have multiplicity at least two, and hence would be not
larger than the second largest eigenvaluer of Γ . Thenx2+(µ−λ )x+µ−k≤ 0 for
x= k−µ , i.e.,(k−µ)(k−λ −1)≤ 0, contradiction. �

Thevertex connectivityκ(Γ ) of a connected non-complete graphΓ is the smallest
integerm such thatΓ can be disconnected by removingm vertices.

Theorem 9.3.2 ([60]). Let Γ be a connected strongly regular graph of valency k.
Thenκ(Γ ) = k, and the only disconnecting sets of size k are the sets of allneighbors
of some vertex x.

Proof. Clearly,κ(Γ ) ≤ k. Let Sbe a disconnecting set of vertices not containing
all neighbors of some vertex. LetΓ \S= A+B be a separation ofΓ \S. Since the
eigenvalues ofA∪B interlace those ofΓ , it follows that at least one ofA andB,
sayB, has largest eigenvalue at mostr. It follows that the average valency ofB is at
mostr. SinceB has an edge,r > 0.

Now let |S| ≤ k. SinceB has average valency at mostr, we can find two points
x,y in B such that|S∩Γ (x)|+ |S∩Γ (y)| ≥ 2(k− r), so that these points have at least
k−2r common neighbors inS.

If Γ has nonintegral eigenvalues, the we have(v,k,λ ,µ) = (4t+1,2t, t−1, t) for
somet, andr = (−1+

√
v)/2. The inequality max(λ ,µ) ≥ k−2r givest ≤ 2, but

for t = 2 the eigenvalues are integral, so we havet = 1 andΓ is the pentagon. But
the claim is true in that case.

Now let r,s be integral. Ifs≤−3, thenµ = k+ rs≤ k−3r andλ = µ + r +s≤
k−2r−3, so that no two points can havek−2r common neighbors.

Therefores= −2, and we have one of the eight cases in Seidel’s classification.
But not case (i), sincer > 0.

Since bothA andB contain an edge, bothB andA have size at most̄µ = v−2k+
λ , so that bothA andB have size at leastk−λ , andv≥ 3k−2λ . This eliminates
cases (vii) and (viii).

If B is a clique, then|B| ≤ r +1= k−λ −1, contradiction. So,B contains two
nonadjacent vertices, and their neighbors must be inB∪S, so 2k−µ ≤ |B|+ |S|−2
andk−µ +2≤ |B| ≤ µ̄.

In cases (iii), (v), (vi) we havēµ = k− µ + 2, so equality holds and|B| = µ̄
and |S| = k. Sincev < 2µ̄ + k, we have|A| < µ̄ andA must be a clique (of size
v− k− µ̄ = k− λ ). But the Petersen graph does not contain a 3-clique, and the
Shrikhande graph does not contain 4-cliques; also, ifA is a 6-clique in a Chang
graph, anda,b,c∈ A, thenΓ (a)∩S, Γ (b)∩S, andΓ (c)∩Sare three 7-sets in the
12-setSthat pairwise meet in precisely two points, impossible. This eliminates cases
(iii), (v), (vi).

We are left with the two infinite families of lattice graphs and triangular graphs. In
both cases it is easy to see that ifx,y are nonadjacent, then there existk paths joining
x andy, vertex disjoint apart fromx,y, and entirely contained in{x,y}∪Γ (x)∪Γ (y).
Hence|S|= k, and ifSseparatesx,y thenS⊆ Γ (x)∪Γ (y).
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The subgraph∆ := Γ \ ({x,y} ∪Γ (x)∪Γ (y)) is connected (if one removes a
point and its neighbors from a lattice graph, the result is a smaller lattice graph, and
the same holds for a triangular graph), except in the case of the triangular graph

(5
2

)

where∆ is empty.
Each vertex of(Γ (x)∪Γ (y))\Shas a neighbor in∆ and we find a path of length

4 disjoint from S joining x and y, except in the case of the triangular graph
(5

2

)
,

where each vertex ofΓ (x) \S is adjacent to each vertex ofΓ (y) \S, and we find a
path of length 3 disjoint fromS joining x andy. �

We remark that it is not true that for every strongly regular graphΓ with vertexx
the vertex connectivity of the subgraphΓ2(x) equals its valencyk−µ . A counterex-
ample is given by the graphΓ that is the complement of the strongly regular graph
∆ with parameters (96,19,2,4) constructed by Haemers forq= 4, see [189], p. 76 or
[59], §8A. Indeed, we have∆(x) ∼= K3+4C4, so thatΓ2(x) has degree 16 and vertex
connectivity 15.

Erdős & Chv́atal [91] showed that if a graphΓ on at least 3 vertices has vertex con-
nectivity κ and largest independent set of sizeα, andα ≤ κ thenΓ has a Hamilto-
nian circuit. Bigalke & Jung [27] showed that ifΓ is 1-tough, withα ≤ κ +1 and
κ ≥ 3, andΓ is not the Petersen graph, thenΓ is Hamiltonian. Such results imply
for example that ifΓ is strongly regular with smallest eigenvalues, ands is not in-
tegral, or−s≤ µ +1, thenΓ is Hamiltonian. This, together with explicit inspection
of the Hoffman-Singleton graph, the Gewirtz graph, and theM22 graph, shows that
all connected strongly regular graphs on fewer than 99 vertices are Hamiltonian,
except for the Petersen graph.

9.4 Cocliques and colorings

In §2.5 we have derived some bounds the size of a coclique in termsof eigenvalues.
These bounds are especially useful for strongly regular graphs. Moreover, strongly
regular graphs for which the bounds of Hoffman and Cvetković are tight have a very
special structure:

Theorem 9.4.1 LetΓ be a strongly regular graph with eigenvalues k (degree), r and
s (r > s) and multiplicities1, f and g, respectively. Suppose thatΓ is not complete
multi-partite (i.e. r 6= 0) and let C be a coclique inΓ . Then

(i) |C| ≤ g,
(ii) |C| ≤ ns/(s−k),

(iii) if |C| = g = ns/(s− k), then the subgraphΓ ′ of Γ induced by the vertices
which are not in C, is strongly regular with eigenvalues k′ = k+ s (degree),
r ′ = r and s′ = r +s and respective multiplicities1, f −g+1 and g−1.

Proof. Parts (i) and (ii) follow from Theorems 3.5.1 and 3.5.2. Assume|C|= g=
ns/(s− k). By Theorem 2.5.4,Γ ′ is regular of degreek+ s. Apply Lemma 2.11.1
to P = A− k−r

n J, whereA is the adjacency matrix ofΓ . SinceΓ is regular,A and
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J commute and thereforeP has eigenvaluesr ands with multiplicities f +1 andg,
respectively. We takeQ = − k−r

n J of size |C| = g andR= A′− k−r
n J, whereA′ is

the adjacency matrix ofΓ ′. Lemma 2.11.1 gives the eigenvalues ofR: r ( f +1−g
times),s (0 times),r + s (g−1 times) andr + s+g(k− r)/n (1 time). SinceΓ ′ is
regular of degreek+s andA′ commutes withJ we obtain the required eigenvalues
for A′. By Theorem 9.1.2Γ ′ is strongly regular. �

For instance, an(m−1)-coclique inT(m) is tight for both bounds and the graph on
the remaining vertices isT(m−1).

Also for the chromatic number we can say more in case of a strongly regular graph.

Theorem 9.4.2 If Γ is a primitive strongly regular graph, not the pentagon, then

χ(Γ )≥ 1− s
r
.

Proof. SinceΓ is primitive, r > 0 and by Corollary 3.6.4, it suffices to show that
the multiplicityg of ssatisfiesg≥−s/r for all primitive strongly regular graphs but
the pentagon. First we check this claim for all feasible parameter sets with at most
23 vertices. Next we consider strongly regular graphs withv≥ 24 andr < 2. The
complements of these graphs haves> −3, and by Theorem 9.1.3 (iv),s= −2. By
use of Theorem 9.2 we easily find that all these graphs satisfythe claim.

Assume thatΓ is primitive, thatr ≥ 2, and that the claim does not hold (that is
g<−s/r). Now (v−1−g)r +gs+k= 0 gives

g2 <−sg/r = v−1−g+k/r ≤ v−1−g+k/2< 3v/2−g.

This impliesg(g+3) ≤ 3v/2= 2
√

3v/2. By use of the absolute boundv≤ g(g+
3)/2, we getv/2< 2

√
3v/2, sov< 24. Contradiction. �

For example ifΓ is the complement of the triangular graphT(m) thenΓ is strongly
regular with eigenvaluesk= 1

2(m−2)(m−3), r = 1 ands= 3−m (for m≥ 4). The
above bound givesχ(Γ ) ≥ m− 2, which is tight, whilst Hoffman’s lower bound
(Theorem 3.6.2) equals12m. On the other hand, ifm is even, Hoffman’s bound is
tight for the complement ofΓ whilst the above bound is much less. We saw (see
§3.6) that a Hoffman coloring (i.e. a coloring with 1− k/s classes) corresponds to
an equitable partition of the adjacency matrix. For the complement this gives an
equitable partition into maximal cliques, which is called aspread of the strongly
regular graph. For more application of eigenvalues to the chromatic number we
refer to [149] and [169]. See also§9.7.

9.5 Automorphisms

Let A be the adjacency matrix of a graphΓ , andP the permutation matrix that
describes an automorphismφ of Γ . ThenAP= PA. If φ has orderm, thenPm = I ,
so that the eigenvalues ofAParem-th roots of unity times eigenvalues ofA.
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Apply this in the special case of strongly regular graphs. Supposeφ has f fixed
points, and movesg points to a neighbor. Thenf = trP andg= trAP. Now consider
M = A− sI. It has spectrum(k− s)1, (r− s) f , 0g with multiplicities written as ex-
ponents. HenceMP has eigenvaluesk−s, (r−s)ζ for certainm-th roots of unityζ ,
and 0. It follows thatg−s f = trMP≡ k−s (modr−s).

For example, for the Petersen graph every automorphism satisfies f ≡ g+
1 (mod 3).

For example, for a hypothetical Moore graph on 3250 vertices(cf. §11.5.1), every
automorphism satisfies 8f +g≡ 5 (mod 15).

In some cases, where a structure is given locally, it must either be a universal
object, or a quotient, where the quotient map preserves local structure, that is, only
identifies points that are far apart. In the finite case arguments like those in this
section can be used to show thatf = g= 0 is impossible, so that nontrivial quotients
do not exist. For an example, see [50].

9.6 Generalized quadrangles

A generalized n-gonis a connected bipartite graph of diametern and girth 2n. (The
girth of a graph is the length of a shortest circuit.)

It is common to call the vertices in one color class of the unique 2-coloringpoints,
and the other verticeslines. For example, a generalized 3-gon is the same thing as a
projective plane: any two points have an even distance at most 3, hence are joined
by a line, and similarly any two lines meet in a point; finally two lines cannot meet
in two points since that would yield a quadrangle, but the girth is 6.

A generalized quadrangleis a generalized 4-gon. In terms of points and lines, the
definition becomes: ageneralized quadrangleis an incidence structure(P,L) with
set of pointsP and set of linesL, such that two lines meet in at most one point, and
if p is a point not on the linem, then there is a unique pointq onmand a unique line
n on p such thatq is onn.

9.6.1 Parameters

A generalizedn-gon is calledfirm (thick) when each vertex has at least 2 (resp. 3)
neighbors, that is, when each point is on at least two (three)lines, and each line is
on at least two (three) points.

An example of a non-firm generalized quadrangle is a pencil oflines on one
common pointx0. Each point different fromx0 is on a unique line, andΓ3(x0) = /0.

Proposition 9.6.1 (i) If a generalized n-gonΓ has a pair of opposite vertices x,y
where x has degree at least two, then every vertex has an opposite, andΓ is firm.



128 9 Strongly regular graphs

(ii) A thick generalized n-gon has parameters: each line hasthe same number of
points, and each point is on the same number of lines. When moreover n is odd then
the number of points on each line equals the number of lines through each point.

Proof. For a vertexx of a generalizedn-gon, letk(x) be its degree. Call two ver-
tices of a generalizedn-gon oppositewhen they have distancen. If x and y are
opposite then each neighbor of one is on a unique shortest path to the other, and we
find k(x) = k(y).

(i) Being non-opposite gives a bijection betweenΓ (x) andΓ (y), and hence if
k(x)> 1 then also each neighborzof x has an opposite and satisfiesk(z)> 1. Since
Γ is connected, it is firm.

(ii) Let x,z be two points joined by the liney. Let w be opposite toy. Since
k(w)> 2 there is a neighboru of w opposite to bothx andz. Nowk(x) = k(u) = k(z).
SinceΓ is connected and bipartite this shows thatk(p) is independent of the point
p. If n is odd, then a vertex opposite a point is a line. �

A firm, non-thick generalized quadrangle is the vertex-edgeincidence graph of a
complete bipartite graph.

The halved graphof a bipartite graphΓ , is the graph on the same vertex set,
where two vertices are adjacent when they have distance 2 inΓ . Thepoint graph
and line graphof a generalizedn-gon are the two components of its halved graph
containing the points and lines, respectively.

The point graph and line graph of a finite thick generalizedn-gon are distance-
regular of diameter⌊n/2⌋ (see Chapter 12). In particular, the point graph and line
graph of a thick generalized quadrangle are strongly regular (see Theorem 9.6.2).

It is customary to letGQ(s, t) denote a finite generalized quadrangle withs+1
points on each line andt +1 lines on each point. Note that it is also customary to
uses to denote the smallest eigenvalue of a strongly regular graph, so in this context
one has to be careful to avoid confusion.

It is a famous open problem whether a thick generalizedn-gon can have finite
s and infinitet. In the special case of generalized quadrangles a little is known:
Cameron, Kantor, Brouwer, and Cherlin [77, 46, 84] show thatthis cannot happen
for s+1≤ 5.

9.6.2 Constructions of generalized quadrangles

SupposeV is a vector space provided with a nondegenerate quadratic form f of Witt
index 2 (that is, such that the maximal totally singular subspaces have vector space
dimension 2). Consider in the projective spacePV the singular projective points and
the totally singular projective lines. These will form a generalized quadrangle.

Indeed,f defines a bilinear formB onV via B(x,y) = f (x+y)− f (x)− f (y). Call
x andy orthogonalwhenB(x,y) = 0. When two singular vectors are orthogonal, the
subspace spanned by them is totally singular. And conversely, in a totally singular
subspace any two vectors are orthogonal. The collection of all vectors orthogonal
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to a given vector is a hyperplane. We have to check that ifP = 〈x〉 is a singular
projective point, andL is a totally singular projective line not containingP, thenP
has a unique neighbor onL. But the hyperplane of vectors orthogonal tox meetsL,
and cannot containL otherwisef would have larger Witt index.

This construction produces generalized quadrangles over arbitrary fields. IfV is a
vector space over a finite fieldFq, then a nondegenerate quadratic form can have
Witt index 2 in dimensions 4, 5, and 6. A hyperbolic quadric in4 dimensions yields
a generalized quadrangle with parametersGQ(q,1), a parabolic quadric in 5 di-
mensions yields a generalized quadrangle with parametersGQ(q,q), and an elliptic
quadric in 6 dimensions yields a generalized quadrangle with parametersGQ(q,q2).

Other constructions, and other parameters occur.

In the below we’ll meetGQ(2, t) for t = 1,2,4 andGQ(3,9). Let us give simple
direct descriptions forGQ(2,1) andGQ(2,2).

The uniqueGQ(2,1) is the 3-by-3 grid: 9 points, 6 lines. Its point graph is
K3�K3.

The uniqueGQ(2,2) is obtained by taking as points the 15 pairs from a 6-set,
and as lines the 15 partitions of that 6-set into three pairs.Now collinearity is being
disjoint. Given a pointac, and a line{ab,cd,e f}, the two pointsab andcd on this
line are not disjoint fromac, so thate f is the unique point on this line collinear with
ac, and the line joiningacande f is {ac,bd,e f}.

9.6.3 Strongly regular graphs from generalized quadrangles

As mentioned before, the point graph (collinearity graph) of a finite thick general-
ized quadrangle is strongly regular. The parameters and eigenvalue can be obtained
in a straightforward way (see exercises).

Theorem 9.6.2 The collinearity graph of a finite generalized quadrangle with pa-
rameters GQ(s, t) is strongly regular with parameters

v= (s+1)(st+1), k= s(t +1), λ = s−1, µ = t +1

and spectrum

s(t +1) with multiplicity 1,
s−1 with multiplicity st(s+1)(t +1)/(s+ t),
−t−1 with multiplicity s2(st+1)/(s+ t).

In particular, if a GQ(s, t) exists, then(s+ t)|s2(st+1).
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9.6.4 Generalized quadrangles with lines of size3

Let aweak generalized quadranglebe a point-line geometry with the properties that
two lines meet in at most one point, and given a linem and a pointp outside there
is a unique pair(q,n) such thatp ∼ n ∼ q ∼ m, where∼ denotes incidence. The
difference with the definition of a generalized quadrangle is that connectedness is
not required. (But of course, as soon as there is a point and a line then the geometry
is connected.)

Theorem 9.6.3 A weak generalized quadrangle where all lines lines have size 3 is
one of the following:

(i) a coclique (no lines),
(ii) a pencil (all lines passing through a fixed point),

(iii) the unique GQ(2,1),
(iv) the unique GQ(2,2),
(v) the unique GQ(2,4).

Proof. After reducing to the case ofGQ(2, t) one finds(t + 2)|(8t + 4), i.e.,
(t + 2)|12, i.e.,t ∈ {1,2,4,10}, and t = 10 is ruled out by the Krein conditions.
Alternatively, or afterwards, notice that the point graphshave eigenvalue 1, so that
their complements have smallest eigenvalue−2, and apply Seidel’s classification.
Cases (iii), (iv), (v) here have point graphs that are the complements of the lattice
graphK3�K3, the triangular graphT(6), and the Schläfli graph, respectively. �

This theorem can be used in the classification of root lattices, where the five cases
correspond toAn, Dn, E6, E7, E8, respectively.

And the classification of root lattices can be used in the classification of graphs
with smallest eigenvalue−2. Indeed, for such graphsA+ 2I is positive semidefi-
nite, and one can represent these graphs by vectors in a Euclidean space such that
(x,y) = 2,1,0 whenx andy are equal, adjacent, nonadjacent, respectively. The lat-
tice spanned by these vectors is a root lattice.

9.7 The (81,20,1,6) strongly regular graph

Large parts of this section are taken from [54]. Sometimes the graph of this section
is called theBrouwer-Haemers graph.

LetΓ =(X,E) be a strongly regular graph with parameters(v,k,λ ,µ)=(81,20,1,6).
ThenΓ has spectrum{201,260,−720}, where the exponents denote multiplicities.
We will show that up to isomorphism there is a unique such graphΓ . More generally
we give a short proof for the fact (due to Ivanov & Shpectorov [223]) that a strongly
regular graph with parameters(v,k,λ ,µ) = (q4,(q2+1)(q−1),q−2,q(q−1)) that
is the collinearity graph of a partial quadrangle (that is, in which all maximal cliques
have sizeq) is the second subconstituent of the collinearity graph of ageneral-
ized quadrangleGQ(q,q2). In the special caseq = 3 this will imply our previous
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claim, sinceλ = 1 implies that all maximal cliques have size 3, and it is known(see
Cameron, Goethals & Seidel [79]) that there is a unique generalized quadrangle
GQ(3,9) (and this generalized quadrangle has an automorphism grouptransitive on
the points).

9.7.1 Descriptions

Let us first give a few descriptions of our graph on 81 vertices. Note that the unique-
ness shows that all constructions below give isomorphic graphs, something, which
is not immediately obvious from the description in all cases.

A. Let X be the point set ofAG(4,3), the 4-dimensional affine space overF3, and
join two points when the line connecting them hits the hyperplane at infinity (a
PG(3,3)) in a fixed elliptic quadricQ. This description shows immediately that
v= 81 andk= 20 (since|Q|= 10). Alsoλ = 1 since no line meetsQ in more than
two points, so that the affine lines are the only triangles. Finally µ = 6, since a point
outsideQ in PG(3,3) lies on 4 tangents, 3 secants and 6 exterior lines with respect
to Q, and each secant contributes 2 toµ . We find that the group of automorphisms
containsG= 34 ·PGO−4 ·2, where the last factor 2 accounts for the linear transfor-
mations that do not preserve the quadratic formQ, but multiply it by a constant. In
fact this is the full group, as will be clear from the uniqueness proof.

B. A more symmetric form of this construction is found by starting withX = 1⊥/〈1〉
in F6

3 provided with the standard bilinear form. The corresponding quadratic form
(Q(x) = wt(x), the number of nonzero coordinates ofx) is elliptic, and if we join
two verticesx+ 〈1〉 ,y+ 〈1〉 of X when Q(x− y) = 0, i.e., when their difference
has weight 3, we find the same graph as under A. This construction shows that the
automorphism group containsG = 34 · (2×Sym(6)) ·2, and again this is the full
group.

C. There is a unique strongly regular graphΓ with parameters(112,30,2,10), the
collinearity graph of the unique generalized quadrangle with parametersGQ(3,9).
Its second subconstituent is an(81,20,1,6) strongly regular graph, and hence iso-
morphic to our graphΓ . (See Cameron, Goethals & Seidel [79].) We find that AutΓ
contains (and in fact it equals) the point stabilizer inU4(3) ·D8 acting onGQ(3,9).

D. The graphΓ is the coset graph of the truncated ternary Golay codeC: take the
34 cosets ofC and join two cosets when they contain vectors differing in only one
place.

E. The graphΓ is the Hermitean forms graph onF2
9; more generally, take theq4

matricesM overFq2 satisfyingM⊤ = M, where− denotes the field automorphism
x→ xq (applied entrywise), and join two matrices when their difference has rank 1.
This will give us a strongly regular graph with parameters(v,k,λ ,µ) = (q4,(q2+
1)(q−1),q−2,q(q−1)).
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F. The graphΓ is the graph with vertex setF81, where two vertices are joined when
their difference is a fourth power. (This construction was given by Van Lint & Schri-
jver [245].)

9.7.2 Uniqueness

Now let us embark upon the uniqueness proof. LetΓ = (X,E) be a strongly regular
graph with parameters(v,k,λ ,µ) = (q4,(q2+1)(q−1),q−2,q(q−1)) and assume
that all maximal cliques (we shall just call them lines) ofΓ have sizeq. Let Γ have
adjacency matrixA. Using the spectrum ofA - it is {k1,(q− 1) f ,(q− 1− q2)g},
where f = q(q−1)(q2+1) andg= (q−1)(q2+1) - we can obtain some structure
information. LetT be the collection of subsets ofX of cardinalityq3 inducing a
subgraph that is regular of degreeq−1.

1. Claim. If T ∈ T, then each point of X\T is adjacent to q2 points of T .
Look at the matrixB of average row sums ofA, with sets of rows and columns
partitioned according to{T,X \T}. We have

B=

[
q−1 q2(q−1)

q2 k−q2

]

with eigenvaluesk and q− 1− q2, so interlacing is tight, and by Corol-
lary 2.5.4(ii) it follows that the row sums are constant in each block ofA.

2. Claim. Given a line L, there is a unique TL ∈ T containing L.
Let Z be the set of vertices inX \ L without a neighbor inL. Then |Z| =
q4−q−q(k−q+1) = q3−q. Let T = L∪Z. Each vertex ofZ is adjacent to
qµ = q2(q−1) vertices with a neighbor inL, soT induces a subgraph that is
regular of degreeq−1.

3. Claim. If T ∈ T and x∈ X \T, then x is on at least one line L disjoint from
T, and TL is disjoint from T for any such line L.
The pointx is onq2+1 lines, but has onlyq2 neighbors inT. Each point of
L hasq2 neighbors inT, so each point ofT has a neighbor onL and hence is
not inTL.

4. Claim. Any T∈ T induces a subgraph∆ isomorphic to q2Kq.
It suffices to show that the multiplicitym of the eigenvalueq− 1 of ∆ is
(at least)q2 (it cannot be more). By interlacing we findm≥ q2− q, so we
need some additional work. LetM := A− (q−1/q2)J. ThenM has spectrum
{(q−1) f+1,(q−1−q2)g}, and we want thatMT , the submatrix ofM with
rows and columns indexed byT, has eigenvalueq− 1 with multiplicity (at
least)q2−1, or, equivalently (by Lemma 2.11.1), thatMX\T has eigenvalue
q−1−q2 with multiplicity (at least)q−2. But for eachU ∈T with U∩T = /0
we find an eigenvectorxU = (2−q)χU + χX\(T∪U) of MX\T with eigenvalue
q−1−q2. A collection{xU |U ∈ U} of such eigenvectors cannot be linearly
dependent whenU = {U1,U2, . . .} can be ordered such thatUi 6⊂

⋃
j<i U j and
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⋃
U 6=X\T, so we can find (using Claim 3) at leastq−2 linearly independent

such eigenvectors, and we are done.
5. Claim. Any T∈ T determines a unique partition of X into members ofT.

Indeed, we saw this in the proof of the previous step.

Let Π be the collection of partitions ofX into members ofT. We have|T| =
q(q2 + 1) and |Π | = q2 + 1. Construct a generalized quadrangleGQ(q,q2) with
point set{∞}∪T∪X as follows: Theq2+1 lines on∞ are{∞}∪π for π ∈Π . The
q2 remaining lines on eachT ∈ T are{T}∪L for L ⊂ T. It is completely straight-
forward to check that we really have a generalized quadrangle GQ(q,q2).

9.7.3 Independence and chromatic numbers

We haveα(Γ ) = 15 andχ(Γ ) = 7.
Clearly, the independence number of our graph is one less than the independence

number of the uniqueGQ(3,9) of which it is the second subconstituent. So it suffices
to show thatα(∆) = 16, where∆ is the collinearity graph ofGQ(3,9).

It is easy to indicate a 16-coclique: defineGQ(3,9) in PG(5,3) provided with the
nondegenerate elliptic quadratic form∑6

i=1x2
i . There are 112 isotropic points, 80 of

weight 3 and 32 of weight 6. Among the 32 of weight 6, 16 have coordinate product
1, and 16 have coordinate product−1, and these two 16-sets are cocliques.

That there is no larger coclique can be seen by cubic counting.
LetC be a 16-coclique in∆ . Let there beni vertices outside that havei neighbors

inside. Then

∑ni = 96, ∑ ini = 480, ∑
(

i
2

)
ni = 1200, ∑

(
i
3

)
ni = 2240,

so that

∑(i−4)2(i−10)ni = 0.

(Here the quadratic counting is always possible in a strongly regular graph, and the
last equation can be written because the second subconstituent is itself strongly reg-
ular.) Now each point is on 10 lines, and hence cannot have more than 10 neighbors
in C. It follows that each point has either 4 or 10 neighbors inC. In particular,C is
maximal.

As an aside: Solving these equations givesn4 = 80, n10 = 16. LetD be the set
of 16 vertices with 10 neighbors inC. If two verticesd1,d2 ∈ D are adjacent then
they can have only 2 common neighbors inC, but each has 10 neighbors inC,
contradiction. So, alsoD is a 16-coclique, which means that 16-cocliques in∆ come
in pairs.

Since 81/15> 5, we haveχ(Γ ) ≥ 6. Since∆ has a split into two Gewirtz graphs,
and the Gewirtz graph has chromatic number 4, it follows thatχ(∆) ≤ 8. (And in
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fact equality holds.) This shows that for our graph 6≤ χ(Γ )≤ 8. In factχ(Γ ) = 7
can be seen by computer (Edwin van Dam, pers. comm.).

Sinceλ = 1, the maximum clique size equals 3. And from the uniqueness proof
it is clear thatΓ admits a partition into 27 triangles. So the complement ofΓ has
chromatic number 27.

9.8 Strongly regular graphs and 2-weight codes

9.8.1 Codes, graphs and projective sets

In this section we show the equivalence of three kinds of objects:

(i) projective two-weight codes,
(ii) subsetsX of a projective space such that|X ∩H| takes two values whenH

ranges through the hyperplanes of the projective space,
(iii) strongly regular graphs defined by a difference set that is a cone in a vector

space.

This equivalence is due to Delsarte [132]. An extensive survey of this material was
given by Calderbank & Kantor [76].

A linear codeis a linear subspace of some finite vector space with fixed basis.
For basic terminology and results on codes, see MacWilliams& Sloane [254] and
Van Lint [244]. A linear codeC is calledprojectivewhen its dualC⊥ has minimum
weight at least three, that is, when no two coordinate positions ofC are linearly
dependent. Theweight of a vector is its number of nonzero coordinates. Atwo-
weightcode is a linear code in which precisely two nonzero weights occur.

Let us first discuss the correspondence between linear codesand subsets of pro-
jective spaces.

9.8.2 The correspondence between linear codes and subsets of a
projective space

A linear codeC of word lengthn over the alphabetFq is a linear subspace of the
vector spaceFn

q. Theweightof a vector is its number of nonzero coordinates. We call
C an [n,m,w]-code ifC has dimensionm and minimum nonzero weightw. We say
thatC haseffective length(or support) n− z when there are preciselyz coordinate
positions j such thatc j = 0 for all c ∈ C. The dual C⊥ of a codeC is the linear
code{d ∈ Fn

q | 〈c,d〉 = 0 for all u∈C}, where〈c,d〉 = ∑cidi is the standard inner
product (bilinear form).

Let us call two linear codes of lengthn over Fq equivalentwhen one arises
from the other by permutation of coordinates or multiplication of coordinates by
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a nonzero constant. E.g., theF3-codes generated by

(
1111
0012

)
and

(
1212
1100

)
are

equivalent. If we study codes up to equivalence, and assume thatn is chosen mini-
mal, i.e., that the generator matrix has no zero columns, we may identify the set of
columns in am×n generator matrix with points of a projective spacePG(m−1,q).
In this way, we find a subsetX of PG(m−1,q), possibly with repeated points, or, if
you prefer, a weight functionw : PG(m−1,q)→ N.

Choosing one code in an equivalence class means choosing a representative in
Fm

q for eachx∈ X, and fixing an order onX. Now the code words can be identified
with the linear functionalsf , and thex-coordinate position isf (x).

Clearly, the code has word lengthn= |X|. Note that the code will have dimension
m if and only if X spansPG(m− 1,q), i.e., if and only ifX is not contained in a
hyperplane.

The weight of the code wordf equals the number ofx such thatf (x) 6= 0. But a
nonzerof vanishes on a hyperplane ofPG(m−1,q). Consequently, the number of
words of nonzero weightw in the code equalsq−1 times the number of hyperplanes
H that meetX in n−w points. In particular the minimum distance of the code isn
minus the maximum size ofH ∩X for a hyperplaneH.

The minimum weight of the dual code equals the minimum numberof points of
X that are dependent. So, it is 2 if and only ifX has repeated points, and 3 whenX
has no repeated points but has three collinear points.

Example Take forX the entire projective spacePG(m− 1,q), so thatn = |X| =
(qm−1)/(q−1). We find the so-called simplex code: all words have weightqm−1,
and we have an[n, m, qm−1]-code overFq. Its dual is the[n, n−m, 3] Hamming
code. It is perfect!

9.8.3 The correspondence between projective two-weight codes,
subsets of a projective space with two intersection numbers,
and affine strongly regular graphs

Given a subsetX of size n of PG(m− 1,q), let us define a graphΓ with vertex
setFm

q , with x ∼ y if and only if 〈y− x〉 ∈ X. Then clearlyΓ is regular of valency
k= (q−1)n. We show below that this graph has eigenvaluesk−qwi when the linear
code has weightswi . Hence if a linear code has only two nonzero weights, and its
dual has minimum weight at least 3, then we have a strongly regular graph.

Let us look at the details.
Let F = Fq andK = Fqk and let tr :K→ F be the trace map defined by tr(x) =

x+ xq + · · ·+ xqk−1
. Then theF-linear mapsf : F → K are precisely the mapsfa

defined byfa(x) = tr(ax), for a∈ K. If tr(ax) = 0 for all x, thena= 0.
(Indeed, first of all, these maps are indeedF-linear. If a 6= 0, then tr(ax) is a

polynomial of degreeqk−1 and cannot haveqk zeros. It follows that we findqk

distinct mapsfa. But this is the total number ofF-linear maps fromK to F (sinceK
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is a vector space of dimensionk overF , and such a map is determined by its values
on a basis).)

Let G be a finite abelian group. Ifa : G→ C is any function, and we define the
matrix A by Axy = a(y− x), then the eigenspaces ofA have a basis consisting of
characters ofG.

(Indeed, ifχ : G→C∗ is a character (a homomorphism from the additively writ-
ten groupG into the multiplicative group of nonzero complex numbers),then

(Aχ)x = ∑
y∈G

a(y−x)χ(y) =

(

∑
z∈G

a(z)χ(z)

)
χ(x)

so that χ (regarded as column vector) is an eigenvector ofA with eigenvalue
∑z∈Ga(z)χ(z). But G has|G| characters, and these are linearly independent, so this
gives us the full spectrum ofA.)

Example.The matrixA=




a b c
c a b
b c a


 has eigenvectors




1
ω
ω2


 with eigenvalues

a+bω +cω2, whereω runs through the cube roots of unity.

Now apply this to the adjacency matrixA of the graphΓ . Let D := {d ∈ Fm
q |

〈d〉 ∈ X}, so that|D| = (q− 1).|X|. Then the neighbors of the vertexx of Γ are
the pointsx+d for d ∈ D, and we see thatΓ has valencyk = |D| = (q−1)n. The
eigenvalues ofA are the sums∑d∈D χ(d), whereχ is a character of the additive
group ofFm

q . Let ζ = e2π i/p be a primitivep-th root of unity, and let tr :Fq→ Fp be
the trace function. Then the charactersχ are of the form

χa(x) = ζ tr(〈a,x〉).

Now

∑
λ∈Fq

χa(λx) =

{
q if 〈a,x〉= 0
0 otherwise.

(Indeed, ifS denotes this sum, thenχa(µx)S= S for all µ , so if S 6= 0, then
tr(〈a,µx〉) = tr(µ〈a,x〉) = 0 for all µ , and by the above〈a,x〉= 0.)

Thus, we find, ifD0 is a set of representatives forX,

∑
d∈D

χa(d) = ∑
d∈D0

∑
λ∈Fq\{0}

χa(λd) = q.|Ha∩X|− |X|

whereHa is the hyperplane{〈x〉 | 〈a,x〉= 0} in PG(m−1,q). This shows that ifHa

meetsX in ma points, so that the correspondingq−1 code words have weightwa =
n−ma, then the corresponding eigenvalue isqma−n= (q−1)n−qwa = k−qwa.

We have proved:

Theorem 9.8.1 There is a 1-1-1 correspondence between

(i) linear codes C of effective word length n and dimension m and(q−1) fi words
of weight wi , and
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(ii) weighted subsets X of total size n of the projective space PG(m−1,q) such
that for fi hyperplanes H we have|X \H|= wi , and

(iii) graphsΓ , without loops but possibly with multiple edges, with vertex setFm
q ,

invariant under translation and dilatation, and with eigenvalues k− qwi of
multiplicity (q−1) fi , where k= n(q−1).

If the codeC is projective, that is, is no two coordinate positions are dependent
(i.e., is the dual code has minimum weight at least 3), thenX has no repeated points,
and we find an ordinary subset under (ii), and a simple graph under (iii) (that is,
without multiple edges).

Corollary 9.8.2 There is a 1-1-1 correspondence between

(i) projective linear codes C of effective word length n and dimension m with
precisely two nonzero weights w1 and w2, and

(ii) subsets X of size n of the projective space PG(m− 1,q) such that for each
hyperplane H we have|X \H|= wi , i ∈ {1,2}, and

(iii) strongly regular graphsΓ , with vertex setFm
q , invariant under translation

and dilatation, and with eigenvalues k−qwi , where k= n(q−1).

For example, if we take a hyperoval inPG(2,q), q even, we find a two-weight
[q+ 2,3,q]-code overFq. If we take the curve{(1, t, t2, . . . , tm−1) | t ∈ Fq} ∪
{(0,0, . . . ,0,1)} in PG(m− 1,q), q arbitrary, we find a[q+ 1,m,q−m+ 2]-code
overFq. (These codes are optimal: they reach the Singleton bound.)

A 1-1 correspondence between projective codes and 2-weightcodes was shown
in Brouwer & van Eupen [53].

9.8.4 Duality for affine strongly regular graphs

Let X be a subset ofPG(m−1,q) such that all hyperplanes meet it in eitherm1 or
m2 points. In the dual projective space (where the rôles of points and hyperplanes
have been interchanged), the collectionY of hyperplanes that meetX in m1 points,
is a set with the same property: there are numbersn1 andn2 such that each point is
in eithern1 or in n2 hyperplanes fromY.

Indeed, letx∈ X be inn1 hyperplanes fromY. We can findn1 (independent of
the choice ofx) by counting hyperplanes on pairsx,y of distinct points inX:

n1.(m1−1)+(
qm−1−1

q−1
−n1).(m2−1) = (|X|−1).

qm−2−1
q−1

.

In a similar way we findn2, the number of hyperplanes fromY on a point outside
X. Computation yields(m1−m2)(n1−n2) = qk−2. This proves:

Proposition 9.8.3 The difference of the weights in a projective2-weight code, and
the difference of the nontrivial eigenvalues of an affine strongly regular graph, is a
power of p, where p is the characteristic of the field involved.
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Let Γ and∆ be the strongly regular graphs corresponding toX andY, respec-
tively. We see thatΓ and∆ both haveqk vertices;Γ has valencyk= (q−1)|X| and
multiplicity f = (q−1)|Y|, and for∆ these values have interchanged rôles. We call
∆ thedual of Γ . (More generally it is possible to define the dual of an association
scheme with a regular abelian group of automorphisms, cf. [51], p. 68.))

Example.The ternary Golay code is a perfect[11,6,5] code overF3, and its dual
C is a[11,5,6] code with weights 6 and 9. The corresponding strongly regular graph
Γ has parameters(v,k,v− k− 1,λ ,µ , r,s, f ,g) = (243, 22, 220, 1, 2, 4,−5, 132,
110) (it is theBerlekamp-van Lint-Seidel graph) and its dual has parameters(243,
110, 132, 37, 60, 2,−25, 220, 22), and we see thatk,v− k− 1 interchange place
with g, f . The code corresponding to∆ is a [55,5,36] ternary code.

Example. The quaternary Hill code ([208]) is a[78,6,56] code overF4 with
weights 56 and 64. The corresponding strongly regular graphhas parameters(4096,
234, 3861, 2, 14, 10,−22, 2808, 1287). Its dual has parameters(4096, 1287, 2808,
326, 440, 7,−121, 3861, 234), corresponding to a quaternary[429,6,320] code
with weights 320 and 352. This code lies outside the range of the tables, but its
residue is a world record[109,5,80] code. The binary[234,12,112] code derived
from the Hill code has a[122,11,56] code as residue—also this is a world record.

9.8.5 Cyclotomy

In this section we takeD to be a union of cosets of a subgroup of the multiplicative
group of a fieldFq. (I.e., theq here corresponds to theqk of the previous sections.)

Let q= pκ , p prime ande|(q−1), sayq= em+1. LetK ⊆ F∗q be the subgroup
of the e-th powers (so that|K| = m). Let α be a primitive element ofFq. For J ⊆
{0,1, . . . ,e−1} putu := |J| andD := DJ :=

⋃{α jK | j ∈ J}= {α ie+ j | j ∈ J,0≤ i <
m}. Define a (directed) graphΓ = ΓJ with vertex setFq and edges(x,y) whenever
y− x ∈ D. Note thatΓ will be undirected iff either−1 is ane-th power (i.e.,q is
even ore|(q−1)/2) orJ+(q−1)/2= J (arithmetic inZe).

Let A=AJ be the adjacency matrix ofΓ defined byA(x,y) = 1 if (x,y) is an edge
of Γ and= 0 otherwise. Let us compute the eigenvalues ofA. For each (additive)
characterχ of Fq we have

(Aχ)(x) = ∑
y∼x

χ(y) = (∑
u∈D

χ(u))χ(x).

So each character gives us an eigenvector, and since these are all independent we
know all eigenvalues. Their explicit determination requires some theory of Gauss
sums. Let us writeAχ = θ(χ)χ . Clearly,θ(1) =mu, the valency ofΓ . Now assume
χ 6= 1. Thenχ = χg for someg, where

χg(α j) = exp(
2π i
p

tr(α j+g))
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and tr :Fq→ Fp is the trace function.
If µ is any multiplicative character of ordere (say, µ(α j) = ζ j , whereζ =

exp(2π i
e )), then

e−1

∑
i=0

µ i(x) =

{
e if µ(x) = 1
0 otherwise.

Hence,

θ(χg) = ∑
u∈D

χg(u) = ∑
j∈J

∑
u∈K

χ j+g(u) =
1
e ∑

j∈J
∑

x∈F∗q
χ j+g(x)

e−1

∑
i=0

µ i(x) =

=
1
e ∑

j∈J
(−1+

e−1

∑
i=1

∑
x6=0

χ j+g(x)µ i(x)) =
1
e ∑

j∈J
(−1+

e−1

∑
i=1

µ−i(α j+g)Gi)

whereGi is the Gauss sum∑x6=0 χ0(x)µ i(x).
In general, determination of Gauss sums seems to be complicated, but there are

a few explicit results. For our purposes the most interesting is the following:

Proposition 9.8.4 (Stickelberger and Davenport & Hasse, see McEliece & Rumsey
[261]) Suppose e> 2 and p is semiprimitivemode, i.e., there exists an l such that
pl ≡−1 (mode). Choose l minimal and writeκ = 2lt. Then

Gi = (−1)t+1ε it√q,

where

ε =

{
−1 if e is even and(pl +1)/e is odd
+1 otherwise.

Under the hypotheses of this proposition, we have

e−1

∑
i=1

µ−i(α j+g)Gi =
e−1

∑
i=1

ζ−i( j+g)(−1)t+1ε it√q=

{
(−1)t

√
q if r 6= 1,

(−1)t+1√q(e−1) if r = 1,

whereζ = exp(2π i/e) andr = rg, j = ζ− j−gε t (so thatre = εet = 1), and hence

θ(χg) =
u
e
(−1+(−1)t

√
q)+(−1)t+1√q.#{ j ∈ J|rg, j = 1}.

If we abbreviate the cardinality in this formula with # then:If ε t = 1 then #= 1 if
g∈ −J (mode), and= 0 otherwise. Ifε t = −1 (thene is even andp is odd) then
#= 1 if g∈ 1

2e−J (mode), and= 0 otherwise. We proved:

Theorem 9.8.5 Let q= pκ , p prime and e|(q−1), where p is semiprimitivemode,
i.e., there is an l> 0 such that pl ≡−1 mode. Choose l minimal with this property
and writeκ = 2lt. Choose u,1≤ u≤ e−1 and assume that q is even or u is even or
e|(q−1)/2. Then the graphsΓJ (where J is arbitrary for q even or e|(q−1)/2 and
satisfies J+(q−1)/2= J mode otherwise) are strongly regular with eigenvalues
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k= q−1
e u with multiplicity 1,

θ1 =
u
e(−1+(−1)t

√
q) with multiplicity q−1−k,

θ2 =
u
e(−1+(−1)t

√
q)+(−1)t+1√q with multiplicity k.

(Obviously, when t is even we have r= θ1, s= θ2, and otherwise r= θ2, s= θ1.)

Clearly, ife|e′|(q−1), then the set ofe-th powers is a union of cosets of the set of
e′-th powers, so when applying the above theorem we may assume thate has been
chosen as large as possible, i.e.,e= pl +1. Then the restriction ‘q is even oru is
even ore|(q−1)/2’ is empty, andJ can always be chosen arbitrarily.

The above construction can be generalized. Pick several valuesei (i ∈ I) with
ei |(q− 1). Let Ki be the subgroup ofF∗q of the ei-th powers. LetJi be a subset of
{0,1, . . . ,ei − 1}. Let Di := DJi :=

⋃{α jKi | j ∈ Ji}. PutD :=
⋃

Di . If the Di are
mutually disjoint, thenD defines a graph of which we can compute the spectrum.

For example, letp be odd, and takeei = pl i + 1 (i = 1,2) and q = pκ where
κ = 4l isi (i = 1,2). PickJ1 to consist of even numbers only, andJ2 to consist of odd
numbers only. ThenD1∩D2 = /0 andg∈ −Ji (modei) cannot happen fori = 1,2
simultaneously. This means that the resulting graph will bestrongly regular with
eigenvalues

θ(χg) = (
|J1|
e1

+
|J2|
e2

)(−1+
√

q)−√q.δ (g∈ −Ji(modei) for i = 1 or i = 2)

(whereδ (P) = 1 if P holds, andδ (P) = 0 otherwise). See also [65]. In the special
casep = 3, l1 = 1, l2 = 2, e1 = 4, e2 = 10, J1 = {0}, J2 = {1}, the difference
set consists of the powersα i with i ≡ 0 (mod 4) or i ≡ 1 (mod 10), i.e., is the
set{1,α,α4,α8,α11,α12,α16}〈α20〉, and we found the first graph from De Lange
[237] again. (It has parameters(v,k,λ ,µ) = (6561,2296,787,812) and spectrum
22961 284264 (−53)2296.)

9.9 Table

Below a table with the feasible parameters for strongly regular graphs on at most
100 vertices. Herefeasiblemeans that the parametersv,k,λ ,µ and multiplicities
f ,g are integers, with 0≤ λ < k−1 and 0< µ < k < v. In some cases a feasible
parameter set is ruled out by the absolute bound or the Krein conditions, or the
restriction that the order of a conference graph must be the sum of two squares. For
some explanation of the comments, see after the table.

∃ v k λ µ r f sg comments
! 5 2 0 1 0.6182 −1.6182 pentagon; Paley(5); Seidel 2-graph−∗
! 9 4 1 2 14 −24 Paley(9); 32; 2-graph−∗
! 10 3 0 1 15 −24 Petersen graph [280];NO−4 (2); NO−⊥3 (5); 2-graph

6 3 4 14 −25
(5

2

)
; 2-graph

! 13 6 2 3 1.3036 −2.3036 Paley(13); 2-graph−∗
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∃ v k λ µ r f sg comments
! 15 6 1 3 19 −35 O5(2) polar graph;Sp4(2) polar graph;NO−4 (3); 2-graph−∗

8 4 4 25 −29
(6

2

)
; 2-graph−∗

! 16 5 0 2 110 −35 q2
22 = 0; vanLint-Schrijver(1);VO−4 (2) affine polar graph; projec-

tive binary [5,4] code with weights 2, 4;RSHCD−; 2-graph
10 6 6 25 −210 Clebsch graph [96, 104, 95, 299];q1

11 = 0; vanLint-Schrijver(2);
2-graph

2! 16 6 2 2 26 −29 Shrikhande graph [308]; 42; from a partial spread: projective bi-
nary [6,4] code with weights 2, 4;RSHCD+; 2-graph

9 4 6 19 −36 OA(4,3); Bilin2×2(2); Goethals-Seidel(2,3);VO+
4 (2) affine polar

graph; 2-graph
! 17 8 3 4 1.5628 −2.5628 Paley(17); 2-graph−∗
! 21 10 3 6 114 −46

10 5 4 36 −214
(7

2

)

− 21 10 4 5 1.79110 −2.79110 Conf
! 25 8 3 2 38 −216 52

16 9 12 116 −48 OA(5,4)
15! 25 12 5 6 212 −312 complete enumeration by Paulus [276]; Paley(25); OA(5,3); 2-

graph−∗
10! 26 10 3 4 213 −312 complete enumeration by Paulus [276]; 2-graph

15 8 9 212 −313 S(2,3,13); 2-graph
! 27 10 1 5 120 −56 q2

22 = 0; O−6 (2) polar graph;GQ(2,4); 2-graph−∗
16 10 8 46 −220 Schl̈afli graph; unique by Seidel [299];q1

11 = 0; 2-graph−∗
− 28 9 0 4 121 −56 Krein2; Absolute bound

18 12 10 46 −221 Krein1; Absolute bound
4! 28 12 6 4 47 −220 Chang graphs [83];

(8
2

)
; 2-graph

15 6 10 120 −57 NO+
6 (2); Goethals-Seidel(3,3); Taylor 2-graph forU3(3)

41! 29 14 6 7 2.19314 −3.19314 complete enumeration by Bussemaker & Spence [pers.comm.];
Paley(29); 2-graph−∗

− 33 16 7 8 2.37216 −3.37216 Conf
3854! 35 16 6 8 220 −414 complete enumeration by McKay & Spence [263]; 2-graph−∗

18 9 9 314 −320 S(2,3,15); lines inPG(3,2); O+
6 (2) polar graph; 2-graph−∗

! 36 10 4 2 410 −225 62

25 16 20 125 −510

180! 36 14 4 6 221 −414 U3(3).2/L2(7).2 - subconstituent of the Hall-Janko graph; com-
plete enumeration by McKay & Spence [263];RSHCD−; 2-graph

21 12 12 314 −321 2-graph
! 36 14 7 4 58 −227

(9
2

)

21 10 15 127 −68

32548! 36 15 6 6 315 −320 complete enumeration by McKay & Spence [263]; OA(6,3);
NO−6 (2); RSHCD+; 2-graph

20 10 12 220 −415 NO−5 (3); 2-graph
+ 37 18 8 9 2.54118 −3.54118 Paley(37); 2-graph−∗
28! 40 12 2 4 224 −415 complete enumeration by Spence [311];O5(3) polar graph;Sp4(3)

polar graph
27 18 18 315 −324 NU(4,2)

+ 41 20 9 10 2.70220 −3.70220 Paley(41); 2-graph−∗
78! 45 12 3 3 320 −324 complete enumeration by Coolsaet, Degraer & Spence [101];

U4(2) polar graph
32 22 24 224 −420 NO+

5 (3)
! 45 16 8 4 69 −235

(10
2

)

28 15 21 135 −79

+ 45 22 10 11 2.85422 −3.85422 Mathon [259]; 2-graph−∗
! 49 12 5 2 512 −236 72

36 25 30 136 −612 OA(7,6)
− 49 16 3 6 232 −516 Bussemaker-Haemers-Mathon-Wilbrink [73]

32 21 20 416 −332

+ 49 18 7 6 418 −330 OA(7,3); Pasechnik(7)
30 17 20 230 −518 OA(7,5)
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∃ v k λ µ r f sg comments
+ 49 24 11 12 324 −424 Paley(49); OA(7,4); 2-graph−∗
! 50 7 0 1 228 −321 Hoffman-Singleton graph [211];U3(52).2/Sym(7)

42 35 36 221 −328

− 50 21 4 12 142 −97 Absolute bound
28 18 12 87 −242 Absolute bound

+ 50 21 8 9 325 −424 switch skewhad2+∗; 2-graph
28 15 16 324 −425 S(2,4,25); 2-graph

+ 53 26 12 13 3.14026 −4.14026 Paley(53); 2-graph−∗
! 55 18 9 4 710 −244

(11
2

)

36 21 28 144 −810

! 56 10 0 2 235 −420 Sims-Gewirtz graph [162, 163, 55];L3(4).22/Alt(6).22

45 36 36 320 −335 Witt: intersection-2 graph of a 2-(21,6,4) design with block inter-
sections 0, 2

− 56 22 3 12 148 −107 Krein2; Absolute bound
33 22 15 97 −248 Krein1; Absolute bound

− 57 14 1 4 238 −518 Wilbrink-Brouwer [331]
42 31 30 418 −338

+ 57 24 11 9 518 −338 S(2,3,19)
32 16 20 238 −618

− 57 28 13 14 3.27528 −4.27528 Conf
+ 61 30 14 15 3.40530 −4.40530 Paley(61); 2-graph−∗
− 63 22 1 11 155 −117 Krein2; Absolute bound

40 28 20 107 −255 Krein1; Absolute bound
+ 63 30 13 15 335 −527 intersection-8 graph of a 2-(36,16,12) design with block intersec-

tions 6, 8;O7(2) polar graph;Sp6(2) polar graph; 2-graph−∗
32 16 16 427 −435 S(2,4,28); intersection-6 graph of a 2-(28,12,11) design with block

intersections 4, 6;NU(3,3); 2-graph−∗
! 64 14 6 2 614 −249 82; from a partial spread of 3-spaces: projective binary [14,6] code

with weights 4, 8
49 36 42 149 −714 OA(8,7)

167! 64 18 2 6 245 −618 complete enumeration by Haemers & Spence [198];GQ(3,5);
from a hyperoval: projective 4-ary [6,3] code with weights 4, 6

45 32 30 518 −345

− 64 21 0 10 156 −117 Krein2; Absolute bound
42 30 22 107 −256 Krein1; Absolute bound

+ 64 21 8 6 521 −342 OA(8,3); Bilin2×3(2); from a Baer subplane: projective 4-ary [7,3]
code with weights 4, 6; from a partial spread of 3-spaces: projec-
tive binary [21,6] code with weights 8, 12

42 26 30 242 −621 OA(8,6)
+ 64 27 10 12 336 −527 from a unital: projective 4-ary [9,3] code with weights 6, 8;

VO−6 (2) affine polar graph;RSHCD−; 2-graph
36 20 20 427 −436 2-graph

+ 64 28 12 12 428 −435 OA(8,4); from a partial spread of 3-spaces: projective binary [28,6]
code with weights 12, 16;RSHCD+; 2-graph

35 18 20 335 −528 OA(8,5); Goethals-Seidel(2,7);VO+
6 (2) affine polar graph; 2-

graph
− 64 30 18 10 108 −255 Absolute bound

33 12 22 155 −118 Absolute bound
? 65 32 15 16 3.53132 −4.53132 2-graph−∗?
! 66 20 10 4 811 −254

(12
2

)

45 28 36 154 −911

? 69 20 7 5 523 −345

48 32 36 245 −623 S(2,6,46) does not exist
− 69 34 16 17 3.65334 −4.65334 Conf
+ 70 27 12 9 620 −349 S(2,3,21)

42 23 28 249 −720

+ 73 36 17 18 3.77236 −4.77236 Paley(73); 2-graph−∗
? 75 32 10 16 256 −818 2-graph−∗?

42 25 21 718 −356 2-graph−∗?
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∃ v k λ µ r f sg comments
− 76 21 2 7 256 −719 Haemers [190]

54 39 36 619 −356

? 76 30 8 14 257 −818 2-graph?
45 28 24 718 −357 2-graph?

? 76 35 18 14 719 −356 2-graph?
40 18 24 256 −819 2-graph?

! 77 16 0 4 255 −621 S(3,6,22);M22.2/24:Sym(6); unique by Brouwer [45]; subcon-
stituent of Higman-Sims graph; intersection-6 graph of a 2-
(56,16,6) design with block intersections 4, 6

60 47 45 521 −355 Witt 3-(22,6,1): intersection-2 graph of a 2-(22,6,5) design with
block intersections 0, 2

− 77 38 18 19 3.88738 −4.88738 Conf
! 78 22 11 4 912 −265

(13
2

)

55 36 45 165 −1012

! 81 16 7 2 716 −264 92; from a partial spread: projective ternary [8,4] code with
weights 3, 6

64 49 56 164 −816 OA(9,8)
! 81 20 1 6 260 −720 unique by Brouwer & Haemers [54];VO−4 (3) affine polar graph;

projective ternary [10,4] code with weights 6, 9
60 45 42 620 −360

+ 81 24 9 6 624 −356 OA(9,3);VNO+
4 (3) affine polar graph; from a partial spread: pro-

jective ternary [12,4] code with weights 6, 9
56 37 42 256 −724 OA(9,7)

+ 81 30 9 12 350 −630 VNO−4 (3) affine polar graph; Hamada-Helleseth [202]: projective
ternary [15,4] code with weights 9, 12

50 31 30 530 −450

+ 81 32 13 12 532 −448 OA(9,4); Bilin2×2(3); VO+
4 (3) affine polar graph; from a partial

spread: projective ternary [16,4] code with weights 9, 12
48 27 30 348 −632 OA(9,6)

− 81 40 13 26 172 −148 Absolute bound
40 25 14 138 −272 Absolute bound

+ 81 40 19 20 440 −540 Paley(81); OA(9,5); projective ternary [20,4] code with weights
12, 15; 2-graph−∗

+ 82 36 15 16 441 −540 2-graph
45 24 25 440 −541 S(2,5,41); 2-graph

? 85 14 3 2 434 −350

70 57 60 250 −534

+ 85 20 3 5 350 −534 O5(4) polar graph;Sp4(4) polar graph
64 48 48 434 −450

? 85 30 11 10 534 −450

54 33 36 350 −634 S(2,6,51)?
? 85 42 20 21 4.11042 −5.11042 2-graph−∗?
? 88 27 6 9 355 −632

60 41 40 532 −455

+ 89 44 21 22 4.21744 −5.21744 Paley(89); 2-graph−∗
! 91 24 12 4 1013 −277

(14
2

)

66 45 55 177 −1113

− 93 46 22 23 4.32246 −5.32246 Conf
? 95 40 12 20 275 −1019 2-graph−∗?

54 33 27 919 −375 2-graph−∗?
+ 96 19 2 4 357 −538 Haemers(4)

76 60 60 438 −457

+ 96 20 4 4 445 −450 GQ(5,3)
75 58 60 350 −545

? 96 35 10 14 363 −732

60 38 36 632 −463

− 96 38 10 18 276 −1019 Degraer
57 36 30 919 −376
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∃ v k λ µ r f sg comments
? 96 45 24 18 920 −375 2-graph?

50 22 30 275 −1020 2-graph?
+ 97 48 23 24 4.42448 −5.42448 Paley(97); 2-graph−∗
? 99 14 1 2 354 −444

84 71 72 344 −454

? 99 42 21 15 921 −377

56 28 36 277 −1021

+ 99 48 22 24 454 −644 2-graph−∗
50 25 25 544 −554 S(2,5,45); 2-graph−∗

! 100 18 8 2 818 −281 102

81 64 72 181 −918

! 100 22 0 6 277 −822 Higman-Sims graph [207];HS01.2/M22.2; unique by Gewirtz
[162]; q2

22 = 0
77 60 56 722 −377 q1

11 = 0
+ 100 27 10 6 727 −372 OA(10,3)

72 50 56 272 −827 OA(10,8)?
? 100 33 8 12 366 −733

66 44 42 633 −466

+ 100 33 14 9 824 −375 S(2,3,25)
66 41 48 275 −924

− 100 33 18 7 1311 −288 Absolute bound
66 39 52 188 −1411 Absolute bound

+ 100 36 14 12 636 −463 Hall-Janko graph;J2.2/U3(3).2; subconstituent ofG2(4) graph;
OA(10,4)

63 38 42 363 −736 OA(10,7)?
+ 100 44 18 20 455 −644 Jørgensen-Klin graph [226];RSHCD−; 2-graph

55 30 30 544 −555 2-graph
+ 100 45 20 20 545 −554 OA(10,5)?;RSHCD+; 2-graph

54 28 30 454 −645 OA(10,6)?; 2-graph

Comments

Comment Explanation

q1
11 = 0, q2

22 = 0 zero Krein parameter, see§11.4
m2 Hamming graphH(2,m), i.e., lattice graphL2(m), i.e., grid

graphm×m, i.e.,Km�Km, see§12.3.1,§1.4.5(m
2

)
Johnson graphJ(m,2), i.e., triangular graphT(m), see
§12.3.2,§1.4.5

OA(n, t) (t ≥ 3) block graph of an orthogonal arrayOA(n, t) (t−2 mutually
orthogonal Latin squares of ordern)

S(2,k,v) block graph of a Steiner systemS(2,k,v), i.e., of a 2-
(v,k,1) design

Goethals-Seidel(k, r) graph constructed from a Steiner systemS(2,k,v) (with
r = (v−1)/(k−1)) and a Hadamard matrix of orderr +1
as in [171]

2-graph graph in the switching class of a regular 2-graph, see§10.2
2-graph−∗ descendant of a regular 2-graph, see§10.2
RSHCD± Regular 2-graph derived from a regular symmetric

Hadamard matrix with constant diagonal (cf.§10.5.1, [59],
[171])

continued...
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Comment Explanation

Taylor 2-graph forU3(q)graph derived from Taylor’s regular 2-graph (cf. [59],
[319], [320])

Paley(q) Paley graph onFq, see§10.4,§13.6
vanLint-Schrijver(u) graph constructed by the cyclotomic construction of [245],

taking the union ofu classes
Bilin2×d(q) graph on the 2×d matrices overFq, adjacent when their

difference has rank 1
GQ(s, t) collinearity graph of a generalized quadrangle with param-

etersGQ(s, t), see§9.6.3
Oε

2d(q), O2d+1(q) isotropic points on a nondegenerate quadric in the projec-
tive spacePG(2d− 1,q) or PG(2d,q), joined when the
connecting line is totally singular

Sp2d(q) points of PG(2d− 1,q) provided with a nondegenerate
symplectic form, joined when the connecting line is totally
isotropic

Ud(q) isotropic points ofPG(d− 1,q2) provided with a nonde-
generate Hermitean form, joined when the connecting line
is totally isotropic

NOε
2d(2) nonisotropic points ofPG(2d−1,2) provided with a non-

degenerate quadratic form, joined when they are orthogo-
nal, i.e., when the connecting line is a tangent

NOε
2d(3) one class of nonisotropic points ofPG(2d−1,3) provided

with a nondegenerate quadratic form, joined when they are
orthogonal, i.e., when the connecting line is elliptic

NOε
2d+1(q) one class of nondegenerate hyperplanes ofPG(2d,q) pro-

vided with a nondegenerate quadratic form, joined when
their intersection is degenerate

NOε⊥
2d+1(5) one class of nonisotropic points ofPG(2d,5) provided

with a nondegenerate quadratic form, joined when they are
orthogonal

NUn(q) nonisotropic points ofPG(n−1,q) provided with a nonde-
generate Hermitean form, joined when the connecting line
is a tangent

VOε
2d(q) vectors of a 2d-dimensional vector space overFq provided

with a nondegenerate quadratic formQ, where two vectors
u andv are joined whenQ(v−u) = 0

VNOε
2d(q) (q odd) vectors of a 2d-dimsensional vector space overFq pro-

vided with a nondegenerate quadratic formQ, where two
vectorsu and v are joined whenQ(v− u) is a nonzero
square
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9.10 Exercises

Exercise 1 ([171]) Consider the graph on the set of flags (incident point-line pairs)
of the projective planePG(2,4) where(p,L) and(q,M) are adjacent whenp 6= q
andL 6= M and eitherp∈M or q∈ L. Show that this graph is strongly regular with
parameters(v,k,λ ,µ) = (105,32,4,12).

Exercise 2 ([23]) Consider the graph on the cosets of the perfect ternary Golay
code (an [11,6,5] code overF3), where two cosets are adjacent when they differ
by a vector of weight 1. Show that this graph is strongly regular with parameters
(v,k,λ ,µ) = (243,22,1,2). It is known as theBerlekamp-van Lint-Seidel graph.

Exercise 3 For a strongly regular graphΓ and a vertexx of Γ , let∆ be the subgraph
of Γ induced on the set of vertices different fromx and nonadjacent tox. If Γ has no
triangles and spectrumk1, r f , sg, then show that∆ has spectrum(k− µ)1, r f−k,
sg−k, (−µ)k−1. Conclude ifΓ is primitive that f ≥ k andg≥ k, and that if f = k
or g= k then∆ is itself complete or strongly regular. Determine all strongly regular
graphs withλ = 0 and f = k.

Exercise 4 ([34]) Show that having a constantk almost follows from having con-
stantλ ,µ . More precisely: Consider a graphΓ with the property that any two adja-
cent (non-adjacent) vertices haveλ (resp.µ) common neighbors. Show that ifΓ is
not regular, then eitherµ = 0 andΓ is a disjoint union of(λ +2)-cliques, orµ = 1,
andΓ is obtained from a disjoint union of(λ +1)-cliques by adding a new vertex,
adjacent to all old vertices.

Exercise 5 Prove Theorem 9.6.2.

Exercise 6 A spread in a generalized quadrangle is a subsetSof the lines such that
every point is on exactly one line ofS. Prove that aGQ(q2,q) has no spread. Hint:
A spread is a coclique in the line graph.

Exercise 7 Show that the Schläfli graph is obtained fromL(K8) (that is,T(8)) by
switching one point isolated, and removing it.

Exercise 8([226]) Show that the strongly regular graph with parameters(v,k,λ ,µ)=
(100,45,20,20) obtained from the Hall-Janko graph in§9.1.12 can be switched into
a strongly regular graph with parameters (100,55,30,30).

Exercise 9 There exist strongly regular graphs inF4
3, invariant for translation and

dilatation, with parameters(v,k,λ ,µ) = (81,20,1,6) and(81,30,9,12). Determine
the corresponding ternary codes and their weight enumerators.

Exercise 10 With C andD as in§9.7, show thatC∪D induces a distance-regular
graph of diameter three with intersection array{10,9,4;1,6,10}.
Exercise 11 With Γ as in §9.7, show thatχ(Γ ) ≥ 6 also follows from Corol-
lary 3.6.4 applied to the induced subgraph ofΓ , obtained by deleting all vertices
of one color class.
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Exercise 12Under what conditions is the Hamming code cyclic? Negacyclic? Con-
stacyclic?

Exercise 13 A cap in a projective space is a collection of points, no three on a line.
Show that a[n,n−m,4] code overFq exists if and only if there is a cap of sizen in
PG(m−1,q). Construct form> 0 a[2m−1,2m−1−m,4] binary code.

Exercise 14 Given a two-weight code overFq of word lengthn, dimensionm and
weightsw1 andw2. Express the parametersv, k, λ , µ , r, s, f , g of the corresponding
strongly regular graph in terms ofq, n, k, w1 andw2.





Chapter 10
Regular two-graphs

10.1 Strong graphs

Let us call a graph(possibly improper) strongly regularwhen it is strongly regular or
complete or edgeless. Above (Theorem 9.1.2) we saw that a graphΓ is (possibly im-
proper) strongly regular if and only if its adjacency matrixA satisfiesA2 ∈ 〈A, I ,J〉,
where〈. . .〉 denotes theR-span. In particular, this condition implies thatΓ is regular,
so thatAJ= JA.

Consider the Seidel matrixS= J− I − 2A (see§1.8.2). We have〈A, I ,J〉 =
〈S, I ,J〉. If A2 ∈ 〈A, I ,J〉 then alsoS2 ∈ 〈S, I ,J〉, but the converse does not hold. For
example, consider the pathP3 of length 2. We haveS2 = S+2I , butA only satisfies
the cubic equationA3 = 2A.

We call a graphstrongwhenever its Seidel matrixSsatisfiesS2 ∈ 〈S, I ,J〉. Thus a
(possibly improper) strongly regular graph is strong, and conversely a regular strong
graph is (possibly improper) strongly regular. As we saw, a strong graph need not
be regular. Another example is given byC5+K1, where the Seidel matrix satisfies
S2 = 5I . But the following properties are satisfied (recall that an eigenvalue is called
restrictedif it has an eigenvector orthogonal to the all-ones vector1):

Proposition 10.1.1 For a graphΓ with v vertices and Seidel matrix S the following
holds:

(i) Γ is strong if and only if S has at most two restricted eigenvalues. In this
case(S− ρ1I)(S− ρ2I) = (v− 1+ ρ1ρ2)J, whereρ1 and ρ2 are restricted
eigenvalues of S.

(ii) Γ is strong and regular if and only ifΓ is (possibly improper) strongly reg-
ular. In this case the eigenvalueρ0 of S for1 satisfies(ρ0−ρ1)(ρ0−ρ2) =
v(v−1+ρ1ρ2).

(iii) If Γ is strong with restricted eigenvaluesρ1 and ρ2, and v− 1+ ρ1ρ2 6= 0,
thenΓ is regular, and hence (possibly improper) strongly regular.

(iv) S has a single restricted eigenvalue if and only if S=±(J− I), that is, if and
only if Γ is complete or edgeless.

149
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Proof. (i) If Γ is strong thenS2 + αS+ β I = γJ for some constantsα, β and
γ. If ρ is a restricted eigenvalue ofS with eigenvectorv orthogonal to1, then
(ρ2+αρ +β )v = γJv = 0, soρ2+αρ +β = 0. ThereforeS has at most two re-
stricted eigenvalues. Conversely, ifShas just two restricted eigenvaluesρ1 andρ2,
then(S−ρ1I)(S−ρ2I) ∈ 〈J〉, soΓ is strong. And if(S−ρ1I)(S−ρ2I) = γJ, then
the diagonal entries show thatγ = v−1+ρ1ρ2.
(ii) We know that (possibly improper) strongly regular implies strong and regular.
SupposeΓ is strong and regular, thenS2 ∈ 〈S, I ,J〉 andSJ∈ 〈J〉, this implies that
the adjacency matrixA= (J−S− I)/2 of Γ satisfiesA2 ∈ 〈A, I ,J〉, soΓ is (possibly
improper) strongly regular by Theorem 9.1.2.
(iii) If Γ is not regular, thenJ is not a polynomial inS, sov−1+ρ1ρ2 = 0 follows
from part (i). �

We see thatv−1+ρ1ρ2 = 0 if and only if S has exactly two distinct eigenvalues
ρ1 and ρ2. Recall that two graphsΓ and Γ̃ are switching equivalent (see Sec-
tion 1.8.2) if their Seidel matricesS and S̃ are similar by some diagonal matrix
D= diag(±1, . . . ,±1) (i.e.S̃=DSD). So switching equivalent graphs have the same
Seidel spectrum, and therefore the property of being strongwith two Seidel eigen-
values is invariant under Seidel switching.

SupposeΓ is a strong graph onv vertices with two Seidel eigenvaluesρ1 and
ρ2 (sov−1+ρ1ρ2 = 0). Clearly,Γ is regular of degreek if and only if its Seidel
matrix has constant row sumv−1−2k. Thereforev−1−2k= ρ0 is an eigenvalue
of S, so eitherρ0 = ρ1, or ρ0 = ρ2. Switching inΓ produces another strong graph,
which may or may not be regular. If it is regular, then it is regular of degree either
(v−1−ρ1)/2 or (v−1−ρ2)/2.

Examples (i) If Γ is P3, then the Seidel eigenvalues are−1 and 2, so a regular
graph that is switching equivalent must have degree either 3/2 or 0. The former is
impossible, but the latter happens:P3 is switching equivalent to 3K1.

(ii) If Γ is C5+K1, then the eigenvalues are±
√

5, and so can never be equal to
the row sum. So this graph cannot be switched into a regular one.

(iii) If Γ is the 4×4 grid (the lattice graphL2(4)), thenv = 16 andρ0 = ρ1 =
3, ρ2 = −5. SoΓ is strong with two eigenvalues. Switching inΓ with respect to
a coclique of size 4 gives again a regular graph with the same parameters asΓ ,
but which is not isomorphic toΓ . This is the Shrikhande graph (see Section 9.2).
Switching with respect to the union of two parallel lines in the grid (that is, two
disjoint 4-cliques inΓ ) gives a regular graph of degree 10, the Clebsch graph (see
Section 9.2).

Strong graphs were introduced by Seidel [299].
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10.2 Two-graphs

A two-graphΩ = (V,∆) consists of a finite setV, together with a collection∆ of
unordered triples fromV, such that every 4-subset ofV contains an even number of
triples from∆ . The triples from∆ are calledcoherent.

From a graphΓ = (V,E), one can construct a two-graphΩ = (V,∆) by defining
a triple fromV to be coherent if the three vertices induce a subgraph inΓ with an
odd number of edges. It is easily checked that out of the four triples in any graph on
four vertices, 0, 2, or 4 are coherent. SoΩ is a two-graph. We callΩ the two-graph
associatedto Γ .

Observe that Seidel switching does not change the parity of the number of edges
in any 3-vertex subgraph ofΓ . Therefore switching equivalent graphs have the same
associated two-graph. Conversely, from any two-graphΩ =(V,∆) one can construct
a graphΓ as follows. Takeω ∈V. Define two verticesx,y∈V \{ω} to be adjacent
in Γ if {ω,x,y} ∈ ∆ , and defineω to be an isolated vertex ofΓ . We claim that every
triple {x,y,z} ∈ ∆ has an odd number of edges inΓ , which makesΩ the two-graph
associated toΓ . If ω ∈ {x,y,z} this is clear. Ifω 6∈ {x,y,z}, the 4-subgraph condition
implies that{x,y,z} ∈ ∆ whenever from the triples{ω,y,z}, {ω,x,y}, {ω,x,z} just
one, or all three are coherent. Hence{x,y,x} has one or three edges inΓ . Thus we
have established a one-to-one correspondence between two-graphs and switching
classes of graphs.

Small two-graphs were enumerated in [74]. The number of nonisomorphic two-
graphs onn vertices for smalln is

n 0 1 2 3 4 5 6 7 8 9 10
# 1 1 1 2 3 7 16 54 243 2038 33120

There is an explicit formula for arbitraryn. See, e.g., [255].

For the graphΓ with an isolated vertexω, obtained fromΩ as indicated above,
the graphΓ \ω plays an important r̂ole. It is called thedescendantof Ω with respect
to ω, and will be denoted byΓω .

Since switching equivalent graphs have the same Seidel spectrum, we can define
the eigenvalues of a two-graph to be the Seidel eigenvalues of any graph in the
corresponding switching class.

Seidel & Tsaranov [303] classified the two-graphs with smallest Seidel eigen-
value not less than−3:

Theorem 10.2.1 (i) A graph Γ with smallest Seidel eigenvalue larger than−3 is
switching equivalent to the void graph on n vertices, to the one-edge graph on n
vertices, or to one of the following2+3+5 graphs on5,6,7 vertices, respectively:

•
•

•
• •

•
•

•
• •

•••
• • •

•••
• • •

• •
•

•
• • • • •

• • •
•

• • •
• • •
•

• • •
• • •
•

• • •
• • •
• •

•
•
• •
••
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(ii) A graph Γ with smallest Seidel eigenvalue not less than−3 is switching
equivalent to a subgraph of mK2 or of T(8), the complement of the line graph of K8.
�

10.3 Regular two-graphs

A two-graph(V,∆) is calledregular (of degreea) if every unordered pair fromV is
contained in exactlya triples from∆ . SupposeΩ = (V,∆) is a two-graph, and let
∇ be the set of non-coherent triples, then it easily follows that Ω = (V,∇) is also a
two-graph, called thecomplementof Ω . Moreover,Ω is regular of degreea if and
only if the complementΩ is regular of degreea= v−2−a. The following result
relates regular two-graphs with strong graphs and stronglyregular graphs.

Theorem 10.3.1For a graphΓ with v vertices, its associated two-graphΩ , and
any descendantΓω of Ω the following are equivalent.

(i) Γ is strong with two Seidel eigenvaluesρ1 andρ2.
(ii) Ω is regular of degree a.

(iii) Γω is (possibly improper) strongly regular with parameters(v− 1,k,λ ,µ)
with µ = k/2.

The parameters are related by v= 1− ρ1ρ2, a= k = 2µ = −(ρ1+1)(ρ2+1)/2,
andλ = (3k− v)/2= 1− (ρ1+3)(ρ2+3)/4. The restricted Seidel eigenvalues of
Γω are ρ1 andρ2, andρ1+ρ2 = v−2a−2= a−a.

Proof. (ii)⇒ (iii ): Letx be a vertex ofΓω . The number of coherent triples containing
ω andx equals the number of edges inΓω containingx, soΓω is regular of degreea.
For two verticesx andy in Γω , let p(x,y) denote the number of verticesz (z 6= x,y)
adjacent tox but not toy. If x andy are distinct non-adjacent, thenp(x,y)+ p(y,x) =
a, and the numberµ of common neighbors ofx andy equalsk− p(x,y) = k− p(y,x).
Thereforeµ = k/2= a/2 is independent ofx andy. Similarly, if x andy are adjacent,
then p(x,y) + p(y,x) = a (the degree of the complement), and the numberλ of
common neighbors ofx andy equalsk−1− p(x,y) = k−1− p(y,x), which implies
λ = (3k−v)/2, which is independent ofx andy.
(iii )⇒ (ii): If Γω is strongly regular andk = 2µ , then Theorem 9.1.3 givesλ =
(3k−v)/2. With the relations above this shows thatΩ is regular of degreek.
(i)⇒ (iii ): Switch inΓ with respect to the neigbors ofω, thenω becomes isolated,
andΓ \ω = Γω . If Sω is the Seidel matrix ofΓω , then

S=

[
0 1⊤

1 Sω

]

is the Seidel matrix ofΓ . We know (S− ρ1I)(S− ρ2I) = 0. This gives(Sω −
ρ1I)(Sω −ρ2I) =−J, ThereforeΓω is strongly regular with restricted Seidel eigen-
valuesρ1 andρ2 andv−1=−ρ1ρ2 vertices. FromS= J−2A− I we get the adja-
cency eigenvaluesr =−(ρ1+1)/2 ands=−(ρ2+1)/2 of Γω . Now the parameters
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of Γω follow from Theorem 9.1.3.
(iii )⇒ (i): SupposeΓω is strongly regular withk= 2µ and Seidel matrixSω . Then it
follows readily thatSω1= (ρ1+ρ2)1 and(Sω−ρ1I)(Sω−ρ2I) =−J. This implies
thatSsatisfies(S−ρ1I)(S−ρ2I) = 0. �

Small regular two-graphs have been classified. The table below gives the num-
bers of nonisomorphic nontrivial regular two-graphs withρ1 = −3 or ρ1 = −5 or
v≤ 50.

v 6 10 14 16 18 26 28 30 36
ρ1,ρ2 ±

√
5 ±3 ±

√
13 −3,5 ±

√
17 ±5 −3,9 ±

√
29 −5,7

# 1 1 1 1 1 4 1 6 227

v 38 42 46 50 76 96 126 176 276
ρ1,ρ2 ±

√
37 ±

√
41 ±

√
45 ±7 −5,15 −5,19 −5,25 −5,35 −5,55

# ≥ 191 ≥ 18 ≥ 97 ≥ 54 ? ? 1 1 1

10.3.1 Related strongly regular graphs

Given the parameters of a regular two-graphΩ , we find three parameter sets for
strongly regular graphs that may be related, namely that of the descendants, and
the two possible parameter sets for regular graphs in the switching class ofΩ . The
parameters are given by:

Proposition 10.3.2 (i) Let Γ be strongly regular with parameters(v,k,λ ,µ). The
associated two-graphΩ is regular if and only if v= 2(2k− λ − µ). If this is the
case, then it has degree a= 2(k− µ), andΓω is strongly regular with parameters
(v−1,2(k−µ),k+λ −2µ ,k−µ).

(ii) Conversely, ifΓ is regular of valency k, and the associated two-graphΩ is
regular of degree a, thenΓ is strongly regular with parametersλ = k− (v−a)/2
andµ = k−a/2, and k satisfies the quadratic2k2− (v+2a)k+(v−1)a= 0.

Proof. (i) By definition,Ω is regular of degreea if and only if a= λ +(v−2k+
λ ) = 2(k−µ). The parameters follow immediately.
(ii) The quadratic expresses thatk− 1

2v∈ {r,s}. �

In the case of the regular two-graph on 6 vertices, the descendants are pentagons,
and there are no regular graphs in the switching class.

In the case of the regular two-graph on 10 vertices, the descendants are grid
graphs 3×3. The switching class contains both the Petersen graph and its comple-
ment. ThereforeΩ is isomorphic to its complement (and so are the descendants).

In the case of the regular two-graph on 16 vertices, the descendants are isomor-
phic to the triangular graphT(6) (with parameters (15,8,4,4) and spectrum 81 25

(−2)9). The switching class contains the grid graph 4×4 and the Shrikhande graph
(both with parameters (16,6,2,2) and spectrum 61 26 (−2)9), and the Clebsch graph
(with parameters (16,10,6,6) and spectrum 101 25 (−2)10).



154 10 Regular two-graphs

It remains to specify what switching sets are needed to switch between two strongly
regular graphs associated to the same regular two-graph.

Proposition 10.3.3 Let Γ be strongly regular with parameters(v,k,λ ,µ), associ-
ated with a regular two-graph.

(i) The graphΓ is switched into a strongly regular graph with the same param-
eters if and only if every vertex outside the switching set S is adjacent to half
of the vertices of S.

(ii) The graphΓ is switched into a strongly regular graph with parameters(v,k+
c,λ + c,µ + c) where c= 1

2v−2µ if and only if the switching set S has size
1
2v and is regular of valency k−µ . �

For example, in order to switch the 4×4 grid graph into the Shrikhande graph,
we can switch with respect to a 4-coclique. And in order to switch the 4×4 grid
graph into the Clebsch graph, we need a split into two halves that are regular with
valency 4, and the union of two disjointK4’s works.

Regular two-graphs were introduced by Graham Higman and further investigated
by Taylor [318].

10.3.2 The regular two-graph on 276 points

If N is the point-block incidence matrix of the unique Steiner systemS(4,7,23), then
NN⊤ = 56I +21J, NJ= 77J, JN= 7J. Since any two blocks in this Steiner system
meet in 1 or 3 points, we haveN⊤N = 7I +A+3(J− I −A) whereA describes the
relation of meeting in 1 point. As we already saw in§9.1.10,A is the adjacency
matrix of a strongly regular graph—in this case one with parameters(v,k,λ ,µ) =
(253,112,36,60) and spectrum 1121 2230 (−26)22. The Seidel matrixS= J− I−2A
has spectrum 281 (−5)230 5122 and satisfies(S− 51I)(S+ 5I) = −3J. Now S′ =(

J− I J−2N
J−2N⊤ S

)
satisfies(S′−55I)(S′+5I) = 0 and hence is the Seidel matrix

of a regular two-graph on 276 vertices. This two-graph is unique (Goethals & Seidel
[172]). Its group of automorphisms is Co3, acting 2-transitively.

10.3.3 Coherent subsets

A clique, or coherentsubset in a two-graphΩ = (V,∆) is a subsetC of V such that
all triples inC are coherent. Ifx /∈C, thenx determines a partition{Cx,C′x} of C into
two possibly empty parts such that a triplexyzwith y,z∈ C is coherent precisely
wheny andzbelong to the same part of the partition.
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Proposition 10.3.4 (Taylor [320])Let C be a nonempty coherent subset of the reg-
ular two-graphΩ with eigenvaluesρ1, ρ2, whereρ2 < 0. Then

(i) |C| ≤ 1−ρ2, with equality iff for each x/∈C we have|Cx|= |C′x|,
and

(ii) |C| ≤m(ρ2).

Proof. (i) Let c= |C|. Counting incoherent triples that meetC in two points, we
find 1

2c(c− 1)a = ∑x/∈C |Cx|.|C′x| ≤ ∑x/∈C(c/2)2 = 1
4c2(v− c). It follows that c2−

(v− 2a)c− 2a≤ 0. But the two roots ofx2− (v− 2a)x− 2a = 0 are 1− ρ1 and
1−ρ2, hence 1−ρ1≤ c≤ 1−ρ2.

(ii) This follows by making a system of equiangular lines inRm as in§10.6.1
corresponding to the complement ofΩ . We can choose unit vectors for the points in
C such that their images form a simplex (any two have the same inner product) and
hence|C| is bounded by the dimensionm= v−m(ρ1) = m(ρ2). �

10.3.4 Completely regular two-graphs

In a regular two-graph each pair is ina2 = a coherent triples, that is, ina2 3-cliques,
and each coherent triple is ina3 4-cliques, wherea3 is the number of common
neighbours of two adjacent vertices in any strongly regulargraphΓω , so thata3 =
−1

4(ρ1+3)(ρ2+3)+1 by Theorem 10.3.1.
Let at-regular two-graphbe a regular two-graph in which everyi-clique is con-

tained in a nonzero constant numberai of (i +1)-cliques, for 2≤ i ≤ t. By Propo-
sition 10.3.4 we must havet ≤ −ρ2. A completely regular two-graphis a t-regular
two-graph witht =−ρ2. For example, the regular two-graph on 276 points (§10.3.2)
is completely regular. Neumaier [273] introduced this concept and gave parameter
restrictions strong enough to leave only a finite list of feasible parameters. There are
five examples, and two open cases.

# ρ1 ρ2 v a2 a3 a4 a5 a6 a7 existence
1 3 −3 10 4 1 unique [298]
2 5 −3 16 6 1 unique [298]
3 9 −3 28 10 1 unique [298]
4 7 −5 36 16 6 2 1 unique (BH)
5 19 −5 96 40 12 2 1 none (NP)
6 25 −5 126 52 15 2 1 none [273]
7 55 −5 276 112 30 2 1 unique [172]
8 21 −7 148 66 25 8 3 2 1 none [273]
9 41 −7 288 126 45 12 3 2 1 none [30]

10 161 −7 1128 486 165 36 3 2 1 ?
11 71 −9 640 288 112 36 10 4 3 none (BH)
12 351 −9 3160 1408 532 156 30 4 3 ?
13 253 −11 2784 1270 513 176 49 12 5 none [273]

Table 10.1 Parameters of completely regular two-graphs
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Here (BH) refers to an unpublished manuscript by Blokhuis and Haemers, while
(NP) is the combination of Neumaier [273] who showed that a derived graph on 95
vertices must be locallyGQ(3,3), and Pasechnik [275] who classified such graphs
and found none on 95 vertices.

10.4 Conference matrices

The Seidel matrix ofC5 +K1 is an example of a so calledconference matrix. An
n×n matrix S is aconference matrixif all diagonal entries are 0, the off-diagonal
entries are±1, andSS⊤ = (n−1)I .

Multiplying a row or column by−1 (switching) does not affect the conference
matrix property. It was shown in [134] that any conference matrix can be switched
into a form where it is either symmetric or skew symmetric:

Lemma 10.4.1 Let S be a conference matrix of order n with n> 2. Then n is even
and one can find diagonal matrices D and E with diagonal entries ±1 such that
(DSE)⊤ = DSE if and only if n≡ 2 (mod 4). One can find such D and E with
(DSE)⊤ =−DSE if and only if n≡ 0 (mod 4).

Proof. Switch rows and columns so as to make all non-diagonal entries of the
first row and column equal to 1. The second row now hasn/2 entries 1 and equally
many entries−1 (since it has inner product zero with the first row). So,n is even,
sayn= 2m+2. Let there bea,b,c,d entries 1,−1,1,−1 in the third row below the
entries 1,1,−1,−1 of the second row, respectively. We may assume (by switching
the first column and all rows except the first if required) thatS23= 1. If S32= 1 then
a+b= m−1, c+d = m, a+ c+1= m, a−b− c+d+1= 0 imply a+1= b=
c= d = 1

2mso thatm is even. IfS32=−1 thena+b= m−1, c+d = m, a+c= m,
a−b− c+d+1 = 0 imply a = b = c−1 = d = 1

2(m−1) so thatm is odd. This
proves that after switching the first row and column to 1, the matrix Shas become
symmetric in casen≡ 2 (mod 4), while after switching the first row to 1 and the
first column to−1, the matrixShas become skew symmetric in casen≡ 0 (mod 4).
�

Thus, if n≡ 2 (mod 4), Sgives rise to a strong graph with two eigenvalues and its
associated two-graph is regular of degree(n−2)/2. The descendants are strongly
regular with parameters(n−1,(n−2)/2,(n−6)/4,(n−2)/4). We call these graphs
conference graphs. Conference graphs are characterized among the strongly regular
graphs byf = g ( f andg are the multiplicities of the restricted eigenvalues), andare
the only cases in which non-integral eigenvalues can occur.

The following condition is due to Belevitch [22].

Theorem 10.4.2 If n is the order of a symmetric conference matrix, then n− 1 is
the sum of two integral squares.

Proof. CC⊤ = (n− 1)I implies thatI and (n− 1)I are rationally congruent (two
matricesA andB are rationally congruent if there exists a rational matrixR such
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that RAR⊤ = B). A well-known property (essentially Lagrange’s four squares the-
orem) states that for every positive rational numberα, the 4×4 matrix αI4 is ra-
tionally congruent toI4. This implies that then× n matrix αIn is rationally con-
gruent to diag(1, . . . ,1,α, . . . ,α) where the number of ones is divisible by 4. Since
n≡ 2 (mod 4), I must be rationally congruent to diag(1, . . . ,1,n− 1,n− 1). This
implies thatn−1 is the sum of two squares. �

Note that this theorem also gives a necessary condition for the existence of confer-
ence graphs. For example, 21 is not the sum of two squares, therefore there exists
no conference matrix of order 22, and no strongly regular graph with parameters
(21,10,4,5).

For many values ofn conference matrices are known to exist, see for example
[170]. The following construction, wheren−1 is an odd prime power, is due to Pa-
ley [274]. LetSω be a matrix whose rows and columns are indexed by the elements
of a finite fieldFq of orderq, q odd. by(Sω)i, j = χ(i− j), whereχ is the quadratic
residue character (that is,χ(0) = 0 andχ(x) = 1 if x is a square, and−1 if x is not
a square). It follows thatS is symmetric ifq≡ 1 (mod 4), andS is skew symmetric
if q≡ 3 (mod 4). In both cases

S=

[
0 1⊤

1 Sω

]

is a conference matrix. Ifn≡ 2 (mod 4), Srepresents a regular two-graph and all its
descendants are isomorphic. They are thePaley graphs, that we already encountered
in §9.1.2.

10.5 Hadamard matrices

Closely related to conference matrices are Hadamard matrices. A matrixH of order
n is called aHadamard matrixif every entry is 1 or−1, andHH⊤ = nI. If H is
a Hadamard matrix, then so isH⊤. If a row or a column of a Hadamard matrix is
multiplied by−1, the matrix remains a Hadamard matrix. Thecoreof a Hadamard
matrix H (with respect to the first row and column) is the matrixC of ordern−
1 obtained by first multiplying rows and columns ofH by ±1 so as to obtain a
Hadamard matrix of which the first row and column consist of ones only, and then
deleting the first row and column. Now all entries ofC are±1, and we haveCC⊤ =
C⊤C= nI−J, andC1=C⊤1=−1. This implies that the(0,1) matrixN= 1

2(C+J)
satisfiesN⊤1= (1

2n−1)1 andNN⊤ = 1
4nI +(1

4n−1)J, so that, forn> 2, N is the
incidence matrix of a symmetric 2-(n−1, 1

2n−1, 1
4n−1) design. Conversely, ifN

is the incidence matrix of a 2-design with these parameters,then 2N−J is the core
of a Hadamard matrix. Note that the design parameters imply thatn is divisible by
4 if n> 2. The famous Hadamard conjecture states that this condition is sufficient
for existence of a Hadamard matrix of ordern. Many constructions are known (see
below), but the conjecture is still far from being solved.
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A Hadamard matrixH is regular if H has constant row and column sum (ℓ say).
Now−H is a regular Hadamard matrix with row sum−ℓ. FromHH⊤ = nI we get
thatℓ2 = n, soℓ=±√n, andn is a square. IfH is a regular Hadamard matrix with
row sumℓ, thenN = 1

2(H + J) is the incidence matrix of a symmetric 2-(n,(n+
ℓ)/2,(n+2ℓ)/4) design. Conversely, ifN is the incidence matrix of a 2-design with
these parameters (aMenon design), then 2N−J is a regular Hadamard matrix.

A Hadamard matrixH is graphical if it is symmetric with constant diagonal.
Without loss of generality we assume that the diagonal elements are 1 (otherwise
we replaceH by−H). If H is a graphical Hadamard matrix of ordern, thenS=H− I
is the Seidel matrix of a strong graphΓ with two Seidel eigenvalues:−1±√n. In
other words,Γ is in the switching class of a regular two-graph. The descendent of
Γ with respect to some vertex has Seidel matrixC− I , whereC is the corresponding
core ofH. It is a strongly regular graph with parameters(v,k,λ ,µ) = (n−1, 1

2n−
1, 1

4n−1, 1
4n−1). From trS= 0 it follows that also for a graphical Hadamard matrix

n is a square. If, in addition,H is regular with row sumℓ = ±√n, thenΓ is a
strongly regular graph with parameters(n,(n− ℓ)/2,(n− 2ℓ)/4,(n− 2ℓ)/4). And
conversely, a strongly regular graph with one of the above parameter sets gives rise
to a Hadamard matrix of ordern.

There is an extensive literature on Hadamard matrices. See,e.g., [296, 297, 105].

10.5.1 Constructions

There is a straightforward construction of Hadamard matrices from conference ma-
trices. If S is a skew symmetric conference matrix, thenH = S+ I is a Hadamard
matrix, and ifS is a symmetric conference matrix, then

H =

[
S+ I S− I
S− I −S− I

]

is a Hadamard matrix. Thus the conference matrices constructed in the previous
section give Hadamard matrices of ordern= 4m if 4m−1 is a prime power, and if
m is odd and 2m−1 is a prime power. Some small Hadamard matrices are:

[
1 1
1 −1

]
,




1 1 1−1
1 1−1 1
1 −1 1 1
−1 1 1 1


 and




1 −1 −1 −1
−1 1−1 −1
−1 −1 1−1
−1 −1 −1 1


 .

Observe that the two Hadamard matrices of order 4 are regularand graphical. One
easily verifies that, ifH1 andH2 are Hadamard matrices, then so is the Kronecker
productH1⊗H2. Moreover, ifH1 andH2 are regular with row sumsℓ1 andℓ2, re-
spectively, thenH1⊗H2 is regular with row sumℓ1ℓ2. Similarly, the Kronecker
product of two graphical Hadamard matrices is graphical again. With the small
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Hadamard matrices given above, we can make Hadamard matrices of ordern= 2t

and regular graphical Hadamard matrices of ordern= 4t with row sumℓ=±2t .
Let RSHCDbe the set of pairs(n,ε) such that there exists a regular symmetric

Hadamard matrixH with row sumsℓ = ε
√

n and constant diagonal, with diagonal
entries 1. If(m,δ ),(n,ε) ∈ RSHCD, then(mn,δε) ∈ RSHCD.

We mention some direct constructions:
(i) (4,±1), (36,±1), (100,±1), (196,±1) ∈ RSHCD.
(ii) If there exists a Hadamard matrix of orderm, then(m2,±1) ∈ RSHCD.
(iii) If both a−1 anda+1 are odd prime powers, then(a2,1) ∈ RSHCD.
(iv) If a+1 is a prime power and there exists a symmetric conference matrix of

ordera, then(a2,1) ∈ RSHCD.
(v) If there is a set oft−2 mutually orthogonal Latin squares of order 2t, then

(4t2,1) ∈ RSHCD.
(vi) (4t4,±1) ∈ RSHCD.
See [171], [59] and [296],§5.3. For the third part of (i), see [226]. For the fourth

part of (i), cf. [171], Theorem 4.5 (fork= 7) and [221]. For (ii), cf. [171], Theorem
4.4, and [193]. For (iii), cf. [296], Corollary 5.12. For (iv), cf. [296], Corollary 5.16.
For (v), consider the corresponding Latin square graph. For(vi), see [200].

10.6 Equiangular lines

10.6.1 Equiangular lines inRd and two-graphs

Seidel (cf. [238, 246, 135]) studied systems of lines in Euclidean spaceRd, all pass-
ing through the origin 0, with the property that any two make the same angleϕ. The
casesϕ = 0 (only one line) andϕ = π

2 (at mostd lines, mutually orthogonal) being
trivial, we assume 0< ϕ < π

2 . Let α = cosϕ, so that 0< α < 1. Choose for each
line ℓi a unit vectorxi on ℓi (determined up to sign). Thenx⊤i xi = 1 for eachi, and
x⊤i x j =±cosϕ =±α for i 6= j.

For the Gram matrixG of the vectorsxi this means thatG= I +αS, whereSis the
Seidel adjacency matrixof a graphΓ . (That is,S is symmetric with zero diagonal,
and has entries−1 and 1 for adjacent and nonadjacent vertices, respectively.) Note
that changing the signs of some of thexi corresponds toSeidel switchingof Γ .

Conversely, letSbe the Seidel adjacency matrix of a graph on at least two ver-
tices, and letθ be the smallest eigenvalue ofS. (Thenθ < 0 sinceS 6= 0 and trS= 0.)
Now S−θ I is positive semi-definite, andG= I − 1

θ S is the Gram matrix of a set of
vectors inRd, whered = rk(S−θ I) = n−m(θ) wheren is the number of vertices
of the graph, andm(θ) the multiplicity of θ as eigenvalue ofS.

We see that there is a 1-1 correspondence between dependent equiangular sys-
tems ofn lines and two-graphs onn vertices, and more precisely between equiangu-
lar systems ofn lines spanningRd (with d < n) and two-graphs onn vertices such
that the smallest eigenvalue has multiplicityn−d.
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Thus, in order to find large sets of equiangular lines, one hasto find large graphs
where the smallest Seidel eigenvalue has large multiplicity (or, rather, small comul-
tiplicity).

10.6.2 Bounds on equiangular sets of lines inRd or Cd

An upper bound for the size of an equiangular system of lines (and hence an upper
bound for the multiplicity of the smallest Seidel eigenvalue of a graph) is given by
the so-calledAbsolute bounddue to M. Gerzon (cf. [238]):

Theorem 10.6.1 (‘Absolute bound’)The cardinality n of a system of equiangular
lines in Euclidean spaceRd is bounded by12d(d+1).

Proof. Let Xi = xix⊤i be the rank 1 matrix that is the projection onto the lineℓi .
ThenX2

i = Xi and

trXiXj = (x⊤i x j)
2 =

{
1 if i = j

α2 otherwise.

We prove that the matricesXi are linearly independent. Since they are symmetric,
that will show that there are at most1

2d(d+1). So, suppose that∑ciXi = 0. Then
∑i ciXiXj = 0 for eachj, so thatc j(1−α2)+α2 ∑ci = 0 for eachj. This means that
all c j are equal, and since∑ci = tr ∑ciXi = 0, they are all zero. �

In Cd one can study lines (1-spaces) in the same way, choosing a spanning unit
vector in each and agreeing that〈x〉 and〈y〉 make angleφ = arccosα whereα =
|x∗y|. (Herex∗ stands forx⊤.) The same argument now proves

Proposition 10.6.2 The cardinality n of a system of equiangular lines inCd is
bounded by d2. �

There are very few systems of lines inRd that meet the absolute bound, but it is
conjectured that systems ofd2 equiangular lines inCd exist for all d. Such sys-
tems are known ford = 1,2,3,4,5,6,7,8,19 ([335, 213, 214, 174, 11]). In quantum
information theory they are known as SICPOVMs.

The special bound gives an upper bound forn in terms of the angleφ , or an upper
bound forφ (equivalently, a lower bound forα = cosφ ) in terms ofn.

Proposition 10.6.3 (‘Special bound’)If there is a system of n> 1 lines inRd or
Cd such that the cosine of the angle between any two lines is at most α, thenα2 ≥
(n−d)/(n−1)d, or, equivalently, n≤ d(1−α2)/(1−α2d) if 1−α2d > 0.

Proof. Let xi (1≤ i ≤ n) be unit vectors inRd or Cd with |x∗i x j | ≤ α for i 6= j.
Put Xi = xix∗i and Y = ∑i Xi − n

d I . Then trXiXj = |x∗i x j |2 ≤ α2 for i 6= j, and

trXi = trX2
i = 1. Now 0≤ trYY∗ ≤ n(n−1)α2+n− n2

d . �

Complex systems of lines with equality in the special bound are known asequian-
gular tight frames. There is a lot of recent literature.
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If equality holds in the absolute bound, then theXi span the vector space of all
symmetric matrices, and in particularI is a linear combination of theXi . If equality
holds in the special bound, the same conclusion follows. In both cases the following
proposition shows (in the real case) that the graphΓ belongs to a regular two-graph.

Proposition 10.6.4 Suppose xi (1≤ i≤ n) are unit vectors inRd orCd with |x∗i x j |=
α for i 6= j, where0< α < 1. Put Xi = xix∗i and suppose that there are constants ci

such that I= ∑ciXi . Then ci = d/n for all i and n= d(1−α2)/(1−α2d).
If the xi are vectors inRd, and G is the Gram matrix of the xi , and G= I +αS,

then S has eigenvalues(n− d)/(αd) and−1/α with multiplicities d and n− d,
respectively. If n> d+1 and n6= 2d, then these eigenvalues are odd integers.

Proof. If I = ∑ciXi thenXj = ∑i ciXiXj for eachj, so thatc j(1−α2)+α2 ∑ci = 1
for each j. This means that allc j are equal, and since∑ci = tr ∑ciXi = tr I = d,
they all equald/n. Our equation now becomes(d/n)(1−α2)+α2d = 1, so that
n= d(1−α2)/(1−α2d).

If F is thed×n matrix whose columns are the vectorsxi , thenG= F⊤F , while
FF⊤ = ∑xix⊤i = ∑Xi = (n/d)I . It follows thatFF⊤ has eigenvaluen/d with multi-
plicity d, andG=F⊤F has the same eigenvalues, and in addition 0 with multiplicity
n−d. The spectrum ofS follows. If the two eigenvalues of the integral matrixSare
not integers, they are conjugate algebraic integers, and then have the same multi-
plicity, so thatn= 2d. SinceS= J− I−2A, the eigenvalues ofS, when integral, are
odd. �

Graphs for which the Seidel adjacency matrixShas only two eigenvalues are strong
(cf. §10.1, Proposition 10.1.1) and belong to the switching classof a regular two-
graph (Theorem 10.3.1).

The known lower and upper bounds for the maximum number of equiangular
lines in Rd are given in the table below. For these bounds, see van Lint & Sei-
del [246], Lemmens & Seidel [238], Seidel [302] (p. 884).

d 1 2 3 4 5 6 7–14 15 16 17–18
Nmax 1 3 6 6 10 16 28 36 40 48

d 19 20 21 22 23–42 43
Nmax 72–76 90–96 126 176 276 344

Bounds for the size of systems of lines inRd or Cd with only a few different, spec-
ified, angles, or just with a given total number of different angles, were given by
Delsarte, Goethals & Seidel [135].

10.6.3 Bounds on sets of lines with few angles and sets of vectors
with few distances

In the case of equiangular lines the absolute value of the inner product took only
one value. Generalizing that, one has
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Theorem 10.6.5 ([135]) For a set of n unit vectors inRd such that the absolute
value of the inner product between distinct vectors takes s distinct values different
from 1, one has n≤

(d+2s−1
d−1

)
. If one of the inner products is0, then n≤

(d+2s−2
d−1

)
.

There are several examples of equality. For example, from the root system ofE8

one gets 120 lines inR8 with |α| ∈ {0, 1
2}.

Theorem 10.6.6 ([135]) For a set of n unit vectors inCd such that the abso-
lute value of the inner product between distinct vectors takes s distinct values
different from1, one has n≤

(d+s−1
d−1

)
2. If one of the inner products is0, then

n≤
(d+s−1

d−1

)(d+s−2
d−1

)
.

For example, there are systems of 40 vectors inC4 with |α| ∈ {0, 1√
3
} and 126

vectors inC6 with |α| ∈ {0, 1
2}.

For sets of unit vectors instead of sets of lines it may be morenatural to look at the
inner product itself, instead of using the absolute value.

Theorem 10.6.7 ([136]) For a set of n unit vectors inRd such that the inner product
between distinct vectors takes s distinct values, one has n≤

(d+s−1
d−1

)
+
(d+s−2

d−1

)
. If

the set is antipodal, then n≤ 2
(d+s−2

d−1

)
.

For example, in the antipodal case the upper bound is met withequality fors= 1
by a pair of vectors±x (with n = 2), for s= 2 by the vectors±ei of a coordinate
frame (withn= 2d), and fors= 6 by the set of shortest nonzero vectors in the Leech
lattice inR24 (with inner products−1,0,±1

4,±1
2 and sizen= 2

(28
5

)
).

In the general case the upper bound is met with equality fors= 1 by a simplex
(with n= d+1). Fors= 2 one has

d 2 5 6 22 23 3, 4, 7–21, 24–39
Nmax 5 16 27 275 276–277 1

2d(d+1)

with examples of equality in the boundn≤ 1
2d(d+3) for d = 2,6,22. The upper

bounds ford > 6, d 6= 22 are due to Musin [269].

Corollary 10.6.8 ([136]) Let Γ be a regular graph on n vertices, with smallest
eigenvalueθmin <−1 of multiplicity n−d. Then n≤ 1

2d(d+1)−1.

(Earlier we saw for strongly regular graphs thatn≤ 1
2 f ( f +3). Hered = f +1,

so this gives the same bound, but applies to a larger class of graphs.)

Theorem 10.6.9 ([29]) A set of vectors inRd such that the distance between distinct
vectors takes s values has size at most

(d+s
d

)
.

Ford≤ 8, the maximal size of a 2-distance set inRd was determined by Lisoněk
[247]. The results are

d 1 2 3 4 5 6 7 8
Nmax 3 5 6 10 16 27 29 45

so that equality holds in the Blokhuis bound
(d+2

2

)
for d = 1 andd = 8.

The above gave generalizations of the absolute bound. Thereare also analogues of
the special bound, see [135, 136].



Chapter 11
Association schemes

11.1 Definition

An association scheme with d classesis a finite setX together withd+1 relations
Ri onX such that

(i) {R0,R1, . . . ,Rd} is a partition ofX×X;
(ii) R0 = {(x,x)|x∈ X};

(iii) if (x,y) ∈ Ri , then also(y,x) ∈ Ri , for all x,y∈ X andi ∈ {0, . . . ,d};
(iv) for any (x,y) ∈ Rk the numberpk

i j of z∈ X with (x,z) ∈ Ri and(z,y) ∈ Rj

depends only oni, j andk.

The numberspk
i j are called theintersection numbersof the association scheme. The

above definition is the original definition of Bose & Shimamoto [36]; it is what
Delsarte [133] calls a symmetric association scheme. In Delsarte’s more general
definition, (iii) is replaced by:

(iii ′) for eachi ∈ {0, . . . ,d} there exists aj ∈{0, . . . ,d} such that(x,y)∈Ri implies
(y,x) ∈ Rj ,

(iii ′′) pk
i j = pk

ji , for all i, j,k∈ {0, . . . ,d}.
It is also very common to require just (i), (ii), (iii′), (iv), and to call the scheme
‘commutative’ when it also satisfies (iii′′). Definen= |X|, andni = p0

ii . Clearly, for
eachi ∈ {1, . . . ,d}, (X,Ri) is a simple graph which is regular of degreeni .

Theorem 11.1.1The intersection numbers of an association scheme satisfy

(i) pk
0 j = δ jk, p0

i j = δi j n j , pk
i j = pk

ji ,

(ii) ∑i pk
i j = n j , ∑ j n j = n,

(iii) pk
i j nk = p j

ikn j ,

(iv) ∑l pl
i j p

m
kl = ∑l pl

k j p
m
il .

Proof. Equations (i), (ii) and (iii) are straightforward. The expressions at both sides
of (iv) count quadruples(w,x,y,z) with (w,x)∈Ri , (x,y)∈Rj , (y,z)∈Rk, for a fixed
pair (w,z) ∈ Rm. �

163
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It is convenient to write the intersection numbers as entries of the so-calledinter-
section matrices L0, . . . ,Ld:

(Li)k j = pk
i j .

Note thatL0 = I andLiL j = ∑ pk
i j Lk. From the definition it is clear that an asso-

ciation scheme with two classes is the same as a pair of complementary strongly
regular graphs. If(X,R1) is strongly regular with parameters(v,k,λ ,µ), then the
intersection matrices of the scheme are

L1 =




0 k 0
1 λ k−λ −1
0 µ k−µ


 , L2 =




0 0 v−k−1
0 k−λ −1 v−2k+λ
1 k−µ v−2k+µ−2


 .

11.2 The Bose-Mesner algebra

The relationsRi of an association scheme are described by their adjacency matrices
Ai of ordern defined by

(Ai)xy =

{
1 whenever(x,y) ∈ Ri ,
0 otherwise.

In other words,Ai is the adjacency matrix of the graph(X,Ri). In terms of the
adjacency matrices, the axioms (i)–(iv) become

(i) ∑d
i=0Ai = J,

(ii) A0 = I ,
(iii) Ai = A⊤i , for all i ∈ {0, . . . ,d},
(iv) AiA j = ∑k pk

i j Ak, for all i, j,k∈ {0, . . . ,d}.
From (i) we see that the(0,1) matricesAi are linearly independent, and by use of
(ii)–(iv) we see that they generate a commutative(d+1)-dimensional algebraA of
symmetric matrices with constant diagonal. This algebra was first studied by Bose
& Mesner [35] and is called theBose-Mesner algebraof the association scheme.

Since the matricesAi commute, they can be diagonalized simultaneously (see
Marcus & Minc [257]), that is, there exists a matrixS such that for eachA ∈ A ,
S−1AS is a diagonal matrix. ThereforeA is semisimple and has a unique basis of
minimal idempotentsE0, . . . ,Ed (see Burrow [70]). These are matrices satisfying

EiE j = δi j Ei ,
d

∑
i=0

Ei = I .

The matrix 1
nJ is a minimal idempotent (idempotent is clear, and minimal follows

since rkJ = 1). We shall takeE0 =
1
nJ. Let P and 1

nQ be the matrices relating our
two bases forA :
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A j =
d

∑
i=0

Pi j Ei , E j =
1
n

d

∑
i=0

Qi j Ai .

Then clearly
PQ= QP= nI.

It also follows that
A jEi = Pi j Ei ,

which shows that thePi j are the eigenvalues ofA j and that the columns ofEi are
the corresponding eigenvectors. Thusmi = rkEi is the multiplicity of the eigenvalue
Pi j of A j (provided thatPi j 6= Pk j for k 6= i). We see thatm0 = 1, ∑i mi = n, and
mi = traceEi = n(Ei) j j (indeed,Ei has only eigenvalues 0 and 1, so rkEk equals the
sum of the eigenvalues).

Theorem 11.2.1The numbers Pi j and Qi j satisfy

(i) Pi0 = Qi0 = 1, P0i = ni , Q0i = mi ,
(ii) Pi j Pik = ∑d

l=0 pl
jkPil ,

(iii) m iPi j = n jQ ji , ∑i miPi j Pik = nnjδ jk, ∑i niQi j Qik = nmjδ jk,
(iv) |Pi j | ≤ n j , |Qi j | ≤mj .

Proof. Part (i) follows easily from∑i Ei = I = A0, ∑i Ai = J = nE0, AiJ = niJ,
and traceEi = mi . Part (ii) follows fromA jAk = ∑l pl

jkAl . The first equality in (iii)
follows from miPi j = trA jEi = n jQ ji , and the other two follow sincePQ= nI. The
first inequality of (iv) holds because thePi j are eigenvalues of then j -regular graphs
(X,Rj). The second inequality then follows from (iii). �

Relations (iii) are often referred to as theorthogonality relations, since they state
that the rows (and columns) ofP (andQ) are orthogonal with respect to a suitable
weight function.

An association scheme is calledprimitive if no union of the relations is a nontrivial
equivalence relation. Or, equivalently, if no graph(X,Ri) with i 6= 0 is disconnected.
For a primitive association scheme, (iv) above can be sharpened to|Pi j | < n j and
|Qi j |< mj for j 6= 0.

If d = 2, and(X,R1) is strongly regular with parameters(v,k,λ ,µ) and spectrumk1

r f sg, the matricesP andQ are

P=




1 k v−k−1
1 r −r−1
1 s −s−1


 , Q=




1 f g
1 f r/k gs/k
1 − f r+1

v−k−1 −g s+1
v−k−1


 .

In general the matricesP andQ can be computed from the intersection numbers
of the scheme:

Theorem 11.2.2For i = 0, . . . ,d, the intersection matrix Lj has eigenvalues Pi j

(0≤ i ≤ d).



166 11 Association schemes

Proof. Theorem 11.2.1(ii) yields

∑
k,l

Pil (L j)lk(P
−1)km= Pi j ∑

k

Pik(P
−1)km= δimPi j ,

hencePL jP−1 = diag(P0 j , . . . ,Pd j). �

Thanks to this theorem, it is relatively easy to computeP, Q (= 1
nP−1) andmi (=

Q0i). It is also possible to expressP andQ in terms of the (common) eigenvectors
of the L j . Indeed,PL jP−1 = diag(P0 j , . . . ,Pd j) implies that the rows ofP are left
eigenvectors and the columns ofQ are right eigenvectors. In particular,mi can be
computed from the right eigenvectorui and the left eigenvectorv⊤i , normalized such
that (ui)0 = (vi)0 = 1, by use ofmiu⊤i vi = n. Clearly, eachmi must be an integer.
These are therationality conditionsfor an association scheme. As we saw in the
case of a strongly regular graph, these conditions can be very powerful.

11.3 The Linear Programming Bound

One of the main reasons association schemes have been studied is that they yield
upper bounds for the size of substructures.

Let Y be a nonempty subset ofX, and let itsinner distributionbe the vectora
defined byai = |(Y×Y)∩Ri |/|Y|, the average number of elements ofY in relation
Ri to a given one. Letχ be the characteristic vector ofY. Thenai =

1
|Y|χ

⊤Ai χ .

Theorem 11.3.1 (Delsarte)aQ≥ 0.

Proof. We have|Y|(aQ) j = |Y|∑aiQi j = χ⊤∑Qi j Ai χ = nχ⊤E j χ ≥ 0 sinceE j is
positive semidefinite. �

Example Consider the schemes of the triples from a 7-set, where two triples are in
relationRi when they have 3− i elements in common(i = 0,1,2,3). We find

P=




1 12 18 4
1 5−3 −3
1 0−3 2
1 −3 3−1


 and Q=




1 6 14 14
1 5/2 0 −7/2
1 −1 −7/3 7/3
1 −9/2 7 −7/2


 .

How many triples can we find such that any two meet in at most onepoint? For the
inner distributiona of such a collectionY we havea1 = 0, soa = (1,0,s, t), and
aQ≥ 0 gives the three inequalities

6−s− 9
2t ≥ 0, 14− 7

3s+7t ≥ 0, 14+ 7
3s− 7

2t ≥ 0.

The linear programming problem is to maximize|Y|= 1+s+ t given these inequal-
ities, and the unique solution iss= 6, t = 0. This shows that one can have at most
7 triples that pairwise meet in at most one point in a 7-set, and if one has 7, then no
two are disjoint. Of course an example is given by the Fano plane.
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How many triples can we find such that any two meet in at least one point? Now
a= (1, r,s,0) and the optimal solution ofaQ≥ 0 is (1,8,6,0). An example of such
a collection is given by the set of 15 triples containing a fixed point.

How many triples can we find such that no two meet in precisely one point? Now
a= (1, r,0, t) and the maximum value of 1+ r + t is 5. An example is given by the
set of 5 triples containing two fixed points.

11.4 The Krein parameters

The Bose-Mesner algebraA is not only closed under ordinary matrix multiplica-
tion, but also under componentwise (Hadamard, Schur) multiplication (denoted◦).
Clearly{A0, . . . ,Ad} is the basis of minimal idempotents with respect to this multi-
plication. Write

Ei ◦E j =
1
n

d

∑
k=0

qk
i j Ek.

The numbersqk
i j thus defined are called theKrein parameters. (Ourqk

i j are those of
Delsarte, but differ from Seidel’s [301] by a factorn.) As expected, we now have
the analogue of Theorems 11.1.1 and 11.2.1.

Theorem 11.4.1The Krein parameters of an association scheme satisfy

(i) qk
0 j = δ jk, q0

i j = δi j mj , qk
i j = qk

ji ,

(ii) ∑i q
k
i j = mj , ∑ j mj = n,

(iii) qk
i j mk = q j

ikmj ,

(iv) ∑l ql
i j q

m
kl = ∑l ql

k jq
m
il ,

(v) Qi j Qik = ∑d
l=0ql

jkQil ,

(vi) nmkqk
i j = ∑l nl Qli Ql j Qlk.

Proof. Let ∑(A) denote the sum of all entries of the matrixA. ThenJAJ= ∑(A)J,
∑(A◦B) = traceAB⊤ and∑(Ei) = 0 if i 6= 0, since thenEiJ = nEiE0 = 0. Now (i)
follows by use ofEi ◦E0 =

1
nEi , q0

i j = ∑(Ei ◦E j) = traceEiE j = δi j mj , andEi ◦E j =
E j ◦Ei , respectively. Equation (iv) follows by evaluatingEi ◦E j ◦Ek in two ways,
and (iii) follows from (iv) by takingm= 0. Equation (v) follows from evaluating
Ai ◦E j ◦Ek in two ways, and (vi) follows from (v), using the orthogonality relation
∑l nl Ql j Qlk = δmkmkn. Finally, by use of (iii) we have

mk∑
j

qk
i j = ∑

j
q j

ikmj = n· trace(Ei ◦Ek) = n∑
l

(Ei)ll (Ek)ll = mimk,

proving (ii). �

The above results illustrate a dual behavior between ordinary multiplication, the
numberspk

i j and the matricesAi andP on the one hand, and Schur multiplication, the
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numbersqk
i j and the matricesEi andQ on the other hand. If two association schemes

have the property that the intersection numbers of one are the Krein parameters of
the other, then the converse is also true. Two such schemes are said to be (formally)
dual to each other. One scheme may have several (formal) duals, or none at all (but
when the scheme is invariant under a regular abelian group, there is a natural way
to define a dual scheme, cf. Delsarte [133]). In fact usually the Krein parameters are
not even integers. But they cannot be negative. These important restrictions, due to
Scott [295] are the so-calledKrein conditions.

Theorem 11.4.2The Krein parameters of an association scheme satisfy qk
i j ≥ 0 for

all i , j,k∈ {0, . . . ,d}.
Proof. The numbers1

nqk
i j (0≤ k≤ d) are the eigenvalues ofEi ◦E j (since(Ei ◦

E j)Ek = 1
nqk

i j Ek). On the other hand, the Kronecker productEi ⊗ E j is positive
semidefinite, since eachEi is. But Ei ◦E j is a principal submatrix ofEi ⊗E j , and
therefore is positive semidefinite as well, i.e., has no negative eigenvalue. �

The Krein parameters can be computed by use of equation 11.4.1(vi). This equation
also shows that the Krein condition is equivalent to

∑
l

nl Qli Ql j Qlk ≥ 0 for all i, j,k∈ {0, . . . ,d}.

In case of a strongly regular graph we obtain

q1
11 =

f 2

v

(
1+

r3

k2 −
(r +1)3

(v−k−1)2

)
≥ 0,

q2
22 =

g2

v

(
1+

s3

k2 −
(s+1)3

(v−k−1)2

)
≥ 0

(the other Krein conditions are trivially satisfied in this case), which is equivalent to
the result mentioned in section§9.1.5.

Neumaier [271] generalized Seidel’s absolute bound to association schemes, and
obtained the following.

Theorem 11.4.3The multiplicities mi (0≤ i ≤ d) of an association scheme with d
classes satisfy

∑
qk

i j 6=0

mk ≤
{

mimj if i 6= j,
1
2mi(mi +1) if i = j.

Proof. The left hand side equals rk(Ei ◦E j). But rk(Ei ◦E j) ≤ rk(Ei ⊗E j) =
rkEi · rkE j = mimj . And if i = j, then rk(Ei ◦Ei) ≤ 1

2mi(mi + 1). Indeed, if the
rows of Ei are linear combinations ofmi rows, then the rows ofEi ◦Ei are linear
combinations of themi +

1
2mi(mi−1) rows that are the elementwise products of any

two of thesemi rows. �

For strongly regular graphs withq1
11 = 0 we obtain Seidel’s bound:v≤ 1

2 f ( f +3).
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But in caseq1
11 > 0, Neumaier’s result states that the bound can be improved to

v≤ 1
2 f ( f +1).

11.5 Automorphisms

Let π be an automorphism of an association scheme, and suppose there areNi points
x such thatx andπ(x) are in relationRi .

Theorem 11.5.1 (G. Higman)For each j the number1n ∑d
i=0NiQi j is an algebraic

integer.

Proof. The automorphism is represented by a permutation matrixSwhereSM=
MS for eachM in the Bose-Mesner algebra. LetE = E j be one of the idempotents.
ThenE has eigenvalues 0 and 1, andShas eigenvalues that are roots of unity, soES
has eigenvalues that are zero or a root of unity, and trESis an algebraic integer. But
trES= 1

n ∑i NiQi j . �

If one putsa j =
1
n ∑i NiQi j , thenNh = ∑ j a jPjh for all h.

11.5.1 The Moore graph on 3250 vertices

Let Γ be a strongly regular graph with parameters(v,k,λ ,µ) = (3250,57,0,1) (an
unknown Moore graph of diameter two, cf. Theorem 9.1.5).

For such a graphQ=




1 1729 1520
1 637

3 −640
3

1 −13
3

10
3


 .

Aschbacher [12] proved that there is no such graph with a rankthree group.
G. Higman (unpublished, cf. Cameron [78]) proved that thereis no such graph with
a vertex transitive group.

Proposition 11.5.2 (G. Higman)Γ is not vertex-transitive.

Proof. Consider any nontrivial group of automorphismsG of such a graph. The
collection of points fixed byG has the propertiesλ = 0 andµ = 1. Also, two nonad-
jacent fixed vertices are adjacent to the same number of fixed vertices, so the fixed
subgraph is either a strongly regular Moore graph (and then has 5, 10 or 50 vertices),
or all fixed vertices have distance at most 1 to some fixed vertex (so that there are at
mostk+1= 58 of them).

Consider an involutionπ. If π does not interchange the endpoints of some edge,
thenN1 = 0, andN0 +N2 = 3250. But if {x,y} is an orbit ofπ, then the unique
common neighborz of x andy is fixed, andz occurs for at most 28 pairs{x,y}, so
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N2≤ 56N0, so thatN0 = 58,N1 = 0, N2 = 3192 and 1
3250(58×1729−3192× 13

3 ) =
133
5 is not an integer, contradiction.

So,π must interchange two adjacent pointsx andy, and hence interchanges the
remaining 56 neighborsu of x with the remaining 56 neighborsv of y. If {u,v} is
such an orbit, then the unique common neighbor ofu andv is fixed, and these are
all the fixed points. SoN0 = 56, that is,π is an odd permutation, since it is the
product of 1597 transpositions. LetN be the subgroup ofG consisting of the even
permutations. ThenN does not have any involutions, so is not transitive, and ifG
was transitiveN has two orbits interchanged by any element outsideN. But α has
fixed points and cannot interchange the two orbits ofN. A contradiction, soG was
not transitive. �

11.6 P- and Q-polynomial association schemes

In many cases, the association scheme carries a distance function such that relation
Ri is the relation of having distancei. Such schemes are calledmetric. They are
characterized by the fact thatpi

jk is zero whenever one ofi, j,k is larger than the

sum of the other two, whilepi
jk is nonzero fori = j +k. Note that whether a scheme

is metric depends on the ordering of the relationsRi . A scheme may be metric for
more than one ordering. Metric association schemes are essentially the same objects
as distance-regular graphs (see Chapter 12 below).

Dually, a cometricscheme is defined byqi
jk = 0 for i > j + k andqi

jk > 0 for
i = j +k.

There are several equivalent formulations of the metric (cometric) property.
An association scheme is calledP-polynomial if there exist polynomialsfk of

degreek with real coefficients, and real numberszi such thatPik = fk(zi). Clearly
we may always takezi = Pi1. By the orthogonality relation 11.2.1(iii) we have

∑
i

mi f j(zi) fk(zi) = ∑
i

miPi j Pik = nnjδ jk,

which shows that thefk are orthogonal polynomials.
Dually, a scheme is calledQ-polynomialwhen the same holds withQ instead of

P. The following result is due to Delsarte [133] (Theorem 5.6,p. 61).

Theorem 11.6.1An association scheme is metric (resp. cometric) if and onlyif it
is P-polynomial (resp. Q-polynomial).

Proof. Let the scheme be metric. Then

A1Ai = pi−1
1i Ai−1+ pi

1iAi + pi+1
1i Ai+1.

Sincepi+1
1i 6= 0, Ai+1 can be expressed in terms ofA1, Ai−1 andAi . Hence for each

j there exists a polynomialf j of degreej such thatA j = f j(A1), and it follows that
Pi j Ei = A jEi = f j(A1)Ei = f j(Pi1)Ei , hencePi j = f j(Pi1).
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Now suppose that the scheme isP-polynomial. Then thef j are orthogonal poly-
nomials, and therefore they satisfy a 3-term recurrence relation (see Szeg̈o [316],
p. 42)

α j+1 f j+1(z) = (β j −z) f j(z)+ γ j−1 f j−1(z).

Hence
Pi1Pi j =−α j+1Pi, j+1+β jPi j + γ j−1Pi, j−1 for i = 0, . . . ,d.

SincePi1Pi j = ∑l pl
1 jPil andP is nonsingular, it follows thatpl

1 j = 0 for |l − j|> 1.
Now the full metric property easily follows by induction. The proof for the cometric
case is similar. �

Given a sequence of nonzero real numbers, let its number ofsign changesbe ob-
tained by first removing all zeros from the sequence, and thencounting the number
of consecutive pairs of different sign. (Thus, the number ofsign changes in 1,−1,
0, 1 is 2.)

Proposition 11.6.2 (i) Let (X,R) be a P-polynomial association scheme, with re-
lations ordered according to the P-polynomial ordering andeigenspaces ordered
according to descending real order on theθi := Pi1. Then both row i and column i
of both matrices P and Q have precisely i sign changes(0≤ i ≤ d).
(ii) Dually, if (X,R) is a Q-polynomial association scheme, and the eigenspaces
are ordered according to the Q-polynomial ordering and the relations are ordered
according to descending real order on theσi := Qi1, then row i and column i of the
matrices P and Q have precisely i sign changes(0≤ i ≤ d).

Proof. Since miPi j = n jQ ji the statements aboutP and Q are equivalent. De-
fine polynomialsp j of degree j for 0 ≤ j ≤ d + 1 by p−1(x) = 0, p0(x) = 1,
(x− a j)p j(x) = b j−1p j−1 + c j+1p j+1(x), taking cd+1 = 1. ThenA j = p j(A), and
pd+1(x) = 0 has as roots the eigenvalues ofA. The numbers in rowj of P arepi(θ j)
(0≤ i ≤ d), and by the theory of Sturm sequences the number of sign changes is the
number of roots ofpd+1 larger thanθ j , which is j. The numbers in columni of P
are the values ofpi evaluated at the roots ofpd+1. Sincepi has degreei, and there is
at least one root ofpd+1 between any two roots ofpi there arei sign changes. The
proof in theQ-polynomial case is similar. �

Example Consider the Hamming schemeH(4,2), the association scheme on the
binary vectors of length 4, where the relation is their Hamming distance. Now

P= Q=




1 4 6 4 1
1 2 0−2 −1
1 0−2 0 1
1 −2 0 2−1
1 −4 6−4 1



.



172 11 Association schemes

11.7 Exercises

Exercise 1 Show that the number of relations of valency 1 in an association scheme
is 2m for somem≥ 0, and 2m|n. Hint: the relations of valency 1 form an elementary
abelian 2-group with operationi⊕ j = k whenAiA j = Ak.

Exercise 2 Show that for the special case whereY is a coclique in a strongly regular
graph, the linear programming bound is the Hoffman bound (Theorem 3.5.2).

Exercise 3 Show that ifΓ is a relation of valencyk in an association scheme, and
θ is a negative eigenvalue ofΓ , then|S| ≤ 1−k/θ for each cliqueS in Γ .

Exercise 4 Consider a primitive strongly regular graphΓ on v vertices with eigen-
valuesk1, r f ,sg (k> r > s) with a Hoffman coloring (that is a coloring with 1−k/s
colors). Consider the following relations on the vertex setof Γ : R0: identity,
R1: adjacent inΓ ,
R2: nonadjacent inΓ with different colors,
R3: nonadjacent inΓ with the same color.
Prove that these relations define an association scheme on the vertex set ofΓ , and
determine the matricesP andQ.

Exercise 5 Let (X,R) be a primitive association scheme, and letΓ = (X,Rs) be a
graph corresponding to one of the classes. Letm> 1 be one of the multiplicities of
the scheme. Letη( ) denote the Haemers invariant (§3.7.2). Thenη(Γ )≤m+1.



Chapter 12
Distance regular graphs

Consider a connected simple graph with vertex setX of diameterd. DefineRi ⊂ X2

by (x,y) ∈ Ri wheneverx andy have graph distancei. If this defines an association
scheme, then the graph(X,R1) is calleddistance-regular. By the triangle inequality,
pk

i j = 0 if i+ j < k or |i− j|> k. Moreover,pi+ j
i j > 0. Conversely, if the intersection

numbers of an association scheme satisfy these conditions,then (X,R1) is easily
seen to be distance-regular.

Many of the association schemes that play a rôle in combinatorics are metric.
Families of distance-regular graphs with unbounded diameter include the Hamming
graphs, the Johnson graphs, the Grassmann graphs and graphsassociated to dual
polar spaces. Recently Van Dam & Koolen [127] constructed a new such family, the
15th, and the first without transitive group.

Many constructions and results for strongly regular graphsare thed = 2 special
case of corresponding results for distance-regular graphs.

The monograph [51] is devoted to the theory of distance-regular graphs, and
gives the state of the theory in 1989.

12.1 Parameters

Conventionally, the parameters arebi = pi
i+1,1 and ci = pi

i−1,1 (and ai = pi
i,1).

The intersection arrayof a distance-regular graph of diameterd is {b0, . . . ,bd−1;
c1, . . . ,cd}. The valenciesp0

i,i , that were calledni above, are usually calledki here.
We haveciki = bi−1ki−1. The total number of vertices is usually calledv.

It is easy to see that one hasb0 ≥ b1 ≥ . . . ≥ bd−1 andc1 ≤ c2 ≤ . . . ≤ cd and
c j ≤ bd− j (1≤ j ≤ d).

173
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12.2 Spectrum

A distance-regular graphΓ of diameterd hasd+ 1 distinct eigenvalues, and the
spectrum is determined by the parameters. (Indeed, the matricesP andQ of any
association scheme are determined by the parameterspi

jk, and for a distance-regular

graph thepi
jk are determined again in terms of thebi andci .)

The eigenvalues ofΓ are the eigenvalues of the tridiagonal matrixL1 = (p j
1k) of

orderd+1 that here gets the form

L1 =




0 b0 0
c1 a1 b1

c2 a2 b2

. . . . . . . . .
0 cd ad



.

If L1u= θu andu0 = 1, then the multiplicity ofθ as eigenvalue ofΓ equals

m(θ) = v/(∑kiu
2
i ).

12.3 Examples

12.3.1 Hamming graphs

Let Q be a set of sizeq. TheHamming graph H(d,q) is the graph with vertex set
Qd, where two vertices are adjacent when they agree ind−1 coordinates.

This graph is distance-regular, with parametersci = i, bi = (q− 1)(d− i), di-
ameterd and eigenvalues(q− 1)d− qi with multiplicity

(d
i

)
(q− 1)i (0≤ i ≤ d).

(Indeed,H(d,q) is the Cartesian product ofd copies ofKq, see§1.4.6.)
For q = 2 this graph is also known as the hypercube 2d, often denotedQd. For

d = 2 the graphH(2,q) is also calledL2(q).

Cospectral graphs
In §1.8.1 we saw that there are precisely two graphs with the spectrum ofH(4,2). In
§9.2 we saw that there are precisely two graphs with the spectrum of H(2,4). Here
we give a graph cospectral withH(3,3) (cf. [197]).

The graphsH(d,q) haveqd vertices, anddqd−1 maximal cliques (‘lines’) of size
q. Let N be the point-line incidence matrix. ThenNN⊤−dI is the adjacency matrix
of Γ = H(d,q), andN⊤N−qI is the adjacency matrix of the graph∆ on the lines,
where two lines are adjacent when they have a vertex in common. It follows that for
d = q the graphsΓ and∆ are cospectral. InΓ any two vertices at distance two have
c2 = 2 common neighbors. Ifq≥ 3, then two vertices at distance two in∆ have 1
or q common neighbors (and both occur), so that∆ is not distance-regular, and in
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Fig. 12.1 The geometry of the Hamming graphH(3,3)

particular not isomorphic toΓ . Forq= 3 the geometry is displayed in Figure 12.1.
See also§14.2.2.

12.3.2 Johnson graphs

Let X be a set of sizen. The Johnson graph J(n,m) is the graph with vertex set(X
m

)
, the set of allm-subsets ofX, where twom-subsets are adjacent when they have

m−1 elements in common. For example,J(n,0) has a single vertex;J(n,1) is the
complete graphKn; J(n,2) is the triangular graphT(n).

This graph is distance-regular, with parametersci = i2, bi = (m− i)(n−m− i),
diameterd = min(m,n−m) and eigenvalues(m− i)(n−m− i)− i with multiplicity(n

i

)
−
( n

i−1

)
.

TheKneser graph K(n,m) is the graph with vertex set
(X

m

)
, where twom-subsets

are adjacent when they have maximal distance inJ(n,m) (i.e., are disjoint when
n≥ 2m, and have 2m− n elements in common otherwise). These graphs are not
distance-regular in general, but theOdd graph Om+1, which equalsK(2m+1,m),
is.

Sending a vertex (m-set) to its complement inX is an isomorphism fromJ(n,m)
ontoJ(n,n−m) and fromK(n,m) ontoK(n,n−m). Thus, we may always assume
thatn≥ 2m.

12.3.3 Grassmann graphs

Let V be a vector space of dimensionn over the fieldFq. The Grassmann graph
Gr(n,m) is the graph with vertex set

[V
m

]
, the set of allm-subspaces ofV, where

two m-subspaces are adjacent when they intersect in an(m−1)-space. This graph

is distance-regular, with parametersci =
[ i

1

]2
, bi = q2i+1

[m−i
1

][n−m−i
1

]
, diameterd=

min(m,n−m), and eigenvaluesqi+1
[m−i

1

][n−m−i
1

]
−
[ i

1

]
with multiplicity

[n
i

]
−
[ n

i−1

]
.
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(Here
[n

i

]
= (qn−1) · · ·(qn−i+1−1)/(qi−1) · · ·(q−1) is theq-binomial coefficient,

the number ofm-subspaces of ann-space.)

12.3.4 Van Dam-Koolen graphs

Van Dam & Koolen [127] construct distance-regular graphsvDK(m) with the same
parameters asGr(2m+1,m). (They call them thetwisted Grassmann graphs.) These
graphs are ugly, the group of automorphisms is not transitive. The existence of such
examples reinforces the idea that the parameters of distance-regular graphs of large
diameter are strongly restricted, while there is some freedom for the actual structure.
The construction is as follows. LetV be a vector space of dimension 2m+1 over
Fq, and letH be a hyperplane ofV. Take as vertices the(m+1)-subspaces ofV not
contained inH, and the(m−1)-subspaces contained inH, where two subspaces of
the same dimension are adjacent when their intersection hascodimension 1 in both,
and two subspaces of different dimension are adjacent when one contains the other.
This graph is the line graph (concurrency graph on the set of lines) of the partial
linear space of which the points are them-subspaces ofV, with natural incidence,
while the point graph (collinearity graph on the set of points) is Gr(2m+1,m). It
follows thatvDK(m) andGr(2m+1,m) are cospectral.

12.4 Bannai-Ito conjecture

The most famous problem about distance-regular graphs was the Bannai-Ito conjec-
ture ([19], p. 237): show that there are only finitely many distance-regular graphs
with fixed valencyk larger than 2. After initial work by Bannai & Ito, the conjecture
was attacked by Jack Koolen and coauthors in a long series of papers. After 25 years
a complete proof was given by Sejeong Bang, Arturas Dubickas, Jack Koolen, and
Vincent Moulton [17].

12.5 Connectedness

For strongly regular graphs we had Theorem 9.3.2 stating that the vertex connectiv-
ity κ(Γ ) equals the valencyk. In [58] it was shown that the same holds for distance-
regular graphs.

For strongly regular graphs we also had Proposition 9.3.1 that says that the in-
duced subgraph on the vertices at maximal distance from a given vertex is con-
nected. This is a very important property, but for distance-regular graphs additional
hypotheses are needed. For example, there are two generalized hexagons with pa-
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rametersGH(2,2) (duals of each other) and in one of them the subgraphsΓ3(x) are
disconnected.

12.6 Degree of eigenvalues

For strongly regular graphs we saw that eigenvalues are integral, except in the ‘half
case’ where they are quadratic. Something similar happens for distance-regular
graphs.

Polygons have eigenvalues of high degree: for ann-gon the degree of thei-th
eigenvalue isφ(m) wherem= gcd(i,n), whereφ is the Euler totient function. But
elsewhere only integral and quadratic eigenvalues seem to occur.

For the case of aP- andQ-polynomial scheme of diameter at least 34, Bannai &
Ito [19] Theorem 7.11 show that the eigenvalues are integers.

There is precisely one known distance-regular graph of valency larger than 2
with a cubic eigenvalue, namely the Biggs-Smith graph, the unique graph with in-
tersection array{3,2,2,2,1,1,1; 1,1,1,1,1,1,3}. It has 102 vertices, and spectrum
31 218 017 ((1±

√
17)/2)9 θ 16

j where theθ j are the three roots ofθ 3+3θ 2−3= 0.
A result in this direction is

Proposition 12.6.1 The only distance-regular graph of diameter3 with a cubic
eigenvalue is the heptagon.

Proof. Let Γ be a distance-regular graph of diameter 3 onn vertices with a cubic
eigenvalue. Since algebraically conjugate eigenvalues have the same multiplicity
we have three eigenvaluesθi with multiplicity f = (n− 1)/3. Since trA = 0 we
find thatθ1+θ2+θ3 =−k/ f . Now k/ f is rational and an algebraic integer, hence
an integer, andk ≥ (n− 1)/3. The same reasoning applies toAi for i = 2,3 and
henceki ≥ (n− 1)/3, and we must have equality. Sincek = k2 = k3 we see that
b1 = c2 = b2 = c3.

Write µ := c2. The distinct eigenvaluesk,θ1,θ2,θ3 of A are the eigenvalues of
the matrixL1 (Theorem 11.2.2) and hencek−1= k+ θ1+ θ2+ θ3 = trL1 = a1+
a2+a3 = (k−µ−1)+(k−2µ)+(k−µ), so thatk= 2µ anda2 = 0.

Let d(x,y) = 3 and putA= Γ (x)∩Γ2(y), B= Γ2(x)∩Γ (y), so that|A| = |B| =
c3 = µ . Every vertex inB is adjacent to every vertex inA, and hence two vertices in
B have at leastµ +1 common neighbors, so must be adjacent. ThusB is a clique,
andµ = |B| ≤ a2+1, that is,µ = 1, k= 2. �

12.7 Moore graphs and generalized polygons

Any k-regular graph of diameterd has at most

1+k+k(k−1)+ . . .+k(k−1)d−1
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vertices, as is easily seen. A graph for which equality holdsis called aMoore graph.
Moore graphs are distance-regular, and those of diameter 2 were dealt with in The-
orem 9.1.5. Using the rationality conditions Damerell [129] and Bannai & Ito [18]
showed:

Theorem 12.7.1A Moore graph with diameter d≥ 3 is a (2d+1)-gon.

A strong non-existence result of the same nature is the theorem of Feit & G. Hig-
man [148] about finite generalized polygons. We recall that ageneralized m-gonis a
point-line incidence geometry such that the incidence graph is a connected, bipartite
graph of diametermand girth 2m. It is calledregularof order(s, t) for certain (finite
or infinite) cardinal numberss, t if each line is incident withs+1 points and each
point is incident witht +1 lines. From such a regular generalizedm-gon of order
(s, t), wheres andt are finite andm≥ 3, we can construct a distance-regular graph
with valencys(t +1) and diameterd = ⌊m

2 ⌋ by taking the collinearity graph on the
points.

Theorem 12.7.2A finite generalized m-gon of order(s, t) with s> 1 and t > 1
satisfies m∈ {2,3,4,6,8}.
Proofs of this theorem can be found in Feit & Higman [148], Brouwer, Cohen &
Neumaier [51] and Van Maldeghem [323]; again the rationality conditions do the
job. The Krein conditions yield some additional information:

Theorem 12.7.3A finite regular generalized m-gon with s> 1 and t> 1 satisfies
s≤ t2 and t≤ s2 if m= 4 or 8; it satisfies s≤ t3 and t≤ s3 if m= 6.

This result is due to Higman [206] and Haemers & Roos [195].

12.8 Primitivity

A distance-regular graphΓ of diameterd is called imprimitive when one of the
relations(X,Ri) with i 6= 0 is disconnected. This can happen in three cases: either
Γ is ann-gon, andi|n, or i = 2, andΓ is bipartite, ori = d, andΓ is antipodal, that
is, having distanced is an equivalence relation. Graphs can be both bipartite and
antipodal. The 2n-gons fall in all three cases.

12.9 Euclidean representations

Let Γ be distance regular, and letθ be a fixed eigenvalue. LetE = E j be the idem-
potent in the association scheme belonging toθ , so thatAE = θE. Let ui = Qi j /n,
so thatE = ∑uiAi . Let f = rkE.

The map sending vertexx of Γ to the vector ¯x= Eex, columnx of E, provides a
representation ofΓ by vectors in anf -dimensional Euclidean space, namely the col-
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umn span ofE, where graph distances are translated into inner products:if d(x,y)= i
then(x̄, ȳ) = Exy = ui .

If this map is not injective, and ¯x = ȳ for two verticesx,y at distancei 6= 0,
thenui = u0 and any two vertices at distancei have the same image. Fori = 1 this
happens whenθ = k. Otherwise,Γ is imprimitive, and eitheri = 2 andΓ is bipartite
andθ =−k, or i = d andΓ is antipodal, or 2< i < d andΓ is a polygon.

This construction allows one to translate problems about graphs into problems in
Euclidean geometry. Especially whenf is small, this is a very useful tool.

As an example of the use of this representation, let us prove Terwilliger’s Tree
Bound. Call an induced subgraphT of Γ geodeticwhen distances measured inT
equal distances measured inΓ .

Proposition 12.9.1 Let Γ be distance regular, and letθ be an eigenvalue different
from±k. Let T be a geodetic tree inΓ . Then the multiplicity f of the eigenvalueθ
is at least the number of endpoints of T .

Proof. We show that the span of the vectors ¯x for x∈ T has a dimension not less
than the numbere of endpoints ofT. Induction on the size ofT. If T = {x,y} then
x̄ 6= ȳ sincek 6= θ . Assume|T| > 2. If x ∈ T, andS is the set of endpoints ofT
adjacent tox, then fory,z∈ Sandw∈ T \Swe have(w̄, ȳ− z̄) = 0. Pickx such that
S is nonempty, andx is an endpoint ofT ′ = T \S. By induction dim〈w̄|w∈ T ′〉 ≥
e−|S|+1. Sinceθ 6=±k we have dim〈ȳ− z̄|x,y∈ S〉= |S|−1. �

Example For a distance-regular graph without triangles,f ≥ k. Equality can
hold. For example, the Higman-Sims graph is strongly regular with parameters
(v,k,λ ,µ) = (100,22,0,6) and spectrum 221 277 (−8)22.

12.10 Extremality

This section gives a simplified account of the theory developed by Fiol and Garriga
and coauthors. The gist is that among the graphs with a given spectrum withd+1
distinct eigenvalues the distance-regular graphs are extremal in the sense that they
have a maximal number of pairs of vertices at mutual distanced.

Let Γ be a connectedk-regular graph with adjacency matrixA with eigenvalues
k = θ1 ≥ ·· · ≥ θn. Suppose thatA has preciselyd+1 distinct eigenvalues (so that
the diameter ofΓ is at mostd). Define an inner product on the(d+1)-dimensional
vector space of real polynomials modulo the minimum polynomial of A by

〈p,q〉= 1
n

tr p(A)q(A) =
1
n

n

∑
i=1

p(θi)q(θi).

Note that〈p, p〉 ≥ 0 for all p, and〈p, p〉 = 0 if and only if p(A) = 0. By applying
Gram-Schmidt to the sequence of polynomialsxi (0≤ i ≤ d) we find a sequence of
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orthogonal polynomialspi of degreei (0≤ i ≤ d) satisfying〈pi , p j〉 = 0 for i 6= j
and〈pi , pi〉= pi(k). This latter normalization is possible sincepi(k) 6= 0.

(Indeed, suppose thatpi changes sign at valuesα j (0≤ j ≤ h) inside the interval
(θn,k). Putq(x) = ∏h

j=1(x−α j). Then all terms in〈pi ,q〉 have the same sign, and
not all are zero, so〈pi ,q〉 6= 0, henceh= i, so that all zeros ofpi are in the interval
(θn,k), andpi(k) 6= 0.)

The Hoffman polynomial (the polynomialp such thatp(A) = J) equalsp0+ . . .+
pd. Indeed,〈pi , p〉= 1

ntr pi(A)J = pi(k) = 〈pi , pi〉 for all i.
If Γ is distance-regular, then thepi are the polynomials for whichAi = pi(A).

Theorem 12.10.1(‘Spectral Excess Theorem’)Let Γ be connected and regular of
degree k, with d+1 distinct eigenvalues. Define the polynomials pi as above. Let
kd := 1

n ∑x kd(x) be the average number of vertices at distance d from a given vertex
in Γ . Thenkd ≤ pd(k), and equality holds if and only ifΓ is distance-regular.

Proof. We follow Fiol, Gago & Garriga [153]. Use the inner product〈M,N〉 =
1
ntrM⊤N on the spaceMn(R) of real matrices of ordern. If M,N are symmetric,
then〈M,N〉 = 1

n ∑x,y(M ◦N)xy. If M = p(A) andN = q(A) are polynomials inA,
then〈M,N〉= 〈p,q〉.

Since〈Ad, pd(A)〉= 〈Ad,J〉= kd, the orthogonal projectionA′d of Ad on the space
〈I ,A, . . . ,Ad〉= 〈p0(A), . . . , pd(A)〉 of polynomials inA equals

A′d = ∑
j

〈Ad, p j(A)〉
〈p j , p j〉

p j(A) =
〈Ad, pd(A)〉

pd(k)
pd(A) =

kd

pd(k)
pd(A).

Now ||A′d||2≤ ||Ad||2 giveskd
2
/pd(k)≤ kd, and the inequality follows sincepd(k)>

0. When equality holds,Ad = pd(A).
Now it follows by downward induction onh that Ah = ph(A) (0≤ h≤ d). In-

deed, from∑ j p j(A) = J= ∑ j A j it follows thatp0(A)+ · · ·+ ph(A) =A0+ · · ·+Ah.
Henceph(A)xy= 0 if d(x,y)> h, andph(A)xy= 1 if d(x,y) = h. Since〈xph+1, p j〉=
〈ph+1,xpj〉 = 0 for j 6= h,h+1,h+2, we havexph+1 = aph+bph+1+ cph+2 and
henceAAh+1 = aph(A) + bAh+1 + cAh+2 for certaina,b,c with a 6= 0. But then
ph(A)xy = 0 if d(x,y)< h, so thatph(A) = Ah.

Finally, the three-term recurrence for theph now becomes the three-term recur-
rence for theAh that defines distance-regular graphs. �

Noting thatpd(k) depends on the spectrum only, we see that this provides a charac-
terization of distance-regularity in terms of the spectrumand the number of pairs of
vertices far apart (at mutual distanced). See [120], [152], [153] and Theorem 14.5.3
below.
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12.11 Exercises

Exercise 1 Determine the spectrum of a strongly regular graph minus a vertex.
(Hint: if the strongly regular graph has characteristic polynomialp(x) = (x−k)(x−
r) f (x− s)g, then the graph obtained after removing one vertex has characteristic
polynomial((x−k)(x−λ +µ)+µ)(x− r) f−1(x−s)g−1.)

Determine the spectrum of a strongly regular graph minus two(non)adjacent ver-
tices.

Show that the spectrum of a distance-regular graph minus a vertex does not depend
on the vertex chosen. Give an example of two nonisomorphic cospectral graphs both
obtained by removing a vertex from the same distance-regular graph.





Chapter 13
p-ranks

Designs or graphs with the same parameters can sometimes be distinguished by
considering thep-rank of associated matrices. For example, there are three noniso-
morpic 2-(16,6,2) designs, with point-block incidence matrices of 2-rank 6, 7 and 8
respectively.

Tight bounds on the occurrence of certain configurations aresometimes obtained
by computing a rank in some suitable field, sincep-ranks of integral matrices may
be smaller than their ranks overR.

Our first aim is to show that given the parameters (say, the real spectrum), only
finitely many primesp are of interest.

13.1 Reduction modp

A technical difficulty is that one would like to talk about eigenvalues that are zero
or nonzero modp for some primep, but it is not entirely clear what that might
mean when the eigenvalues are nonintegral. Necessarily some arbitrariness will be
involved. For example(5+

√
2)(5−

√
2)≡ 0 mod 23 and one point of view is that

this means that 23 is not a prime inQ(
√

2), and one gets into algebraic number
theory. But another point of view is that if one ‘reduces mod 23’, mapping to a field
of characteristic 23, then at least one factor must become 0.However, the sum of
5+
√

2 and 5−
√

2 does not become 0 upon reduction mod 23, so not both factors
become 0. Since these factors are conjugate, the ‘reductionmod 23’ cannot be de-
fined canonically, it must involve some arbitrary choices. We follow Isaacs [222],
who follows Brauer.

Let R be the ring of algebraic integers inC, and letp be a prime. LetM be a
maximal ideal inR containing the idealpR. Put F = R/M. ThenF is a field of
characteristicp. Let r 7→ r̄ be the quotient mapR→ R/M = F . This will be our
‘reduction modp’. (It is not canonical becauseM is not determined uniquely.)

Lemma 13.1.1 (Isaacs [222], 15.1)Let U = {z∈ C | zm = 1 for some integer m
not divisible by p}. Then the quotient map R→ R/M = F induces an isomorphism

183
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of groups U→ F∗ from U onto the multiplicative group F∗ of F. Moreover, F is
algebraically closed, and is algebraic over its prime field.

One consequence is that on integers ‘reduction modp’ has the usual meaning: if
m is an integer not divisible byp then some power is 1 (modp) and it follows that
m̄ 6= 0. More generally, ifθ̄ = 0, thenp|N(θ), whereN(θ) is thenorm of θ , the
product of its conjugates, up to sign the constant term of itsminimal polynomial.

13.2 The minimal polynomial

Let M be a matrix of ordern over a fieldF . For each eigenvalueθ of M in F , let
m(θ) be the geometric multiplicity ofθ , so that rk(M−θ I) = n−m(θ).

Let e(θ) be the algebraic multiplicity of the eigenvalueθ , so that the character-
istic polynomial ofM factors asc(x) := det(xI−M) = ∏(x− θ)e(θ)c0(x), where
c0(x) has no roots inF . Thenm(θ)≤ e(θ).

The minimal polynomial p(x) of M is the unique monic polynomial overF of
minimal degree such thatp(M) = 0. The numbersθ ∈ F for which p(θ) = 0 are
precisely the eigenvalues ofM (in F). By Cayley-Hamilton,p(x) dividesc(x). It
follows that if p(x) = ∏(x−θ)h(θ)p0(x), wherep0(x) has no roots inF , then 1≤
h(θ)≤ e(θ).

In terms of the Jordan decomposition ofM, m(θ) is the number of Jordan blocks
for θ , h(θ) is the size of the largest block, ande(θ) is the sum of the sizes of all
Jordan blocks forθ .

We see thatn− e(θ)+ h(θ)− 1≤ rk(M− θ I) ≤ n− e(θ)/h(θ), and also that
1≤ rk((M−θ I)i)− rk((M−θ I)i+1)≤m(θ) for 1≤ i ≤ h−1.

13.3 Bounds for thep-rank

Let M be a square matrix of ordern, and let rkp(M) be itsp-rank. LetRandF be as
above in§13.1. Use a suffixF or p to denote rank or multiplicity over the fieldF or
Fp (instead ofC).

Proposition 13.3.1
Let M be an integral square matrix. Thenrkp(M)≤ rk(M).
Let M be a square matrix with entries in R. ThenrkF(M)≤ rk(M).

Proof. The rank of a matrix is the size of the largest submatrix with nonzero de-
terminant. �

Proposition 13.3.2 Let M be an integral square matrix. Then

rkp(M)≥∑{m(θ) | θ̄ 6= 0}.
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Proof. Let M have ordern. Then rkp(M) = n−mp(0)≥ n−ep(0) = n−eF(0) =
∑{eF(t) | t 6= 0}= ∑{e(θ) | θ̄ 6= 0} ≥ ∑{m(θ) | θ̄ 6= 0}. �

Proposition 13.3.3 Let the integral square matrix M be diagonalizable. Then we
haverkF(M− θ̄ I)≤ n−e(θ) for each eigenvalueθ of M.

Proof. rkF(M− θ̄ I)≤ rk(M−θ I) = n−m(θ) = n−e(θ). �

It follows that if θ̄ = 0 for a uniqueθ , then rkp(M) = n− e(θ). We can still say
something when̄θ = 0 for two eigenvaluesθ , when one has multiplicity 1:

Proposition 13.3.4 Let the integral square matrix M be diagonalizable, and sup-
pose thatθ̄ = 0 for only two eigenvaluesθ , sayθ0 andθ1, where e(θ0) = 1. Let M
have minimal polynomial p(x) = (x−θ0) f (x). ThenrkF(M) = n−e(θ1)−ε, where
ε = 1 if f (M) = 0 andε = 0 otherwise.

Proof. By the aboven−e(θ1)−1≤ rkF(M)≤ n−e(θ1). By the previous section
n−eF(0)+hF(0)−1≤ rkF(M) ≤ n−eF(0)/hF(0). SinceeF(0) = e(θ1)+1 we
find rkF(M) = n−e(θ1)− ε, whereε = 1 if hF(0) = 1 andε = 0 otherwise. But
hF(0) = 1 iff f (M) = 0. �

If M is a matrix with integral entries, then the minimal polynomial p(x) and its
factor f (x) have integral coefficients. In particular, ifM is an integral symmetric
matrix with constant row sumsk, and the eigenvaluek of M has multiplicity 1,
then f (M) = ( f (k)/n)J and the conditionf (M) = 0 becomes ¯c = 0, wherec =
1
n ∏θ 6=k(k−θ) is an integer.

13.4 Interesting primesp

Let A be an integral matrix of ordern, and letM = A−aI for some integera. If θ is
an eigenvalue ofA, thenθ −a is an eigenvalue ofM.

If θ̄ = ā for no θ , then rkp(M) = n.
If θ̄ = ā for a uniqueθ , then rkp(M) = rkF(M) = rkF( ¯M− (θ −a)I) ≤ rk(A−

θ I) = n−m(θ) by Proposition 13.3.1, but also rkp(M) ≥ n−m(θ) by Proposition
13.3.2, so that rkp(M) = n−m(θ).

So, if the p-rank of M is interesting, if it gives information not derivable from
the spectrum ofA and the valuea, then at least two eigenvalues ofM become zero
upon reduction modp. But if θ −a= η−a= 0, thenθ −η = 0, and in particular
p|N(θ −η), which happens for finitely manyp only.

Example The unique distance-regular graph with intersection array{4,3,2; 1,2,4}
has 14 vertices and spectrum 4,

√
2

6
, (−
√

2)6, −4 (with multiplicities written as
exponents).

Let A be the adjacency matrix of this graph, and consider thep-rank of M =
A− aI for integersa. The norms ofθ − a are 4− a, a2− 2, −4− a, and if these
are all nonzero modp then thep-rank of M is 14. If p is not 2 or 7, then at most
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one of these norms can be 0 modp, and fora≡ 4 (mod p) or a≡−4 (mod p) the
p-rank ofM is 13. If a2 ≡ 2 (mod p) then precisely one of the eigenvalues

√
2−a

and−
√

2−a reduces to 0, and thep-rank ofM is 8. Finally, for p= 2 andp= 7
we need to look at the matrixM itself, and find rk2(A) = 6 and rk7(A±3I) = 8.

13.5 Adding a multiple of J

Let A be an integral matrix of ordern with row and column sumsk, and consider the
rank andp-rank ofM = Mb = A+bJ. SinceJ has rank 1, all these matrices differ
in rank by at most 1, so either all have the same rankr, or two ranksr, r +1 occur,
and in the latter case rankr +1 occurs whenever the row space ofM contains the
vector1.

The matrixM has row sumsk+bn.
If p ∤ n, then the row space ofM overFp contains1 whenk+bn 6≡ 0 (mod p).

On the other hand, ifk+bn≡ 0 (mod p), then all rows have zero row sum (modp)
while 1 has not, so that1 is not in the row space overFp. Thus, we are in the second
case, where the smallerp-rank occurs forb=−k/n only.

If p|n and p ∤ k, then all row sums are nonzero (modp) for all b, and we are in
the former case: the rank is independent ofb, and the row space overFp always
contains1.

Finally, if p|n and alsop|k, then further inspection is required.

Example (Cf. Peeters [279]). According to [197], there are precisely ten graphs

with the spectrum 71
√

7
8
(−1)7 (−

√
7)8, one of which is the Klein graph, the

unique distance-regular graph with intersection array{7,4,1; 1,2,7}. It turns out
that thep-ranks ofA−aI+bJ for these graphs depend on the graph only forp= 2
([279]). Heren= 24 andk= 7−a+24b.

graph rk2(A+ I) rk2(A+ I +J)
#1,2 14 14
#3,8,9 15 14
#4,7 13 12
#5 12 12
#6 11 10
#10 9 8

rk3(A−aI+bJ)
a\b 0 1 2
0 24 24 24
1 16 15 16
2 16 16 16

rk7(A−aI)
a\b 0
0 15

1–5 24
6 17

Interesting primes (dividing the norm of the difference of two eigenvalues) are 2,
3 and 7. All p-ranks follow from the parameters except possibly rk2(A+ I + bJ),
rk3(A− I +bJ), rk3(A+ I), rk7(A).

The interesting 2-rank is rk2(A+ I), and inspection of the graphs involved shows
that this takes the values 9, 11, 12, 13, 14, 15 where 9 occurs only for the Klein
graph. The value of rk2(A+ I + J) follows, since a symmetric matrix with zero
diagonal has even 2-rank, and the diagonal of a symmetric matrix lies in theF2-
space of its rows. Hence if rk2(A+ I) is even, then rk2(A+ I +J) = rk2(A+ I), and
if rk2(A+ I) is odd then rk2(A+ I +J) = rk2(A+ I)−1.
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The 3-rank ofA− I +bJ is given by Proposition 13.3.4. Heref (x) = (x+2)((x+
1)2−7) andk= 6+24b, so thatf (k)/n≡ 0 (mod 3) is equivalent tob≡ 1 (mod 3).

One has rk3(A+ I) = 16 in all ten cases.
The value of rk7(A) can be predicted: We have det(A+J) =−78.31, so the Smith

Normal Form (§13.8) ofA+J has at most 8 entries divisible by 7 and rk7(A+J)≥
16. By Proposition 13.3.3, rk7(A+J) = 16. Since 7∤ n and1 is in the row space of
A+J but not in that ofA, rk7(A) = 15.

13.6 Paley graphs

Let q be a prime power,q≡ 1 (mod 4), and letΓ be the graph with vertex setFq

where two vertices are adjacent whenever their difference is a nonzero square. (Then
Γ is called thePaley graphof orderq.) In order to compute thep-rank of the Paley
graphs, we first need a lemma.

Lemma 13.6.1 Let p(x,y) = ∑d−1
i=0 ∑e−1

j=0ci j xiy j be a polynomial with coefficients in
a field F. Let A,B⊆ F, with m:= |A| ≥ d and n:= |B| ≥ e. Consider the m× n
matrix P= (p(a,b))a∈A,b∈B and the d×e matrix C= (ci j ). ThenrkF(P) = rkF(C).

Proof. For any integers and subsetX of F , let Z(s,X) be the|X| × s matrix
(xi)x∈X,0≤i≤s−1. Note that if|X| = s then this is a Vandermonde matrix and hence
invertible. We haveP = Z(d,A)CZ(e,B)⊤, so rkF(P) ≤ rkF(C), but P contains a
submatrixZ(d,A′)CZ(e,B′) with A′ ⊆ A, B′ ⊆ B, |A′|= d, |B′|= e, and this subma-
trix has the same rank asC. �

For odd prime powersq= pe, p prime, letQ be the{0,±1}-matrix of orderq with
entriesQxy = χ(y−x) (x,y∈ Fq, χ the quadratic residue character,χ(0) = 0).

Proposition 13.6.2 ([52]) rkpQ= ((p+1)/2)e.

Proof. Applying the above lemma withp(x,y) = χ(y− x) = (y− x)(q−1)/2 =

∑i(−1)i
((q−1)/2

i

)
xiy(q−1)/2−i , we see that rkpQ equals the number of binomial coef-

ficients
((q−1)/2

i

)
with 0≤ i ≤ (q−1)/2 not divisible byp. Now Lucas’ Theorem

says that ifl = ∑i l i p
i and k = ∑i ki pi are thep-ary expansions ofl and k, then(l

k

)
≡ ∏i

( l i
ki

)
(mod p). Since 1

2(q− 1) = ∑i
1
2(p− 1)pi , this means that for each

p-ary digit of i there are(p+1)/2 possibilities and the result follows. �

For Lucas’ Theorem, cf. MacWilliams & Sloane [254],§13.5, p. 404 (and refer-
ences given there). Note that this proof shows that each submatrix of Q of order at
least(q+1)/2 has the same rank asQ.

The relation betweenQ here and the adjacency matrixA of the Paley graph is
Q= 2A+ I −J. FromQ2 = qI−J≡−J (mod p) and(2A+ I)2 = qI +(q−1)J≡
−J (mod p) it follows that both〈Q〉 and 〈2A+ I〉 contain1, so rkp(A+ 1

2I) =
rkp(2A+ I) = rkp(Q) = ((p+1)/2)e.
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13.7 Strongly regular graphs

Let Γ be a strongly regular graph with adjacency matrixA, and assume thatA has
integral eigenvaluesk, r,swith multiplicities 1, f ,g, respectively. We investigate the
p-rank of a linear combination ofA, I andJ.

The following proposition shows that only the casep|(r−s) is interesting.

Proposition 13.7.1 Let M= A+bJ+cI. Then M has eigenvaluesθ0 = k+bv+c,
θ1 = r +c, θ2 = s+c, with multiplicities m0 = 1, m1 = f , m2 = g, respectively.

(i) If none of theθi vanishes (mod p), thenrkpM = v.
(ii) If precisely oneθi vanishes (mod p), then M has p-rank v−mi .

Put e:= µ +b2v+2bk+b(µ−λ ).
(iii) If θ0 ≡ θ1 ≡ 0 (mod p), θ2 6≡ 0 (mod p), thenrkpM = g if and only if p|e,

andrkpM = g+1 otherwise.
(iii)’ If θ0 ≡ θ2 ≡ 0 (mod p), θ1 6≡ 0 (mod p), thenrkpM = f if and only if p|e,

andrkpM = f +1 otherwise.
(iv) In particular, if k≡ r ≡ 0 (mod p) and s6≡ 0 (mod p), thenrkpA= g. And if

k≡ s≡ 0 (mod p) and r 6≡ 0 (mod p), thenrkpA= f .
(v) If θ1≡ θ2≡ 0 (mod p), thenrkpM ≤min( f +1,g+1).

Proof. Parts (i) and (ii) and (v) are immediate from Propositions 13.3.1, 13.3.2.
Supposeθ0 ≡ θ1 ≡ 0 (mod p), θ2 6= 0 (mod p). Then we can apply Proposition
13.3.4 with the two eigenvalues 0 andθ2. Since rkp(M− θ2I) = v− g, andg ≤
rkpM ≤ g+1, it follows that rkpM = g if and only if M(M−θ2I)≡ 0 (mod p). But
using(A− rI )(A− sI) = µJ andr + s= λ − µ , we findM(M− θ2I) ≡ (A+bJ−
rI )(A+bJ−sI) = eJ. Part (iii)’ is similar. �

Thus, the only interesting case (where the structure ofΓ plays a r̂ole) is that where
p divides bothθ1 andθ2, so thatp | (r−s). In particular, only finitely many primes
are of interest. In this case we only have the upper bound (v).

Looking at the idempotents sometimes improves this bound by1: We haveE1 =
(r− s)−1(A− sI− (k− s)v−1J) andE2 = (s− r)−1(A− rI − (k− r)v−1J). Thus, if
k−sandv are divisible by the same power ofp (so that(k−s)/v can be interpreted
in Fp), then rkp(A−sI− (k−s)v−1J)≤ rkE1 = f , and, similarly, ifk− r andv are
divisible by the same power ofp then rkp(A− rI − (k− r)v−1J)≤ rkE2 = g.

For M = A+bJ+cI andp|(r +c), p|(s+c) we haveME1 = JE1 = 0 (overFp)
so that rkp〈M,1〉 ≤ g+ 1, and hence rkpM ≤ g (and similarly rkpM ≤ f ) in case
1 /∈ 〈M〉.

Much more detail is given in [52] and [278].
In the table below we give for a few strongly regular graphs for each primep

dividing r−s the p-rank ofA−sI and the uniqueb0 such that rkp(A−sI−b0J) =
rkp(A−sI−bJ)−1 for all b 6= b0, or ‘-’ in case rkp(A−sI−bJ) is independent of
b. (Whenp ∤ v we are in the former case, andb0 follows from the parameters. When
p|v andp ∤ µ , we are in the latter case.)

For a description of most of these graphs, see [59].
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Name v k λ µ r f sg p rkp(A−sI) b0

Folded 5-cube 16 5 0 2 110 (−3)5 2 6 -
Schl̈afli 27 16 10 8 46 (−2)20 2 6 0

3 7 -
T(8) 28 12 6 4 47 (−2)20 2 6 0

3 8 2
3 Chang graphs 28 12 6 4 47 (−2)20 2 8 -

3 8 2
G2(2) 36 14 4 6 221 (−4)14 2 8 -

3 14 -
Sp4(3) 40 12 2 4 224 (−4)15 2 16 -

3 11 1
O5(3) 40 12 2 4 224 (−4)15 2 10 -

3 15 1
Hoffman-Singleton 50 7 0 1 228 (−3)21 5 21 -
Gewirtz 56 10 0 2 235 (−4)20 2 20 -

3 20 1
M22 77 16 0 4 255 (−6)21 2 20 0
Brouwer-Haemers 81 20 1 6 260 (−7)20 3 19 -
Higman-Sims 100 22 0 6 277 (−8)22 2 22 -

5 23 -
Hall-Janko 100 36 14 12 636 (−4)63 2 36 0

5 23 -
GQ(3,9) 112 30 2 10 290 (−10)21 2 22 -

3 20 1
001... inS(5,8,24) 120 42 8 18 299 (−12)20 2 20 -

7 20 5
Sp4(5) 156 30 4 6 490 (−6)65 2 66 -

5 36 1
Sub McL 162 56 10 24 2140 (−16)21 2 20 0

3 21 -
Edges of Ho-Si 175 72 20 36 2153 (−18)21 2 20 0

5 21 -
01... inS(5,8,24) 176 70 18 34 2154 (−18)21 2 22 -

5 22 3
a switched version 176 90 38 54 2153 (−18)22 2 22 -
of the previous graph 5 22 3

Cameron 231 30 9 3 955 (−3)175 2 55 1
3 56 1

Berlekamp-van Lint-Seidel 243 22 1 2 4132 (−5)110 3 67 -
Delsarte 243 110 37 60 2220 (−25)22 3 22 -
S(4,7,23) 253 112 36 60 2230 (−26)22 2 22 0

7 23 5
McLaughlin 275 112 30 56 2252 (−28)22 2 22 0

continued...
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Name v k λ µ r f sg p rkp(A−sI) b0

3 22 1
5 23 -

a switched version 276 140 58 84 2252 (−28)23 2 24 -
of previous plus 3 23 2
isolated point 5 24 3

G2(4) 416 100 36 20 2065 (−4)350 2 38 -
3 65 1

Dodecads mod1 1288 792 476 504 81035 (−36)252 2 22 0
11 230 3

Table 13.1 p-ranks of some strongly regular graphs ([52])

13.8 Smith Normal Form

TheSmith Normal Form S(M) of an integral matrixM is a diagonal matrixS(M) =
PMQ = diag(s1, . . . ,sn), where P and Q are integral with determinant±1 and
s1|s2| · · · |sn. It exists and is uniquely determined up to the signs of thesi . Thesi are

called theelementary divisorsor invariant factors. For example, ifM =
[

1111
3111

]
,

thenS(M) =
[

1000
0200

]
.

Let 〈M〉 denote the row space ofM over Z. By the fundamental theorem for
finitely generated abelian groups, the groupZn/〈M〉 is isomorphic to a direct sum
Zs1 ⊕ ·· · ⊕ Zsm ⊕ Zs for certain s1, . . . ,sm,s, where s1| · · · |sm. SinceZn/〈M〉 ∼=
Zn/〈S(M)〉, we see that diag(s1, . . . ,sm,0t) is the Smith Normal Form ofM, when
M hasr rows andn= m+scolumns, andt = min(r,n)−m.

If M is square then∏si = detS(M) = ±detM. More generally,∏t
i=1si is the

g.c.d. of all minors ofM of ordert.
The Smith Normal Form is a finer invariant than thep-rank: thep-rank is just the

number ofsi not divisible byp. (It follows that if M is square andpe||detM, then
rkpM ≥ n−e.)

We give some examples of graphs distinguished by Smith Normal Form or p-
rank.

Example Let A andB be the adjacency matrices of the lattice graphK4�K4 and
the Shrikhande graph. ThenS(A) = S(B) = diag(16,24,45,12), but S(A+ 2I) =
diag(16,81,09) andS(B+2I) = diag(16,21,09). All have 2-rank equal to 6.

Example An example where thep-rank suffices to distinguish, is given by the
Chang graphs, strongly regular graphs with the same parameters as the triangular
graphT(8), with (v,k,λ ,µ) = (28,12,6,4) and spectrum 121 47 (−2)20. If A is the
adjacency matrix of the triangular graph andB that of one of the Chang graphs then
S(A) = diag(16,215,86,241) andS(B) = diag(18,212,87,241), so thatA andB have
different 2-rank.
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Example Another example is given by the point graph and the line graphof the
GQ(3,3) constructed in§9.6.2. The 2-ranks of the adjacency matrices are 10 and 16
respectively.
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Fig. 13.1 Graphs with same Laplacian SNF(13,5,15,0)

Concerning the Smith Normal Form of the Laplacian, Grone, Merris & Watkins
[179] gave the pair of graphs in Figure 13.1 that both haveS(L) = diag(13,5,15,0).
The Laplace spectrum of the left one (which isK2�K3) is 0, 2, 32, 52. That of the
right one is 0, 0.914, 3.572, 52, 5.514, where the three non-integers are roots of
λ 3−10λ 2+28λ −18= 0.

13.8.1 Smith Normal Form and spectrum

There is no very direct connection between Smith Normal Formand spectrum. For

example, the matrix
[

3 1
1 3

]
has eigenvalues 2 and 4, and invariant factors 1 and 8.

Proposition 13.8.1 Let M be an integral matrix of order n, with invariant factors
s1, . . . ,sn.

(i) If a is an integral eigenvalue of M, then a|sn.
(ii) If a is an integral eigenvalue of M with geometric multiplicity m, then

a|sn−m+1.
(iii) If M is diagonalizable with distinct eigenvalues a1, . . . ,am, all integral, then

we have sn|a1a2 · · ·am.

Proof. Part (i) is a special case of (ii). Part (ii) is Proposition 13.8.4 below. For
(iii) we may assume that allai are nonzero. It suffices to show that every element in
Zn/〈M〉 has an order dividinga1a2 · · ·am. We show by induction onk that if u=∑ui

is integral and is sum ofk left eigenvectorsui of M, with uiM = aiui , thena1 · · ·aku∈
〈M〉. Indeed, sinceuM = ∑aiui ∈ 〈M〉 andaku−uM = ∑(ak−ai)ui is integral and
sum of at mostk−1 eigenvectors, we find by induction thata1 · · ·ak−1(aku−uM)∈
〈M〉, hencea1 · · ·aku∈ 〈M〉. �
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The invariant factors are determined when we know for each prime p and each
i ≥ 0 how many invariant factors are divisible bypi , and the following proposition
tells us.

Proposition 13.8.2 Let A be an integral matrix of order n, p a prime number and
i a nonnegative integer. Put Mi := Mi(A) := {x ∈ Zn | p−iAx∈ Zn}. Let Mi ⊆ Fn

p

be the mod p reduction of Mi . ThenMi is anFp-vectorspace, and the number of
invariant factors of A divisible by pi equalsdimpMi .

Proof. dimpMi does not change whenA is replaced byPAQ whereP andQ are
integral matrices of determinant 1. So we may assume thatA is already in Smith
Normal Form. Now the statement is obvious. �

There is a dual statement:

Proposition 13.8.3 Let A be an integral matrix of order n, p a prime number and
i a nonnegative integer. Put Ni := Ni(A) := {p−iAx | x ∈ Mi}. Then the number of
invariant factors of A not divisible by pi+1 equalsdimpNi .

Proof. dimpNi does not change whenA is replaced byPAQ whereP andQ are
integral matrices of determinant 1. So we may assume thatA is already in Smith
Normal Form. Now the statement is obvious. �

Proposition 13.8.4 Let A be a square integral matrix with integral eigenvalue a of
(geometric) multiplicity m. Then the number of invariant factors of A divisible by a
is at least m.

Proof. Let W = {x ∈ Qn | Ax= ax} be thea-eigenspace ofA over Q, so that
dimQ(W) = m. By the Proposition 13.8.2 it suffices to show that dimpW = m for
all primesp, whereW is the modp reduction ofW∩Zn. Pick a basisx1, . . . ,xm of
W consisting ofm integral vectors, chosen in such a way that then×m matrix X
that has columnsx j has a (nonzero) minor of orderm with the minimum possible
number of factorsp. If upon reduction modp these vectors become dependent, that
is, if ∑c jx j = 0 where not allc j vanish, then∑c jx j has coefficients divisible byp,
so thaty := 1

p ∑c jx j ∈W∩Zn, and we can replace somex j (with nonzeroc j ) by y
and get a matrixX′ where the minors have fewer factorsp, contrary to assumption.
So, thexi remain independent upon reduction modp, and dimpW = m. �

Example Let q = pt for some primep. Consider the adjacency matrixA of the
graphΓ of which the vertices are the lines ofPG(3,q), where two lines are adjacent
when they are disjoint. This graph is strongly regular, witheigenvaluesk= q4, r = q,
s=−q2 and multiplicities 1,f = q4+q2, g= q3+q2+q, respectively. Since detA
is a power ofp, all invariant factors are powers ofp. Let pi occur as invariant factor
with multiplicity ei .

Claim. We have e0 + e1 + · · ·+ et = f and e2t + · · ·+ e3t = g and e4t = 1 and
ei = 0 for t < i < 2t and3t < i < 4t and i> 4t. Moreover, e3t−i = ei for 0≤ i < t.
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Proof. The total number of invariant factors is the size of the matrix, so∑i ei =
f +g+1. The number of factorsp in detA is ∑i iei = t( f +2g+4). Hence∑i(i−
t)ei = t(g+3).

Let mi :=∑ j≥i ej . By (the proof of) Proposition 13.8.4 we havem4t ≥ 1 andm2t ≥
g+1. (The+1 follows because1 is orthogonal to eigenvectors with eigenvalue other
thank, but has a nonzero (modp) inner product with itself, so that1 6∈W for an
eigenspaceW with 1 6∈W.)

The matrixA satisfies the equation(A− rI )(A− sI) = µJ, that is,A(A+q(q−
1)I) = q3I +q3(q−1)J, and the right-hand side is divisible byp3t . If x ∈ Zn and
p−i(A+ q(q− 1)I)x ∈ Zn, then p−i(A+ q(q− 1)I)x ∈ M3t−i(A) for 0≤ i ≤ 3t. If
0≤ i < t, thenp−iq(q−1)x= 0 (modp), so thatNi ⊆M3t−i . Also 1∈M3t−i , while
1 6∈ Ni because1⊤p−iAx= p4t−iAx reduces to 0 (modp) for integralx, unlike1⊤1.
By Proposition 13.8.3 we findm3t−i ≥ e0+ · · ·+ei +1 (0≤ i < t).

Adding the inequalities−∑0≤i≤hei +∑i≥3t−hei ≥ 1 (0≤ h< t), andt ∑i≥2t ei ≥
t(g+1) andt ∑i≥4t ei ≥ t yields

∑
0≤i<t

(i− t)ei + ∑
2t≤i≤3t

(i− t)ei +2t ∑
3t+1≤i<4t

ei +3t ∑
i≥4t

ei ≥ t(g+3)

and equality must hold everywhere since∑i(i− t)ei = t(g+3). �

Note that our conclusion also holds for any strongly regulargraph with the same
parameters as this graph on the lines ofPG(3,q).

In the particular caseq= p, the invariant factors are 1,p, p2, p3, p4 with multi-
plicities e, f −e, g−e, e, 1, respectively, wheree= 1

3 p(2p2+1) in the case of the
lines ofPG(3, p) (cf. [142]). Indeed, the numbere of invariant factors not divisible
by p is thep-rank ofA, determined in Sin [309].

For p = 2, there are 3854 strongly regular graphs with parameters (35,16,6,8)
([263]), and the 2-ranks occurring are 6, 8, 10, 12, 14 (with frequencies 1, 3, 44,
574, 3232, respectively)—they must be even becauseA is alternating (mod 2).

The invariant factors of the disjointness graph of the linesof PG(3,4) are 136 216

4220 1632 3216 6436 2561, with multiplicities written as exponents.

One can generalize the above observations, and show for example that if p is a
prime, andA is the adjacency matrix of a strongly regular graph, andpa||k, pb||r,
pc||s, wherea≥ b+ c and p ∤ v, andA hasei invariant factorssj with pi ||sj , then
ei = 0 for min(b,c)< i < max(b,c) andb+c< i < a andi > a. Moreover,eb+c−i =
ei for 0≤ i < min(b,c).





Chapter 14
Spectral characterizations

In this chapter, we consider the question to what extent graphs are determined by
their spectrum. First we give several constructions of families of cospectral graphs,
and then give cases in which it has been shown that the graph isdetermined by its
spectrum.

Let us abbreviate ‘determined by the spectrum’ to DS.1 Here, of course, ‘spec-
trum’ (and DS) depends on the type of adjacency matrix. If thematrix is not speci-
fied, we mean the ordinary adjacency matrix.

Large parts of this chapter were taken from Van Dam & Haemers [122, 123, 124].

14.1 Generalized adjacency matrices

Let A = AΓ be the adjacency matrix of a graphΓ . The choice of 0, 1, 0 inA to
represent equality, adjacency and non-adjacency was rather arbitrary, and one can
more generally consider a matrixxI+yA+z(J− I−A) that usesx, y, z instead. Any
such matrix, withy 6= z, is called ageneralized adjacency matrixof Γ . The spectrum
of any such matrix is obtained by scaling and shifting from that of a matrix of the
form A+yJ, so for matters of cospectrality we can restrict ourselves to this case.

Call two graphsΓ and∆ y-cospectral(for some realy) whenAΓ −yJ andA∆ −yJ
have the same spectrum. Then 0-cospectral is what we called cospectral, and1

2-
cospectral is Seidel-cospectral, and 1-cospectrality is cospectrality for the comple-
mentary graphs. Call two graphsjust y-cospectralwhen they arey-cospectral but
notz-cospectral for anyz 6= y.

The graphsK1,4 andK1+C4 are just 0-cospectral. The graphs 2K3 and 2K1+K4 are
just 1

3-cospectral. The graphsK1+C6 andÊ6 (cf. §1.3.7) arey-cospectral for ally.

Proposition 14.1.1 (i) (Johnson & Newman [225])
If two graphs are y-cospectral for two distinct values of y, then for all y.

1 We shall use the somewhat ugly ‘(non-)DS graph’ for ‘graph (not) determined by the spectrum’.

195



196 14 Spectral characterizations

(ii) (Van Dam, Haemers & Koolen [125])If two graphs are y-cospectral for an
irrational value of y, then for all y.

Proof. Definep(x,y) = det(AΓ −xI−yJ). Thus for fixedy, p(x,y) is the charac-
teristic polynomial ofAΓ −yJ. SinceJ has rank 1, the degree iny of p(x,y) is 1 (this
follows from Gaussian elimination inAΓ −xI−yJ), so there exist integersa0, . . . ,an

andb0, . . . ,bn such that

p(x,y) =
n

∑
i=0

(ai +biy)x
i .

SupposeΓ and Γ ′ are y-cospectral for somey = y0 but not for all y. Then the
corresponding polynomialsp(x,y) and p′(x,y) are not identical, whilstp(x,y0) =
p′(x,y0). This implies thatai + biy0 = a′i + b′iy0 with bi 6= b′i for somei. So y0 =
(a′i−ai)/(bi−b′i) is unique and rational. �

Van Dam, Haemers & Koolen [125] show that there is a pair of nonisomorphic just
y-cospectral graphs if and only ify is rational.

Values ofy other than 0, 1
2,1 occur naturally when studying subgraphs of strongly

regular graphs.

Proposition 14.1.2 Let Γ be strongly regular with vertex set X of size n, and letθ
be an eigenvalue other than the valency k. Let y= (k−θ)/n. Then for each subset
S of X, the spectrum ofΓ and the y-spectrum of the graph induced on S determines
the y-spectrum of the graph induced on X\S.

Proof. Since A− yJ has only two eigenvalues, this follows immediately from
Lemma 2.11.1. �

This can be used to produce cospectral pairs. For example, let Γ be the Petersen
graph, and letS induce a 3-coclique. Then they-spectrum of the graph induced on
X \S is determined by that onS, and does not depend on the coclique chosen. Since
θ can take two values, the graphs induced on the complement of a3-coclique (̂E6

andK1+C6) arey-cospectral for ally.

14.2 Constructing cospectral graphs

Many constructions of cospectral graphs are known. Most constructions from before
1988 can be found in [111,§6.1] and [110,§1.3]; see also [164,§4.6]. More recent
constructions of cospectral graphs are presented by Seress[305], who gives an in-
finite family of cospectral 8-regular graphs. Graphs cospectral to distance-regular
graphs can be found in [51], [122], [197], and in§14.2.2. Notice that the mentioned
graphs are regular, so they are cospectral with respect to any generalized adjacency
matrix, which in this case includes the Laplace matrix.

There exist many more papers on cospectral graphs. On regular, as well as non-
regular graphs, and with respect to the Laplace matrix as well as the adjacency
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matrix. We mention [44], [158], [201], [251], [264] and [288], but don’t claim to be
complete.

Here we discuss four construction methods for cospectral graphs. One used
by Schwenk to construct cospectral trees, one from incidence geometry to con-
struct graphs cospectral with distance-regular graphs, one presented by Godsil and
McKay, which seems to be the most productive one, and finally one due to Sunada.

14.2.1 Trees

Let Γ and ∆ be two graphs, with verticesx and y, respectively. Schwenk [292]
examined the spectrum of what he called thecoalescenceof these graphs atx and
y, namely, the resultΓ +x,y ∆ of identifying x andy in the disjoint unionΓ +∆ . He
proved the following (see also [111, p.159] and [164, p.65]).

Lemma 14.2.1 Let Γ andΓ ′ be cospectral graphs and let x and x′ be vertices of
Γ andΓ ′ respectively. Suppose thatΓ − x (that is the subgraph ofΓ obtained by
deleting x) andΓ ′−x′ are cospectral too. Let∆ be an arbitrary graph with a fixed
vertex y. ThenΓ +x,y ∆ is cospectral withΓ ′+x′,y ∆ .

Proof. Let zbe the vertex ofZ := Γ +x,y ∆ that is the result of identifyingx andy.
A directed cycle inZ cannot meet bothΓ −x and∆ −y. By §1.2.1 the characteristic
polynomialp(t) of Z can be expressed in the numbers of unions of directed cycles
with given number of vertices and of components. We findp(t) = pΓ−x(t)p∆ (t)+
pΓ (t)p∆−y(t)− t pΓ−x(t)p∆−y(t). �

For example, letΓ = Γ ′ be as given below, thenΓ −x andΓ −x′ are cospectral,
because they are isomorphic.

u

u u u u u u u u u

u

x x′

Suppose∆ = P3 and lety be the vertex of degree 2. Then Lemma 14.2.1 shows that
the graphs in Figure 14.1 are cospectral.
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Fig. 14.1 Cospectral trees

It is clear that Schwenk’s method is very suitable for constructing cospectral trees.
In fact, the lemma above enabled him to prove his famous theorem:

Theorem 14.2.2With respect to the adjacency matrix, almost all trees are non-DS.
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After Schwenk’s result, trees were proved to be almost always non-DS with re-
spect to all kinds of matrices. Godsil and McKay [167] provedthat almost all
trees are non-DS with respect to the adjacency matrix of the complementA, while
McKay [262] proved it for the Laplace matrixL and for the distance matrixD.

14.2.2 Partial linear spaces

A partial linear spaceconsists of a (finite) set of pointsP, and a collectionL of
subsets ofP called lines, such that two lines intersect in at most one point (and con-
sequently, two points are on at most one line). Let(P,L ) be such a partial linear
space and assume that each line has exactlyq points, and each point is onq lines.
Then clearly|P|= |L |. Let N be the point-line incidence matrix of(P,L ). Then
NN⊤−qI andN⊤N−qI both are the adjacency matrix of a graph, called thepoint
graph (also known ascollinearity graph) and line graphof (P,L ), respectively.
These graphs are cospectral, sinceNN⊤ andN⊤N are. But in many examples they
are non-isomorphic. An example was given in§12.3.1.

14.2.3 GM switching

Seidel switching was discussed above in§1.8.2. No graph with more than one vertex
is DS for the Seidel adjacency matrix. In some cases Seidel switching also leads to
cospectral graphs for the adjacency spectrum, for example when graph and switched
graph are regular of the same degree.

Godsil and McKay [168] consider a different kind of switching and give condi-
tions under which the adjacency spectrum is unchanged by this operation. We will
refer to their method as GM switching. (See also§1.8.3.) Though GM switching has
been invented to make cospectral graphs with respect to the adjacency matrix, the
idea also works for the Laplace matrix and the signless Laplace matrix, as will be
clear from the following formulation.

Theorem 14.2.3Let N be a(0,1)-matrix of size b×c (say) whose column sums are
0, b or b/2. DefineÑ to be the matrix obtained from N by replacing each column
v with b/2 ones by its complement1− v. Let B be a symmetric b×b matrix with
constant row (and column) sums, and let C be a symmetric c×c matrix. Put

M =

[
B N

N⊤ C

]
and M̃ =

[
B Ñ

Ñ⊤ C

]
.

Then M andM̃ are cospectral.

Proof. DefineQ=

[
2
bJ− Ib 0

0 Ic

]
. ThenQ−1 = Q andQMQ−1 = M̃. �
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The matrix partition used in [168] (and in§1.8.3) is more general than the one
presented here. But this simplified version suffices for our purposes: to show that
GM switching produces many cospectral graphs.

If M andM̃ are adjacency matrices of graphs then GM switching gives cospectral
graphs with cospectral complements and hence, by the resultof Johnson & Newman
quoted in§14.1, it produces cospectral graphs with respect to any generalized adja-
cency matrix.

If one wants to apply GM switching to the Laplace matrixL of a graphΓ , take
M = −L and letB andC (also) denote the sets of vertices indexing the rows and
columns of the matricesB andC, respectively. The requirement that the matrixB
has constant row sums means thatN has constant row sums, that is, the vertices of
B all have the same number of neighbors inC.

For the signless Laplace matrix, takeM = Q. Now all vertices inB must have the
same number of neighbors inC, and, in addition, the subgraph ofΓ induced byB
must be regular.

When Seidel switching preserves the valency of a graph, it is aspecial case of
GM switching, where all columns ofN haveb/2 ones. So the above theorem also
gives sufficient conditions for Seidel switching to producecospectral graphs with
respect to the adjacency matrixA and the Laplace matrixL.

If b = 2, GM switching just interchanges the two vertices ofB, and we call it
trivial. But if b≥ 4, GM switching almost always produces non-isomorphic graphs.
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Fig. 14.2 Two graphs cospectral w.r.t. any generalized adjacency matrix
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Fig. 14.3 Two graphs cospectral w.r.t. the Laplace matrix

In Figures 14.2 and 14.3 we have two examples of pairs of cospectral graphs pro-
duced by GM switching. In both casesb= c= 4 and the upper vertices correspond
to B and the lower vertices toC. In the example of Figure 14.2,B induces a regular
subgraph and so the graphs are cospectral with respect to every generalized adja-
cency matrix. In the example of Figure 14.3 all vertices ofB have the same number
of neighbors inC, so the graphs are cospectral with respect to the Laplace matrix L.



200 14 Spectral characterizations

14.2.4 Sunada’s method

As a corollary of the discussion in§6.4 we have:

Proposition 14.2.4 Let Γ be a finite graph, and G a group of automorphisms. If
H1 and H2 are subgroups of G such thatΓ is a cover ofΓ /Hi (i = 1,2) and such
that each conjugacy class of G meets H1 and H2 in the same number of elements,
then the quotientsΓ /Hi (i = 1,2) have the same spectrum and the same Laplace
spectrum.

Sunada [314] did this for manifolds, and the special case of graphs was discussed
in [201]. See also [44].

Proof. The condition given just means that the induced characters 1G
Hi

(i = 1,2)
are the same. Now apply Lemma 6.4.1 withM = A andM = L. �

Brooks [44] shows a converse: any pair of regular connected cospectral graphs
arises from this construction.

14.3 Enumeration

14.3.1 Lower bounds

GM switching gives lower bounds for the number of pairs of cospectral graphs with
respect to several types of matrices.

Let Γ be a graph onn−1 vertices and fix a setX of three vertices. There is a
unique way to extendΓ by one vertexx to a graphΓ ′, such thatX∪{x} induces a
regular graph inΓ ′ and that every other vertex inΓ ′ has an even number of neighbors
in X∪{x}. Thus the adjacency matrix ofΓ ′ admits the structure of Theorem 14.2.3,
whereB corresponds toX∪{x}. This implies that from a graphΓ onn−1 vertices
one can make

(n−1
3

)
graphs with a cospectral mate onn vertices (with respect to

any generalized adjacency matrix) and every suchn-vertex graph can be obtained
in four ways from a graph onn−1 vertices. Of course some of these graphs may
be isomorphic, but the probability of such a coincidence tends to zero asn→ ∞
(see [199] for details). So, ifgn denotes the number of non-isomorphic graphs onn
vertices, then:

Theorem 14.3.1The number of graphs on n vertices which are non-DS with respect
to any generalized adjacency matrix is at least

( 1
24−o(1))n3gn−1.

The fraction of graphs with the required condition withb= 4 for the Laplace matrix
is roughly 2−nn

√
n. This leads to the following lower bound (again see [199] for

details):
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Theorem 14.3.2The number of non-DS graphs on n vertices with respect to the
Laplace matrix is at least

rn
√

ngn−1,

for some constant r> 0.

In fact, a lower bound like the one in Theorem 14.3.2 can be obtained for any matrix
of the formA+αD, including the signless Laplace matrixQ.

14.3.2 Computer results

The mentioned papers [167] and [168] by Godsil and McKay alsogive interest-
ing computer results for cospectral graphs. In [168] all graphs up to 9 vertices are
generated and checked on cospectrality. This enumeration has been extended to 11
vertices by Haemers & Spence [199], and cospectrality was tested with respect to the
adjacency matrixA, the set of generalized adjacency matrices (A& A), the Laplace
matrix L, and the signless Laplace matrixQ. The results are in Table 14.1, where
we give the fractions of non-DS graphs for each of the four cases. The last three
columns give the fractions of graphs for which GM switching gives cospectral non-
isomorphic graphs with respect toA, L andQ, respectively. So column GM-A gives
a lower bound for columnA& A (and, of course, for columnA), column GM-L is a
lower bound for columnL, and column GM-Q is a lower bound for columnQ.

n # graphs A A& A L Q GM-A GM-L GM-Q
2 2 0 0 0 0 0 0 0
3 4 0 0 0 0 0 0 0
4 11 0 0 0 0.182 0 0 0
5 34 0.059 0 0 0.118 0 0 0
6 156 0.064 0 0.0260.103 0 0 0
7 1044 0.1050.0380.1250.098 0.038 0.069 0
8 12346 0.1390.0940.1430.097 0.085 0.088 0
9 274668 0.1860.1600.1550.069 0.139 0.110 0

10 12005168 0.2130.2010.1180.053 0.171 0.080 0.001
11 10189978640.2110.2080.0900.038 0.174 0.060 0.001
12 1650911725920.188 0.0600.027

Table 14.1 Fractions of non-DS graphs

Notice that forn≤ 4 there are no cospectral graphs with respect toA or to L, but
there is one such pair with respect toQ, namelyK1,3 andK1+K3. Forn= 5 there is
just one pair with respect toA. This is of course the Saltire pair (K1,4 andK1+C4).

An interesting result from the table is that the fraction of non-DS graphs is non-
decreasing for smalln, but starts to decrease atn = 10 for A, at n = 9 for L, and
at n = 6 for Q. Especially for the Laplace matrix and the signless Laplacematrix,
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these data suggest that the fraction of DS graphs might tend to 1 asn→ ∞. In ad-
dition, the table shows that the majority of non-DS graphs with respect toA& A
andL comes from GM switching (at least forn≥ 7). If this tendency continues,
the lower bounds given in Theorems 14.3.1 and 14.3.2 will be asymptotically tight
(with maybe another constant) and almost all graphs will be DS for all three cases.
Indeed, the fraction of graphs that admit a non-trivial GM switching tends to zero as
n tends to infinity, and the partitions withb= 4 account for most of these switchings
(see also [168]). For data forn= 12, see [63] and [312].

14.4 DS graphs

In Section 14.2 we saw that many constructions for non-DS graphs are known, and
in the previous section we remarked that it seems more likelythat almost all graphs
are DS, than that almost all graphs are non-DS. Yet much less is known about DS
graphs than about non-DS graphs. For example, we do not know of a satisfying
counterpart to the lower bounds for non-DS graphs given in§14.3.1. The reason is
that it is not easy to prove that a given graph is DS. Below we discuss the graphs
known to be DS. The approach is via structural properties of agraph that follow
from the spectrum. So let us start with a short survey of such properties.

14.4.1 Spectrum and structure

Let us first investigate for which matrices one can see from the spectrum whether
the graph is regular.

Proposition 14.4.1 Let D denote the diagonal matrix of degrees. If a regular graph
is cospectral with a non-regular one with respect to the matrix R= A+βJ+ γD+
δ I, thenγ = 0 and−1< β < 0.

Proof. W.l.o.g.δ = 0. LetΓ be a graph with the given spectrum, and suppose that
Γ hasn vertices and vertex degreesdi (1≤ i ≤ n).

First suppose thatγ 6= 0. Then∑i di is determined by tr(R) and hence by the
spectrum ofR. Since tr(R2) = β 2n2 + (1+ 2β + 2βγ)∑i di + γ2 ∑i d

2
i , it follows

that also∑i d
2
i is determined by the spectrum. Now Cauchy’s inequality states that

(∑i di)
2≤ n∑i d

2
i with equality if and only ifd1 = . . .= dn. This shows that regular-

ity of the graph can be seen from the spectrum ofR.
Now supposeγ = 0 andβ 6= −1/2. By considering tr(R2) we see that∑i di is

determined by the spectrum ofR. The matrixR= A+ βJ has average row sum
r = βn+∑i di/n determined by its spectrum. LetRhave eigenvaluesθ1≥ . . .≥ θn.
By interlacing,θ1 ≥ r ≥ θn, and equality on either side implies thatR has constant
row sums, andΓ is regular. On the other hand, ifβ ≥ 0 (resp.β ≤ −1), thenR
(resp.−R) is a nonnegative matrix, hence ifΓ is regular, then1 is an eigenvector
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for eigenvaluer = θ1 (resp.r =−θn). Thus also here regularity of the graph can be
seen from the spectrum. �

It remains to see whether one can see from the spectrum ofA− yJ (with 0 <
y< 1) whether the graph is regular. Fory= 1

2 the answer is clearly no: The Seidel
adjacency matrix isS= J− I − 2A, and forS a regular graph can be cospectral
with a non-regular one (e.g.K3 and K1 +K2), or with another regular one with
different valency (e.g. 4K1 andC4). Chesnokov & Haemers [85] constructed pairs
of y-cospectral graphs where one is regular and the other not forall rationaly, 0<
y< 1. Finally, if y is irrational, then one can deduce regularity from the spectrum of
A−yJ by Proposition 14.1.1(ii).

Corollary 14.4.2 For regular graphs, being DS (or not DS) is equivalent for the
adjacency matrix, the adjacency matrix of the complement, the Laplace matrix, and
the signless Laplace matrix.

Proof. For each of these matrices the above proposition says that regularity can be
recognized. It remains to find the valencyk. ForA, A, Q, the largest eigenvalue isk,
n−1−k, 2k, respectively. ForL, the trace isnk. �

Lemma 14.4.3 For the adjacency matrix, the Laplace matrix and the signless
Laplace matrix of a graphΓ , the following can be deduced from the spectrum.

(i) The number of vertices.
(ii) The number of edges.

(iii) WhetherΓ is regular.
(iv) WhetherΓ is regular with any fixed girth.

For the adjacency matrix the following follows from the spectrum.

(v) The number of closed walks of any fixed length.
(vi) WhetherΓ is bipartite.

For the Laplace matrix the following follows from the spectrum.

(vii) The number of components.
(viii) The number of spanning trees.

Proof. Part (i) is clear. ForL and Q the number of edges is twice the trace of
the matrix, while parts (ii) and (v) forA were shown in Proposition 1.3.1. Part (vi)
follows from (v), sinceΓ is bipartite if and only ifΓ has no closed walks of odd
length. Part (iii) follows from Proposition 14.4.1, and (iv) follows from (iii) and the
fact that in a regular graph the number of closed walks of length less than the girth
depends on the degree only. Parts (vii) and (viii) follow from Propositions 1.3.7 and
1.3.4. �

The Saltire pair shows that (vii) and (viii) do not hold for the adjacency matrix.
The two graphs of Figure 14.4 have cospectral Laplace matrices. They illustrate that
(v) and (vi) do not follow from the Laplace spectrum. The graphsK1+K3 andK1,3

show that (v)–(viii) are false for the signless Laplace matrix.
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Fig. 14.4 Two graphs cospectral w.r.t. the Laplace matrix
(Laplace spectrum: 0, 3−

√
5, 2, 3, 3, 3+

√
5)

14.4.2 Some DS graphs

Lemma 14.4.3 immediately leads to some DS graphs.

Proposition 14.4.4 The graphs Kn and Km,m and Cn and their complements are DS
for any matrix R= A+βJ+γD+δ I for which regularity follows from the spectrum
of R. In particular this holds for the matrices A,A, L and R.

Proof. Since these graphs are regular, we only need to show that theyare DS
with respect to the adjacency matrix. A graph cospectral with Kn hasn vertices and
n(n−1)/2 edges and therefore equalsKn. A graph cospectral withKm,m is regular
and bipartite with 2m vertices andm2 edges, so it is isomorphic toKm,m. A graph
cospectral withCn is 2-regular with girthn, so it equalsCn. �

Proposition 14.4.5 The disjoint union of k complete graphs, Km1 + . . .+Kmk, is DS
with respect to the adjacency matrix.

Proof. The spectrum of the adjacency matrixA of any graph cospectral withKm1+
. . .+Kmk equals{[m1−1]1, . . . , [mk−1]1, [−1]n−k}, wheren= m1+ . . .+mk. This
implies thatA+ I is positive semi-definite of rankk, and henceA+ I is the matrix
of inner products ofn vectors inRk. All these vectors are unit vectors, and the
inner products are 1 or 0. So two such vectors coincide or are orthogonal. This
clearly implies that the vertices can be ordered in such a waythatA+ I is a block
diagonal matrix with all-ones diagonal blocks. The sizes ofthese blocks are non-
zero eigenvalues ofA+ I . �

The above proposition shows that a complete multipartite graph is DS with respect
to A. In general, the disjoint union of complete graphs is not DS with respect toA
andL. The Saltire pair shows thatK1 +K4 is not DS forA, andK5 + 5K2 is not
DS for L, because it is cospectral with the Petersen graph extended by five isolated
vertices (both graphs have Laplace spectrum[0]6 [2]5 [5]4). See also Boulet [37].

Proposition 14.4.6 The path with n vertices is determined by the spectrum of its
adjacency matrix. More generally, each connected graph with largest eigenvalue
less than2 is determined by its spectrum.

Proof. Let Γ be connected withn vertices and have largest eigenvalue less than 2,
and let the graph∆ be cospectral. Then∆ does not contain a cycle, and hasn−1
edges, so is a tree. By Theorem 3.1.3 (and following remarks)we find that∆ is one
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of An =Pn, Dn, E6, E7, E8, and has largest eigenvalue 2cosπ
h , whereh is the Coxeter

number. Now∆ is determined byn andh, that is, by its number of vertices and its
largest eigenvalue. �

In fact, Pn is also DS with respect toA, L, andQ. The result forA, however, is
nontrivial and the subject of [141]. The hypothesis ‘connected’ here is needed, but
we can describe precisely which pairs of graphs with largesteigenvalue less than 2
are cospectral.

Proposition 14.4.7

(i) Dn+2+Pn is cospectral with P2n+1+P1 for n≥ 2.
(ii) D7+P2 is cospectral with E6+P3.

(iii) D 10+P2 is cospectral with E7+P5.
(iv) D16+P4+P2 is cospectral with E8+P9+P5.
(v) If two graphsΓ and∆ with largest eigenvalue less than2 are cospectral, then

there exist integers a,b,c such that∆ +aP4+bP2+cP1 arises fromΓ +aP4+
bP2+cP1 by (possibly repeatedly) replacing some connected components by
some others cospectral with the replaced ones according to (i)–(iv).

For example,P11+P2+P1 is cospectral withE6+P5+P3, andP17+P2+P1 is
cospectral withE7+P8+P5, andP29+P4+P2+P1 is cospectral withE8+P14+
P9+P5, andE6+D10+P7 is cospectral withE7+D5+P11, andE7+D4 is cospectral
with D10+P1, andE8+D6+D4 is cospectral withD16+2P1.

It follows that Pn1 + . . .+Pnk (with ni > 1 for all i) andDn1 + . . .+Dnk (with
ni > 3 for all i) are DS.

We do not know whetherPn1 + . . .+Pnk is DS with respect toA. But it is easy to
show that this graph is DS forL and forQ.

Proposition 14.4.8 The union of k disjoint paths, Pn1 + . . .+Pnk each having at
least one edge, is DS with respect to the Laplace matrix L and the signless Laplace
matrix Q.

Proof. The Laplace eigenvalues ofPn are 2+ 2cosπ i
n , i = 1, . . . ,n (see§1.4.4).

SincePn is bipartite, the signless Laplace eigenvalues are the same(see Proposition
1.3.10).

SupposeΓ is a graph cospectral withPn1 + . . .+Pnk with respect toL. Then all
eigenvalues ofL are less than 4. Lemma 14.4.3 implies thatΓ hask components and
n1+ . . .+nk− k edges, soΓ is a forest. LetL′ be the Laplace matrix ofK1,3. The
spectrum ofL′ equals[0]1 [1]2 [4]1. If degree 3 (or more) occurs inΓ thenL′+D
is a principal submatrix ofL for some diagonal matrixD with nonnegative entries.
But thenL′+D has largest eigenvalue at least 4, a contradiction. So the degrees
in Γ are at most two and henceΓ is the disjoint union of paths. The lengthm
(say) of the longest path follows from the largest eigenvalue. Then the other lengths
follow recursively by deletingPm from the graph and the eigenvalues ofPm from the
spectrum.
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For a graphΓ ′ cospectral withPn1 + . . .+Pnk with respect toQ, the first step is to
see thatΓ ′ is a forest. But a circuit inΓ ′ gives a submatrixL′ in Q with all row sums
at least 4. SoL′ has an eigenvalue at least 4, a contradiction (by Corollary 2.5.2),
and it follows thatΓ ′ is a forest and hence bipartite. Since for bipartite graphsL and
Q have the same spectrum,Γ ′ is also cospectral withPn1 + . . .+Pnk with respect to
L, and we are done. �

The above two propositions show that forA, A, L, andQ the number of DS graphs on
nvertices is bounded below by the number of partitions ofn, which is asymptotically
equal to 2α

√
n for some constantα. This is clearly a very poor lower bound, but we

know of no better one.
In the above we saw that the disjoint union of some DS graphs isnot necessarily

DS. One might wonder whether the disjoint union of regular DSgraphs with the
same degree is always DS. The disjoint union of cycles is DS, as can be shown
by an argument similar to that in the proof of Proposition 14.4.8. Also the disjoint
union of some copies of a strongly regular DS graph is DS. In general we expect a
negative answer, however.

14.4.3 Line graphs

The smallest adjacency eigenvalue of a line graph is at least−2 (see§1.4.5). Other
graphs with least adjacency eigenvalue−2 are the cocktailparty graphs (mK2, the
complement ofm disjoint edges) and the so-called generalized line graphs,which
are common generalizations of line graphs and cocktailparty graphs (see [110,
Ch.1]). We will not need the definition of a generalized line graph, but only use
the fact that if a generalized line graph is regular, it is a line graph or a cocktail-
party graph. Graphs with least eigenvalue−2 have been characterised by Cameron,
Goethals, Seidel and Shult [80] (cf.§8.4). They prove that such a graph is a gen-
eralized line graph or is in a finite list of exceptions that comes from root systems.
Graphs in this list are calledexceptional graphs. A consequence of the above char-
acterisation is the following result of Cvetković & Doob [109, Thm.5.1] (see also
[110, Thm.1.8]).

Theorem 14.4.9Suppose a regular graph∆ has the adjacency spectrum of the line
graph L(Γ ) of a connected graphΓ . SupposeΓ is not one of the fifteen regular
3-connected graphs on8 vertices, or K3,6, or the semiregular bipartite graph with9
vertices and12edges. Then∆ is the line graph L(Γ ′) of a graphΓ ′.

It does not follow that the line graph of a connected regular DS graph, which is
not one of the mentioned exceptions, is DS itself. The reasonis that it can happen
that two non-cospectral graphsΓ andΓ ′ have cospectral line graphs. For example,
both L(K6) andK6,10 have a line graph with spectrum 141 85 49 −245, and both
L(Petersen) and the incidence graph of the 2-(6,3,2) design have a line graph with
spectrum 61 45 14 05−215. The following lemma gives necessary conditions for this
phenomenon (cf. [72, Thm.1.7]).



14.4 DS graphs 207

Lemma 14.4.10Let Γ be a k-regular connected graph on n vertices and letΓ ′
be a connected graph such that L(Γ ) is cospectral with L(Γ ′). Then eitherΓ ′ is
cospectral withΓ , or Γ ′ is a semiregular bipartite graph with n+ 1 vertices and
nk/2 edges, where(n,k) = (b2−1,ab) for integers a and b with a≤ 1

2b.

Proof. Suppose thatΓ hasm edges. ThenL(Γ ) hasm vertices.
If N is the point-edge incidence matrix ofΓ , thenNN⊤ is the signless Laplace

matrix of Γ , andNN⊤− kI is the adjacency matrix ofΓ , andN⊤N−2I is the ad-
jacency matrix ofL(Γ ). SinceΓ is connected, the matrixN has eigenvalue 0 with
multiplicity 1 if Γ is bipartite, and does not have eigenvalue 0 otherwise. Conse-
quently,L(Γ ) has eigenvalue−2 with multiplicity m−n+1 if Γ is bipartite, and
with multiplicity m−n otherwise. Ifη 6= 0, then the multiplicity ofη−2 as eigen-
value ofL(Γ ) equals the multiplicity ofη−k as eigenvalue ofΓ .

We see that for a regular connected graphΓ , the spectrum ofL(Γ ) determines
that ofΓ (sinceL(G) is regular of valency 2k−2 andn is determined bym= 1

2nk).
SinceL(Γ ′) is cospectral withL(Γ ), alsoΓ ′ hasm edges.L(Γ ′) is regular and

henceΓ ′ is regular or semiregular bipartite. Suppose thatΓ ′ is not cospectral with
Γ . ThenΓ ′ is semiregular bipartite with parameters(n1,n2,k1,k2) (say), and

m= 1
2nk= n1k1 = n2k2.

Since the signless Laplace matricesQ andQ′ of Γ andΓ ′ have the same non-zero
eigenvalues, their largest eigenvalues are equal:

2k= k1+k2.

If n= n1+n2 thenk1 = k2, contradiction. So

n= n1+n2−1.

Write k1 = k−a andk2 = k+a, thennk= n1k1+n2k2 yields

k= (n1−n2)a.

Now n1k1 = n2k2 gives
(n1−n2)

2 = n1+n2.

Put b = n1−n2, then(n,k) = (b2−1,ab). Since 2ab= k1+ k2 ≤ n2+n1 = b2, it
follows thata≤ 1

2b. �

Now the following can be concluded from Theorem 14.4.9 and Lemma 14.4.10.

Theorem 14.4.11SupposeΓ is a connected regular DS graph, which is not a3-
connected graph with8 vertices or a regular graph with b2−1 vertices and degree
ab for some integers a and b, with a≤ 1

2b. Then also the line graph L(Γ ) of Γ is
DS.
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Bussemaker, Cvetković, and Seidel [72] determined all connected regular excep-
tional graphs (see also [115]). There are exactly 187 such graphs, of which 32 are
DS. This leads to the following characterisation.

Theorem 14.4.12SupposeΓ is a connected regular DS graph with all its adja-
cency eigenvalues at least−2, then one of the following occurs.

(i) Γ is the line graph of a connected regular DS graph.
(ii) Γ is the line graph of a connected semiregular bipartite graph, which is DS

with respect to the signless Laplace matrix.
(iii) Γ is a cocktailparty graph.
(iv) Γ is one of the32connected regular exceptional DS graphs.

Proof. SupposeΓ is not an exceptional graph or a cocktailparty graph. ThenΓ
is the line graph of a connected graph∆ , say. Whitney [330] has proved that∆ is
uniquely determined fromΓ , unlessΓ = K3. If this is the case thenΓ = L(K3) =
L(K1,3), so (i) holds. Suppose∆ ′ is cospectral with∆ with respect to the signless
Laplace matrixQ. ThenΓ andL(∆ ′) are cospectral with respect to the adjacency
matrix, soΓ = L(∆ ′) (sinceΓ is DS). Hence∆ = ∆ ′. BecauseΓ is regular,∆ must
be regular, or semiregular bipartite. If∆ is regular, DS with respect toQ is the same
as DS. �

All four cases from Theorem 14.4.12 do occur. For (i) and (iv)this is obvious, and
(iii) occurs because the cocktailparty graphsmK2 are DS (since they are regular and
A-cospectral by Proposition 14.4.5). Examples for Case (ii)are the complete graphs
Kn = L(K1,n) with n 6= 3. Thus the fact thatKn is DS implies thatK1,n is DS with
respect toQ if n 6= 3.

14.5 Distance-regular graphs

All regular DS graphs constructed so far have the property that either the adjacency
matrix A or the adjacency matrixA of the complement has smallest eigenvalue at
least−2. In this section we present other examples.

Recall that a distance-regular graph with diameterd hasd+ 1 distinct eigen-
values and that its (adjacency) spectrum can be obtained from the intersection array.
Conversely, the spectrum of a distance-regular graph determines the intersection ar-
ray (see e.g. [122]). However, in general the spectrum of a graph doesn’t tell you
whether it is distance-regular or not.

For d ≥ 3 we have constructed graphs cospectral with, but non-isomorphic to
H(d,d) in §14.2.2. Many more examples are given in [197] and [126].

In the theory of distance-regular graphs an important question is: ‘Which graphs
are determined by their intersection array?’ For many distance-regular graphs this is
known to be the case. Here we investigate in the cases where the graph is known to
be determined by its intersection array, whether in fact it is already determined by
its spectrum.
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14.5.1 Strongly regular DS graphs

The spectrum of a graphΓ determines whetherΓ is strongly regular. Indeed, by
Proposition 3.3.1 we can see whetherΓ is regular. And a regular graph with spec-
trum θ1≥ . . .≥ θn is strongly regular if and only if|{θi | 2≤ i ≤ n}|= 2.

(That is, a regular graph is strongly regular if and only if either it is connected,
and then has precisely three distinct eigenvalues: its valency and two others, or it is
the disjoint unionaKℓ (a≥ 2, ℓ≥ 2) of a complete graphs of sizeℓ.)

Indeed, ifΓ has valencyk and all eigenvaluesθi with i > 1 are in{r,s}, then
(A− rI )(A− sI) = cJ so thatA2 is a linear combination ofA, I and J, andΓ is
strongly regular.

By Propositions 14.4.4 and 14.4.5 and Theorem 14.4.11, we find the following
infinite families of strongly regular DS graphs.

Proposition 14.5.1 If n 6= 8 and m6= 4, the graphs aKℓ, L(Kn) and L(Km,m) and
their complements are strongly regular DS graphs.

Note thatL(Kn) is the triangular graphT(n), andL(Km,m) is the lattice graphL2(n).
For n= 8 andm= 4 cospectral graphs exist. There is exactly one graph cospectral
with L(K4,4), the Shrikhande graph ([308]), and there are three graphs cospectral
with L(K8), the so-called Chang graphs ([83]). See also§9.2.

Besides the graphs of Proposition 14.5.1, only a few strongly regular DS graphs
are known; these are surveyed in Table 14.2. (Here alocal graph of a graphΓ is the
subgraph induced by the neighbors of a vertex ofΓ .)

v spectrum name reference

5 2 [(−1±
√

5)/2]2 pentagon
13 6 [(−1±

√
13)/2]6 Paley [300]

17 8 [(−1±
√

17)/2]8 Paley [300]

16 5 110 (−3)5 folded 5-cube [299]
27 10 120 (−5)6 GQ(2,4) [299]
50 7 228 (−3)21 Hoffman-Singleton[197]
56 10 235 (−4)20 Gewirtz [162], [55]
77 16 255 (−6)21 M22 [45]
81 20 260 (−7)20 Brouwer-Haemers[54], §9.7

100 22 277 (−8)22 Higman-Sims [162]
105 32 284 (−10)20 flags of PG(2,4) [131]
112 30 290 (−10)21 GQ(3,9) [79]
120 42 299 (−12)20 001... inS(5,8,24) [131]
126 50 2105 (−13)20 Goethals [100]
162 56 2140 (−16)21 local McLaughlin [79]
176 70 2154 (−18)21 01... inS(5,8,24) [131]
275 112 2252 (−28)22 McLaughlin [172]

Table 14.2 The known sporadic strongly regular DS graphs (up to complements)
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Being DS seems to be a very strong property for strongly regular graphs. Most
strongly regular graphs have (many) cospectral mates. For example, there are ex-
actly 32548 non-isomorphic strongly regular graphs with spectrum 15, 315, (−3)20

(cf. [263]). Other examples can be found in the survey [48]. Fon-Der-Flaass [155]
showed that the number of nonisomorphic cospectral strongly regular graphs on at
mostn vertices grows exponentially inn. This implies that almost all strongly reg-
ular graphs are non-DS. One might be tempted to conjecture that there are only
finitely many strongly regular DS graphs besides the ones from Proposition 14.5.1.

14.5.2 Distance-regularity from the spectrum

If d≥ 3 only in some special cases does it follow from the spectrum of a graph that
it is distance-regular. The following result surveys the cases known to us.

Theorem 14.5.2 If Γ is a distance-regular graph with diameter d and girth g sat-
isfying one of the following properties, then every graph cospectral withΓ is also
distance-regular, with the same parameters asΓ .

(i) g≥ 2d−1,
(ii) g ≥ 2d−2 andΓ is bipartite,

(iii) g ≥ 2d−2 and cd−1cd <−(cd−1+1)(θ1+ . . .+θd),
(iv) Γ is a generalized Odd graph, that is, a1 = . . .= ad−1 = 0, ad 6= 0,
(v) c1 = . . .= cd−1 = 1,

(vi) Γ is the dodecahedron, or the icosahedron,
(vii) Γ is the coset graph of the extended ternary Golay code,
(viii) Γ is the Ivanov-Ivanov-Faradjev graph.

For parts (i), (iv) and (vi), see [55] (and also [192]), [218], and [197], respectively.
Parts (ii), (iii), (v), (vii) are proved in [122] (in fact, (ii) is a special case of (iii)) and
(viii) is proved in [126]. Notice that the polygonsCn and the strongly regular graphs
are special cases of (i), while bipartite distance-regulargraphs withd = 3 (these
are the incidence graphs of symmetric block designs, see also [111, Thm.6.9]) are a
special case of (ii).

An important result on spectral characterisations of distance-regular graphs is
the following theorem of Fiol & Garriga [152], a direct consequence of Theorem
12.10.1.

Theorem 14.5.3Let Γ be a distance-regular graph with diameter d and kd =
|Γd(u)| vertices at distance d from any given vertex u. IfΓ ′ is cospectral withΓ
and|Γ ′d (x)|= kd for every vertex x ofΓ ′, thenΓ ′ is distance-regular.

Let us illustrate the use of this theorem by proving case (i) of Theorem 14.5.2. Since
the girth and the degree follow from the spectrum, any graphΓ ′ cospectral withΓ
also has girthg and degreek1. Fix a vertexx in Γ ′. Clearlycx,y = 1 for every vertex
y at distance at most(g− 1)/2 from x, andax,y = 0 (whereax,y is the number of
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neighbors ofy at distanced(x,y) from x) if the distance betweenx andy is at most
(g− 2)/2. This implies that the numberk′i of vertices at distancei from x equals
k1(k1−1)i−1 for i = 1, . . . ,d−1. Hencek′i = ki for thesei. But then alsok′d = kd

andΓ ′ is distance-regular by Theorem 14.5.3.

14.5.3 Distance-regular DS graphs

Brouwer, Cohen & Neumaier [51] gives many distance-regulargraphs determined
by their intersection array. We only need to check which onessatisfy one of the
properties of Theorem 14.5.2. First we give the known infinite families:

Proposition 14.5.4 The following distance-regular graphs are DS.
(i) The polygons Cn.
(ii) The complete bipartite graphs minus a perfect matching.
(iii) The Odd graphs Od+1.
(iv) The folded(2d+1)-cubes.

As mentioned earlier, part (i) follows from property (i) of Theorem 14.5.2 (and from
Proposition 14.4.4). Part (ii) follows from property (ii) of Theorem 14.5.2, and the
graphs of parts (iii) and (iv) are all generalized Odd graphs, so the result follows
from property (iv), due to Huang & Liu [218].

Next, there are the infinite families where the spectrum determines the combinatorial
or geometric structure, where the graphs are DS if and only ifthe corresponding
structure is determined by its parameters.

Proposition 14.5.5 (i) A graph cospectral with the incidence graph of a symmetric
block design with parameters2-(v,k,λ ) is itself the incidence graph of a symmetric
block design with these same parameters.

In case (i) the designs known to be uniquely determined by their parameters are the
six projective planesPG(2,q) for q= 2,3,4,5,7,8, and the biplane 2-(11,5,2), and
their complementary designs with parameters 2-(v,v−k,v−2k+λ ).

The remaining known distance-regular DS graphs are presented in Tables 14.3, 14.4,
14.5. For all but one graph the fact that they are unique (thatis, determined by their
parameters) can be found in [51]. Uniqueness of the Perkel graph has been proved
only recently [99]. The last columns in the tables refer to the relevant theorems
by which distance-regularity follows from the spectrum. Inthese tables we denote
by IG(v,k,λ ) the point-block incidence graph of a 2-(v,k,λ ) design, and byGH,
GO, andGD the point graph of a generalized hexagon, generalized octagon, and
generalized dodecagon, respectively.

Recall that the point graph of aGH(1,q) (GO(1,q), GD(1,q)) is the point-line in-
cidence graph of a projective plane (generalized quadrangle, generalized hexagon)
of orderq. Recall that the point graph of aGH(q,1) is the line graph of the dual
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GH(1,q), that is, the line graph of the point-line incidence graph (also known as the
flag graph) of a projective plane of orderq.

Finally, G23, G21 andG12 denote the binary Golay code, the doubly truncated bi-
nary Golay code and the extended ternary Golay code, and HoSiis the Hoffman-
Singleton graph.

n spectrum g name Thm.

12 5
√

5
3

(−1)5 (−
√

5)3 3 icosahedron 14.5.2vi

14 3
√

2
6

(−
√

2)6 (−3)1 6 Heawood;GH(1,2) 14.5.2i

14 4
√

2
6

(−
√

2)6 (−4)1 4 IG(7,4,2) 14.5.2ii
15 4 25 (−1)4 (−2)5 3 L(Petersen) 14.4.11
21 4 (1+

√
2)6 (1−

√
2)6 (−2)8 3 GH(2,1) 14.5.2v

22 5
√

3
10

(−
√

3)10 (−5)1 4 IG(11,5,2) 14.5.2ii

22 6
√

3
10

(−
√

3)10 (−6)1 4 IG(11,6,3) 14.5.2ii

26 4
√

3
12

(−
√

3)12 (−4)1 6 GH(1,3) 14.5.2i

26 9
√

3
12

(−
√

3)12 (−9)1 4 IG(13,9,6) 14.5.2ii
36 5 216 (−1)10 (−3)9 5 Sylvester 14.5.2i
42 6 221 (−1)6 (−3)14 5 antipodal 6-cover ofK7 14.5.2i
42 5 220 (−2)20 (−5)1 6 GH(1,4) 14.5.2i
42 16 220 (−2)20 (−16)1 4 IG(21,16,12) 14.5.2ii
52 6 (2+

√
3)12 (2−

√
3)12 (−2)27 3 GH(3,1) 14.5.2v

57 6 ( 3+
√

5
2 )18 ( 3−

√
5

2 )18 (−3)20 5 Perkel 14.5.2i

62 6
√

5
30

(−
√

5)30 (−6)1 6 GH(1,5) 14.5.2i

62 25
√

5
30

(−
√

5)30 (−25)1 4 IG(31,25,20) 14.5.2ii

63 8
√

8
27

(−1)8 (−
√

8)27 4 antipodal 7-cover ofK9 14.5.2v
105 8 520 120 (−2)64 3 GH(4,1) 14.5.2v

114 8
√

7
56

(−
√

7)56 (−8)1 6 GH(1,7) 14.5.2i

114 49
√

7
56

(−
√

7)56 (−49)1 4 IG(57,49,42) 14.5.2ii

146 9
√

8
72

(−
√

8)72 (−9)1 6 GH(1,8) 14.5.2i

146 64
√

8
72

(−
√

8)72 (−64)1 4 IG(73,64,56) 14.5.2ii
175 21 728 221 (−2)125 3 L(HoSi) 14.4.11
186 10 (4+

√
5)30 (4−

√
5)30 (−2)125 3 GH(5,1) 14.5.2v

456 14 (6+
√

7)56 (6−
√

7)56 (−2)343 3 GH(7,1) 14.5.2v
506 15 4230 (−3)253 (−8)22 5 M23 graph 14.5.2i
512 21 5210 (−3)280 (−11)21 4 Coset graph ofG21 14.5.2iii
657 16 (7+

√
8)72 (7−

√
8)72 (−2)512 3 GH(8,1) 14.5.2v

729 24 6264 (−3)440 (−12)24 3 Coset graph ofG12 14.5.2vii
819 18 5324 (−3)468 (−9)26 3 GH(2,8) 14.5.2v

204823 7506 (−1)1288 (−9)253 4 Coset graph ofG23 14.5.2iii , iv
245724 11324 3468 (−3)1664 3 GH(8,2) 14.5.2v

Table 14.3 Sporadic distance-regular DS graphs with diameter 3

By Biaff(q) we denote the point-line incidence graph of an affine plane oforder
q minus a parallel class of lines (sometimes called abiaffine plane). Any graph
cospectral with a graph Biaff(q) is also such a graph. For prime powersq< 9 there
is a unique affine plane of orderq. (Biaff(2) is the 8-gon.)
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n nonnegative spectrumd g name Thm.

18 31
√

3
6

04 4 6 Pappus; Biaff(3) 14.5.2ii
30 31 29 010 4 8 Tutte’s 8-cage;GO(1,2) 14.5.2i
32 41 212 06 4 6 Biaff(4) 14.5.2ii

50 51
√

5
20

08 4 6 Biaff(5) 14.5.2ii

80 41
√

6
24

030 4 8 GO(1,3) 14.5.2i

98 71
√

7
42

012 4 6 Biaff(7) 14.5.2ii

126 31
√

6
21√

2
27

028 6 12 GD(1,2) 14.5.2i

128 81
√

8
56

014 4 6 Biaff(8) 14.5.2ii

170 51
√

8
50

068 4 8 GO(1,4) 14.5.2i

Table 14.4 Sporadic bipartite distance-regular DS graphs withd≥ 4

n spectrum d g name Thm.

20 31
√

5
3

15 04 (−2)4 (−
√

5)3 5 5 dodecahedron14.5.2vi
28 31 28 (−1+

√
2)6 (−1)7 (−1−

√
2)6 4 7 Coxeter 14.5.2i

45 41 39 110 (−1)9 (−2)16 4 3 GO(2,1) 14.5.2v

102 31 ( 1+
√

17
2 )9 218 θ 16

1 017 7 9 Biggs-Smith 14.5.2v

θ 16
2 ( 1−

√
17

2 )9 θ 16
3

(θ1, θ2, θ3 roots ofθ 3+3θ 2−3= 0)
160 61 (2+

√
6)24 230 (2−

√
6)24 (−2)81 4 3 GO(3,1) 14.5.2v

189 41 (1+
√

6)21 (1+
√

2)27 128 6 3 GD(2,1) 14.5.2v
(1−
√

2)27 (1−
√

6)21 (−2)64

330 71 455 1154 (−3)99 (−4)21 4 5 M22 graph 14.5.2v
425 81 (3+

√
8)50 368 (3−

√
8)50 (−2)256 4 3 GO(4,1) 14.5.2v

990 71 542 455 (−1+
√

33
2 )154 1154 0198 8 5 Ivanov-Ivanov-

(−3)99 (−1−
√

33
2 )154 (−4)21 Faradjev 14.5.2viii

Table 14.5 Sporadic non-bipartite distance-regular DS graphs withd≥ 4

We finally remark that also the complements of distance-regular DS graphs are
DS (but not distance-regular, unlessd = 2).

14.6 The method of Wang & Xu

Wang & Xu [326] invented a method to show that relatively manygraphs are deter-
mined by their spectrum and the spectrum of their complement. A sketch.

Let Γ be a graph onn vertices with adjacency matrixA. Thewalk matrix Wof Γ is
the square matrix of ordern with i-th columnAi−11 (1≤ i ≤ n). It is nonsingular if
and only ifA does not have an eigenvector orthogonal to1.

(Indeed, letu⊤A= θu⊤. Thenu⊤W = (1,θ , . . . ,θ n−1)u⊤1. If u⊤1= 0 then this
shows that the rows ofW are dependent. If for no eigenvectoru⊤ we haveu⊤1= 0,
then all eigenvalues have multiplicity 1, and by VandermondeW is nonsingular.)
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Let p(t) = ∑cit i = det(tI −A) be the characteristic polynomial ofA. Let thecom-
panion matrix C= (ci j ) be given bycin = −ci andci j = δi, j+1 for 1≤ j ≤ n−1.
ThenAW=WC.

(Indeed, this follows fromp(A) = 0.)

Assume thatΓ andΓ ′ are cospectral with cospectral complements. Call their walk
matricesW andW′. ThenW⊤W =W′⊤W′.

(Indeed,(W⊤W)i, j = 1⊤Ai+ j−21, and we saw in the proof of Proposition 14.1.1
that if Γ andΓ ′, with adjacency matricesA andA′, arey-cospectral for two distinct
y, then1⊤Am1= 1⊤A′m1 for all m.)

Suppose thatW is nonsingular. ThenW′ is nonsingular, andQ = W′W−1 is the
unique orthogonal matrix such thatA′ = QAQ⊤ andQ1= 1.

(Indeed, sinceW⊤W =W′⊤W′ alsoW′ is nonsingular, andQ1= 1 sinceQW=
W′, andQQ⊤ = W′(W⊤W)−1W′⊤ = I . SinceΓ andΓ ′ are cospectral, their com-
panion matrices are equal andQAQ⊤ = QWCW−1Q⊤ = W′CW′−1 = A′. If Q is
arbitrary with QQ⊤ = I , Q1 = 1 (hence alsoQ⊤1 = 1) and QAQ⊤ = A′, then
QAm1= QAmQ⊤1= A′m1 for all m, andQW=W′.)

Forget aboutΓ ′ and study rational matricesQ with QQ⊤ = I , Q1= 1 andQAQ⊤

a (0,1)-matrix with zero diagonal. Let thelevelof Q be the smallest integerℓ such
that ℓQ is integral. The matricesQ of level 1 are permutation matrices leading to
isomorphic graphs. So the graphΓ (without eigenvector orthogonal to1) is deter-
mined by its spectrum and the spectrum of its complement whenall such matrices
Q have level 1.

If Q has levelℓ, then clearlyℓ|detW. A tighter restriction onℓ is found by looking
at the Smith Normal FormSof W. Let S= UWV with unimodular integralU and
V, whereS= diag(s1, . . . ,sn) with s1|s2| . . . |sn. ThenW−1 =VS−1U so thatsnW−1

is integral, andℓ|sn.

Let p be prime,p|ℓ. There is an integral row vectorz, z 6≡ 0 (mod p) such that
zW≡ 0 (mod p) andzz⊤ ≡ 0 (mod p).

(Indeed, letz be a row ofℓQ, nonzero modp. Now QW = W′ is integral and
hencezW≡ 0 (mod p). And QQ⊤ = I , sozz⊤ = ℓ2≡ 0 (mod p).)

This observation can be used to rule out odd prime divisors ofℓ in some cases.
Suppose that all numberssi are powers of 2, except possibly the last onesn. Let p
be an odd prime divisor ofsn, and suppose thatuu⊤ 6≡ 0 (modp), whereu is the last
row of U . Thenp ∤ ℓ.

(Indeed, zW ≡ 0 (mod p) and W = U−1SV−1 with unimodularV implies
zU−1S≡ 0 (mod p). Assumep|ℓ, so thatp|sn. Let y= zU−1. Then all coordinates
of y except for the last one are 0(mod p). And z= yU is a nonzero constant timesu
(mod p). This contradictsuu⊤ 6≡ 0 (mod p).)

It remains to worry aboutp = 2. Assume thatsn ≡ 2 (mod 4), so that (with all of
the above assumptions)ℓ = 2. Forz we now havez 6≡ 0 (mod 2),zW≡ 0 (mod 2),
zz⊤ = 4, z1= 2, so thatzhas precisely four nonzero entries, three 1 and one−1.

We proved the following:
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Theorem 14.6.1LetΓ be a graph on n vertices without eigenvector orthogonal to
1, and let S= diag(s1, . . . ,sn) =UWV be the Smith Normal Form of its walk matrix
W, where U and V are unimodular. Let u be the last row of U. If sn = 2 (mod 4),
andgcd(uu⊤,sn/2) = 1, and zW6= 0 (mod 2) for every(0,1)-vector z with weight
4, thenΓ is determined by its spectrum and the spectrum of its complement. �

Wang & Xu generate a number of random graphs where this methodapplies.
Let us abbreviate the condition ‘determined by its spectrumand the spectrum of

its complement’ by DGS (determined by the generalized spectrum). Wang & Xu
[327] used their approach to find conditions for which a DGS graph remains DGS
if an isolated vertex is added.

Theorem 14.6.2LetΓ be a graph without eigenvector orthogonal to1. If we have
gcd(detA,detW) = 1, then the graph obtained fromΓ by adding an isolated vertex
is DGS if and only ifΓ is.

There is experimental evidence that in most cases where a cospectral mate exists,
the levelℓ is 2.

14.7 Exercises

Exercise 1 Show for the adjacency matrixA
(i) that there is no pair of cospectral graphs on fewer than 5 vertices,
(ii) that the Saltire pair is the only cospectral pair on 5 vertices,
(iii) that there are precisely 5 cospectral pairs on 6 vertices.
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x6−x4 x6−4x4+3x2 x6−5x4+4x2 x6−6x4−4x3 x6−7x4−4x3

+5x2+4x +7x2+4x−1

Table 14.6 The cospectral graphs on 6 vertices (with char. pol.)





Chapter 15
Graphs with few eigenvalues

Graphs with few distinct eigenvalues tend to have some kind of regularity. A graph
with only one eigenvalue (forA or L or Q) is edgeless, and a connected graph with
two distinct adjacency eigenvalues (forA or L or Q) is complete. A connected regu-
lar graphΓ has three eigenvalues if and only ifΓ is connected and strongly regular.
Two obvious next cases are connected regular graphs with four eigenvalues, and
general graphs with three eigenvalues. In the latter case the graphs need not be reg-
ular, so it matters which type of matrix we consider. For the Laplace matrix there is
an elegant characterization in terms of the structure, which gives a natural general-
ization of the spectral characterization of strongly regular graphs.

15.1 Regular graphs with four eigenvalues

SupposeΓ is regular withr distinct (adjacency) eigenvaluesk = λ1 > .. . > λr .
Then the Laplace matrix has eigenvalues 0= k−λ1 < .. . < k−λr , and the signless
Laplacian has eigenvaluesk+λ1 > .. . > k+λr . So for regular graphs these three
matrices have the same number of distinct eigenvalues. If, in addition, bothΓ and
its complementΓ are connected, thenΓ also hasr distinct eigenvalues, beingn−
k−1 > −λr −1 > .. . > −λ2−1. However, for the Seidel matrix the eigenvalues
become−2λr −1 > .. . > −2λ2−1 andn−2k−1. But n−2k−1 may be equal
to one of the other eigenvalues in which caseS hasr −1 distinct eigenvalues. For
example, the Petersen has three distinct adjacency eigenvalues, but only two distinct
Seidel eigenvalues, being±3.

Connected regular graphs with four distinct (adjacency) eigenvalues have been
studied by Doob [139, 140], Van Dam [117], and Van Dam & Spence[128]. Many
such graphs are known, for example the line graphs of primitive strongly regular
graphs, and distance regular graphs of diameter 3. More generally, most graphs de-
fined by a relation of a three-class association scheme have four eigenvalues. There
is no nice characterization as for regular graphs with threeeigenvalues, but they do
possess an interesting regularity property. A graph iswalk-regular, whenever for

217
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everyℓ ≥ 2 the number of closed walks of lengthℓ at a vertexv is independent of
the choice ofv. Note that walk-regularity implies regularity (takeℓ= 2). Examples
of walk-regular graphs are distance-regular graphs, and vertex-transitive graphs, but
there is more.

Proposition 15.1.1 LetΓ be a connected graph whose adjacency matrix A has r≥
4 distinct eigenvalues. ThenΓ is walk-regular if and only if Aℓ has constant diagonal
for 2≤ ℓ≤ r−2.

Proof. We know that the number of closed walks of lengthℓ at vertexv equals
(Aℓ)v,v. Therefore,Γ is walk-regular if and only ifAℓ has constant diagonal for all
ℓ ≥ 2. SupposeAℓ has constant diagonal for 2≤ ℓ ≤ r − 2. ThenA2 has constant
diagonal, soΓ is regular. The Hoffman polynomial ofΓ has degreer−1, and hence
Ar−1 ∈

〈
Ar−2, . . . ,A2,A, I ,J

〉
. This impliesAℓ ∈

〈
Ar−2, . . . ,A2,A, I ,J

〉
for all ℓ ≥ 0.

ThereforeAℓ has constant diagonal for allℓ≥ 0. �

Corollary 15.1.2 If Γ is connected and regular with four distinct eigenvalues, then
Γ is walk-regular. �

For a graphΓ with adjacency matrixA, the average number of triangles through
a vertex equals1

2ntrA3. SupposeΓ is walk-regular. Then this number must be an
integer. Similarly, 1

2ntrAℓ is an integer ifℓ is odd, and1
ntrAℓ is an integer ifn is even.

Van Dam and Spence [128] have used these (and other) conditions in their computer
generation of feasible spectra for connected regular graphs with four eigenvalues.
For constructions, characterizations, and other results on regular graphs with four
eigenvalues we refer to Van Dam [117, 118]. Here we finish withthe bipartite case,
which can be characterized in terms of block designs (see§4.8).

Proposition 15.1.3 A connected bipartite regular graphΓ with four eigenvalues is
the incidence graph of a symmetric2-design (and therefore distance-regular).

Proof. SinceΓ is connected, bipartite and regular the spectrum is

{k, λ v−1
2 , (−λ2)

v−1, −k} ,

where 2v is the number of vertices. For the adjacency matrixA of Γ , we have

A=

[
O N

N⊤ O

]
, and A2 =

[
NN⊤ O

O N⊤N

]
,

for some square(0,1)-matrix N satisfyingN1 = N⊤1 = k1. It follows that NN⊤

has spectrum{(k2)1,(λ 2
2 )

v−1}, wherek2 corresponds to the row and column sum
of NN⊤. This implies thatNN⊤ ∈ 〈J, I〉, and henceN is the incidence matrix of a
symmetric design. �
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15.2 Three Laplace eigenvalues

If a connected graphΓ has three distinct Laplace eigenvalues 0< ν < ν ′ (say), the
complementΓ has eigenvalues 0≤ n−ν ′ < n−ν , so if Γ is connected, it also has
three distinct eigenvalues. To avoid the disconnected exceptions, it is convenient to
use the notion of restricted eigenvalues (recall that an eigenvalue isrestrictedif it
has an eigenvector orthogonal to the all-one vector1), and consider graphs with two
distinct restricted Laplace eigenvalues.

We say that a graphΓ has constantµ(Γ ) if Γ is not complete and any two distinct
nonadjacent vertices ofΓ have the same number of common neighbors (equal to
µ(Γ )).

Theorem 15.2.1A graphΓ has two distinct restricted Laplace eigenvaluesν and
ν ′ if and only ifΓ has constantµ(Γ ) and its complementΓ has constantµ(Γ ). If
Γ is such a graph, only two vertex degrees d and d′ occur, and

ν +ν ′ = d+d′+1= µ(Γ )+n−µ(Γ ), νν ′ = dd′+µ(Γ ) = µ(Γ )n.

Proof. SupposeΓ has just two restricted Laplace eigenvaluesν andν ′. Then(L−
ν I)(L−ν ′I) has rank 1 and row sumνν ′, so

(L−ν I)(L−ν ′I) =
νν ′

n
J .

If u andv are nonadjacent vertices, then(L)uv = 0, so(L2)uv = νν ′/n, andµ(Γ ) =
νν ′/n is constant. Similarly,Γ has constantµ(Γ ) = (n−ν)(n−ν ′)/n.

Next supposeµ = µ(Γ ) andµ = µ(Γ ) are constant. Ifu andv are adjacent ver-
tices, then((nI−J−L)2)uv = µ, soµ = (L2)uv+n, and ifu andv are nonadjacent,
then(L2)uv= µ . Furthermore(L2)uu= d2

u +du, wheredu is the degree ofu. Writing
D = diag(d1, . . . ,dn), we obtain

L2 = (µ−n)(D−L)+µ(J− I −D+L)+D2+D =
(µ +n−µ)L+D2− (µ +n−µ−1)D−µ I +µJ .

SinceL andL2 have zero row sums, it follows thatdu
2−du(µ +n− µ −1)− µ +

µn= 0 for every vertexu. SoL2− (µ +n− µ)L+ µnI = µJ. Now letν andν ′ be
such thatν +ν ′ = µ +n−µ andνν ′ = µn, then(L−ν I)(L−ν ′I) = νν ′

n J, soL has
distinct restricted eigenvaluesν andν ′. As a side result we obtained that all vertex
degreesdu satisfy the same quadratic equation, so thatdu can only take two values
d andd′, and the formulas readily follow. �

Regular graphs with constantµ(Γ ) and µ(Γ ) are strongly regular. So Theo-
rem 15.2.1 generalizes the spectral characterization of strongly regular graphs. Sev-
eral nonregular graphs with two restricted Laplace eigenvalues are known. A geode-
tic graph of diameter three with connected complement provides an example with
µ(Γ ) = 1 (see [51], Theorem 1.17.1). Here we give two other constructions. Both
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constructions use symmetric block designs (see§4.8). Correctness easily follows by
use of Theorem 15.2.1.

Proposition 15.2.2 Let N be the incidence matrix of a symmetric2-(n,k,λ ) design.
Suppose that N is symmetric (which means that the design has apolarity). Then
L = kI−N is the Laplace matrix of a graph with two restricted eigenvalues, being
k±
√

k−λ . The possible degrees are k and k−1. �

If all diagonal elements ofN are 0, then the graphΓ is a(n,k,λ )-graph (a strongly
regular graph withλ = µ), and if all diagonal elements ofN are 1, thenΓ is such a
graph. Otherwise both degreesk andk−1 do occur. For example the Fano plane ad-
mits a symmetric matrix with three ones on the diagonal. The corresponding graph
has restricted Laplace eigenvalues 3±

√
2, and vertex degrees 2 and 3. See also§4.9.

Proposition 15.2.3 Let N be the incidence matrix of a symmetric block design.
Write

N =

[
1 N1

0 N2

]
, and define L=




vI−J O N1−J
O vI−J −N2

N⊤1 −J −N⊤2 2(k−λ )I


 .

Then L has two restricted eigenvalues. �

Other examples, characterizations and a table of feasible spectra can be found in
[121] and [118] (see also Exercise 1). See [328] for some morerecent results on
graphs with three Laplace eigenvalues.

15.3 Other matrices with at most three eigenvalues

No characterization is known of nonregular graphs with three M-eigenvalues, for a
matrix M other than the Laplacian. However several examples and properties are
known. Some of these will be discussed below.

15.3.1 Few Seidel eigenvalues

Seidel switching (see§1.8.2) doesn’t change the Seidel spectrum, so having few
Seidel eigenvalues is actually a property of the switching class of a graph. For
example the switching class ofKn, the edgeless graph onn vertices, consists
of the complete bipartite graphsKm,n−m, and all of them have Seidel spectrum
{(−1)n−1,n−1}. Only the one-vertex graphK1 has one Seidel eigenvalue. Graphs
with two Seidel eigenvalues are strong (see§10.1). To be precise, they are the
graphs whose associated two-graph is regular (Theorem 10.3.1). The Seidel ma-
trix is a special case of a generalized adjacency matrix. These are matrices of the
form M(x,y,z) = xI + yA+ z(J− I −A) with y 6= z, whereA is the adjacency ma-
trix; see also Chapter 14. IfA is the adjacency matrix of a strongly regular graph
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with eigenvaluesk ≥ r > s, then bothnA− (k− r)J andnA− (k− s)J (these are
basically the nontrivial idempotents of the association scheme) are generalized ad-
jacency matrices with two eigenvalues. We recall that a strong graph either has two
Seidel eigenvalues, or is strongly regular. Thus for every strong graph there exist
numbersx, y andz, such thatM(x,y,z) has two eigenvalues.

Proposition 15.3.1 A graph is strong if and only if at least one generalized adja-
cency matrix has two eigenvalues.

Proof. Correctness of the ‘only if’ part of the statement has been established
already. Without loss of generality we assume that the eigenvalues ofM = M(x,y,z)
are 0 and 1. SoM satisfiesM2 = M. Let di be the degree of vertexi, thenx= Mii =
(M2)ii = x2+diy2+(n−1−di)z2, which givesdi(y2−z2) = x−x2− (n−1)z2. So
y = −z or Γ is regular. In the first caseS= 1

z(M− xI) is the Seidel matrix ofΓ
with two eigenvalues, soΓ is strong. In caseΓ is regular, the adjacency matrixA=

1
y−z(M+(z−x)I −zJ) has three eigenvalues, soΓ is strongly regular and therefore
strong. �

So if a generalized adjacency matrixM(x,y,z) of a nonregular graph has two
eigenvalues, theny=−z (and we basically deal with the Seidel matrix).

A strongly regular graphΓ on n vertices with adjacency eigenvaluesk, r, s (k≥
r > s) has Seidel eigenvaluesρ0 = n− 1− 2k, ρ1 = −2s− 1, andρ2 = −2r − 1.
If ρ0 = ρ1, or ρ0 = ρ2, thenΓ has two eigenvalues, otherwiseΓ , and all graphs
switching equivalent toΓ , have three eigenvalues. For example, the (switching class
of the) Petersen graph has two Seidel eigenvalues 3 and−3, whilst the pentagonC5

has three Seidel eigenvalues 0 and±
√

5. However, not every graph with three Seidel
eigenvalues is switching equivalent to a strongly regular graph. Not even if the graph
is regular. Indeed, consider a graphΓ whose Seidel matrixS has two eigenvalues
ρ1 andρ2. Then(S+ I)⊗ (S+ I)− I represents a graphΓ 2 with eigenvalues(ρ1+
1)2−1, (ρ1+1)(ρ2+1)−1, and(ρ2+1)2−1. Moreover,Γ 2 is regular ifΓ is.

15.3.2 Three adjacency eigenvalues

Connected regular graphs with three adjacency eigenvaluesare strongly regular. The
complete bipartite graphsKℓ,m have spectrum{−

√
ℓm,0n−2,

√
ℓm}. If ℓ 6= m they

are nonregular with three adjacency eigenvalues. Other nonregular graphs with three
adjacency eigenvalues have been constructed by Bridges andMena [42], Klin and
Muzychuk [233], and Van Dam [118, 119]. Chuang and Omidi [87]characterized
all such graphs with largest eigenvalue at most eight. Many nonregular graphs with
three eigenvalues can be made from a strongly regular graphsby introducing one
new vertex adjacent to all other vertices. Such a graph is called aconeover a strongly
regular graph.

Proposition 15.3.2 LetΓ be a strongly regular graph on n vertices with eigenvalues
k> r > s. Then the conêΓ overΓ has three eigenvalues if and only if n= s(s−k).
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Proof. If Â is the adjacency matrix of̂Γ , thenÂ admits an equitable partition with
quotient matrix [

0 n
1 k

]

with eigenvalues(k±
√

k2+4n)/2, which are also eigenvalues ofÂ. The other
eigenvalues of̂A have eigenvectors orthogonal to the characteristic vectors of the
partition, so they remain eigenvalues if the all-one blocksof the equitable partition
are replaced by all-zero blocks. Therefore they are precisely the restricted eigen-
valuesr ands of Γ . So the eigenvalues of̂A are(k±

√
k2+4n)/2, r ands. Two of

these values coincide if and only ifs= (k−
√

k2+4n)/2. �

There exist infinitely many strongly regular graphs for which n = s(s− k), the
smallest of which is the Petersen graph. The cone over the Petersen graph has eigen-
values 5, 1 and−2. If a cone over a strongly regular graph has three eigenvalues,
then these eigenvalues are integers (see Exercise 3). The complete bipartite graphs
provide many examples with nonintegral eigenvalues. In fact:

Proposition 15.3.3 If Γ is a connected graph with three distinct adjacency eigen-
values of which the largest is not an integer, thenΓ is a complete bipartite graph.

Proof. AssumeΓ hasn≥ 4 vertices. Since the largest eigenvalueρ is nonintegral
with multiplicity 1, one of the other two eigenvaluesρ (say) also has this property,
and the third eigenvalue has multiplicityn−2≥ 2, so cannot be irrational. Thus the
spectrum ofΓ is

{ρ = 1
2(a+

√
b), ρ = 1

2(a−
√

b), cn−2},

for integera, b andc. Now trA = 0 givesc = −a/(n− 2). By Perron-Frobenius’
theorem,ρ ≥ |ρ |, thereforea≥ 0 andc≤ 0. If c = 0, the eigenvalues ofΓ are
±
√

b/2 and 0, andΓ is bipartite of diameter at most 2, and henceΓ is complete
bipartite. Ifc≤−2, then trA2≥ 4(n−2)2 soΓ has at least 2(n−2)2 edges which is
ridiculous. Ifc=−1, thenρ = 1

2(n−2+
√

b)≤ n−1, hence
√

b≤ n andρ >−1.
This implies thatA+ I is positive semi-definite (of rank 2). SoA+ I is the Gram
matrix of a set of unit vectors (inR2) with angles 0 andπ/2. This implies that being
adjacent is an equivalence relation, soΓ = Kn, a contradiction. �

The conference graphs are examples of regular graphs where only the largest
eigenvalue is an integer. Van Dam and Spence [75] found a number of nonregular
graphs on 43 vertices with eigenvalues 21,−1

2 ± 1
2

√
41. It turns out that all these

graphs have three distinct vertex degrees: 19, 26 and 35 (which was impossible in
case of the Laplace spectrum).
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15.3.3 Three signless Laplace eigenvalues

Recently, Ayoobi, Omidi and Tayfeh-Rezaie [13] started to investigate nonregular
graphs whose signless Laplace matrixQ has three distinct eigenvalues. They found
three infinite families.

(i) The completeKn with one edge deleted hasQ-spectrum

{1
2
(3n−6+

√
n2+4n−12), (n−2)n−2,

1
2
(3n−6−

√
n2+4n−12)} .

(ii) The starK1,n−1 hasQ-spectrum 01,1n−2,n1.

(iii ) The complement ofKm,m+mK1 hasQ-spectrum

(5m−2)1, (3m−2)m, (2m−2)2m−2 .

In addition there are some sporadic examples (see also Exercise 4). Like in Proposi-
tion 15.3.3 the case in which the spectral radius is nonintegral can be characterized.

Proposition 15.3.4 [13] Let Γ be a connected graph on at least four vertices of
which the signless Laplace has three distinct eigenvalues.Then the largest of these
eigenvalues is nonintegral if and only ifΓ is the complete graph minus one edge.

It is not known if there exist other nonregular examples witha nonintegral eigen-
value. We expect that the above list is far from complete.

15.4 Exercises

Exercise 1 Prove that a graph with two restricted Laplace eigenvalues whose de-
greesd andd′ differ by 1, comes from a symmetric design with a polarity as de-
scribed in Proposition 15.2.2.

Exercise 2 Let Γ be a strongly regular graph with a cocliqueC whose size meets
Hoffman’s bound (3.5.2). Prove that the subgraph ofΓ induced by the vertices out-
sideC is regular with at most four distinct eigenvalues. Can it have fewer than four
eigenvalues?

Exercise 3 SupposeΓ̂ is a cone over a strongly regular graph. Show that, ifΓ̂ has
three distinct eigenvalues, then all three are integral.

Exercise 4 Show that the cone over the Petersen graph has three signlessLaplace
eigenvalues. Find a necessary and sufficient condition on the parameters(n,k,λ .µ)
of a strongly regular graphΓ under which the cone overΓ has three signless Laplace
eigenvalues.
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335. Gerhard Zauner,Quantendesigns, Grundzüge einer nichtkommutativen Designtheorie, Ph.D.

thesis, Vienna, 1999. (p. 160)



238 References

336. F. Zhang,Matrix Theory, Springer-Verlag, New York, 1999. (p. 28)
337. Xiao-Dong Zhang,Two sharp upper bounds for the Laplacian eigenvalues, Lin. Alg.

Appl. 376(2004) 207–213. (p. 51)
338. Xiao-Dong Zhang & Rong Luo,The spectral radius of triangle-free graphs, Australas. J.

Comb.26 (2002) 33–39. (p. 50)



AUTHOR INDEX 239

Author Index

Ajtai, 69
Alon, 42, 43, 67, 73
Aschbacher, 169
Ayoobi, 223

Bagchi, 119
Bai, 53
Bang, 176
Bannai, vi, 176–178
Belevitch, 156
Berman, 24
Bigalke, 125
Biggs, vi
Blokhuis, 156, 162
Boppana, 67
Bose, 122, 163, 164
Boulet, 204
Brauer, 183
Bridges, 221
Brouwer, vi, 35, 52, 53, 88, 119, 128, 137,

178, 211
Brualdi, 36
Burrow, 164
Bussemaker, 46, 208

Calderbank, 134
Cameron, 103, 128, 131, 169, 206
Cauchy, 28
Cayley, 6
Chang, 123
Cherlin, 128
Chesnokov, 203
Chuang, 221
Chung, vi, 71, 95
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Geřsgorin, 31
Gerzon, 160
Godsil, vi, 26, 197, 198, 201
Goethals, 103, 131, 154, 161, 206
Graham, 12
Gregory, 76
Grone, 51, 53, 191
Guo, 52

Haemers, 28, 43, 45, 52, 76, 78, 125, 156,
178, 195, 196, 201, 203

Hasse, 139
Helmberg, 74
Higman, 28, 154, 169, 178
Hilbert, 27
Hill, 138
Hoffman, 14, 35, 36, 38–40, 117
van der Holst, 101
Horn, 24
Huang, 211
Hubaut, 119

Isaacs, 183
Ito, vi, 176–178
Ivanov, 130

Johnson, 24, 195
Jung, 125
Jungnickel, 78

Kantor, 119, 128, 134
Kaski, 118
Kelly, 16
Kelmans, 36
Kharaghani, 229
Kirchhoff, 6



240 References

Klin, 221
Komlós, 69
Koolen, 35, 173, 176, 196
Krivelevich, 71
Kuratowski, 100

de Lange, 140
Laurent, 101
Lee, 35
Lemmens, 34, 161
Liebeck, 119
Liebler, 119
van Lint, 119, 132, 134, 161
Lisoněk, 162
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Österg̊ard, 118

Page, 59
Paley, 157
Pasechnik, 156
Payne, 28
Peeters, 186
Phillips, 68
Pisanski, 61
Plemmons, 24
Poljak, 74
Pollak, 12
Pyber, 71

Quenell, 67

Reiner, 57, 58
Rendl, 74
Renteln, 93
Roos, 178
Rowlinson, vi, 36
Royle, vi
Rumsey, 139

Sachs, vi, 13
Sarnak, 68
Saxl, 119
Schrijver, 101, 132
Schur, 28
Schwenk, 46, 197
Scott, 118, 168
Seidel, v, 34, 103, 118, 122, 131, 150, 151,

154, 159, 161, 167, 168, 206,
208

Seneta, 24
Seress, 196
Serre, 67
Seymour, 42
Shannon, 42
Shawe-Taylor, 61
Shimamoto, 163
Shpectorov, 130
Shrikhande, 78, 123
Shult, 103, 206
Simić, vi
Sims, 28
Sin, 193
Singleton, 117
Sloane, 134, 187
Smith, 34, 35
Spence, 201, 217, 218, 222
Stickelberger, 139
Sudakov, 71
Sunada, 197
Sylvester, 29
Szeg̈o, 171
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