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Preface

Algebraic graph theorys the branch of mathematics that studies graphs by using
algebraic properties of associated matrices. More inqQadi, spectral graph the-
ory studies the relation between graph properties and therspecf the adjacency
matrix or Laplace matrix. And the theory aésociation schemesdcoherent con-
figurationsstudies the algebra generated by associated matrices.

Spectral graph theory is a useful subject. The founders afgi&ocomputed the

Perron-Frobenius eigenvector of the web graph and becdhoabires. The second

largest eigenvalue of a graph gives information about esipanand randomness
properties. The smallest eigenvalue gives informatioruabwependence number
and chromatic number. Interlacing gives information atmulistructures. The fact
that eigenvalue multiplicities must be integral providaeisg restrictions. And the

spectrum provides a useful invariant.

This book gives the standard elementary material on spec@hapter 1. Important
applications of graph spectra involve the largest or setangeést or smallest eigen-
value, or interlacing, topics that are discussed in Chafged. Afterwards, special
topics such as trees, groups and graphs, Euclidean reptses, and strongly
regular graphs are discussed. Strongly related to straeglylar graphs are regular
two-graphs, and Chapter 10 mainly discusses Seidel’'s woidets of equiangular
lines. Strongly regular graphs form the first nontrivial €ag (symmetric) asso-
ciation schemes, and Chapter 11 gives a very brief intréaludo this topic, and
Delsarte’s Linear Programming Bound. Chapter 12 very lyriséntions the main
facts on distance-regular graphs, including some majoeldpwments that occurred
since the monograph [51] was written (proof of the Bannaietinjecture, construc-
tion by Van Dam & Koolen of the twisted Grassmann graphs,rd@tetion of the
connectivity of distance-regular graphs). Instead of wagloverR, one can work
overF, or Z and obtain more detailed information. Chapter 13 consigenanks
and Smith Normal Forms. Finally, Chapters 14 and 15 retuthéoreal spectrum
and consider in what cases a graph is determined by its specand when it has
only few eigenvalues.



Vi Preface

In Spring 2006 both authors gave a series of lectures at IRMyistitute for Studies
in Theoretical Physics and Mathematics, in Tehran. Theutechotes were com-
bined and published as an IPM report. Those notes grew igt@ithsent text, of
which the on-line version still is callegpm.pdf . We aim at researchers, teach-
ers, and graduate students interested in graph spectraed@ter is assumed to be
familiar with basic linear algebra and eigenvalues, but wdenmtlude a chapter on
some more advanced topics in linear algebra, like the Pgtrobenius theorem and
eigenvalue interlacing. The exercises at the end of the lmapary from easy but
interesting applications of the treated theory, to littew@sions into related topics.

This book shows the influence of Seidel. For other books ontsgdegraph theory,
see Chung [89], Cvetko¥j Doob & Sachs [111] and CvetkdyiRowlinson & Simé
[116]. For more algebraic graph theory, see Biggs [28], @¢t4] and Godsil &
Royle [169]. For association schemes and distance-regrtdahs, see Bannai & Ito
[19] and Brouwer, Cohen & Neumaier [51].

Amsterdam, Andries Brouwer
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Chapter 1
Graph spectrum

This chapter presents some simple results on graph spéétrassume the reader
to be familiar with elementary linear algebra and graph mebhroughout] will
denote the all-1 matrix, antlis the all-1 vector.

1.1 Matrices associated to a graph

LetI" be a graph without multiple edges. Tadjacency matrixof I" is the 0-1 ma-
trix Aindexed by the vertex s®tl™ of I, whereA,y = 1 when there is an edge from
xtoyin " andAyy = 0 otherwise. Occasionally we consider multigraphs (pdgsib
with loops) in which caséyy, equals the number of edges frono y.

LetI" be an undirected graph without loops. The (vertex-edggjlence matrix
of " is the 0-1 matriXM, with rows indexed by the vertices and columns indexed by
the edges, wherlye = 1 when vertex is an endpoint of edge

Let I' be a directed graph without loops. Th@ected incidence matrinf I
is the 0-1 matrixN, with rows indexed by the vertices and columns by the edges,
whereNye = —1,1,0 whenx is the head o€, the tail ofe, or not one, respectively.

Let I’ be an undirected graph without loops. Thaplace matrixof I" is the
matrix L indexed by the vertex set 6f, with zero row sums, whetg,y = —Ayy for
x =Y. If D is the diagonal matrix, indexed by the vertex sef (uch thaDyy is the
degree (valency) of, thenL = D — A. The matrixQ = D + A is called thesignless
Laplace matrixof I".

An important property of the Laplace matiixand the signless Laplace matrix
Qs that they are positive semidefinite. Indeed, one@asMM " andL = NN if
M is the incidence matrix of andN the directed incidence matrix of the directed
graph obtained by orienting the edgeslofn an arbitrary way. It follows that for
any vectoru one hasu’Lu = ¥,y(ux— Uy)? andu’ Qu= (U + uy)?, where the
sum is over the edges 6f.
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1.2 The spectrum of a graph

The (ordinary)spectrumof a finite graphl” is by definition the spectrum of the
adjacency matrid, that is, its set of eigenvalues together with their muiltiges.
The Laplace spectrunof a finite undirected graph without loops is the spectrum of
the Laplace matrix..

The rows and columns of a matrix of ordeare numbered from 1 to, while A
is indexed by the vertices &f, so that writing dowrA requires one to assign some
numbering to the vertices. However, the spectrum of theirmabtained does not
depend on the numbering chosen. It is the spectrum of tharlinensformatiorA
on the vector spack* of maps fromX into K, whereX is the vertex set, an is
some field such aR or C.

Thecharacteristic polynomiadf I is that ofA, that is, the polynomigba defined
by pa(6) = det(61 — A).

Example Let ™ be the pathP; with three vertices and two edges. Assigning some
arbitrary order to the three vertices bf we find that the adjacency matribe-

comes one of
011 010 001
100{or 101 0or|001].
100 010 110

The characteristic polynomial isa(8) = 83 —26. The spectrum is/2, 0, —/2.
The eigenvectors are:

V2 2 V2 1 0 -1 N -2 V2
O O O O O O

Here, for an eigenvectar, we writeuy as a label at the vertex One hasAu= 6u
if and only if 3, ,uy = Buy for all x. The Laplace matrix of this graph is one of

2-1-1 1-1 0 1 0-1
-1 1 Ojor|{—-1 2-1] or 0 1-1).
-1 0 1 0-1 1 -1-1 2

Its eigenvalues are 0, 1 and 3. The Laplace eigenvectors are:

1 1 1 1 0 -1 1 -2 1
O

One hagu= Buifand onlyif ., uy = (dx— 8)ux for all x, wheredy is the degree
of the vertexx.

Example Let I be the directed triangle with adjacency matrix

010
A=1001].
100
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ThenA has characteristic polynomigh(6) = 8% — 1 and spectrum L, w?, where
w is a primitive cube root of unity.

Example Letl" be the directed graph with two vertices and a single direetig.
ThenA = 8(13 with pa(8) = 62. SoA has the eigenvalue 0 with geometric mul-
tiplicity (that is, the dimension of the corresponding eigpace) equal to 1 and
algebraic multiplicity (that is, its multiplicity as a roof the polynomialpa) equal

to 2.

1.2.1 Characteristic polynomial

Let I’ be a directed graph on vertices. For any directed subgra@ghof I that

is a union of directed cycles, l&{C) be its number of cycles. Then the charac-
teristic polynomialpa(t) = dettl —A) of I can be expanded ggct"', where

G = Sc(—1)%C®), with C running over all regular directed subgraphs with in- and
outdegree 1 onvertices.

(Indeed, this is just a reformulation of the definition of tbeterminant as
detM = 3 ;S9N 0)Myg(1) -+ Mng(n)- Note that when the permutatian with n— i
fixed points is written as a product of non-identity cycles sign is(—1)€ wheree
is the number of even cycles in this product. Since the nurabedd non-identity
cycles is congruent to(mod 2), we have sdiw) = (—1)1+¢(9))

For example, the directed triangle has= 1, c3 = —1. Directed edges that do
not occur in directed cycles do not influence the (ordinapgcsrum.

The same description gba(t) holds for undirected graphs (with each edge
viewed as a pair of opposite directed edges).

Since% deftl — A) = S deftl — Ay) whereA, is the submatrix ofA obtained
by deleting row and columg, it follows that pj,(t) is the sum of the characteristic
polynomials of all single-vertex-deleted subgraph$ of

1.3 The spectrum of an undirected graph

Supposé is undirected and simple withvertices. Sincé is real and symmetric,
all its eigenvalues are real. Also, for each eigenvaluéts algebraic multiplicity
coincides with its geometric multiplicity, so that we may ibthe adjective and just
speak about ‘multiplicity’. Conjugate algebraic integhese the same multiplicity.
SinceA has zero diagonal, its traceAtrand hence the sum of the eigenvalues is
zero.

Similarly, L is real and symmetric, so that the Laplace spectrum is reateM
over, L is positive semidefinite and singular, so we may denote tipengalues by
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Ui, ..., Un, where O= 1 < o < ... < Up. The sum of these eigenvalues i tr
which is twice the number of edges of

Finally, alsoQ has real spectrum and nonnegative eigenvalues (but is nesne
sarily singular). We have @ = trL.

1.3.1 Regular graphs

A graphr is calledregularof degree (or valencyk, when every vertex has precisely
k neighbors. Sol is regular of degre& precisely when its adjacency matixhas
row sumsk, i.e., whenAl = k1 (or AJ = kJ).

If I is regular of degrek, then for every eigenvalu@ we have 8| < k. (One way
to see this, is by observing that/if > k then the matristl — A is strictly diagonally
dominant, and hence nonsingular, so thiatnot an eigenvalue @i.)

If I is regular of degred, thenL = kI — A. It follows that if I’ has ordinary
eigenvaluek = 6; > ... > 6, and Laplace eigenvalues9u; < tp < ... < Uy, then
6 =k—pfori=1,...,n. The eigenvalues @@ = kl + Aare K, k+ 6, ..., K+ 6,.

1.3.2 Complements

The complement” of I" is the graph with the same vertex setlaswhere two
distinct vertices are adjacent whenever they are nonaajaicé . So, if I has ad-
jacency matrixA, thenl™ has adjacency matriA = J — | — A and Laplace matrix
L=nl-J-L.

Because eigenvectors bfare also eigenvectors df the eigenvalues df are
0,n— Up,...,n— po. (In particular,u, < n.)

If I is regular we have a similar result for the ordinary eigemeal if " is k-
regular with eigenvalue8; > ... > 6,, then the eigenvalues of the complement are
n—-k—1-1-6,...,—1—65.

1.3.3 Walks

From the spectrum one can read off the number of closed wakgiven length.

Proposition 1.3.1 Let h be a nonnegative integer. ThéA"), is the number of
walks of length h from x to y. In particulafA?) is the degree of the vertex x, and
tr A% equals twice the number of edgesafsimilarly, tr A3 is six times the number
of triangles inl".
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1.3.4 Diameter

We saw that all eigenvalues of a single directed edge are Eeraindirected graphs
this does not happen.

Proposition 1.3.2 Let" be an undirected graph. All its eigenvalues are zero if and
only if I has no edges. The same holds for the Laplace eigenvalueb@s@hless
Laplace eigenvalues.

More generally, we find a lower bound for the diameter:

Proposition 1.3.3 Let/” be a connected graph with diameter d. THehas at least
d+ 1 distinct eigenvalues, at leastid1 distinct Laplace eigenvalues, and at least
d + 1 distinct signless Laplace eigenvalues.

Proof. Let M be any nonnegative symmetric matrix with rows and columns in
dexed by I and such that for distinct verticesy we haveMyy > 0 if and only if

X ~ Y. Let the distinct eigenvalues M be6,...,6. Then(M —641)--- (M —&l) =

0, so thatM! is a linear combination df,M, ..., M'~1. But if d(x,y) =t for two ver-
ticesx,yof I, then(Mi)Xy: Ofor0<i<t-1 and(Mt)Xy > 0, contradiction. Hence

t > d. This applies ttM = A, toM = nl — L and toM = Q, whereA is the adjacency
matrix, L is the Laplace matrix an@ is the signless Laplace matrix bf. O

Distance-regular graphs, discussed in Chapter 12, hawigdoere. For an upper
bound on the diameter, sg4.6.

1.3.5 Spanning trees

From the Laplace spectrum of a graph one can determine theerusih spanning
trees (which will be nonzero only if the graph is connected).

Proposition 1.3.4 Let ' be an undirected (multi)graph with at least one vertex,
and Laplace matrix L with eigenvalu@s= 1 < o < ... < . Letlyy be the(x,y)-
cofactor of L. Then the number N of spanning treef equals

1 1
N:EXy:del(LJr@J) = H2- ki forany xyeVr.

(The(i, j)-cofactorof a matrixM is by definition(—1)"+i detM(i, j), whereM(i, j)
is the matrix obtained frorM by deleting rowi and columnj. Note that/yy does
not depend on an ordering of the verticed of

Proof. LetLS, for SC VI, denote the matrix obtained frolrby deleting the rows
and columns indexed b§, so thatly, = detL{*}. The equalityN = ¢, follows by
induction onn, and for fixedn > 1 on the number of edges incident withindeed,
if n= 1 thenly, = 1. Otherwise, ifx has degree 0 thefy, = 0 sinceL™ has zero
row sums. Finally, ifxy is an edge, then deleting this edge fréndiminisheslxx
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by detL*¥}, which by induction is the number of spanning treed ofvith edge
Xy contracted, which is the number of spanning trees contgitiia edgexy. This
ShowsN = Vyy.

Now deftl — L) = t[I,(t — ) and (—=1)" Y-y, is the coefficient of,
thatis, is$ dettl —L)|i—o. But & dettl —L) = y,dettl — L) so thatuy - i =
> xxx = NN.

Since the sum of the columnsofs zero, so that one column is minus the sum of
the other columns, we havgy, = /x, for anyx,y. Finally, the eigenvalues &f+ n%J

aret andpiz, ..., tn, SO detl + 5J) = Atz tn. -
For example, the multigraph of valengyon 2 vertices has Laplace matrix=

Jli _i so thatyy = 0, tp = 2k, andN = 3.2k = k.

If we consider the complete grapty, thenp, = ... = py = n, and therefor&,
hasN = n"~2 spanning trees. This formula is due to Cayley [81]. Projpmrsit.3.4
is implicit in Kirchhoff [232] and known as th®latrix-Tree Theorem

There is a ‘1-line proof’ of the above result using thauchy-Binet formula

Proposition 1.3.5 (Cauchy-Binet) et A and B be nx n matrices. Then

detAB" = ZdetAsdetBs

where the sum is over th) m-subsets S of the set of columns, agdBy) is the
square submatrix of order m of A (resp. B) with columns inddxeS.

2nd proof of Proposition 1.3.4(sketch) LetN be the directed incidence matrix of
I, with row x deleted. Thethy, = detNyN,| . Apply Cauchy-Binet to g as a sum
of squares of determinants of size- 1. These determinants vanish unless theSset
of columns is the set of edges of a spanning tree, in which tteesdeterminant is
+1. O

1.3.6 Bipartite graphs

A graphr is calledbipartite when its vertex set can be partitioned into two disjoint
partsXz, Xo such that all edges df meet bothX; andX,. The adjacency matrix of

a bipartite graph has the form= {E?T g} . It follows that the spectrum of a bipartite

graph is symmetric w.r.t. O: i \‘j is an eigenvector with eigenvali then _“V}
is an eigenvector with eigenvaluef. (The converse also holds, see Proposition
3.4.1)

For the ranks one has A= 2rkB. If nj = |X| (i = 1,2) andn; > ny, then rkA <
2ny, so that™ has eigenvalue 0 with multiplicity at least — n».
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One cannot, in general, recognize bipartiteness from tpéake or signless Laplace
spectrum. For exampl&; 3 andK; + K3 have the same signless Laplace spectrum
and only the former is bipartite. And Figure 14.4 gives annepi@ of a bipartite
and non-bipartite graph with the same Laplace spectrum.ederyby Proposition
1.3.10 below, a graph is bipartite precisely when its Laplggectrum and signless
Laplace spectrum coincide.

1.3.7 Connectedness

The spectrum of a disconnected graph is easily found fronspleetra of its con-
nected components:

Proposition 1.3.6 LetI” be a graph with connected componefjtsl <i <'s). Then
the spectrum of is the union of the spectra 6f (and multiplicities are added). The
same holds for the Laplace and the signless Laplace spectrum O

Proposition 1.3.7 The multiplicity of O as a Laplace eigenvalue of an undirdcte
graphl” equals the number of connected componentis. of

Proof. We have to show that a connected graph has Laplace eiger@aiti
multiplicity 1. As we saw earlied. = NN, whereN is the incidence matrix of an
orientation of”. NowLu = 0 is equivalent tdN "u= 0 (since 0= u'Lu= ||N"u||?),
that is, for every edge the vectoitakes the same value on both endpoints. Since
is connected that means thais constant. O

Proposition 1.3.8 Let the undirected grapli be regular of valency k. Then k is
the largest eigenvalue df, and its multiplicity equals the number of connected
components af .

Proof. We havelL =kl —A. O

One cannot see from the spectrum alone whether a (nonrggtdgoh is connected:
bothKj 4 andKy + C4 have spectrum® 03, (72)l (we write multiplicities as expo-
nents). And bottEg andK; + Cg have spectrum®2 12, 0, (1), (—2)%.

K14 K1 +Cq Es Ki+Cs
Fig. 1.1 Two pairs of cospectral graphs

Proposition 1.3.9 The multiplicity of O as a signless Laplace eigenvalue ofradii-u
rected graph™ equals the number of bipartite connected componenfs of
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Proof. Let M be the vertex-edge incidence matrix 6f so thatQ = MMT. If
MM Tu=0thenM"u= 0, so thaty = —uy for all edgesky, and the support af is
the union of a number of bipartite componentd of O

Proposition 1.3.10 A graph!™ is bipartite if and only if the Laplace spectrum and
the signless Laplace spectrumlofare equal.

Proof. If I is bipartite, the Laplace matrik and the signless Laplace matix
are similar by a diagonal matri2 with diagonal entriest1 (that is,Q = DLD1).
ThereforeQ andL have the same spectrum. Conversely, if both spectra arathe, s
then by Propositions 1.3.7 and 1.3.9 the number of connexistghonents equals
the number of bipartite components. Herficés bipartite. O

1.4 Spectrum of some graphs

In this section we discuss some special graphs and theitrap@dl graphs in this
section are finite, undirected and simple. Observe thatltteraatrix J of ordern
has rank 1, and that the all-1 vectbis an eigenvector with eigenvalue So the
spectrum isn', 01, (Here and throughout we write multiplicities as exponents
where that is convenient and no confusion seems likely.)

1.4.1 The complete graph

Letl” be the complete grap, onn vertices. Its adjacency matrix#=J—1, and
the spectrumign— 1), (—1)". The Laplace matrix ial —J, which has spectrum
01’ nh-1.

1.4.2 The complete bipartite graph
The spectrum of the complete bipartite grafhin is =/mn 0™"-2 The Laplace
spectrumis & m"1 n™1 (m4n)l.

1.4.3 The cycle

LetI” be the directed-cycleDy. Eigenvectors arél, {,Z?,...,{" )T where{" =
1, and the corresponding eigenvalugisThus, the spectrum consists precisely of
the complexn-th roots of unitye?/" (j =0,...,n—1).
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Now consider the undirectadcycleC,. If B is the adjacency matrix @y, then
A=B+B' is the adjacency matrix &,. We find the same eigenvectors as before,
with eigenvalueg + ¢ 1, so that the spectrum consists of the numbers @uggn)
(j=0,...,n=1).

This graph is regular of valency 2, so the Laplace spectrumists of the num-
bers 2-2cog2mj/n) (j=0,...,n—1).

1.4.4 The path

Let ' be the undirected patR, with n vertices. The ordinary spectrum con-
sists of the numbers 2c@sj/(n+ 1)) (j = 1,...,n). The Laplace spectrum is
2—2codmj/n) (j=0,...,n—1).

The ordinary spectrum follows by looking & 2. If u(¢) = (1,¢,2%,...,
¢’ T is an eigenvector oEy,, 2, where?"? = 1, thenu(¢) andu({ 1) have
the same eigenvalue 2¢ag /(n+ 1)), and hence so hag{) —u(Z~1). This latter
vector has two zero coordinates distamce 1 apart and (fo # +1) induces an
eigenvector on the two paths obtained by removing the twotpavhere it is zero.

Eigenvectors of with eigenvalue 2- { —{ tare(14+¢%"1,..., 01 + 211,
...,{"1 42" whereZ?" = 1. One can check this directly, or considRrthe result
of folding C,,, where the folding has no fixed vertices. An eigenvectdCgfthat is
constant on the preimages of the folding yields an eigeovextP, with the same
eigenvalue.

1.4.5 Line graphs

Theline graph L(I") of I" is the graph with the edge setlofas vertex set, where two
vertices are adjacent if the corresponding edgds béve an endpoint in common.
If N is the incidence matrix of , thenN"N — 2| is the adjacency matrix df(I").
SinceN "N is positive semidefinite, the eigenvalues of a line grapmatesmaller
than—2. We have an explicit formula for the eigenvalued.¢f ) in terms of the
signless Laplace eigenvalues/of

Proposition 1.4.1 Supposd” has m edges, and lgy > ... > p; be the positive
signless Laplace eigenvalues/of then the eigenvalues of L) are 6 = p; — 2 for
i=1...,r,and6 = —-2ifr <i<m.

Proof. The signless Laplace matr@@ of I, and the adjacency matrB of L(I")
satisfyQ=NN' andB+2I =N'N. Becaus&N" andN "N have the same nonzero
eigenvalues (multiplicities included), the result follow O

Example Since the patli, has line graptP,_1, and is bipartite, the Laplace and
the signless Laplace eigenvaluedpfare 2+2cosT, i =1,...,n.
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Corollary 1.4.2 If I" is a k-regular graph (k> 2) with n vertices, e= kn/2 edges
and eigenvalue$; (i = 1,...,n), then LI") is (2k — 2)-regular with eigenvalues
6+k—-2(@{=1,...,n)and e-ntimes—2. O

The line graph of the complete graph (n > 2), is known as thériangular graph
T(n). It has spectrum @& — 2)%, (n—4)"1, (—2)""-3)/2_ The line graph of the
regular complete bipartite graptynm (m > 2), is known as théattice graph L(m).

It has spectrum @n— 1)1, (m—2)2M-2, (—2)(M-1? These two families of graphs,
and their complements, are examples of strongly regularhgravhich will be the
subject of Chapter 9. The complemenfldb) is the famoudletersen graphit has
spectrum 31° (—2)4,

1.4.6 Cartesian products

Given graphdg™ andA with vertex set& andW, respectively, theiCartesian prod-
uct " OA is the graph with vertex s&t x W, where(v,w) ~ (V,w) when either
v=V andw ~ W orw=w andv ~ V. For the adjacency matrices we have
Aroa =Ar @l +1®Ax.

If uandv are eigenvectors fdr andA with ordinary or Laplace eigenvalués
andn, respectively, then the vectar defined bywy ) = uxvy is an eigenvector of
" O A with ordinary or Laplace eigenvalu®+ n.

For examplelz(m) = KnOKp,.

For example, thénypercube2", also calledQp, is the Cartesian product of
factorsKy. The spectrum oK; is 1,—1, and hence the spectrum df @onsists of
the numbers — 2i with multiplicity (7) (i=0,1,...,n).

1.4.7 Kronecker products and bipartite double

Given graphg™ andA with vertex set®¥ andW, respectively, theiKronecker prod-
uct (or direct product or conjunction) I' ® A is the graph with vertex s&t x W,
where(v,w) ~ (V,w') whenv ~ V andw ~ w'. The adjacency matrix df @ A is
the Kronecker product of the adjacency matrices @ndA.

If uandv are eigenvectors far andA with eigenvalue® andn, respectively,
then the vectow = u®v (with w(, ) = Uxvy) is an eigenvector of @ A with eigen-
value 8n. Thus, the spectrum df ® A consists of the products of the eigenvalues
of ' andA.

Given a graph, its bipartite doubleis the graph™ ® K, (with for each vertex
of I" two vertices< andx”, and for each edgey of I" two edges(y” andx"y’). If I
is bipartite, its double is just the union of two disjoint é&g If " is connected and
not bipartite, then its double is connected and bipartité. has spectrun®, then
I ® Kz has spectrun® U — @.
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The notation” x A is used in the literature both for the Cartesian product and f
the Kronecker product of two graphs. We avoid it here.

1.4.8 Strong products

Given graphd™ andA with vertex setd/ andW, respectively, theistrong product
I XA is the graph with vertex s&t x W, where two distinct verticeév,w) and
(V,w) are adjacent wheneverandV are equal or adjacent iR, andw andw
are equal or adjacent iA. If A-r andA, are the adjacency matrices bfandA,
then ((Ar +1)® (Aa +1)) — I is the adjacency matrix of X A. It follows that
the eigenvalues of XA are the number§0 +1)(n + 1) — 1, where@ andn run
through the eigenvalues 6f andA, respectively.

Note that the edge set of the strong produck adndA is the union of the edge
sets of the Cartesian product and the Kronecker produCtaridA.

For exampleKmin = KnX Kp.

1.4.9 Cayley graphs

Let G be an abelian group arSiC G. The Cayley graphon G with difference set
Sis the (directed) graph with vertex selG and edge se€t = {(x,y) | y—Xx € S}.
Now I" is regular with in- and outvalend$s|. The graph™ will be undirected when
S=-S

It is easy to compute the spectrum of finite Cayley graphs foabelian group).
Let x be a character d&, that is, a magy : G — C* such thaty (x+y) = x (X)X (y).
Theny, xX(Y) = (FsesX(5)) X (X) so that the vectofx (X))xec IS a right eigenvec-
tor of the adjacency matrif of I with eigenvaluex (S) := Y ssX(S). Then= |G|
distinct characters give independent eigenvectors, solotaéns the entire spectrum
in this way.

For example, the directed pentagon (with in- and outvaldnéy a Cayley graph
for G = Zs andS= {1}. The characters dB are the maps— ¢' for some fixed
5-th root of unity. Hence the directed pentagon has spectfgmd® = 1}.

The undirected pentagon (with valency 2) is the Cayley grfaplG = Zs and
S={-1,1}. The spectrum of the pentagon beconfés+ (| ¢° = 1}, that is,
consists of 2 ang (—1v/5) (both with multiplicity 2).

1.5 Decompositions

Here we present two non-trivial applications of linear &lgeto graph decomposi-
tions.
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1.5.1 Decomposingig into Petersen graphs

An amusing application ([32, 294]) is the following. Can tbéges of the com-
plete graphK;g be colored with three colors such that each color inducesphgr
isomorphic to the Petersen grapk has 45 edges, 9 on each vertex, and the Pe-
tersen graph has 15 edges, 3 on each vertex, so at first sightittht seem possi-
ble. Let the adjacency matrices of the three color classdd b0 andPs, so that
PL+P+P3=J—1.If P andP, are Petersen graphs, they both have a 5-dimensional
eigenspace for eigenvalue 1, contained in the 9-spac&herefore, there is a com-
mon 1-eigenvecton andPsu = (J —1)u— Pu— Pu = —3u so thatu is an eigen-
vector forP; with eigenvalue-3. But the Petersen graph does not have eigenvalue
—3, so the result of removing two edge-disjoint PetersenlggdmmKjg is not a
Petersen graph. (In fact, it follows thif is connected and bipartite.)

1.5.2 Decomposing, into complete bipartite graphs

A famous result is the fact that for any edge-decompositibKpinto complete
bipartite graphs one needs to use at I@astl summands. Sind€, has eigenvalue
—1 with multiplicity n— 1, this follows directly from the following:

Proposition 1.5.1 (H. S. Witsenhausen; Graham & Pollak [173J)ppose a graph
I with adjacency matrix A has an edge decomposition into r derapipartite
graphs. Then £ n, (A) and r > n_(A), where n.(A) and n_(A) are the numbers
of positive (negative) eigenvalues of A.

Proof. Let thei-th complete bipartite graph have a bipartition whereand v;

are the characteristic vectors of both sides of the bijiamtitso that its adjacency
matrix is Dj = uiviT + Vi uiT, andA = ¥ Dj. Let w be a vector orthogonal to ali.
Thenw'Aw= 0 and it follows thatv cannot be chosen in the span of eigenvectors
of A with positive (negative) eigenvalue. O

1.6 Automorphisms

An automorphisnof a graph™ is a permutationt of its point setX such thak ~ y
if and only if 71(x) ~ 7i(y). Givenrt, we have a linear transformatiéh onV defined
by (Pr(U))x = Upy for ue V, x € X. Thatmis an automorphism is expressed by
AP; = PLA. It follows thatP;; preserves the eigenspaégfor each eigenvalué of
A

More generally, ifG is a group of automorphisms @f then we find a linear
representation of degres(6) = dimVjp of G.

We denote the group of all automorphismg oy Aut I". One would expect that
when Autrl™ is large, therm(68) tends to be large, so thét has only few distinct



1.7 Algebraic connectivity 13

eigenvalues. And indeed, the arguments below will showdhaansitive group of
automorphisms does not go very well together with simplemiglues.

Suppose dirilg = 1, sayVp = (u). SinceP;; preserved/s we must havéu =
+u. So eithew is constant on the orbits af, or Thas even ordeR;(u) = —u, and
uis constant on the orbits af2. For the Perron-Frobenius eigenvector {&.2) we
are always in the former case.

Corollary 1.6.1 If all eigenvalues are simple, thékut I" is an elementary abelian
2-group.

Proof. If rmhas order larger than two, then there are two distinct v@skicy in an
orbit of 7%, and all eigenvectors have identicalandy-coordinates, a contradiction.
]

Corollary 1.6.2 LetAut I" be transitive on X. (Theh is regular of degree k, say.)

(i) If m(8) = 1 for some eigenvalué # k, then v= |X| is even, andd = k
(mod 2. If Aut I" is moreover edge-transitive thénis bipartite andd = —k.
(i) 1fm(6) = 1for two distinct eigenvalue8 # k, then v= 0 (mod 4).
(iii) Ifm(0) = 1for all eigenvalued, thenl" has at most two vertices.

Proof. (i) Suppose/p = (u). Thenu induces a partition oX into two equal parts:
X = X3 UX_, whereuy = a for x € X; anduy = —a for x € X_. Now 8 = k—
2|/ (x)NX_| forx e X;.

(i) If m(k) = m(6) = m(6’) = 1, then we find 3 pairwise orthogonél-1)-
vectors, and a partition of into four equal parts.

(iii) There are not enough integefs= k (mod 2) between-k andk. d

For more details, see CvetkayiDoob & Sachs [111], Chapter 5.

1.7 Algebraic connectivity

Letl" be a graph with at least two vertices. The second smallesatagigenvalue
u2(I") is called thealgebraic connectivityf the graph™. This concept was intro-
duced by Fiedler [150]. Now, by Proposition 1.315(I") > 0, with equality if and
only if " is disconnected.

The algebraic connectivity is monotone: it does not de@emsen edges are
added to the graph:

Proposition 1.7.1 Letl" andA be two edge-disjoint graphs on the same vertex set,
andl" UA their union. We havei (I UA) > pa(F) + () > pa(1).

Proof. Use thatup(I") = ming{u*Lu| (u,u) =1, (u,1) = 0}. a
The algebraic connectivity is a lower bound for the vertemrartivity:

Proposition 1.7.2 Let ' be a graph with vertex set X. SupposeIX is a set
of vertices such that the subgraph induced/yn X\ D is disconnected. Then
ID| > p2(T7).
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Proof. By monotonicity we may assume thatcontains all edges betweénand
X\ D. Now a nonzero vectau that is 0 onD and constant on each component of
X\ D and satisfiesu, 1) = 0, is a Laplace eigenvector with Laplace eigenvaie

O

1.8 Cospectral graphs

As noted above (i§1.3.7), there exist pairs of nonisomorphic graphs with #rae
spectrum. Graphs with the same (adjacency) spectrum aex @alspectral(or
isospectral. The two graphs of Figure 1.2 below are nonisomorphic aisgectral.
Both graphs are regular, which means that they are also cwapfor the Laplace
matrix, and any other linear combinationAfl, andJ, including the Seidel matrix
(see§1.8.2), and the adjacency matrix of the complement.

Fig. 1.2 Two cospectral regular graphs
(Spectrum: 4, 1(—1)4, £1/5, $(1£/17))

Let us give some more examples and families of examples. Ae ragtensive
discussion is found in Chapter 14.

1.8.1 The 4-cube

The hypercube 2is determined by its spectrum for< 4, but not forn > 4. In-
deed, there are precisely two graphs with spectrin@4 0°, (—2)4, (—4)* (Hoff-
man [209]). Consider the two binary codes of word length 4@intension 3 given

by C; = 1+ andC, = (0111)*. Construct a bipartite graph, where one class of the
bipartition consists of the pair§,x) € {1,2,3,4} x {0,1} of coordinate position
and value, and the other class of the bipartition considtiseo€ode words, and code
word u is adjacent to the pairg, u;) for i € {1,2,3,4}. For the codeC; this yields

the 4-cube (tesseract), and & we get its unique cospectral mate.
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Fig. 1.3 Tesseract and cospectral switched version

1.8.2 Seidel switching

The Seidel adjacency matriaf a graphl” with adjacency matriA is the matrixS

defined by
Oifu=v
Sv=¢ —lifu~v
lifuyYv
so thatS= J— | — 2A. The Seidel spectrunof a graph is the spectrum of its Sei-

del adjacency matrix. For a regular graph mrertices with valencyk and other
eigenvalued, the Seidel spectrum consistsrof 1 — 2k and the values-1— 26.

Letl" have vertex seX, and letY C X. LetD be the diagonal matrix indexed by
X with Dyx = —1 for x € Y, andDyx = 1 otherwise. TheDSD has the same spec-
trum asS. It is the Seidel adjacency matrix of the graph obtained ffolyy leaving
adjacency and nonadjacency insidand X\ Y as it was, and interchanging adja-
cency and nonadjacency betweérand X \ Y. This new graph, Seidel-cospectral
with I, is said to be obtained byeidel switchingvith respect to the set of vertices
Y.

Being related by Seidel switching is an equivalence rataémd the equivalence
classes are callesivitching classesHere are the three switching classes of graphs
with 4 vertices.

[ B [ )
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The Seidel matrix of the complementary graphs —S, so that a graph and its
complement have opposite Seidel eigenvalues.

If two regular graphs of the same valency are Seidel cosgletiien they are also
cospectral.

Figure 1.2 shows an example of two cospectral graphs refst&eidel switch-
ing (with respect to the four corners). These graphs aresnamirphic: they have
different local structure.
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The Seidel adjacency matrix playse in the description of regular two-graphs
(sees§10.1-10.3) and equiangular lines ($46€.6).

1.8.3 Godsil-McKay switching

Let " be a graph with vertex s&, and let{Cy,...,C,D} be a partition ofX such
that {Cy,...,C} is an equitable partition ok \ D (that is, any two vertices i€
have the same number of neighbor<Einfor all i, j), and for every € D and every
i € {1,...,t} the vertexx has either 0,%\Ci| or |G| neighbors inC;. Construct a
new graph™’ by interchanging adjacency and nonadjacency betweed and the
vertices inCi wheneverx has3|Ci| neighbors irC;. Thenl” andl"’ are cospectral
([168]).

Indeed, leQ, be the matrix%‘] — | of orderm, so thaiQ% =I.Letn; =|Gi|. Then
the adjacency matrid’ of I’ is found to beQAQ whereQ is the block diagonal
matrix with blocksQy, (1 <i <t) andl (of order|D]).

The same argument also applies to the complementary graplisat also the
complements of” and "’ are cospectral. Thus, for example, the second pair of
graphs in Figure 1.1 is related by GM-switching, and hensedagpectral comple-
ments. The first pair does not have cospectral complemedtsexrce does not arise
by GM-switching.

The 4-cube and its cospectral mate (Figure 1.3) can be @otéiom each other
by GM-switching with respect to the neighborhood of a verfégure 1.2 is also an
example of GM-switching. Indeed, when two regular graphthefsame degree are
related by Seidel switching, the switch is also a case of @lifebing.

1.8.4 Reconstruction

The famous Kelly-Ulam conjecture (1941) asks whether atgfagan be recon-
structed when the (isomorphism types of) thevertex-deleted graphg \ x are

given. The conjecture is still open (see Bondy [31] for a désion), but Tutte
[322] showed that one can reconstruct the characteristimpmial of I", so that

any counterexample to the reconstruction conjecture meist pair of cospectral
graphs.

1.9 Very small graphs

Let us give various spectra for the graphs on at most 4 vertitiee columns with
headingA, L, Q, Sgive the spectrum for the adjacency matrix, the Laplaceirmatr
L = D — A (whereD is the diagonal matrix of degrees), the signless Laplaceixnat
Q =D+ Aand the Seidel matris=J — | — 2A.
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label picture A L Q S
0.1
1.1 e 0 0 0 0
2.1 o—o 1,-1 0,2 2,0 -11
220 @ 0,0 0,0 0,0 -11
3.1 A 2,-1,-1 0,3,3 41,1 -2,1,1
3.2 f\ V2,0,—v2 01,3 31,0 -1,-1,2
3.3 ..4 1,0,-1 0,0,2 2,0,0 -2,1,1
3.4 ... 0,0,0 0,0,0 0,0,0 -1,-1,2
4.1 m 3-1,-1,-1 0444 6,2,2,2 -3,1,1,1
4.2 IZI p,0,—1,1-p  0,2,4,4 2+421,2,2,4-21 —/5,-1,1,/5
4.3 m 2,0,0,-2 0,2,2,4 4,220 -1,-1,-1,3
4.4 I?I 61,60,—1,65 0,134 2+p,2,1,3-p —5-1,1,/5
4.5 71 v3,0,0,—v/3 01,14 41,10 -1,-1,-1,3
4.6 I_I 1,7-1,1-1,—-1 0,4—0a,2,a a,2,4—a,0 —+/5-1,1,/5
4.7 I7: 2,0,—-1,-1 0,0,3,3 41,10 -3,1,1,1
48 ¢ ¢ V200,—/2 00,13 3,1,0,0 —/5,-1,1,/5
4.9 I I 1,1,-1,-1 0,0,2,2 2,2,0,0 -3,1,1,1
4.10 I : 1,0,0,—1 0,0,0,2 2,0,0,0 —v5,-1,1,/5
4.11 o : 0,0,0,0 0,0,0,0 0,0,0,0 -1,-1,-1,3

Table 1.1 Spectra of very small graphs

Herea = 2++/2 andt = (1++/5)/2 andp = (1++/17)/2 and6; ~ 2.17009,
6, ~ 0.31111,6; ~ —1.48119 are the three roots 68 — 82 —360+1=0.

1.10 Exercises

Exercise 1 Show that no graph has eigenvalug/2. Show that no undirected graph
has eigenvalug/2+ /5. (Hint: consider the algebraic conjugates of this number.
Exercise 2 Let" be an undirected graph with eigenvalégs.. ., 6,. Show that for

any two vertices andb of I there are constants, ..., c, such that the number of
walks of lengthh from a to b equalsy ;8" for all h.

Exercise 3 Let I’ be a directed graph with constant outdegkee O and without
directed 2-cycles. Show thathas a non-real eigenvalue.
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Exercise 4 (i) Let I be a directed graph amvertices, such that there isavith the
property that for any two verticessandb (distinct or not) there is a unique directed
path of lengthh from a to b. Prove that™ has constant in-degree and out-dedtee
wheren = k", and has spectrukt 0"1,

(i) The de Bruijn graphof orderm is the directed graph with as vertices the
2™ binary sequences of length where there is an arrow from ...amto by ... by
when the tailay...an of the first equals the hedu ...by, 1 of the second. (For
m = 0 a single vertex with two loops.) Determine the spectrumhef de Bruijn
graph.

(iif) A de Bruijn cycleof orderm> 1 ([67, 68, 154]) is a circular arrangement of
2™ zeros and ones such that each binary sequence of lemgtiturs once in this
cycle. (In other words, it is a Hamiltonian cycle in the de Brgraph of ordem, an
Eulerian cycle in the de Bruijn graph of order— 1.) Show that there are precisely
22" -m e Bruijn cycles of ordem.

Exercise 5([40, 290]) Letl" be atournamentthat is, a directed graph in which there
is precisely one edge between any two distinct verticegharavords, of which the
adjacency matriA satisfiesA” + A=J—1.

(i) Show that all eigenvalues have real part not less thas2.

(i) The tournamenf” is calledtransitiveif (x,z) is an edge whenever botk, y)
and(y,z) are edges. Show that all eigenvalues of a transitive touenaare
zero.

(iif) The tournament” is calledregular when each vertex has the same number
of out-arrows. Clearly, when there amevertices, this number of out-arrows
is (n—1)/2. Show that all eigenvalue® have real part at mogn—1)/2,
and that Ré9) = (n—1)/2 occurs if and only if” is regular (and the® =
(n—1)/2).

(iv) Show thatA either has full rank or has rankn— 1, and thatA has full rank
when[" is regular anah > 1.

(Hint: for a vectoru, consider the expressian (A" +A)u.)
Exercise 6 Let " be bipartite and consider its line grapf).

(i) Show thatI” admits a directed incidence matfiksuch thaiN 'N — 2| is the
adjacency matrix ok (I").
(i) Give arelation between the Laplace eigenvaluek aind the ordinary eigen-
values ofL(I").
(iii) Verify this relation in casd™ is the pathP,.

Exercise 7([98]) Verify (see§1.2.1) that both graphs pictured here have character-
istic polynomialt4(t* — 7t? 4-9), so that these two trees are cospectral.

g
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Note how the coefficients of the characteristic polynomfa tree count partial
matchings (sets of pairwise disjoint edges) in the tree.

Exercise 8([16]) Verify that both graphs pictured here have charastierpolyno-

mial (t — 1)(t + 1)2(t® —t> — 5t + 1) by computing eigenvectors and eigenvalues.
Use the observatior${.6) that the image of an eigenvector under an automorphism
is again an eigenvector. In particular, when two verticgsare interchanged by an
involution (automorphism of order 2), then a basis of theergpace exists consist-
ing of vectors where the- andy-coordinates are either equal or opposite.

e oee =S

Exercise 9 Show that the disjoint uniofl + A of two graphg™ andA has charac-
teristic polynomialp(x) = pr (X) pa(X).

Exercise 101f " is regular of valenck onn vertices, then show that its complement
I has characteristic polynomial

pX—N-+Kk+1

e i |

pr(—x—1).

Exercise 11 Let theconeover a graph™ be the graph obtained by adding a new
vertex and joining that to all vertices 6f. If I" is regular of valenck onn vertices,
then show that the cone ovErhas characteristic polynomial

P(X) = (x* —kx—n)pr (x)/(x— k).

Exercise 12 Let thejoin of two graphs” andA be T +A, the result of joining
each vertex of” to each vertex of (a disjoint copy of). If ' andA are regular of
valencies and/, and haven andn vertices, respectively, then the join bfandA
has characteristic polynomial

P9 = ((x— x—) ) ECOPELE

Exercise 13 Show that the Seidel adjacency mat8xf a graph om vertices has
rankn—1 orn. (Hint: detS=n—1 (mod 2).)

Exercise 14 Prove that the complete grajas is not the union of three copies of
the triangular grapfi (11).






Chapter 2
Linear algebra

In this chapter we present some less elementary, but rélegaults from linear
algebra.

2.1 Simultaneous diagonalization

LetV be a complex vector space with finite dimension, and fix a bakisn we can
define an inner product on by putting(x,y) = ¥ Xiyi = X'y for x,y € V, where the
bar denotes complex conjugation Afis Hermitean i.e., if (Axy) = (x,Ay) for all
X,y € V, then all eigenvalues ok are real, and/ admits an orthonormal basis of
eigenvectors oA.

Proposition 2.1.1 Suppose? is a collection of commuting Hermitean linear trans-
formations on V (i.e., AB= BA for AB € &), then V has a basis consisting of
common eigenvectors of allA.«7.

Proof. Induction on dinV. If eachA € 7 is a multiple of the identity, then all

is clear. Otherwise, leA € &7 not be a multiple of. If Au= Bu andB € 7, then
A(Bu) = BAu= 6Bu so thatB acts as a linear transformation on the eigenspace
Vg for the eigenvaluéd of A. By the induction hypothesis we can choose a basis
consisting of common eigenvectors for ed&k o/ in each eigenspace. The union
of these bases is the basis\bive were looking for. O

Given a square matri&, we can regard as a linear transformation on a vector space
(with fixed basis). Hence the above concepts apply. The xvatnill be Hermitean
precisely wherA = A'; in particular, a real symmetric matrix is Hermitean.

21



22 2 Linear algebra

2.2 Perron-Frobenius Theory

Let T be a realn x n matrix with nonnegative entried. is calledprimitive if for
somek we haveTk > 0; T is calledirreducibleif for all i, j there is ak such that
(TX)ij > 0. Here, for a matrix (or vectos, A > 0 (> 0) means that all its entries
are positive (nonnegative).

The matrixT = (tj;) is irreducible if and only if the directed gragh with ver-
tices{1,...,n} and edgesi, j) whenevet;; > 0 is strongly connected.

(A directed graphX,E) is strongly connected for any two verticesx,y there
is a directed path fromtoy, i.e., there are verticeg = X, X1, ...,Xm = Y such that
(Xi—1,%) € Efor1<i<m)

Note that if T is irreducible, ther + T is primitive.

The period d of an irreducible matrixT is the greatest common divisor of the
integersk for which (Tk)ii > 0. Itis independent of thechosen.

Theorem 2.2.1Let T > 0 be irreducible. Then there is a (unique) positive real
number8y with the following properties:

(i) There is a real vectorx> 0 with T Xy = BoXo.

(ii) 6o has geometric and algebraic multiplicity one.

(iii) For each eigenvalued of T we havef| < 6. If T is primitive, then|6| =
6o implies 8 = 6y. In general, if T has period d, then T has precisely d
eigenvalued with |8 = 6o, namelyd = 60e?1/ for j =0,1,...,d— 1. In
fact the entire spectrum of T is invariant under rotationtoé tomplex plane
over an angle2rt/d about the origin.

(iv) Any nonnegative left or right eigenvector of T has eiggue 6. More gen-
erally, if x> 0, x#£ 0 and Tx< 6x, then x> 0and 6 > 6y; moreover,8 = 6
if and only if Tx= 6x.

(V) IfO<S<T orif Sis a principal minor of T, and S has eigenvalmgthen
|o| < 6;if |o| = 6, then S=T.

(vi) Given a complex matrix S, 168 denote the matrix with elemerj&;; = |S;|.

If |§ <T and S has eigenvalue, then|o| < 6. If equality holds, then
|S| =T, and there are a diagonal matrix E with diagonal entries b$alute
value 1 and a constant ¢ of absolute value 1, such thattE TE L.

Proof. (i)LetP=(1+T)""1. ThenP>0andPT =TP. LetB= {x|x>0 andx #
0}. Define forx € B:

0(x) =max{0 | 6 e R, 9x§Tx}:min{(TT?()i\1§i§n, Xi # 0}.

Now B(ax) = 8(x) fora e R, a >0, and <y, X # yimpliesPx< Py, s0)0(Px) >
0(x); in fact 6(Px) > 6(x) unlessx is an eigenvector of . PutC = {x | x > 0 and

|IX]| = 1}. Then since&€ is compact and(.) is continuous oiP[C] (but not in general
onC), there is arg € P|C] such that
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o := supb(x) = supB(x) = sup 6(x) = 6(xo).
xeB xeC xeP[C]

Now Xp > 0 andxg is an eigenvector of , soT xp = 6pXp, andfy > 0.

(i) For a vectorx = (X1,...,%n) ", write X; = (|X],...,[%|)". If Tx= 6x, then
by the triangle inequality we havex, > |8|x,. For nonzerax this meang 6| <
0(x4) < 6. If, for some vectorz € B, we haveT z> 6yz, thenzis eigenvector of
T (otherwised(Pz) > 6), and since < Pz= (1+ 6p)" 1z we havez > 0. If x is
a real vector such thdtx = 6px, then considey = xo + €X, wheree is chosen such
thaty > 0 but noty > 0; by the foregoiny ¢ B, so thaty = 0, andx is a multiple of
Xo. If Xis a nonreal vector such thaitk = 6pX, then both the real and imaginary parts
of x are multiples of. This shows that the eigenspacefgthas dimension 1, i.e.,
that the geometric multiplicity o is 1. We shall look at the algebraic multiplicity
later.

(iii) We have seef@| < 6. If |8 = Bp andT x= 08X, thenT x; = 6ox; and we had
equality in the triangle inequalityy ;tijx;| < ¥ jtij[x;]; this means that all numbers
tijX; (1 < j < n) have the same angular part (argument)l i primitive, then we
can apply this reasoning wiff¥ instead ofT, whereTX > 0, and conclude that all
Xj have the same angular part. Consequently, in this xase multiple of a real
vector and may be taken real, nonnegative. Now= 6x shows tha® is real, and
|8] = 6 that@ = 6p. In the general cas@ is a direct sum of primitive matrices
TO, . 7E-D andifx= (x?,...,x(9-1) is the corresponding decomposition of
an eigenvector ol (with eigenvalued), then (x© xV, ... 79-1x(d-D) also is
an eigenvector off, with eigenvalue 8, for any d-th root of unity {. (Here we
assume that th& V) are ordered in such a way thatfi the arrows point from the
subset corresponding ) to the subset correspondingT§Y.) SinceT? has a

unigue eigenvalue of maximum modulus G@%H) be the (nonsquare) submatrix

of T describing the arrows it between the subset correspondingrté to the

subset corresponding ©(+Y; thenT() = n?;&T(Eijjj)*l) andif TWz=yz z>0

thenT(-VZ = yZ whereZ = T<E'_)l)z;é 0, so that allT ) have the same eigenvalue
of maximum modulus), it follows thak has preciselyl such eigenvalues.

(iv) Doing the above for left eigenvectors instead of rights, we findyy >
O withyg T =noyd. If Tx=06xandy'T =ny', thenny'x=y Tx= 0y'x. It
follows that either® = n ory’x = 0. Takingy € B, x = Xp or X € B, y = yp We see
that® = n (= 6y = no). Similarly, if Tx< 6x, x € B thenBpy, x =y TX< 0y} xso
thatfy < 6; also 0< Px< (1+6)"1x, sox > 0. If 6 = 6, theny; (Tx— 6x) =0
SOTx= Ox.

(v) If s#0,Ss=0s, thenTs; > Ss. > |o|s:, so|o| < 6. Butif || = 6y then
s is eigenvector o ands; >0 and(T —S)s; =0,s0S=T.

(vi) If s# 0, Ss= gs, thenTs, > |Ss; > |al|s;, so|a| < 6, and if |o| = 6y
thens; is eigenvector oT ands; > 0 and|§ = T. Equality in|S|s; = |o|s; means
that|y Sjsj| = 3 |Sj|.Isj|, so that giveri all Sjs; have the same angular part. Let
Ei =s/|s| andc= g/|o|. ThenS; = cE;j Eﬁl\sj |




24 2 Linear algebra

(vii) Finally, in order to prove thaty is a simple root ofyt, the characteristic
polynomial of T, we have to show thq;%xT(e) is nonzero foil@ = 6. But x1(6) =
det 61 —T) and {5 x(6) = y;det 61 — Tjj), and by (v) we have dé#l —Tj) > 0
for 6 = 6;. O
Remark In caseT > 0 butT not necessarily irreducible, we can say the following.

(i) The spectral radiugp of T is an eigenvalue, and there are nonnegative left
and right eigenvectors corresponding to it.
(i) If |§ <T andShas eigenvalue, then|o| < 6.

(Proof. (i) Use continuity arguments; (ii) the old proof still apgsi. )

For more details, see the exposition of the Perron-Frolsahieory in Gantmacher
[159, Ch. XIII]; cf. also Varga [324], Marcus & Minc [256], 8eta [304, Ch. 1],
Berman & Plemmons [24], or Horn & Johnson [217, Ch. 8].

2.3 Equitable partitions

SupposeA is a symmetric real matrix whose rows and columns are indéyed
X ={1,...,n}. Let {Xg,...,Xm} be a partition ofX. The characteristic matrix
S is the n x m matrix whosej" column is the characteristic vector o (j =
1,...,m). Definen; = |X| andK = diag(ny, ...,nm). Let A be partitioned accord-
ingto {Xy,...,Xm}, thatis,

A171 Al,m
A— . .

bl

Ar.n,l An:1,m

wherein A j denotes the submatrix (block) @ formed by rows inX; and the
columns inX;. Letb; ; denote the average row sumAf;. Then the matriB = (b j)
is called thequotient matrix We easily have

KB=S'AS S'S=K.

If the row sum of each block; j is constant then the partition is calleduitable(or
regular) and we havey j1=Db;jlfori,j=0,...,d, so

AS=SB

The following result is well-known and useful.

Lemma 2.3.1 If, for an equitable partition, v is an eigenvector of B for aigen-
valueA, then Sv is an eigenvector of A for the same eigenvalue

Proof. Bv= 6vimpliesASv= SBv= 6Sv. O
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In the situation of this lemma, the spectrumAfonsists of the spectrum of the
quotient matrixB (with eigenvectors in the column space $fi.e., constant on
the parts of the partition) together with the eigenvaludsrzgng to eigenvectors
orthogonal to the columns &(i.e., summing to zero on each part of the partition).
These latter eigenvalues remain unchanged if the blécksire replaced b j +
ci,jJ for certain constants ;.

2.3.1 Equitable and almost equitable partitions of graphs

If in the above the matriA is the adjacency matrix (or the Laplace matrix) of a
graph, then an equitable partition of the mathiis a partition of the vertex set into
partsX; such that each vertex X has the same numbby; of neighbours in part
Xj, for any j (or anyj # i). Such partitions are called (almost) equitable partgion
of the graph.

For example, the adjacency matrix of the complete bipagtiégphK,  has an equi-
table partition withm= 2. The quotient matriB equals[g 8} and has eigenvalues
+,/pq, which are the nonzero eigenvalues<gfy.

More generally, consider thin I of two vertex-disjoint graphg$; and >, the
graph obtained by inserting all possible edges betweemd/. If 1 andl;, have
n; resp.n, vertices and are both regular, say of valekgyesp ko, and have spectra
@y resp.d,, thenl™ has spectrun® = (d1\ {ki}) U (P2 \ {k2}) U {K K"} where
K, k" are the two eigenvalues of
ki 2
i)

Indeed, we have an equitable partition of the adjacencyixnait™ with the above
quotient matrix. The eigenvalues that do not belong to thatigat coincide with
those of the disjoint union df; and/l>.

2.4 The Rayleigh quotient

Let A be a real symmetric matrix and letoe a nonzero vector. THeayleigh quo-
tientof uw.r.t. Ais defined as

u'Au

ulu’
Letus,...,u, be an orthonormal set of eigenvectordosay withAy, = 6;u;, where
01>...> 6 Ifu= S ay thenu"u= 5 a? andu' Au= s a?8@.. It follows that
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u'Au

T >6ifue (u,...,u)

and
u'Au
u'u

<@ifue(u,...u 1)*"

In both cases, equality implies thats a 6 -eigenvector ofA. Conversely, one has
Theorem 2.4.1 (Courant-Fischerl).et W be an i-subspace of V. Then

. u'Au
6> min ——
ueW,u#0 U'U

and
uTAu

B <  max .
ueW-L, u£0 u'u

2.5 Interlacing

Consider two sequences of real numbéks> ... > 6,, andny > ... > nNm with
m < n. The second sequence is saidrterlacethe first one whenever

6 >ni>6hmi, fori=1,....m.
The interlacing igight if there exist an integet € [0, m| such that
6 =niforl<i<k and 6,_mii=nifork+1<i<m.

If m=n—1, the interlacing inequalities becorig>n1 > 6 >nN>> ... > nNm >
6h, which clarifies the name. Godsil [164] reserves the namteriiacing’ for this
particular case and calls it generalized interlacing atis.

Theorem 2.5.1Let S be a real x m matrix such that 8S= 1. Let A be a real
symmetric matrix of order n with eigenvalu@s> ... > 6,. Define B= STAS and
let B have eigenvalueg > ... > nm and respective eigenvectors.v. v,

() The eigenvalues of B interlace those of A.
(i) If ni =6 or Ny = Bh_myi for some i€ [1,m]|, then B has aj;-eigenvector v
such that Sv is &;-eigenvector of A.
(iii) If for some integer Ini =6, fori=1,....1(0or Ni = Bh_m+i fori=1,...,m),
then Syis a nj-eigenvector of A for+ 1,....1 (respectively i=1,...,m).
(iv) If the interlacing is tight, then SB- AS.

Proof. Letu,...,u, be an orthonormal set of eigenvectors of the makriwhere
Au = 6. For each € [1,m], take a nonzero vectay in

1
(Vi,...,v)N <STu1,...7STui,1> . (2.1)
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ThenSs € (ug,...,ui_1)", hence by Rayleigh's principle,

(Ss)'A(Ss) s'Bs _
" se(ss) s

and similarly (or by applying the above inequality-té\ and—B) we get6,_mi <
ni, proving (i). If 6 = n;, thens andSs are;-eigenvectors oB andA, respectively,
proving (ii). We prove (iii) by induction ol. AssumeSy = uy; fori =1,...,1 —
1. Then we may takg = v in (2.1), but in proving (ii) we saw thdbs is a 6 -
eigenvector ofA. (The statement between parentheses follows by considern
and—B.) Thus we have (iii). Let the interlacing be tight. Then hij)(iSu, . ..,Sw
is an orthonormal set of eigenvectorsfdior the eigenvaluesy, . . ., Nm. So we have
SBy = njSy = ASy, fori = 1,...,m. Since the vectors; form a basis, it follows
thatSB= AS O

If we takeS= [l 0", thenB is just a principal submatrix o and we have the
following corollary.

Corollary 2.5.2 If B is a principal submatrix of a symmetric matrix A, then the
eigenvalues of B interlace the eigenvalues of A.

The theorem requires the columns3ib be orthonormal. If one has a situation with
orthogonal but not necessarily orthonormal vectors, sarakng is required.

Corollary 2.5.3 Let A be a real symmetric matrix of order n. Let X.,xy, be
nonzero orthogonal real vectors of order n. Define a matrixGcij) by G; =
WX{FAXJ.
(i) The eigenvalues of C interlace the eigenvalues of A.
(i) If the interlacing is tight, then Ax= S ¢;jx; for all j.
(iii) Let x = 5 xj. The number r= X)(TT’?(X lies between the smallest and largest
eigenvalue of C. If x is an eigenvector of A with eigenvd@uthen also C has

an eigenvalud (for eigenvectod).

Proof. Let K be the diagonal matrix witk; = ||x||. Let R be then x m matrix
with columnsx;, and putS= RK™L. ThenS'S=1, and the theorem applies with
B =S'AS=KCK™1. If interlacing is tight we havé\R= RC. With x= 3 x; = Rl

T T
andy = K1, we haveXAX = Y. BY, O
x'x yly

In particular, this applies when theare the characteristic vectors of a partition (or
just a collection of pairwise disjoint subsets).

Corollary 2.5.4 Let C be the quotient matrix of a symmetric matrix A whose rows
and columns are partitioned according to a partitioni{¥s, ..., Xm}.

(i) The eigenvalues of C interlace the eigenvalues of A.
(i) If the interlacing is tight, then the partition is egaible. d

Theorem 2.5.1(i) is a classical result; see Courant & HillpEd3], Vol. 1, Ch. I.
For the special case of a principal submatrix (Corollary2),5he result even goes
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back to Cauchy and is therefore often referred to as Cauchsiacing. Interlacing

for the quotient matrix (Corollary 2.5.4) is especially &pable to combinatorial
structures (as we shall see). Payne (see, for instancq) [2&&applied the extremal
inequalitiesf; > n; > 6, to finite geometries several times. He attributes the method
to Higman and Sims and therefore calls it thigman-Sims technique

Remark This theorem generalizes directly to complex Hermitearrices instead
of real symmetric matrices (with conjugate transpose atstd transpose) with vir-
tually the same proof.

For more detailed eigenvalue inequalities, see Haemeg§,[[&D1].

2.6 Schur’s inequality

Theorem 2.6.1 (Schur [291])Let A be a real symmetric matrix with eigenvalues
61> 6, > ... > 6, and diagonal elementg & dy > ... >dn. Theny!_; d < 5!, 6
fori<t<n.

Proof. Let B be the principal submatrix oA obtained by deleting the rows and
columns containingk 1, ..., dn. If B has eigenvalues; (1 <i <t) then by interlac-
ing yi_1di =trB=3i_1M <516, .

Remark Again ‘real symmetric’ can be replaced by ‘Hermitean’.

2.7 Schur complements

In this section, the square matrix

A11 Ao
A =
[A21 Azz]

is a square partitioned matrix (over any field), whAge is nonsingular. Th&chur
complement AA;; of A1 in Ais the matrixAzz — A21A1‘11A12. The following result
is a straightforward but important consequence from theniefin.

Theorem 2.7.1 (see [336])The Schur complement/A;; satisfies
(I) | (@] Aq1 A2 |—AI]:_LA12 _ A1 O
—AoiAf | ] [ Ao1A2] |[O O A/Aul’
(II) det(A/All) = detA/detAll,
(i) rkA=rkAs;+rk(A/A11).

Corollary 2.7.2 If rkA = rkAy1, then A, = Ay1AT; Aro. O
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2.8 The Courant-Weyl inequalities

Denote the eigenvalues of a Hermitean mag&parranged in nonincreasing order,
by Ai(A).

Theorem 2.8.1 Let A and B be Hermitean matrices of order n, andllet i, j < n.

(i) fi+j—1<nthenAiyj—1(A+B) <A(A)+A;(B).
(ii) Ifi +j—n>1thenAi(A)+A;j(B) <Aitj—n(A+B).
(iii) If B is positive semidefinite, thek (A+ B) > Aj(A).

Proof. (i) Let ug,...,u, andvy,...,vy be orthonormal sets of eigenvectorsAof
resp.B, with Ay = A;(A)u; andBvj = Aj(B)v;. LetU = (up | 1 <h <i-1) and
V={(W[1<h<j-1),andW =U +V. Forw € W+ we havew' (A+B)w <
(Ai(A) +Aj(B))w'w. It follows that the space spanned by eigenvectors efB
with eigenvalue larger thak (A) + Aj(B) has dimension at most- j — 2.

(i) Apply (i) to —A and—B. (iii) Apply the casej = n of (ii). O

Ky Fan [147] shows that (A) + A (B) dominatest (A+ B):

Theorem 2.8.2 Let A and B be Hermitean matrices of order n. Then for all &
t <n,we havest_; Ai(A+B) < 511 Ai(A) + 311 Ai(B).

Proof. ¥1_;Ai(A) = maxt{U*AU), where the maximum is over ailx t matrices
U withU*U =1I. (]

2.9 Gram matrices

Real symmetrim x n-matricesG are in bijective correspondence with quadratic
formsq onR" via the relation

ax) =x"Gx (xeR").

Two quadratic formsjandg onR" arecongruenti.e., there is a nonsingularx n-
matrix S such thatg(x) = ¢ (Sx for all x € R", if and only if their corresponding
matricesG andG’ satisfyG = S" G'S. Moreover, this occurs for songif and only if

G andG’ have the same rank and the same number of nonnegative digeswethis

is Sylvester [315]'s ‘law of inertia for quadratic forms’,. €antmacher [159], Vol.
1, Chapter X§2. We shall now be concerned with matrices that have nonivegat
eigenvalues only.

Lemma 2.9.1 Let G be a real symmetricxn-matrix. Equivalent are:

(i) Forallx € R", x"Gx> 0.
(ii) All eigenvalues of G are nonnegative.
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(i) G can be written as G= H "H, with H an mx n matrix, where m is the rank
of G.

Proof. There is an orthogonal matri@ and a diagonal matri® whose nonzero
entries are the eigenvalues @fsuch thatG = Q' DQ. If (ii) holds, thenx'Gx =
(Qx) 'D(Qx) > 0 implies (i). Conversely, (ii) follows from (i) by choosingto be
an eigenvector. 16 = HH thenx” Gx = ||Hx||> > 0, so (i) implies (i). Finally,
let E = D¥/2 be the diagonal matrix that square€tpand letF be them x n matrix
obtained fromE by dropping the zero rows. TheB=Q'E'EQ=Q'F'FQ =
HTH, so that (ii) implies (iii). O

A symmetricn x n-matrix G satisfying (i) or (ii) is calledoositive semidefinitdt is
calledpositive definitavhenx” Gx = 0 impliesx = 0, or, equivalently, when all its
eigenvalues are positive. For any collectidmf vectors ofR™, we define itsGram
matrix as the square matri@ indexed byX whose(x,y)-entry Gyy is the inner
product(x,y) = x"y. This matrix is always positive semidefinite, and it is deirif
and only if the vectors iiX are linearly independent. (Indeednif |X|, and we use
H to denote then x n-matrix whose columns are the vectorsXgfthnenG = H "H,
andx' Gx= ||Hx||2>0.)

Lemma 2.9.2 Let N be a real mx n matrix. Then the matrices NNand N'N
have the same nonzero eigenvalues (including multigjtiMoreoverk NN =
rkNTN = rkN.

Proof. Let 8 be a nonzero eigenvalue dfN". The mapu+— N'u is an iso-
morphism from thed-eigenspace N’ onto thed-eigenspace ol "N. Indeed,
if NN"u= 6uthenN"NN"u= 6NTu andN"u is nonzero for nonzera since
NNTu= 6u. The final sentence follows sinceMK N < rkN, but if N"Nx= 0 then
[INX|?2 =x"NTNx= 0, so thalNx= 0. O

2.10 Diagonally dominant matrices

A diagonally dominaninatrix is a complex matriB with the property that we have
|bii| > ¥ j4i |bij| for alli. When all these inequalities are strict, the matrix is called
strictly diagonally dominant

Lemma 2.10.1 (i) A strictly diagonally dominant complex matrix is nongirar.

(i) A symmetric diagonally dominant real matrix with nogia¢give diagonal en-
tries is positive semidefinite.

(iii) Let B be a symmetric real matrix with nonnegative romsuand nonpositive
off-diagonal entries. Define a grapgh on the index set of the rows of B, where two
distinct indices jj are adjacent when;il # 0. The multiplicity of the eigenvalue O
of B equals the number of connected components IC sifich that all rows i C
have zero row sum.
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Proof. LetB= (hjj) be diagonally dominant, and lebe an eigenvector, say, with
Bu= bu. Let |ui| be maximal among thgeij|. Then(bj —b)ui = — ¥ ;. biju;. Inall
cases the result follows by comparing the absolute valubstbfsides.

In order to prove (i), assume thBtis singular, and thaBu = 0. Take absolute
values on both sides. We fint; |.|ui| < D \bij|.|u,-\ < Y |bij||ui| < |bii].Juil.
Contradiction.

For (ii), assume thaB has a negative eigenvalbeThen(b; — b).|ui| < |bji|.|ui].
Contradiction.

For (iii), take b = 0 again, and see how equality could hold everywhere in
bii. Jui| < Y i |bij HUJ'| < Y |bij||ui| < bj.|ui|. We see thati must be constant
on the connected componentsiafand zero where row sums are nonzero. [

2.10.1 Gesggorin circles

The above can be greatly generalized. Bét,r) = {z€ C | |z—c| < r} be the
closed ball inC with centerc and radius.

Proposition 2.10.2 Let A= (a&j) be a complex matrix of order n, ardan eigen-
value of A. Put =Y j|aj|. Then for some i we havk € B(g;,ri). If C is a

connected component bf;, B(aji,ri) that contains m of theja then C contains m
eigenvalues of A.

Proof. If Au= Au, then(A —aj)ui = 3 &;juj. Leti be an index for whichu|
is maximal. ThenA —a;|.|ui| < ¥ ;lajl.|ui| so thatA € B(a, ri). For the second
part, use that the eigenvalues are continuous functionseofriatrix elements. Let
A(g) be the matrix with the same diagonalAsind with off-diagonal entriesa;j,
so thatA = A(1). ThenA(0O) has eigenvalues;, and for 0< € < 1 the matrixA(¢g)
has eigenvalues insidg, B(a, ri). O

This result is due to G8gorin [161]. A book-length treatment was given by
Varga [325].

2.11 Projections

Lemma2.11.1Let P= ,\?T g
eigenvalues a and b, partitioned with square Q and R. Let (@ legigenvalues)
distinct from a and b. Then R has h eigenvaluasta- 6; distinct from a and b, and
h=mp(a) — mg(a) — mr(a) = mp(b) — mg(b) — mr(b), where ny(n) denotes the
multiplicity of the eigenvalug of M.

be a real symmetric matrix of order n with two

Proof. W.l.o.g.a=1 andb = 0 so thatP is a projection and®?> = P. Now if
Qu= 6u thenRv= (1—8)vfor v=N"uandNN"u= 6(1— 0)u, so that the
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eigenvalues of) andR different from 0 and 1 correspond 1-1. The rest follows by
taking traces: G=trP—trQ—trR=mp(1) —mg(1) — mg(1) —h. O

2.12 Exercises

Exercise 1 Consider a symmetria x n matrix A with eigenvalue®, ..., 6,. Sup-
poseA has an equitable partitiofXy, ..., Xn}, where all classes have equal size. Let
SandB be the characteristic matrix and the quotient matrix of paigition, respec-
tively. Assume thab, ..., 6, are ordered such th#, ..., 6, are the eigenvalues

of B. Prove thatA andSS commute and give an expression for the eigenvalues of
A+aSS fora cR.

Exercise 2 Let B denote the quotient matrix of a symmetric mattixvhose rows
and columns are partitioned according to a partitiofiXg, .. ., Xm}.

(i) Give an example, where the eigenvalue8aire a sub(multi)set of the eigen-
values ofA, whilst the partition is not equitable.

(ii) Give an example where the partition is equitable, witie interlacing is not
tight.

Exercise 3 Let " be an undirected graph with smallest eigenvalide Show that
I" is the disjoint union of complete graphs.



Chapter 3
Eigenvalues and eigenvectors

In this chapter we apply the linear algebra from the previchapter to graph spec-
tra.

3.1 The largest eigenvalue

The largest eigenvalue of a graph is also known asgéectral radiusor index
The basic information about the largest eigenvalue of asfpbsdirected) graph
is provided by Perron-Frobenius theory.

Proposition 3.1.1 Each graphl” has a real eigenvaluéy with nonnegative real

corresponding eigenvector, and such that for each eigel@lwe have/8| < 6.

The valuefy(I" ) does not increase when vertices or edges are removed/from
Assume thafl is strongly connected. Then

(i) 6o has multiplicity 1.

(i) If I is primitive (strongly connected, and such that not all egchave a
length that is a multiple of some integerdl), then|6| < 6, for all eigen-
values@ different from@y.

(i) The valueBy(I" ) decreases when vertices or edges are removed fromJ

Now letl” be undirected. By Perron-Frobenius theory and interlagiadind an
upper and lower bound for the largest eigenvalue of a cordeapiaph. (Note thak
is irreducible if and only if” is connected.)

Proposition 3.1.2 Let " be a connected graph with largest eigenvalyelf I is
regular of valency k, thef; = k. Otherwise, we haved, < k < 61 < kmax Where
Kmin, kmax andk are the minimum, maximum and average degree.

Proof. Let 1 be the vector with all entries equal to 1. Thah < kyhaxl, and by
Theorem 2.2.1(iv) we hav@ < kmax With equality if and only ifAl = 6,1, that is,
if and only if I" is regular of degreé;.

33
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Now consider the partition of the vertex set consisting ahgle part. By Corol-
lary 2.5.4 we hav& < 6; with equality if and only ifl” is regular. O

For not necessarily connected graphs, we rh_qigd?l < Kmax andk = 6, if and only
if I is regular. If6; = knax then we only know thalt has a regular component with
this valency, buf” need not be regular itself.

As was noted already in Proposition 3.1.1, the largest gajaa of a connected
graph decreases strictly when an edge is removed.

3.1.1 Graphs with largest eigenvalue at most 2

As an example of the application of Theorem 2.2.1 we can roenti

Theorem 3.1.3 (Smith [310], cf. Lemmens & Seidel [238]Yhe only connected
graphs having largest eigenval2eare the following graphs (the number of vertices
is one more than the index given).

An(n>2) 1
1
A 2
______ é6
1 1 1 1 1 2 3 2 1

1 2 2 2 2 1 2 4 6 5 4 3 2 1

For each graph, the corresponding eigenvector is indicdigdhe integers at the
vertices. Moreover, each connected graph with largestreigkeie less thar is a
subgraph of one of the above graphs, i.e., one of the graphs &, the path with
n vertices(n > 1), or
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Finally, each connected graph with largest eigenvalue ntioa® 2 contains one
of Ay, Dn, Eg, E7, Eg as a subgraph.

Proof. The vectors indicated are eigenvectors for the eigenvaliié@efore Ay,

Dn andEn, (M= 6, 7,8) have largest eigenvalue 2. Any graph containing one sithe
as an induced proper subgraph has an eigenvalue larger tigam 2 has largest
eigenvalue at most 2 and is not one&afor D,, thenl is a tree without vertices of
degree at least 4 and with at most one vertex of degree thmdetha result easily
follows. O

These graphs occur as the Dynkin diagrams and extended Dgli@grams of finite
Coxeter groups, cf. [38, 51, 220]. Let us give their eigeneal

The eigenvalues ok, are 2cosrr/(n+1) (i=1,2,...,n).

The eigenvalues dd, are 0 and 2cast/(2n—2) (i=1,3,5,...,2n—3).

The eigenvalues d&s are 2cos$mn/12 (= 1,4,5,7,8,11).

The eigenvalues dE; are 2co$rr/18 (= 1,5,7,9,11,13 17).

The eigenvalues dEg are 2cos$m/30 (= 1,7,11,13/17,19,23,29).

(Indeed, these eigenvalues are 2dps 1)711/h (1 <i < n) whereh is the Coxeter
number, and thel; are the degrees, cf. [51, pp. 84, 308]. Note that in all cases t
largest eigenvalue is 2 cagh.)

The eigenvalues db, are 2, 0, 0—2 and 2cosmt/(n—2) (i=1,...,n—23).
The eigenvalues dg are 2, 1, 1, 01, —1, —2.

The eigenvalues df7 are 2,v/2, 1,0, 0,1, —/2, —2.

The eigenvalues dfgare 2,1, 1,771, 0, —7°%, -1, -1, —2.

Remark It is possible to go a little bit further, and find all graphsthvlargest
eigenvalue at most/2++/5 ~ 2.05817, cf. Brouwer & Neumaier [62]. For the
graphs with largest eigenvalue at més@ ~ 2.12132, see Woo & Neumaier [333]
and Cioald, van Dam, Koolen & Lee [94].

3.1.2 Subdividing an edge

Let " be a graph om vertices, and consider the grapt on n+ 1 vertices ob-
tained froml” by subdividingan edgee (that is, by replacing the edge= xy by the
two edgesxzandzywherez is a new vertex). The result below relates the largest
eigenvalue of” andr’.

We say that lies on anendpathif I" \ e (the graph om vertices obtained by
removing the edge from ') is disconnected, and one of its connected components
is a path.

Proposition 3.1.4 (Hoffman-Smith [212])Let " be a connected graph, and let the
graph ™’ be obtained fronf” by subdividing an edge e. LEtand "’ have largest
eigenvalues\ andA’, respectively. Then if e lies on an endpath, we have A,
and otherwise\’ < A, with equality only when both equal
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Proof. If e lies on an endpath, theh is obtained from™’ by removing a leaf
vertex, andh < A’ follows by Proposition 3.1.1. Suppoeés not on an endpath. By
Theorem 3.1.3) > 2. LetA andA’ be the adjacency matrices bfandl"’, so that
Au = Au for some vectou > 0. We use Theorem 2.2.1 (iv) and conclutte< A
from the existence of a nonzero vectowith v > 0 andA’v < Av. Such a vectov
can be constructed as follows.afs the new point on the edge= xy, then we can
takev, = up for p # z, andv, = min(uy, uy), provided that v, > ux + uy. Suppose
not. W.1.o.g., assumey < Uy, SO thatA ux < Uk + Uy, and hencel < uy. We have
0 <3 poxpryUp = AUx—Uy < Ux. If xhas degree 2 ifi, sayx ~ p,y, then replace
e= xy by e= pxto decrease the values ofon the end points of—this does not
changel’. If x has degreen > 2, then construct by vy = Auy — uy andv; = uy
andv, = up for p # x,z. We have to check thatvy > vy + Uy, but this follows from
AV =A 3 b oxpryUp = (M— 1)Uy > 2Ux > Vi + Ux. O

3.1.3 The Kelmans operation

As we saw, adding edges causes the largest eigenvalue &agecrThe operation
described below (due to Kelmans [231]) only moves edgesalsatincreases;.

Given a graph™ and two specified verticas v construct a new graph’ by replac-
ing the edgevx by a new edgeix for all x such thaty ~ x ¢ u. The new graplf™’
obtained in this way has the same number of vertices and edg® old graph,
and all vertices different fron, v retain their valency. The verticagv are adja-
centinl"’ if and only if they are adjacent if. An isomorphic graph is obtained if
the Bles ofu andv are interchanged: i (u) andN(v) are the sets of neighbours
of u,v distinct fromu andv, then in the resulting graph the corresponding sets are
N(u) UN(v) andN(u) "N(v).

If I denotes the complementary graphiahen alsd”’ is obtained by a Kelmans
operation from’".

Proposition 3.1.5 (Csikvari [106]) Let” be a graph, and lef ' be obtained fronf”
by a Kelmans operation. Theéh (") < 61(I""). (And hence als6y (") < 61(I7).)

Proof. Let A andA’ be the adjacency matrices 6f and I/, and letAx = 6;x
wherex > 0,x"x = 1. W.l.o.g., letx, > x,. Then8;(Ir'") > x"A'’x = x" Ax+2(xy —
Xv) Y weN(v)\N(u) Xw = B1(I7). 0

Csikvari continues and uses this to show t8at™) + 6,(I) < 3(1+/3)n.

Earlier, Brualdi & Hoffman [66] had observed that a graphhaitaximal spectral
radiusp among the graphs with a given number of vertices and edgea Watex

ordering such that ik ~ yandz < x, w <y, z# w, thenz ~ w. Rowlinson [287]

calls the adjacency matrices of these graphs (ordered tyiystepwiseand proves
that the maximal value gd among the graphs amvertices and edges is obtained
by taking Km+ (n— m)K1, wherem is minimal such tha{'}) > e, and removing

(3) —eedges on a single vertex.
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It follows from the above proposition that a graph with maalréy () + 6, (I")
has stepwise matrix. It is conjectured that in fotl™) + 61() < 3n— 1.

3.2 Interlacing

By Perron-Frobenius theory, the largest eigenvalue of aected graph goes down
when one removes an edge or a vertex. Interlacing also gif@snation about what
happens with the other eigenvalues.

The pictures foA andL differ. The eigenvalues for the adjacency mafighow
nice interlacing behavior when one removes a vertex, butvian an edge is re-
moved. (Cf.§1.9.) The Laplace eigenvalues behave well in both casesAFor
eigenvalue can go both up or down when an edge is removed. Earannot in-
crease.

Proposition 3.2.1 (i) Let " be a graph and\ an induced subgraph. Then the eigen-
values ofA interlace those of",

(ii) Let I be a graph and lefA be a subgraph, not necessarily induced, on m
vertices. Then the i-th largest Laplace eigenvalu&lds not larger than the i-th
largest Laplace eigenvalue 6f (1 <i < m), and the i-th largest signless Laplace
eigenvalue ofA is not larger than the i-th largest signless Laplace eigéngaf™
(1<i<m).

Proof. Part (i) isimmediate from Corollary 2.5.2. For part (ii)cedl that we have

L =NNT whenN is the directed point-edge incidence matrix obtained bgruing
the edges of™ arbitrarily, and thaNN'" andN'"N have the same nonzero eigen-
values. Removing an edge framcorresponds to removing a column fra and
leads to a principal submatrix &f "N, and interlacing holds. Removing an isolated
vertex from/l” corresponds to removing a Laplace eigenvalue 0. The sanud pro
applies to the signless Laplace matrix. O

3.3 Regular graphs

It is possible to see from the spectrum whether a graph idaegu

Proposition 3.3.1 Let/” be a graph with eigenvaluesk6; > 6, > ... > 6,. Equiv-
alent are:

(i) I isregular (of degree k),
(i) AJ=kJ,
(i) 5 62 =kn.

Proof. We have seen that (i) and (ii) are equivalent. Alsd, is regular of degree
k, theny 82 = tr A% = kn. Conversely, if (iii) holds, thek = n~1s 62 = 6; and, by
Proposition 3.1.2[ is regular. O
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As we saw above if1.3.7, it is also possible to see from the spectrum whether a
graph is regular and connected. However, for nonregulatgré is not possible to
see from the spectrum whether they are connected.

A very useful characterization of regular connected grapas given by Hoff-
man [209]:

Proposition 3.3.2 The graphl” is regular and connected if and only if there exists
a polynomial p such that 3 p(A).

Proof. If 3= p(A), thend commutes withA and hencé" is regular (and clearly
also connected). Conversely, letbe connected and regular. Choose a basis such
that the commuting matrice& and J become diagonal. TheA and J become
diag(k, 6,, ..., 6y) and diagn,0,...,0). Hence, if we putf (x) = []{_,(x— &), then
J=nf(A)/f(k), andp(x) = nf(x)/f (k) satisfies the requirements. O

3.4 Bipartite graphs

Among the connected graplis those with imprimitiveA are precisely the bipar-
tite graphs (and for thes@ has period 2). Consequently we find from Theorem
2.2.(iii):

Proposition 3.4.1 (i) A graph [ is bipartite if and only if for each eigenvalug of
[, —0 is also an eigenvalue, with the same multiplicity.

(i) If I is connected with largest eigenval@g then[l” is bipartite if and only if
—0; is an eigenvalue af .

Proof. For connected graphs all is clear from the the Perron-Fiabegheorem.
That gives (ii) and (by taking unions) the ‘only if’ part of)(iFor the ‘if’ part of

(i), let 6, be the spectral radius @f. Then some connected component ohas
eigenvalues®s; and —6;, and hence is bipartite. Removing its contribution to the
spectrum of we see by induction on the number of components that all cempo
nents are bipartite. O

3.5 Cliques and cocliques

A cliguein a graph is a set of pairwise adjacent verticescakliquein a graph
is a set of pairwise nonadjacent vertices. Tfigue numberw(I") is the size of
the largest clique i . Theindependence number(I") is the size of the largest
coclique inf".

Let " be a graph om vertices (undirected, simple, and loopless) having an ad-
jacency matrixA with eigenvalue®; > ... > 6,. Both Corollaries 2.5.2 and 2.5.4
lead to a bound foa (I").
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Theorem3.5.1a(l) <n—n_={i|6 >0} anda(l) <n—n; =|{i|6& <0}|.

Proof. Ahas a principal submatri2 = 0 of sizea = a(I"). Corollary 2.5.2 gives
ea 2 na - 0 and6n7a71 S nl - O ‘:l

For example, the Higman-Sims graph ($€el.7) has spectrum 2277 (—8)%2,
Each point neighborhood is a coclique of size 22, and eguaditds.

Theorem 3.5.21If " is regular of nonzero degree k, then

—6,
<
a(r) <m—p-

and if a coclique C meets this bound, then every vertex not is &ljacent to
precisely—6, vertices of C.

Proof. We apply Corollary 2.5.4. The coclique gives rise to a partibf A with

quotient matrix
0 k
B= {ka Kk ka :| )

n—-a n—a
wherea = a(I"). B has eigenvalueg; = k= 6; (the row sum) and), = —ka /(n—
a) (since tracB = k+ ny) and sof, < n gives the required inequality. If equality
holds, them, = 6,, and since); = 01, the interlacing is tight and hence the partition
is equitable. O

For example, the Petersen graph has spectruid? 3—2)4, and its independence
number is 4. So equality holds in both bounds.

The first bound is due to Cvetkav[108]. The second bound is an unpublished
result of Hoffman known as thdoffman bounar ratio bound The Hoffman bound
was generalized to the nonregular case in [189]:

Proposition 3.5.3 Let " have minimum vertex degrée Then

—919n
<N—es—.
a(l’)_néz_elen O

3.5.1 Using weighted adjacency matrices

Let us call a real symmetric matr a weighted adjacency matrix of a graph
whenB has rows and columns indexed by the vertex set phas zero diagonal,
and satisfieB,y = 0 whenevex £ y.

The proof of Theorem 3.5.1 appliesBanstead ofA, and we get

Theorem3.54a(lN) <n—n_(B)anda(l") <n—n,(B).

Similarly, the proof of Theorem 3.5.2 remains valid for wetied adjacency ma-
tricesB with constant row sums.
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Theorem 3.5.5 Let B be a weighted adjacency matrixfofwith constant row sums
b and smallest eigenvalue s. The(¥ ) <n(-s)/(b—ys).

3.6 Chromatic number

A proper vertex coloringf a graph is an assignment of colors to the vertices so that
adjacent vertices get different colors. (In other wordsagition of the vertex set
into cocliques.) Thehromatic numbey (I") is the minimum number of colors of a
proper vertex coloring of .

Proposition 3.6.1 (Wilf [332]) Let” be connected with largest eigenvalie Then
X(IM) <1+ 6, with equality if and only if” is complete or is an odd cycle.

Proof. Putm= x(I"). Sincel" cannot be colored witm— 1 colors, while coloring
vertices of degree less tham— 1 is easy, there must be an induced subgrapdf
[ with minimum degree at leash— 1. Now 6y > 61(A) > dnin(4) > m—1=
Xx(I) —1. If equality holds, then by Perron-Frobenilis= A andA is regular of
degreem—1 (by Proposition 3.1.2), and the conclusion follows by Bagidheorem.
O

Since each coclique (color class) has size at m@st), we havex (") > n/a (")
for a graphl” with n vertices. Thus upper bounds falI") give lower bounds for
Xx(IM). Forinstance if” is regular of degrek = 6; then Theorem 3.5.2 implies that
xX(ry>1- %. This bound remains however valid for non-regular graphs.
Theorem 3.6.2 (Hoffman [210]) If I" is not edgeless thex(l") > 1—% .

n
Proof. Putm= x(I). Sincel” is not edgelessg, < 0. Now, by part (i) of the
following proposition,6; + (M—1)6, < 61+ 6h-mi2+ ...+ 6, <O0. O

Proposition 3.6.3 Put m= x(I"). Then

(|) 61+9n7m+2++9n SO
@iy fn>m,thenbo+...4+6n+61-mi1>0.
@iii) Ifn >tm, thenB1+...+ 6 m1+ en—t(m—l) > 0.

Proof. Let A have orthonormal eigenvectang, so thatAu; = 6ju;.

(i) Let {Xy,...,Xm} be a partition of” into mcocliques, wheren= x(I" ). Letx;
be the pointwise product @i with the characteristic vector &fj, so thaty x; = uz.
Now apply Corollary 2.5.3 to the vectoxs, after deleting those that are zero. The
matrixC defined there satisfi€l = 6,1, and has zero diagonal, and has eigenvalues
n; interlacing those oA. Hence

(i) Put A =A— (61— en)uluf, thenA’ has the same eigenvectarsasA, but
with eigenvalue$,, 6,, ..., 6,. Pick a non-zero vectorin



3.6 Chromatic number 41

(un_erL...,un)ﬂ<x17...,xm>L .

The two spaces have non-trivial intersection since the deieas add up ta and
uy is orthogonal to both. Let; be the pointwise product gfwith the characteristic
vector of Xj, so thatyy; =y and ijA’yj = 0. Now apply Corollary 2.5.3 to the
matrix A’ and the vectorg;, after deleting those that are zero. The ma@ridtefined
there has zero diagonal, and smallest eigenvalue smadleittie Rayleigh quotient

%’, which by choice o is at mostf, 1. We find

0=tr(C)=m—+...+Mm< B+ 063+...4+ On+ Bh-m+1.

(iif) The proof is as under (ii), but this time we moveginstead of just one)
eigenvalues away (by subtracting multipIeSLq>t1jT for 1 < j <t). The vectory
must be chosen orthogonaltim vectors, which can be done inside s —t + 1)-
space(Un—tmi+t, - - -, Un), assuming that this space is already orthogonal to. . , u,
i.e., assuming that > tm. O

The above proof of Theorem 3.6.2 using (i) above appearetBg] |

A coloring that meets the bound of Theorem 3.6.2 is calletbiman coloring
For regular graphs, the color classes of a Hoffman coloriegacliques that meet
Hoffman’s cocliqgue bound. So in this case all the color dadsave equal size and
the corresponding matrix partition is equitable.

In [189] more inequalities of the above kind are given. B ¢ines mentioned
here, especially (i) and (ii), are by far the most useful.

Example The complete multipartite grapgfin<a has chromatic numbenand spec-
trum (am—a)® 0™@1 (—a)™ 1, |t has equality in Hoffman’s inequality (and hence
in (i)), and also in (ii).

Example The graph obtained by removing an edge frigghas chromatic number
n—1and spectrun§(n—3++/D), 0, (—1)"3, $(n—3— D) with D = (n+1)%—
8, with equality in (i).

Example Consider the generalized octagon of or(®e) on 1755 vertices. It has
spectrum 195351 1850 (_3)675(_5)78 |t is not 3-chromatic, as one sees by remov-
ing the largest 352 eigenvalues, i.e., by applying (iii)htit 352.

The inequality (i) looks a bit awkward, but can be made moxglieit if the
smallest eigenvalué, has a large multiplicity.

Corollary 3.6.4 If the eigenvaludé), has multiplicity g and; > 0, then

X(r)>min(14+g,1— %).
0
Proof. If m:=x(I") <g, thenB, = 61_m+1, so thattm—1)6,+ 6, > 0. O

A similar more explicit form for inequality (iii) follows irthe same way.
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3.6.1 Using weighted adjacency matrices

If ' has arm-coloring, then™ OK, has an independent set of sizeghe number of
vertices ofl". This means that one can use bounds on the size of an indepieede
to obtain bounds on the chromatic number.

Example Consider the generalized octagon of or(iz#) again. Call it , and call
its adjacency matriXA. Now consider the weighted adjacency maixf K3 T,
where theKs is weighted with some numbeywhere 1<r < % For each eigenvalue
6 of A, we find eigenvalue$ + 2r (once) andd —r (twice) as eigenvalues @.
Applying Theorem 3.5.4 we see thatKs ") < 3(1+ 351) + 650= 1706 while
" has 1755 vertices, 0 is not 3-chromatic.

3.6.2 Rank and chromatic number

The easiest way foA to have low rank, is when it has many repeated rows. But
thenl” contains large cocliques. People have conjectured thagltttrbe true that

X () <rkAwhenA+# 0. A counterexample was given by Alon & Seymour [9] who
observed that the complement of the folded 7-cube (on 64cesjthas chromatic
numbery = 32 (indeed,a = 2), and rank 29 (indeed, the spectrum of the folded
7-cube is # 321 (—1)3° (-5)).

3.7 Shannon capacity

Shannon [307] studied the capadly of the zero-error channel defined by a graph
I, where a transmission consists of sending a verteX,aind two transmissions
can be confused when the corresponding vertices are joyad bdge.

The maximum size of a set of mutually inconfusable messafiésngth 1 is
a(l), so that one can transmit log/™ ) bits by sending one vertex. The maximum
size of a set of mutually inconfusable messages of leiigththe independence
numbera (), wherel"* denotes (in this section) the strong prodi€¥ of ¢ copies
of I, that is, the graph on sequenced otrtices froml”, where two sequences are
adjacent when on each coordinate position their elemeatscral or adjacent. One
can transmit logr (I"*) bits by sending a sequence¥ertices, and it follows that
the channel capacity 8 = logc(I") wherec(I") = sup._.., a (" “)Y/*. This value
c(I) is called theShannon capacitgf I".

For example, for the pentagon we fiod™) > /5 as shown by the 5-coclique
00, 12, 24, 31, 43 i€5 X Cs.

Computingc(I™) is a difficult unsolved problem, even for graphs as simpléz&s
the 7-cycle.
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Clearly,a(r) < c(r') < x(I). (Indeed, ifm= x(I) then” can be covered by
m cliques, and™* can be covered by cliques, andx (‘) < m'.) In a few cases
this suffices to determing(I").

One can sharpen the upper bound to the fractional cliqueriocmvaumber. For
example, the vertices @ can be doubly covered by 5 cliques, so the vertice&éof
can be covered‘2imes by 5 cliques, andx(C{) < (5/2)" so thatc(Cs) < 5/2.

If Ais the adjacency matrix df, then®‘(A+1) —1 is the adjacency matrix of
re.

The Hoffman upper bound for the size of cocliques is also greupound for
c(I) (and therefore, when the Hoffman bound holds with equaligg the Shannon
capacity is determined).

Proposition 3.7.1 (Lovasz [249])Let " be regular of valency k. Then
() <n(—6,)/(k—6n).

Proof. Use the weighted Hoffman bound (Theorem 3.5.5B K= A— 6,1, then
®'B— (—6,)"l has constant row suni& — 6,)" — (—6,)¢ and smallest eigenvalue
—(—6n)", so thata (I'") < (n(—6n)/(k— 6h))"- 0

Usingn=5,k= 2, 6, = (—1—/5)/2 we find for the pentagoe(I" ) < /5. Hence
equality holds.

Haemers [186, 187] observed thaBiis a matrix indexed by the vertices bfand

Bxx # 0 for all x, andByy, = 0 whenevewx ¢ y, thenc(I") < rkB. Indeed, for such

a matrixa (I) < rkB since an independent set determines a submatrix that is zero
outside a nonzero diagonal. Now/B is a suitable matrix for™!, and rk®‘B =
(rkB)*. The rank here may be taken over any field.

Example The collinearity graph™ of the generalized quadrang®&Q(2,4) (the
complement of the Scfli graph, cf.§9.6) on 27 vertices has spectrum!17¥°
(—5)8. TakingB = A—1 shows that(I") < 7. (Andc(I") > a(I") = 6.) The com-
plement” hasa(I") = 3, but this is also the Hoffman bound, @) = 3.

Alon [5] proves that(l" + ) > 2,/nfor all . Combined with the above example,
this shows that the Shannon capacity of the disjoint sum ofgw@phs can be larger
than the sum of their Shannon capacities.

More detail about the Lassz and Haemers bounds &f) is given in the following
sections.

3.7.1 Lowasz' 9 -function

Consider a simple graph of ordern, and let.# be the set of real symmetric
matricesM indexed by that satisfyM,y = 1 whenu=v or u ¢ v. TheLovasz
parameterd (") is defined by
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§(r)=inf (M),

wheref; (M) denotes the largest eigenvaluehdf The results below are all due to
Lovasz [249].

Lemma3.7.28(F XA) <3 ()3 (4). O
Proof. If Mr € . andMj € ., thenMr @ My € A xa. MoreoverAr(Mr @
Ma) = A1(Mr)A1(Ma). U

Lovasz [249] shows that equality holds here.

Theorem 3.7.3 The Shannon capacity ) satisfies
a(l) <c(r) <9(r).

Proof. LetM € .#. A coclique of sizea(I") corresponds to a principal subma-
trix J of ordera (") in M. Interlacing givesx (I ) = 61(J) < 6:(M), which proves
a(r) < 9(r). By Lemma 3.7.2 we now have (") < 3(I'‘) < (3(I'))¢, hence
c(l) <9(r). O

The upper boungt (I") for c(I") is also an upper bound fe(I"):
Theorem 3.7.4 (‘Sandwich’)a (M) < 8(F) < x(I) .

Proof. To prove the second inequality, consider a covering afith ¥ pairwise
disjoint cliques. Defind,, = 1— if uandv are distinct vertices in the same clique
of the covering, antl,, = 1 otherwise. TheM € .#, and6,(M) = X. Indeed, the
clique covering gives an equitable partitionMf(see§2.3), and the eigenvectors of
M orthogonal to the characteristic vectors of the partitiameheigenvalug’, whilst
the other eigenvalues are those of the quotient mBtexJA — XA + X1, whereA is
the diagonal matrix whose diagonal entries are the sizdseofliques of the cover-
ing. Now 6;(B) < X becausa is similar toA 3IN2 — XA +X1, andxA — A 3IN3

is positive semi-definite, singgl — J is. O

This is an important result: while computing the indeperm@enumber and the
chromatic number of a graph are NP-complét¢[” ) can be computed to any de-
sired precision in polynomial time (see [176]). In parteulin the cases where
a(r) = x(I), this value can be found efficiently. For perfect graphsggsasuch
thata(A) = x(A) for every induced subgraph) this yields an efficient procedure
to actually find a maximal coclique.

The Hoffman bound for the size of a coclique in a regular grisphlso an upper
bound ford (I") (and therefore, when the Hoffman bound holds with equafity; )
is determined).

Proposition 3.7.5 Supposé is regular of valency k, with smallest eigenval@gg
Then
—n6,

(M) < 6
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Proof. LetA be the adjacency matrix éf, and definevi = J — ﬁA. ThenM €
A, and6; (M) = —n6,h/(K— 6y). O

For example, for the Petersen graph we hayg) = 9 (I") = 4. For the pentagon
c(F)=8(r)=+/5. Lovasz [249] proved that equality holds in the above formula
if ' has an edge transitive automorphism group. Equality alkitshbl™ is strongly
regular (see [186]).

Proposition 3.7.6 One has? ()3 (") > n for a graphl™ of order n. Equality holds
if I is vertex transitive. O

Lovasz [249] gives several equivalent expressionsgr ). The following alterna-
tive definition uses the set; of real symmetric matricell indexed by I, with
the property thal is positive semi-definite, & = 1 andNy, =0 if u ~ v.

S(F):NsuBtrNJ
[SS

(note that tNJ equals the sum of the entries Nj). Equivalence of the two defi-
nitions follows from duality in semi-definite programmingalso follows that the
infimum and supremum in the two expressionsddi ) are actually a minimum
and a maximum.

3.7.2 The Haemers bound on the Shannon capacity

For a graph’, let the integem (I") (the Haemers invariantbe the smallest rank
of any matrixM (over any field), indexed by, which satisfiedvl,, # 0 for all u,
andMy, = 0 if u +£ v (see [187]). The following propositions show that this rank
parameter has some similarity wig(I").

Lemma3.7.7n(r XA)<n(r)n(4).

Proof. SupposéM andM, are admissible foF andA with minimum rank. Then
Mr ® My is admissible for” KA, and rKMr @ Ma) =n(F)n(4). O

Theorem 3.7.8 The Shannon capacity(C) satisfies
a(l) <c(r) <n(r).

Proof. A coclique inl” corresponds to a nonsingular diagonal matriiinThere-
fore a (") < rkM for every admissibléJ, so thata (") < n(I"). By Lemma 3.7.7
we havea (') < n(r) < (n(r))*, hencec(ry <n(r). O

Proposition 3.7.9 a (") < n(r) < x(r).

Proof. To prove the second inequality, fix a cover witil") cliques, and take
Myyv = 0 if uandv are in different cliques of the clique cover, adg, = 1 otherwise.
Then rkM = x(I). O
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In spite of the above similarity; (") andJ (") are very different. To begin with,
9(I) need not be an integer, whilgt(") always is. The computation af (")
is probably NP-hard ([278]). The two are not related by amjiradity: for some
graphsd (') < n(r) (for example,8(Cs) = v/5 < 3 = n(Cs)), whilst for other
graphsn (') < 3(I") (for example, for the collinearity graph of the generalized
quadranglésQ(2,4) we haven (") <7< 9=9(I)).

Example Consider the graph on the triples from am-set>, adjacent when they
meet in precisely 1 point. Le¥ be themx ('3) incidence matrix of symbols and
triples. ThenM = NN is admissible ovelFy, so thatn (") < rkoM < m. If 4|m,
then consider a partition of into %m 4-sets. The triples contained in one of the
parts form a coclique of size, so thata(l") = c(l') = n(I"') = min this case.
Heref(I) = % (form>7), sothatd(I") >m> n(I) form> 8. Also

n(F) <m, sothatn(M)n(r) <n? < (3) = nform> 8 ([186]).

3.8 Classification of integral cubic graphs

A graph is calledntegralwhen all of its eigenvalues are integral. As an application
of Proposition 3.3.2, let us classify the cubic graphs (gsaphat are regular of va-
lency 3) with integral spectrum. The result is due to Busdemé& Cvetkovic [71].
See also Schwenk [293]. There are 13 examples.

case v spectrum description
(i) 6 +3,0° Kas

(i) 8 +3, (+1)3 23

(i) 10 £3,£2,(£1)?%, 07  Kj®Ko
(iv) 12 +3,(£2)2 +1,0*  GsOK»
(v) 20 +3,(42)%, (+1)° MoK
(vi) 20 +£3,(+2)% (£1)°> T*®K;

(vii)y 24 +3,(£2)%, (£1)3, 00 @K
(vii) 30 +3,(£2)% 0% GQ(2,2)
(ix) 4 3, (*1)3 Ka
(x) 6 G, (—2)? K3 OKz
(xi) 10 3 15 ( 2)4 mn
(xii) 10 3,2, B, (—1)%, (-2)° (N ®Ky)/o
(xiii) 12 3, 23, 0%, (—1)3, (—2)3 b2

A quotient of the hexagonal grid

Let us describe a graph that comes up in the classificatide. déetrahedron and cut
off each corner. Our graph is the 1-skeleton of the resulting polytope, or, equiva-
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lently, the result of replacing each vertexkf by a triangle (& — A operation). It
can also be described as the line graph of the graph obtaioedk, by subdivid-
ing each edge. The bipartite doullex K, of X is more beautiful (for example, its
group is a factor 6 larger than thatbj, and can be described as the quoti&riéA
of the hexagonal grieh = (a+bw | a,b e Z, a+b=0,1(mod 3) in the complex
plane, withw? + w+1 = 0. Now X is found e.g. ag\ /(3a+6bw | a,b € Z).

Cubic graphs with loops

For a graph™ where all vertices have degree 2 or 3,/Tétbe the cubic graph (with
loops) obtained by adding a loop at each vertex of degree & that the sum of
the eigenvalues df *, the trace of its adjacency matrix, is the number of loops.
The graphK; 5 has spectrum 3, 1, 1, 6;2.
Let T be the graph on the singletons and pairs in a 4-set, whereeajg is
inclusion. TherT* has spectrum®3 23, 12, (—1)3, (—2)*.

The classification

Let T be the Petersen graph aAdT the graphs described above.
We split the result into two propositions, one for the bifiarand one for the
nonbipartite case.

Proposition 3.8.1 Let I’ be a connected bipartite cubic graph such that all of its
eigenvalues are integral. Thénis one of8 possible graphs, namely (i), (ii) 23,

(i) K5 3 ® Ko, (iv) GsKs, (v) the Desargues graph (that is, the bipartite double
M ® Ky of the Petersen grapht), (vi) T* (cospectral with the previous), (vii) the
bipartite double of*, (viii) the point-line incidence graph of the generalizathg-
rangle of order2 (that is, the uniqu&-regular bipartite graph with diametet and
girth 8, also known as Tutte8-cage).

Proof. Let I have spectruni+3)*(42)3(+1)P0% (with multiplicities written as
exponents).

The total number of vertices is= 2+ 2a+ 2b+ 2c. The total number of edges is
3v= }trA? = 9+ 4a+b(so that B+ 3c = 6+ a). The total number of quadrangles
isq=9—a—b, as one finds by computingAt = 15v+ 8q = 2(81+ 16a+b).
The total number of hexagons is= 10+ 2b — 2c, found similarly by computing
trAS = 87v 4 960+ 12h = 2(729+ 64a+ b).

Somewhat more detailed, lg be the number of quadrangles on the vertex
andqyy the number of quadrangles on the edgeand similarly forh. Letuvbe an
edge. Thery, = 1 and(A3),y = 5+ duy and (A°)yy = 29+ 2Gy + 2 + 60y + huy.

The Hoffman polynomial(A+31) (A% —1)(A% —41) defines a rank 1 matrix with
eigenvalue 720, so th&(A+ 31)(A? — 1) (A? — 41) = 293 and in particulav|240

\
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since for an edgey the xy entry of %JJ must be divisible by 3. This leaves for
(a,b,c,v) the possibilities aj0,0,2,6), b) (0,3,0,8), ¢) (1,2,1,10), d) (2,1,2,12),
e)(3,3,1,16), f) (4,5,0,20), g) (5,1,3,20), h) (6,3,2,24), i) (9,0,5,30).

In case a) we haviés 3, case (i) of the theorem.

In case b) we have the cubg, 2ase (ii).

In case c) we have a graph of which the bipartite complemestsipactrum
22120%(—1)?(—2)? hence is the disjoint union of a 4-cycle and a 6-cycle, cage (i
In case d) we havg = 6 andh = 8. Let uv be an edge, and evaluag¢A +

31)(A? —1)(A? — 41) = 60J at theuv position to find(A® — 5A3% 4 4A),, = 20 and
2qu + 29y + quv + hyy = 12. 1t follows thatuv cannot lie in 3 or more quadrangles.
Supposeu lies in (at least) 3 quadrangles. Then for each neighbafru we have
20x + hux = 4 so thatgy = 2 andhy = 0. The mod 2 sum of two quadrangles @n
is not a hexagon, and it follows that we hav&zgg on pointsu, w, X, y, z (with u,w
adjacent t,y, 2). The six quadrangles visible in th& 3 on u,w,x,y,z contribute
6+4+2+0to 29, + 20« + qux + hux = 12, and it follows that there are no further
quadrangles or hexagons on these points. So the threerfurtighborsp,g,r of
XY,z are distinct and have no common neighbors, impossible sineel2. So,
no vertex is in 3 or more quadrangles, and hence every vertexn precisely 2
guadrangles. These two quadrangles have an edga common, and we find an
involution interchanging eachandy’, and preserving the graph. It follows that we
either haveCg (K> (and this has the desired spectrum, it is case (iv)), or aeais
version, but that has only 6 hexagons.

In case e) we have= 16 vertices. For any vertex Hoffman’s polynomial yields
(A8)yx — 5(A%)xx + 4(A%)xx = 45. On the other handA? ), is odd for each, since
each walk of length 2from x to x can be paired with the reverse walk, so that the
parity of (A%)4 is that of the number of self-reverse wabks zwz..x which is 3.
Contradiction.

In case f) we have = 20, = 0, h= 20. Sincec = 0 we can omit the factoA
from Hoffman’s polynomial and findA+ 31)(A% —1)(A% —4l) = 12J. If u,w have
even distance, the(A* — 5A? + 41),, = 4. In particular, ifd(u,w) = 2 then 9=
(A% yw = 7+ hyw SO thathy,, = 2: each 2-patiivwlies in two hexagons. If no 3-path
uvwxlies in two hexagons then the graph is distance-regular widhisection array
{3,2,2,1,1;1,1,2,2 3} (cf. Chapter 12) and hence is the Desargues graph. This is
case (v) of the theorem. Now assume that the 3-pathxlies in two hexagons,
so that there are three paths- vi ~ w; ~ X (i = 1,2,3). They; andw; need one
more neighbor, say; ~ y; andw; ~ z (i = 1,2, 3). The verticey; are distinct since
there are no quadrangles, and similarly thare distinct. The verticeg andz; are
nonadjacent, otherwise there would be a quadrangie=(if) or uv;w; would be in
three hexagons (if# j). Remain 6 more vertices, 3, each adjacent to two vertices
vi, and 3, each adjacent to two vertigsCall thems andt;, wheres ~ y; and
ti ~ z; wheneveii # j. The final part is a matching between thend thetj. Now
the 2-pathviw;z is in two hexagons, and these must be of the fa@mv;v;y;s, with
j #1 #k, and necessarily = k, that is, the graph is uniquely determined. This is
case (vi) of the theorem.
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In case g) we have = 20,q= 3, h= 6. For an edgeiv we have(A® — 5A3 +
4A) v =12, so that 8, + 2qy + quv+ huy = 4. But that means that the edgecannot
be in a quadrangle, contradiction.

In case h) we have = 24,q =0, h = 12. For an edgev we have(A°> — 5A3 +
4A),v = 10, so thahy, = 2. It follows that each vertex is in 3 hexagons, and each
2-pathvuwis in a unique hexagon. Now one straightforwardly consgtioe unique
cubic bipartite graph on 24 vertices without quadranglessarch that each 2-path
is in a unique hexagon. Starting from a vertexcall its neighborsy; (i = 1,2,3),
call the six vertices at distance twg; (i, j =1,2,3 andi # j), and letx (i =1,2,3)
be the three vertices oppositén a hexagon om, so that the three hexagons on
areuviwijxcwijiv; (with distincti, j, k). Let the third neighbor ofj; beyij, and let
the third neighbor ok bez.. Necessarily, ~ yxj. Now each vertey;; still needs a
neighbor and there are two more vertices, say yi2, Y23, Y31 andt ~ yi3,Y»1,Y3o.
This is case (vii).

In case i) we have = 30,q = h = 0 and we have Tutte’s 8-cage. This is case
(viii). O
Proposition 3.8.2 Let " be a connected nonbipartite cubic graph such that all of
its eigenvalues are integral. Thdn is one of5 possible graphs, namely (ix)sK
(X) KsOKp, (xi) the Petersen graph, (xii) the graph df vertices defined by 4
(i+1) (mod 10,0~ 5,1~ 3,2~ 6,4~ 8,7 ~ 9(or, equivalently, the graph
obtained from K 3 by replacing two nonadjacent vertices by a triangle with a X
operation), (xiii) 2.

Proof. Considerl” ® K,. It is cubic and has integral eigenvalues, hence is one
of the 8 graphsA found in the previous proposition. There is an involutiorof

A =T ® Ky without fixed edges, that interchanges the two verticeend x” for
each vertexof I'. Now " can be retrieved a4 /0.

In cases (i), (iii), (viii) the graptt would be cubic on an odd number of vertices,
impossible.

In case (ii),0 must interchange antipodes, and the quotiéyitds the complete
graphK4. This is case (ix).

In case (iv),Cs K>, 0 must interchange antipodes in the same copggpfand
the quotient i3 K. This is case (x).

In case (V)JT ® K>, we get the Petersen graph foodhat interchanges antipodal
vertices. This is case (xi). The group is Sym(5).2 and hasciwvgugacy classes of
suitable involutionsr. The second one interchangésvith (12)x”, and its quotient
is obtained fronTT by replacing the hexagon 13 24 ~ 15~ 23~ 14 ~ 25~ 13
by the two triangles 134,15 and 2324, 25. This is case (xii).

In case (vi) there is no suitab&e (An automorphisno must interchange the two
verticesu, x found in the previous proof, since this is the only pair oftieess joined
by three 3-paths. But any shortes¢path is mapped by into a differentxu-path
(since the path has odd length, amaannot preserve the middle edge) so that the
number of such paths, which is 3, must be even.)
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In case (vii) we get. This is case (xiii). (The group of ® K, has order 144,
six times the order of the group Sym(4) &f and all possible choices af are
equivalent.) O

Remarks Integral graphs with a small number of vertices have beessiflad. The
number of nonisomorphic connected integral graphs vertices, 1< n<11is 1,
1,1,2,3,6,7, 22, 24, 83, 113, see Sloane EIS sequence #B06Fdr integral
trees, cf§5.6 below.

Most graphs have nonintegral eigenvalues: the integrghgraonstitute a frac-
tion of at most 2"/4%0 of all graphs om vertices ([1]). (Nevertheless, integral graphs
are very common, there are far too many to classify.)

Integral graphs (and certain bipartite graphs) occur imtira information the-
ory in the description of systems with ‘perfect state traristf. [289, 166].

All Cayley graphs for the elementary abelian grotipa2e integral.

3.9 The largest Laplace eigenvalue

If uy <...< upare the Laplace eigenvalues of a simple grepthen 0< n— i, <
... < n— up are the the Laplace eigenvalues of the complemeift (dee§1.3.2).
Thereforeu, < nwith equality if and only if the complement 6f is disconnected.
If I is regular with valenck we know (by Proposition 3.4.1) that, < 2k, with
equality if and only ifl" is bipartite. More generally:

Proposition 3.9.1 Letl” be a graph with adjacency matrix A (with eigenvalées>
... > 6,), Laplacian L (with eigenvalueg; < ... < i), and signless Laplacian Q
(with eigenvaluep; > ... > pp). Then

(i) (Zhang & Luo [338])
HUn < p1.

If I is connected, then equality holds if and only ifs bipartite.
(ii) Let ds be the degree of the vertex x/1fhas at least one edge then

p1 < rpNa;((dx +dy).

Equality holds if and only if” is regular or bipartite semiregular.
(iii) (Yan [334])
26 <p (1<i<n).

Proof. (i) Apply Theorem 2.2.1 (vi).

(i) Using Proposition 3.1.2 to bound the largest eigere@i(L(I")) of L(I") by
its max degree maxy (dx+ dy —2), we findpy = 61(L(IN)) +2 < maxy (dx +
dy), with equality if and only ifL(I") is regular so thaf is regular or bipartite
semiregular.

(iii) Since Q =L+ 2A andL is positive semidefinite, this follows from the
Courant-Weyl inequalities (Theorem 2.8.1 (iii)). O
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Corollary 3.9.2 ([10]) LetI" be a graph on n vertices with at least one edge. Then
Hn < max(dy +dy).

If I is connected, then equality holds if and onlf ifs bipartite regular or semireg-
ular. O

For bipartite graphd, andQ have the same spectrum (see Proposition 1.3.10). It
follows by Perron-Frobenius that the largest Laplace eiglele of a connected bi-
partite graph decreases strictly when an edge is removed.

Interlacing provides a lower bound fop:

Proposition 3.9.3 ([178]) Let " be a graph on n vertices with at least one edge,
and let ¢ be the degree of the vertex x. Then

Un > 1+ m):’:lxdx.

If I is connected, then equality holds if and onlynidx,dy = n— 1.

Proof. If I has a vertex of degred then it has a subgragy 4 (not necessarily
induced), andu, > d + 1. If equality holds, therf™ does not have a strictly larger
bipartite subgraph. IF is moreover connected, thein=n— 1. O

Deriving bounds oru, has become an industry—there are many papers, cf. [39,
130, 182, 240, 241, 248, 265, 337].

3.10 Laplace eigenvalues and degrees

The Schur inequality (Theorem 2.6.1) immediately yieldsirsguality between
the sum of the largesh Laplace eigenvalues and the sum of the largesertex
degrees. Grone [177] gave a slightly stronger result.

Proposition 3.10.11If " is connected, with Laplace eigenvalues> v, > ... >
vh = 0 and vertex degrees;@> dz > ... > dy > 0, then forl < m< n—1 we have
1+30d <30, v

Proof. Let x have degrea; and putZ = {xi,...,Xn}. Let N(Z) be the set of
vertices outsid&Z with a neighbor inZ. Instead of assuming thét is connected
we just use thalN(Z) is nonempty. If we delete the vertices outsigle/N(Z) then
Y 2.z d; does not change, whilg[", v; does not increase, so we may assune
ZUN(Z). LetRbe the quotient matrix df for the partition{{z} | ze Z} U{N(2Z)} of
X,and letA\; > ... > A1 be the eigenvalues & The matrixR has row sums 0, so
Am+1 = 0. By interlacing (Corollary 2.5.4) we hayg” ;v > Y A = Zi”jll)\i =
trR= Y ;7 d,+ Rmnr1.me1 and the desired result follows sinBgy.1 me1 > 1. O
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Second proof. We prove the following stronger statement:

For any graphl” (not necessarily connected) and any subset Z of the vertex se
of I one has Ay ,.zd, < ¥, vi, where d denotes the degree of the vertex Zin
and m= |Z|, and h is the number of connected components of the draptduced
on Z that are not connected component§ of

We may assume that is connected, and th@tandX \ Z are nonempty. Novia
is the number of connected component$of

The partition{Z, X \ Z} of X induces a partition = {

B -C
-CT E
nected B is nonsingular by Lemma 2.10.1(iii). All entries Bf** are nonnegative.
(Write B=n(l — T) whereT >0, thenB = (1 +T+T2+...) >0.Ifh=1,
thenB=1 > 0.)

Sincel is positive semidefinite, we can write= MM, wherem = {g g} is

a square matrix. No8 = PP" and—C = PQ'. The eigenvalues d¥iIM " are the
same as those &l "M, and that latter matrix has submatiX P+ Q' Q of order
m. By Schur’s inequality we gef" , vi > tr(PTP+ Q' Q) = S ,.,d,+trQ' Q, and
it remains to show that @' Q > h.

NowQ'Q=PICC'P T, sotrQ"Q=trB~1CC'. We haveB = Lz + D, where
Lz is the Laplacian ofz, andD is the diagonal matrix of the row sums©f Since
CC" >DandB ! >0, we have tQ"Q > trB~'D. If Lzu= 0 then(Lz + D) 'Du=
u. Sincelz has eigenvalue 0 with multiplicity, B~1D has eigenvalue 1 with multi-
plicity h. Since this matrix is positive semidefinite (sir@&2B D2 is p.s.d.), its
trace is at leadh. O

}. Sincel is con-

A lower bound for the individual; was conjectured by Guo [183] and proved in
Brouwer & Haemers [57].

Proposition 3.10.2 Letl” be a graph with Laplace eigenvaluegs> v, > ... > v, =
0 and with vertex degreeg @ dy > ... > dn. Letl<m<n. If [ is not Kn+ (n—
m)K3, thenvy > dym—m+2. O

We saw the special case= 1 in Proposition 3.9.3. The cases= 2 andm= 3
were proved earlier in [239] and [183].

Examples with equality are given by complete graghswith a pending edges
at each vertex (wher@ > 0), with Laplace spectrum consisting of M3 1, a+ 1
and%(m+ a+1+/(m+a+1)2—4m) with multiplicity m— 1 each, so thaty, =
a+1l=dn—m+2.

Further examples are complete graphs with a pending edges attached at a
single vertex. Here = m+a, the Laplace spectrum consistsof- a, M2, 12 and
0, so thatvn,=1=dm—m+2.

Any graph contained iy 5 and containindz 5 hasv, = a = d, with equality
form=2.

Any graph om vertices withd; = n— 1 has equality fom= 1.

More generally, whenever one has an eigenvactond vertices, y with uy = uy,
thenu remains eigenvector, with the same eigenvalue, if we addroove an edge
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betweenx andy. Many of the above examples can be modified by adding edges.
This leads to many further cases of equality.

3.11 The Grone-Merris Conjecture

3.11.1 Threshold graphs

A threshold graphs a graph obtained from the grafgp by a sequence of operations
of the form (i) add an isolated vertex, or (ii) take the connpét.

Proposition 3.11.1 Let " be a threshold graph with Laplace eigenvalues (in non-
increasing orderyy > vo > ... > v, = 0. Let ¢ be the degree of the vertex x. Then

Proof. Induction on the number of construction steps of type (i)ipr ( O

Grone & Merris [178] conjectured that this is the extremeecasd that for all
undirected graphs and albne has

t t
Zl Z #{x | dyx >
= =1

Fort = 1 this is immediate fronv; < n. Fort = n equality holds. This conjecture
was proved in Hua Bai [15], s€8.11.2 below. There is a generalization to higher-
dimensional simplicial complexes, sg&12 below.

A variation on the Grone-Merris conjecture is the following

Conjecture (Brouwer) Let ' be a graph with e edges and Laplace eigenvalues
V1>V, > ... >V, =0. Then for each t we havgl_, v; < e+ (‘}1).

It is easy to see (by induction) that this inequality holds tfreshold graphs. In
[194] it is proved for trees, and in case= 2. In [25] it is shown that there isa
such that the-th inequality of this conjecture is sharper than th Grone-Merris
inequality if and only if the graph is non-split. In partiew| this conjecture holds
for split graphs. It also holds for regular graphs.

3.11.2 Proof of the Grone-Merris Conjecture

Very recently, Hua Bai [15] proved the Grone-Merris Conjeet We repeat the
statement of the theorem.
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Theorem 3.11.2Let " be an undirected graph with Laplace eigenvalues (in non-
increasing orderyy; > vo > ... > v, = 0. Let ¢ be the degree of the vertex x. Then
forallt, 0 <t <n, we have

< S x> ). (3.1)
2,M=2

The proof is by reducing to the case o$emi-bipartite graphor split graph, that
is a graph where the vertex set is the disjoint union of a ngtersubset induc-
ing a cliqgue (complete graph), and a nonempty subset inducooclique (edgeless
graph). Then for semi-bipartite graphs a continuity argoinpeoves the crucial in-
equality stated in the following lemma.

Lemma 3.11.3Let " be a semi-bipartite graph with clique of size ¢ and Laplace
eigenvalues b&; > v, > ... > v, = 0. Let & be the maximum degree among the
vertices in the coclique, so that< c. If v¢ > corve=c> d thenwe havg_; v; <
SSa#{x| dk > i}

Proof of Theorem 3.11.2 (assuming Lemma 3.11.3). Consider coexdamples to
(3.1) with minimal possiblé.

Step 1If " is such a counterexample with minimal number of edges, anéne
vertices inl of degree at most t, then they are nonadjacent.

Indeed, ifx ~ y then letl"’ be the graph obtained from by removing the edge
xy. ThenSi_ #{x | d, > i} +2= ! ;#{x| dx > i}. The Laplace matricek and
L’ of I andl’ satisfyL = L' + H whereH has eigenvalues 2"0'. By Theorem
2.8.2 we haves!_;vi <5t v/ +2, and sincd™’ has fewer edges thdn we find
Sav<siovi+2<st  #{x|d>i}+2=73!_ #{x|d>i}, contradiction[]

Step 2There is a semi-bipartite counterexamyplefor the same t, with clique size
Cc:=#{x|dx >t}

Indeed, we can form a new graphfrom thel” of Step 1 by adding edges for
every pair of nonadjacent verticasy, both of degree at least Now z}zl#{x |
dy > i} does not change, arjg}_, vi does not decrease, and the new graph is semi-
bipartite with the stated clique size. O

This will be our graph™ for the rest of the proof.
Step 3A semi-bipartite grapi of clique size c satisfiag1 < ¢ < ve_1.

Indeed, sinceA contains the complete gragfs with Laplace spectrune® 1, 0,
we see by the Courant-Weyl inequalities (Theorem 2.8} (iiiat v._1 > ¢. And
sinceA is contained in the complete semi-bipartite graph withuei@f sizec and
coclique of sizen— c and all edges in-between, with Laplace spectnfnc’ ¢1,
0, we haveve, 1 <c. O

Sincet was chosen minimal, we have > #{x | dx >t} = c. The previous step then
impliesc > t. If c=t thenv; > cand Lemma 3.11.3 gives a contradiction.Sst.
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All vertices in the coclique of have degree at most- 1 and all vertices in the
clique have degree at least- 1. So#{x | dy > i} =cfort <i <c—1. From Step
3 we havey; > ve 1 >cfort <i<c-—1. Sinceyl_,vi > St #{x|dy>i} we
also haves ¢ vi > e #{x | dy > i}. Now if v; > c we contradict Lemma 3.11.3
(since #x | dx > c} <c). Sov. <cC.

Step 4The m-th Grone-Merris inequality for a graghis equivalent to thén—1—
m)-th Grone-Merris inequality for its complement(1 < m<n-—1).

Indegdf has Laplace eigenvalu®s = n— v, (1 <i < n-—1) and dual degrees
#{x|dx>i} =n—#{x|dc>n—i},andyLvi = 3L #{x | dx > i}. O

In our casel” is semibipartite with clique siza — c, and by the above we have
Vnc=N—Vc>n—candy v > 3 #{x|dx >i}. This contradicts Lemma
3.11.3.

This contradiction completes the proof of the Grone-Mecnsjecture, except
that Lemma 3.11.3 still has to be proved.

3.11.2.1 Proof of Lemma 3.11.3

Let I' be a semi-bipartite graph with clique of sizeand coclique of size — c.
The partition of the vertex set induces a partition of the lae@ matrixL =

K+D —-A
{ AT E
¢ x (n—c) adjacency matrix between vertices in the clique and theiquae] and
D andE are diagonal matrices with the row and column sumA.of

Step 5If ve > ¢, theny_ #{x | dy > i} = c?+trD.

Indeed, all vertices in the clique have degree at leakir if some vertexx in the
cligue had degree— 1 then we could move it to the coclique and find<c—1
from Step 3, contrary to the assumption. It follows thgt ;#{x | dy > i} =
yxmin(c,dy) = 2 +trE = ¢ +trD. O

} whereK is the Laplacian of the complete grapla and A is the

Step 6 Suppose that the subspace W spanned by the L-eigenvectongibg to
Vi,...,Vc IS spanned by the columns %ﬂ . Then L[H = { I

X] Z for some matrix
Z,andy{ ;v =trZ.

Indeed, if[\ﬂ has these eigenvectors as columns, ﬂh%pﬂ = 3 T whereT
I

is the diagonal matrix with the eigenvalues. N(%\(L\;} = {X

I
}U,so thaﬂ_[x} =
{H ZwhereZ=UTU landtiZ=trT =5° ,v. O
Suppose we are in the situation of the previous step, andhtbegoverX is non-

positive. Letd be the maximum degree among the vertices in the cocliquéado t
5 < ¢. We have to show that ifc > c or ve = ¢ > J then tiZ < c2+trD.
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NowL {I } _ {K+DAx
X —AT +EX
c(c—1)+trD—tr(AX), and we need tAX) > —c. But sincec < n, the eigenvectors
are orthogonal td so thatX has column sums1. SinceX is nonpositive, {fAX) >
—c follows, and we are done.
By interlacingvc. 1 is at most the largest eigenvalue Bf that isd, which by

},SOZ:K—FD—AX, and tiZ =tr(K+D—AX) =

hypothesis is smaller than. Hence the subpace of vect rg meetsW trivially,

so thatW has a basis of the required form. Only nonpositivity)Xafemains, and the
following lemma completes the proof.

Lemma 3.11.41If v; > 9, then the invariant subspace W spanned by the L-eigen-

vectors forv;, 1 <i < c, is spanned by the columns h’d where X is nonpositive.

Proof. We argue by continuity, viewing = L(A) andX = X(A) as functions of
the real-valued matri®, where 0< A < J. (Now D has the row sums d&, andE
has the column sums, ard@is the largest element of the diagonal matEy) We
write J for thec x (n— c) all-1 matrix, andJ for the all-1 matrix of ordec, so that
JX - —Jc.

Our hypothesis/. > & holds for all matrices.(?) := L(aA+ (1—a)d) = aL+
(1—a)LO, for 0< a < 1. Indeed, let.(®) have eigenvalues®, so thatvt” = n
and vé?l = v,@l = ¢. The matrixL(?) has lower left-hand cornerE + (1 - a)cl
so thatd(@ = a5 + (1 - a)c. The c-spaceW is orthogonal tal, so thatvl® >

ave+ (1— a)c (by Theorem 2.4.1), and heneg”) > 5@ for 0 < a < 1, and also
for a = 0, sincev!? = nandd© = c. It follows thatv®) > véi)l for0<a <1.

As we used already,(J) has spectrum®, c"~°~1, 0, and one checks thA{J) =
fﬁJT < 0, as desired. Above we found the conditiéd = —A" +EX on X, that
is,X(K+D—AX)—EX+AT =0, thatis X (K +J.+D) = Xk 4+ XAX+EX—-AT =
—X(J—=A)X+EX—AT. It follows, sinceK + J. 4 D is a positive diagonal matrix,
that if X < 0 andA > 0, thenX < 0. The matrixX(A) depends continuously on
A (in the region wheree;1 < V) and is strictly negative wheA > 0. Then it is

nonpositive wher > 0. O

3.12 The Laplacian for hypergraphs

Let asimplicial complexon a finite setS be a collectiorié’ of subsets ofs (called
simplices) that is an order ideal for inclusion, that is uststhat ifA € ¥ andB C A
then alsoB € ¢. Let thedimensiornof a simplexA be one less than its cardinality,
and let the dimension of a simplicial complex be the maximdithe dimensions of
its simplices. Given a simplicial compléx, let i (for i > —1) be the vector space
(over any field) that has the simplices of dimensi@s basis. Order the simplices
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arbitrarily (say, using some order &) and defined; : 6 — 61 by ds...5 =
yi(-1))s...§...s. Thend_1 = 0 for alli > 0.

Let N; be the matrix ofd on the standard basis, and guyt= Ni;1N;/; and
L = NTNI The matriced,; generalize the Laplacian. Indeed, in the case of a 1-
d|menS|onaI simplicial complex (that is, a graph) the oayn_aplace matrix is just
Lo, andLy is the all-1 matrixJ.

Sinced d;;1 = 0 we havel ;L] = L{L; = 0, generalizing.J = JL = 0.

We have tij_; =trL{ = (i + 1)|4i|. This generalizes the facts that tis twice
the number of edges, andltthe number of vertices.

In case the underlying field i, we have the direct sum decompositish—=
imNi1 @ ker(Li + L)) @imN,". (Because theM "Mx = 0 if and only if Mx = 0.)
Now kerN; = imN; 1 @ ker(Li +L{) so that thei-th reduced homology group is
Hi(%) :=kerN; /imNi1 = ker(L; +L}).

Example The spectrum of },_» for a simplicial complex containing all m-subsets
of an n-set (the complete m-uniform hypergraph) consisteegigenvalue n with
multiplicity (7"7) and all further eigenvalues are 0.

Indeed, we may regard simplicgs ..Sn_1 as elementsyA... Asy_1 of an exterior
algebra. Then the expressiag...sn 1 is defined regardless of the order of the
factors, and also when factors are repeated. Way. ..t = Z,—(—l)jto...ﬂ-...ti
and for the completé + 2)-uniform hypergraph we hawg 'to...ti = S, tto. . . tj, SO
thatL; 4+ L{ = nl. It follows thatN/ ;Ni; 1N/ ; = nN! ;, andL; has eigenvalues 0
andn. The multiplicities follow by taking the trace.

Duval & Reiner [143] generalized the Grone-Merris conjeet@Given amm-uniform
hypergraphs7, let dy be the number of edges containing the verelxet the spec-
trum of 2 be that of the matrixy,_» for the simplicial complex consisting of all
subsets of edges o¥’.

Conjecture Let the m-uniform hypergrapi” have degrees,dand Laplace eigen-
valuesy;, ordered such that; > v, > ... > 0. Then for all t we have

t
Z #{X| dx >

Equality for all t holds if and only if7Z is invariant under downshifting.

||M~

The part about ‘downshifting’ means the following: Put atairder on the vertices
of 2 in such a way that ik <y thendy > dy. Now Z is said to be invariant under
downshifting if whenevefx,...,xm} is an edge of7Z’, and{y, ...,ym} is anm-set
with y; <x for all i, then also{ys,...,ym} is an edge of#Z. If this holds for one
total order, then it holds for any total order that is comiplativith the degrees.

For m = 2 this is precisely the Grone-Merris conjecture. (And thepis that are
invariant for downshifting are precisely the thresholdgs) The ‘if’ part of the
equality case is a theorem:
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Theorem 3.12.1(Duval & Reiner [143])If 2# is an m-uniform hypergraph with
degrees dand Laplace eigenvaluas with vy > v, > ... > 0, and.JZ is invariant
for downshifting, thew; = #{x | dx > j} for all t.

In particular it follows that hypergraphs invariant for dashifting have integral
Laplace spectrum.

For example, the completa-uniform hypergraph on an underlying set of size
has degree§ %) so thatvj =nfor 1< j < ("7) andvj = 0for (0-3) < j < (1),
as we already found earlier.

Dominance order

The conjecture and the theorem can be formulated more élggaterms ofdom-
inance order Let a = (g) andb = (b;) be two finite nonincreasing sequences
of nonnegative real numbers. We say thalominatesa, and writea <b, when
Siia <5l biforallt,andy{ ,a = $i°, bi, where missing elements are taken
to be zero.

For example, in this notation Schur’s inequality (Theoreth D) says thatl < 6
if d is the sequence of diagonal elements @rte sequence of eigenvalues of a real
symmetric matrix.

If a= (a;) is a finite nonincreasing sequences of nonnegative intetesa’
denotes the sequen(:ejT) with ajT =#{i|a > |} If ais represented by a Ferrers
diagram, thera' is represented by the transposed diagram.

For example, the Duval-Reiner conjecture says fHatd .

If aandb are two nonincreasing sequences, theraleb denote the (multiset)
union of both sequences, with elements sorted in noninicrgasder.

Lemma 3.12.2
(Ya'T =a,
(i) (aub)" =a’ +b" and(a+b)" =a'ub’,
(i) a<bifand only ifb” <a'. O

3.13 Applications of eigenvectors

Sometimes it is not the eigenvalue but the eigenvector shregeded. We sketch very
briefly some of the applications.
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0.15 0.08

0.42 0.52 0.27 0.08
° 6 =335

0.42 0.47 0.22
Fig. 3.1 Graph with Perron-Frobenius eigenvector

3.13.1 Ranking

In a network, important people have many connections. Onédiike to pick out
the vertices of highest degree and call them the most impoiBat it is not just the
number of neighbors. Important people have connectionsaioyrother important
people. If one models this and says that up to some constanbpbrtionality one’s
importance is the sum of the importances of one’s neighlotise graph, then the
vector giving the importance of each vertex becomes an e@gtor of the graph,
necessarily the Perron-Frobenius eigenvector if impogaannot be negative. The
constant of proportionality is then the largest eigenvalue

3.13.2 Google Page rank

Google uses a similar scheme to compute the Page Rank [43¢lofpages. The
authors described (in 1998) the algorithm as follows:

Suppose pages X..., ¥, are the pages that link to a page y. Let pagéave ¢ outgoing
links. Then the PageRank of y is given by

PRYy)=1-a+ay PF;(_Xi).

The PageRanks form a probability distributiop, PR(x) = 1. The vector of PageRanks can
be calculated using a simple iterative algorithm, and correspdndhe principal eigenvec-
tor of the normalized link matrix of the web. A PageRank for 2@ienilweb pages can be
computed in a few hours on a medium size workstation. A suitahle ¥ata is a = 0.85.

In other words, let” be the directed graph amvertices consisting of all web
pages found, with an arrow fromto y when pagex contains a hyperlink to page
y. Let A be the adjacency matrix ¢f (with Ay, = 1 if there is a link fromx to y).
Let D be the diagonal matrix of outdegrees, so that the scaledxr@t: DA
has row sums 1, and construct the positive linear combiniie= l‘T"J + aSwith
0 < a < 1. SinceM > 0 the matrixM has a unique positive left eigenvectar
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normed so thaf uy = 1. NowM1 = 1 and henceiM = u. The PageRank of the web
pagex is the valueuy.

A small detail is the question what to do when pagdoes not have outgoing
edges, so that rowin Ais zero. One possibility is to do nothing (and tdkg = 1).
Thenu will have eigenvalue less than 1.

The vectow is found by starting with an approximation (or just any pesitvec-
tor) ug and then computing the limit of the sequenge= upM'. That is easy: the
matrix M is enormous, buf\ is sparse: on average a web page does not have more
than a dozen links. The constantegulates the speed of convergence: convergence
is determined by the 2nd largest eigenvalue, which is bodifyex ([203]). It is
reported that 50 to 100 iterations suffice. A nonzerguarantees that the matrix is
irreducible. Ana much less than 1 guarantees quick convergence. Bat @ose
to 1 is better at preserving the informationAn Intuitively, uy represents the ex-
pectation of finding oneself at pageafter many steps, where each step consists of
either (with probabilitya) clicking on a random link on the current page, or (with
probability 1— a) picking a random internet page. Note that the precise vaflug
is unimportant—only the ordering among the valugss used.

There are many papers (and even books) discussing Googlpsank. See e.g.
[69], [26].

3.13.3 Cutting

Often the cheapest way to cut a connected graph into two pisdey partitioning

it into a single vertex (of minimal valency) and the rest. Buthe area of clustering
(see also below) one typically wants relatively large psettere the second Laplace
eigenvector helps. Without going into any detail, let ustlrg same example as
above.

—-041 052

-0.27 Q020 0.25 0.52
- [J2=0.51

—027 -020 0.04
Fig. 3.2 Graph with 2nd Laplace eigenvector

We see that cutting the edges where the 2nd Laplace eigenabetnges sign is
fairly successful in this case.
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3.13.4 Graph drawing

Often, a reasonable way to draw a connected graph is to tgladeaeigenvectors
u andyv for the 2nd and 3rd smallest Laplace eigenvalues, and drawehexx at
the point with coordinateguy, vy). See, e.g. [235].

One can justify this as follows. Let thenergyof an embedding : ' — R™
be the sum of the squared edge lengghs|p(x) — p(y)||? where the sum is over
all edgese = xy. Let R be them x n matrix of which the columns are the vertex
imagesp(x). Then the energy op equalsRLR'. For graph drawing one would
like to minimize the energy, given some normalization sd ti@t all vertices are
mapped close to the origin or close to some lower-dimensismaspace oR™.
Pisanski & Shawe-Taylor [281] propose to requke= 0 andRR' = I, so that the
origin is the center of mass, afiR'v||2 = ||v||? for all vectorsv € R™ no vector
is almost perpendicular to the entire drawing. In this siturathe minimum energy
is zi”jzl L, and this minimum is achieved when the row spacd&afontains the
Laplace eigenvectors giy, ..., Umi1. The authors also discuss variations of this
setup.

3.13.5 Clustering

Given a large data set, one often wants to cluster it. If thea tagiven as a set of
vectors in some Euclidean spdk®, then a popular clustering algorithmkismeans

Given a set X of N vectors iR™ and a number k, find a partition of X into
k subsets X...,X such thatyX ¥xex; |[X— ci||? is as small as possible, where
Ci = (1/|Xi]) $xex X is the centroid of X

The usual algorithm uses an iterative approach. First eghtduek vectorsc; in
some way, arbitrary or not. Then taketo be the subset of consisting of the vec-
tors closer tag; than to the othec; (breaking ties arbitrarily). Then compute new
vectorsc; as the centroids of the setg and repeat. In common practical situations
this algorithm converges quickly, but one can constructrgas where this takes
exponential time. The final partition found need not be optjrbut since the al-
gorithm is fast, it can be repeated a number of times witretkffit starting points
Ci.

Now if the data is given as a graph, one can compute eigemgagto. ., U, for
the m smallest eigenvaluegs,..., Uy of the Laplace matriXx., and assign to the
vertexx the vector(ui(x)); and apply a vector space clustering algorithm such as
k-means to the resulting vectors.

This is reasonable. For example, if the graph is discondeetth ¢ connected
components, then the firseigenvalues of are zero, and the firsteigenvectors are
(linear combinations of) the characteristic functionstef tonnected components.

This approach also works when one has more detailed infawmainot adja-
cent/nonadjacent but a (nonnegative) similarity or clessnmeasure. (One uses
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an edge-weighted graph, witly = w(x,y) anddyx = y,w(x,y) andD the diago-
nal matrix with Dyx = dy, andL = D — A. Again L is positive semidefinite, with
u'Lu = S w(xYy)(u(x) — u(y)) The multiplicity of the eigenvalue 0 is the num-
ber of connected components of the underlying graph whdrggpqy are adjacent
whenw(x,y) > 0.)

Especially important is the special case where one seafeh#é®e cheapest cut
of the graph into two relatively large pieces. If the grapbasnected, then map the
vertices intoR? usingx — u(x), whereu is the eigenvector for the second smallest
eigenvalue ot and then use 2-means to cluster the resulting points. Cafpa
on the algebraic connectivity of a graph.

Several matrices related to the Laplacian have been ushisiodantext. It seems
useful to normalize the matrix, and to retain the propergt ththe graph is dis-
connected the characteristic functions of components igeneectors. A suitable
matrix isLnorm = D~IL =1 — DA,

There is a large body of literature on clustering in genemdl spectral clustering
in particular. A few references are [181, 253, 313].

3.13.6 Searching an eigenspace

There exists a unique strongly regular graplith parametersév, k, A, ut) = (162 56,
10,24) found as the second subconstituent of the McLaughlin griplvertex set
can be splitinto two halves such that each half induces aglyoegular graph with
parametersv,k, A, 1) = (81,20, 1,6). How many such splits are there? Can we find
them all?

In this and many similar situations one can search an eigessf he first graph
has spectrum 562140 (—16)2! and a split gives an eigenvector with eigenvah/s
if we take the vector that is 1 on the subgraph aridon the rest.

It is easy to construct an explicit badis) for the 21-dimensional eigenspace,
where thej-th coordinate ol is §j. Construct the 2 eigenvectors that aré1
on the first 21 coordinates and inspect the remaining coatetn If all aret1 one
has found a split into two regular graphs of valency 20. Is ffarticular case there
are 224 such subgraphs, 112 splits, and all subgraphs oagare strongly regular
with the abovementioned parameters.

3.14 Stars and star complements

Consider a grapf with vertex sefX. By interlacing, the multiplicity of any given
eigenvalue changes by at most 1 if we remove a vertex. But iealways a vertex

1 For strongly regular graphs, see Chapter 9. No properties ageswsept that the substructure of
interest corresponds to an eigenvector of recognizable shape.
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such that removing it actually decreases the multiplidtyd that means that  is
an eigenvalue of multiplicityn we can find astar subsetor 6, that is, a subses of
X of sizem such that”™ \ Sdoes not have eigenvale Now X \ Sis called astar
complement

Why precisely can we decrease the multiplicity? ldte aB-eigenvector ofj,
so that(681 — A)Ju= 0, and letx be a vertex withuy # 0. Then removing from I
decreases the multiplicity d.

Indeed, removing is equivalent to the two actions: (i) forcing = 0 for eigen-
vectorsu, and (i) omitting the conditiory .., Uy = Bux (row x of the matrix equa-
tion (61 — A)u = 0) for eigenvectorsl. SinceA is symmetric, the column depen-
dency(6l — A)u = 0 given byu is also a row dependency, and revis dependent
on the remaining rows, so that (ii) doesn’'t make a differeidg (i) does, as the
vectoru shows. So the multiplicity goes down.

This argument shows that the star sets@oare precisely the setS of sizem
such that nog-eigenvector vanishes on all & Also, that any subgraph without
eigenvaluéd is contained in a star complement.

Proposition 3.14.1([144, 113])Let be a graph with eigenvalu@ of multiplicity
m. Let S be a subset of the vertex set X pand let the partition{S X\ S} of X

induce a partitionA= {CBT (D:} of the adjacency matrix A. If S is a star set f(i.e.,
if |S| = m and D does not have eigenval@k then B- 61 =C(D —61)~1C".

Proof. The row space oA — 61 has rankn—m. If Sis a star set, then this row
space is spanned by the rows@f D — 61]. Alternatively, apply Corollary 2.7.2 to
A—0l. O

This proposition says that the edges inside a star set agendaed by the rest of
the graph (and the valug). Especially whem s large, this may be useful.

Stars and star complements have been used to study ex@mi@phs with
smallest eigenvalue not less thag, see, e.g., [112, 114, 115]. (One starts with the
observation that iB is the smallest eigenvalue of a graph, then a star complement
has smallest eigenvalue larger thiarBut all graphs with smallest eigenvalue larger
than—2 are explicitly known.) Several graphs and classes of grapkie been char-
acterized by graph complement. See, e.g., [224, 114].

A star partitionis a partition ofX into star set$y for 8, where8 runs through
the eigenvalues df. It was shown in [113] that every graph has a star partition.

3.15 Exercises

Exercise 1 Consider a graph with largest eigenvaljeand maximum valenclmax.
Use interlacing to show th#; > \/kmax. When does equality hold?

Exercise 2 Let ' be ak-regular graph witm vertices and eigenvaluds= 6; >
...> 6. Letl"’ be an induced subgraph bfwith n’ vertices and average degiée
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(i) Prove thatg, > "K=1k > g
(i) What can be said in case of equality (on either side)?

(iii) Deduce Hoffman’s bound (Theorem 3.5.2) from the abmegjuality.

Exercise 3 ([145]) Let the Ramsey numb&(k;, ky) be the smallest integersuch
that for each coloring of the edgés with two colorscy, ¢, there is a subgraph
of sizek; of which all edges have the same cotpifor i = 1 ori = 2. Show that
a(f KA)<R(a(lM)+La(A)+1)—1.

Exercise 4 Show that the Lo&sz parametef (I") is the minimum possible value
of ssuch that there exists a Euclidean representatidn thiat assigns a unit vector
in R" to each vertex, where the images of any two nonadjacentesrtiave inner
product—1/(s—1).

Exercise 5 Let anorthonormal labelingof a graphl” be the assignment of a unit
vectoruy (in someR™) to each vertex, where thaJIuy = 0 whenevekx ¢ y. Show
thatd (I") = mincmax(c" uy) 2, where the minimum is over all unit vectarsand
the maximum over all vertices .

. . . . . o o U uy
(Hint: consider the matri with Myxy =1 andMyy = 1— 7(CTUXX)(CTW) )
Exercise 6 Show that? (") < d(I") < x(I"), whered(I") is the smallestl such that
I" has an orthonormal labeling Id9. (Hint: consider the new orthonormal labeling
in R% given by the vectors, @ Uy, and takec = d~Y/25,g ® )

Exercise 7 (cf. [2, 146]) Let.# denote the class of real symmetric matridés
indexed by I such thaM,, = 0if u »¢ v, andMyy # 0 if u ~ v (nothing is required
for the diagonal oM). The parameter

mr(l") = Mmi}r; rkM.
exr

is called theminimum rankof I'. Show that

(i) mr(Kn) =1 and thamr(") < n— 1 with equality if[" is the pathP,.
(i) mr(A) <mr(r) if Ais aninduced subgraph 6f.
(i) mr(L(Kp)) =n—2.
(iv) mr(L(I")) < n—2 for every line graph.(I") of a graphl” of ordern, with
equality if has a Hamilton path.

Exercise 8 ([184, 260]) Theenergy EI") of a graphl", as defined by Gutman, is
¥i |6, the sum of the absolute values of the eigenvalues of theealjg matrixA.
Show that ifl” hasn vertices andn edges, then

\/2mn(n— 1| detal2/n < E(r') < v2mn

(Hint: use the arithmetic-geometric mean inequality andebg-Schwarz.)

Exercise 9 ([234]) (i) Let I' be a graph om vertices withm edges, so that its
average valency is= 2m/n. If k > 1 then
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E(F) <k+/k(n—k)(n—1)

with equality if and only ifl” is mKy, or Ky, or a strongly regular graph with param-
eters(n,k,A, 1), whereA = p=k(k—1)/(n—1).
(Hint: use Cauchy-Schwarz.)

(ii) Let I be a graph om vertices. Then

E(r) < %n(1+ V)

with equality if and only ifl” is a strongly regular graph with parametémsk, A, 1),
wherek = (n++/n)/2 andA = 4 = (n+2,/n)/4. There are infinitely many exam-
ples with equality.

Exercise 10 Prove the conjecture from Section 3.11.1 for regular graphs
(Hint: use Cauchy-Schwarz.)






Chapter 4
The second largest eigenvalue

There is a tremendous amount of literature about the see@wgéddt eigenvalue of a
regular graph. If the gap between the largest and seconekteeggenvalues is large,
then the graph has good connectivity, expansion and raneesrproperties. (About
connectivity, see alsgl.7.)

4.1 Bounds for the second largest eigenvalue

In this connection it is of interest how large this gap candomee. Theorems by
Alon-Boppana and Serre say that for large graghsannot be much smaller than
2vk—1, and that in fact a positive fraction of all eigenvaluesasmuch smaller.

Proposition 4.1.1 (Alon-Boppana [4])If k > 3 then for k-regular graphs on n ver-

tices one has oa(k 1
6> 2vk—1(1—0(°9k=D)
logn
Proposition 4.1.2 (Serre [306])or eache > 0, there exists a positive constantc
c(&,k) such that for any k-regular graph on n vertices, the number of eigenvalues

of I" larger than(2— €)v/k— 1is at least cn.
Quenell gives (weaker) explicit bounds:

Proposition 4.1.3 ([283]) Let I" be a finite graph with diameter d and minimal
degree k> 3. Then for2 < m< 1+d/4, the m-th eigenvalue of the adjacency matrix
A of I satisfiesfy > 2v/k—1cog ), where r= [d/(2m—2)].

Alon [4] conjectured, and Friedman [157] proved that largadomk-regular
graphs have second largest eigenvalue smaller thda-21 + ¢ (for fixed k, & >
0 andn sufficiently large). Friedman remarks that numerical expents seem to
indicate that randork-regular graphs in fact satisfp < 2v/k— 1.

A connected-regular graph is calledRamanujan graplwvhen| 6| < 2/k— 1 for
all eigenvalue® +# k. (This notion was introduced in [252].) It is not difficult fimd

67
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such graphs. For example, complete graphs, or Paley grajihdp. Highly non-
trivial was the construction of infinite sequences of Ranf@amgraphs with given,
constant, valencly and sizen tending to infinity. Lubotzky, Phillips & Sarnak [252]
and Margulis [258] constructed for each prirpe= 1 (mod 4) an infinite series of
Ramanujan graphs with valenky= p+ 1.

4.2 Large regular subgraphs are connected

We note the following trivial but useful result,

Proposition 4.2.1 Let I’ be a graph with second largest eigenval@e Let A be
a nonempty regular induced subgraph with largest eigerevglu> 6,. ThenA is
connected.

Proof. The multiplicity of the eigenvalup of A is the number of connected com-
ponents ofA, and by interlacing this is 1. O

4.3 Randomness

Let " be a regular graph of valengyon n vertices, and assume that (for some real
constantA) we have|6| < A for all eigenvalue® +# k. The ratioA /k determines
randomness and expansion propertief pthe smallerA /k, the more random, and
the better expanddr is.

For example, the following proposition says that most polrave approximately
the expected number of neighbors in a given subset of thexesdt. Herd™ (x)
denotes the set of neighbours of the vertéx the graph™.

Proposition 4.3.1 Let R be a subset of size r of the vertex set X .ofhen

> (reonR -2 < Lotz

Proof. Apply interlacing toA? and the partition{ R, X \ R} of X. The sum of all
entries of the matri¥a? in the (R, R)-block equals the number of patfis~ x ~ z,
with y,z€ Randx € X, that is,¥ (|l (x) NR})2. O

Rather similarly, the following proposition, a version béexpander mixing lemma
from Alon & Chung [7], says that there are about the expectaudber of edges
between two subsets.

Proposition 4.3.2 Let S and T be two subsets of the vertex sét,aif sizes s and
t, respectively. Let(& T) be the number of ordered edges xy with 8 and ye T .
Then
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esT) - <ayfsta-2a-H<avst

Proof. Write the characteristic vectopgs and x7 of the setsSandT as a linear
combination of a set of orthonormal eigenvectoré&\ngs =S aju andxr = 5 By
whereAy; = 6u;. Thene(ST) = XSTAXT =3 oifi6. We haven; = s/\/nandf; =
t/ynand6 =k Now |e(ST)— X! = |5, 1 aiBi6| <A yi-q|aif] andy;.q a? <
(Xs Xs) —S2/n=s(n—s)/n, and 3;.1 BZ < t(n—t)/n, so that|e(ST) — | <
st(n—s)(n—t)/n. O

If SandT are equal or complementary, this says that

k _
esT) - < <) 09

In particular, the average valen&y of an induced subgrap8 of size s satisfies
|ks— kﬁs| < AR=2. For example, the Hoffman-Singleton graph ifas= 2, 6, = -3,
soA = 3 and we find equality for subgraplss (s = 15, ks = 0), 1, (s = 20,
ks=1) and &5 (s= 25,ks = 2).

4.4 Expansion

An expanderis a (preferably sparse) graph with the property that the bamof
points at distance at most one from any given (not too largejssat least a fixed
constant (larger than one) times the size of the given sgiaiiters became famous
because of theiiGle in sorting networks (cf. Ajtai-Konals-Szemeidi [3]) and have
since found many other applications. Proposition 4.3.&aaly implies that there
cannot be too many vertices without neighbors in a givenetutifshe vertex set. A
better bound was given by Tanner [317] (in order to show tkatgalized polygons
are good expanders).

Proposition 4.4.1 (cf. Tanner [317])Let " be connected and regular of degree k,
and let|6| < A for all eigenvalue® #k of I'. Let R be a set of r vertices 6fand
let I (R) be the set of vertices adjacent to some point of R. Then

rRI. P
n p+iz(1-p)

wherep =r/n.

Proof. Let x be the characteristic vector & Write it as a linear combination
of a set of orthonormal eigenvectors &f x = S aju; where Ay = Gu;. Then
AX = 3 aifu; and(Ax,Ax) = ¥ a67, so tha| Ax[|* < af(65 —A%) +A*3 af =
(X, U0)2(K2— A2) + A2(x,X) = (K2 — A2) +- A2 Now let i be the characteristic
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2

vector of (R). Thenk?r? = (Ax,1)2 = (Ax, )% < | AX[12|@]12 < [T (R)].(5 (K2 —
A2)+rA?), proving our claim. O

The above used two-sided bounds on the eigenvalues diffieoan the valency.
It suffices to boundb,. Let theedge expansion constant/h) (a.k.a.isoperimetric
constantor Cheeger numbgrof a graphl” be the minimum ok(S T)/|S where
the minimum is taken over all partitiod$, T } of the vertex set withS < |T|, and
wheree(S T) is the number of edges meeting b&andT. We have

Proposition 4.4.2 ([266]) LetI" be regular of degree k, notvith n< 3. Then

%(k—ez) <h(r) <,/k2—6z.

Proof. For the lower bound, apply interlacing foand a partition{S T} of the
vertex set, withs = |§ andt = |T|. Pute= (S T). One findsne/st > k— 6,, so
thate/s > (t/n)(k— 6,) > 3(k— 62). For the upper bound, consider a nonnegative
vectorw indexed by the point s&t of I, with support of size at mo%tn. If wy takes

t different nonzero valueg; > ... > a > 0, thenletS = {x|wx > a} (1 <i <t),

and letm; = |[S\ S_1| (with S = 0). Leth=h(I"). Now

hZWxg Z [ Wy — Wy |.
X

X~y

Indeed, allS have size at mos}n, so at leash|S| edges stick out 0§, and these
contribute atleadt(my +---+m) (& —a11) 0 Y.y [Wx —Wy| (With &1 = 0). The
total contribution is at leasty;ma; = hy , Wy.

Let u be an eigenvector oA with Au= 6,u. We may assume thai > 0 for at
most3n pointsx (otherwise replaca by —u). Define a vector by v, = max(uy, 0).
Since(Av)x = Sy xWy > Sy xUy = (AU)x = Boux = BaVy if v > 0, we haves" Av=
> x Vx(AV)x > QZZV%

Note thatyyy(Vx £ W)% = k¥, V2 v Av.

Apply the above to the nonnegative vectogiven bywy = v2. We findhy, v2 <
S oy VE =V < (Txmy (= V)2 Sy (VW) 2) M2 = (K 355) 2 — (VI AV T2 <

(ZxVi)\/@, assumingg, > 0.

O

For similar results for not necessarily regular graphs tdee

4.5 Toughness and Hamiltonicity

As application of the above ideas, one can give bounds faiotighness of a graph
in terms of the eigenvalues.

A connected, noncomplete graphis calledt-toughif one hag§ > tc for every
disconnecting set of vertic&ssuch that the graph induced on its complement has
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¢ > 2 connected components. Tteeighnesg (") of a graph” is the largest such
thatl™ ist-tough. For example, the Petersen graph has toughri8ss 4

This concept was introduced by Cital [90], who hoped that-tough graphs
would beHamiltonian (i.e., have a circuit passing through all vertices) for suffi
ciently larget. People tried to prove this for= 2, the famous ‘2-tough conjecture’,
but examples were given in [21] ¢ftough nonhamiltonian graphs for alk 9/4.
Whether a larger bound ansuffices is still open.

Still, being tough seems to help. In [20] it was shown thataugh graph™ on
n > 3 vertices with minimum degre@ is Hamiltonian wher{t + 1)(d + 1) > n.

Proposition 4.5.1 ([47]) LetI" be a connected noncomplete regular graph of va-
lency k and letf| < A for all eigenvalue® # k. Thent(I") > k/A — 2.

This proposition gives the right bound, in the sense thaethee infinitely many
graphs witht (") < k/A. The constant 2 can be improved a little. The result can be
refined by separating out the smallest and the second lamgstvalue. The main
tool in the proof is Proposition 4.3.1.

See also the remarks following Theorem 9.3.2.

Krivelevich & Sudakov [236] show that, whemis large enough, a graph on
vertices, regular of degrde= 6, and with second largest eigenval@iesatisfying

2
6, - (loglogn)

6,  1000lognlogloglogn

is Hamiltonian. Pyber [282] shows that it follows that evesyfficiently large
strongly regular graph is Hamiltonian.

4.5.1 The Petersen graph is not Hamiltonian

An amusing application of interlacing shows that the Peteggaph is not Hamilto-
nian. Indeed, a Hamilton circuit in the Petersen graph wagilé an inducedCo
in its line graph. Now the line graph of the Petersen graphdpestrum 4 2°
(—=1)* (—2)° and by interlacing the seventh eigenvalue 2¢ms= (1—v/5)/2 of
Cio should be at most-1, contradiction. (Cf. [267, 205].)

4.6 Diameter bound

Chung [88] gave the following diameter bound.

Proposition 4.6.1 LetI” be a connected noncomplete graph or & vertices, reg-
ular of valency k, and with diameter d. Lié&| < A for all eigenvalue® # k. Then
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Proof. The graphl" has diameter at mosn when A™ > 0. Let A have or-

thonormal eigenvectors; with Ay = Gu;. ThenA = 5; 9|uiTui. Takeu; = %1.

Now (A™)yy = 5 (U Uy > 7 =A™ S 1 (Ui)xl-| (U )y @S 1 | (Ui)xl-|(Wh)y] <
(Yisa | (WP 2(Zisa | (W)yP) 72 = (1= ()22 (1 [(un)yP) 2 = 1§, so
that (A™)xy > 0 if K" > (n—1)A™. O

4.7 Separation

Letl” be a graph with Laplace matrixand Laplace eigenvalues9p; <... < .
The Laplace matrix of a subgraph of I is not a submatrix of, unlesg™’ is a com-
ponent. So the interlacing techniques;af5 do not work in such a straightforward
manner here. But we can obtain results if we consider offatial submatrices of
L.

Proposition 4.7.1 Let X and Y be disjoint sets of verticeslof such that there is
no edge between X and Y. Then

X[1Y] <:(Un—U2)2.
(N=XD(n=¥]) = \ b+ 2
Proof. Putu= %(Hn + u2) and define a matriA of order 2h by

[ o L-m
A_[Lul 0 ]'

Let Ahave eigenvalue8; > ... > 0y,. ThenBpny 1 i =—6 (1 <i<2n)and6, = u
and 6, = %(un — U2). The setsX andY give rise to a partitioning oA (with rows
and columns indexed by, Y, X, X) with quotient matrix

0 0 —u 0
X X
B— 0‘ ‘ 0 ¥ _IJ+ ‘n‘,|‘y| _anf‘\‘(‘
= Y Y
“Hix HTHEx O 0
—u 0 0

Let B have eigenvalueg; > ... > n4. Thenny = 61 = y andng = 6,4 = — 4, and

N1N2N3ns = detB = u“% > 0. Using interlacing we find

2 X]1Y] . ,
Mo IX V(YD < — _ (Ll _
(= Xp(n—fvp) 1210 OO = (2l k)
which gives the required inequality. .

One can rewrite Tanner’s inequality (applied with= X, I' (R) = VI \Y) in the



4.7 Separation 73

form |X|[Y|/(n— [X])(n—|Y|) < (A/k)? where A = max8,,—6,), and this is
slightly weaker than the above, equivalent only wifiga= —6,.

The vertex setX andY with the above property are sometimes caltston-
nected vertex setdn the complemenX andY become sets such that all edges
betweenX andY are present. Such a pair is calletialique

For applications another form is sometimes handy:

Corollary 4.7.2 Let ' be a connected graph on n vertices, and let X and Y be
disjoint sets of vertices, such that there is no edge beteand Y. Then

XYL (o= pe)?
n(n—XI=VT) = 4zt

Proof. Let K be the constant for which Proposition 4.7.1 s@¥§Y| < K(n—
IX[)(n—=1¥]). Then[X][Y|(1—K) <n(n—[X] = [Y])K. O

The above proposition gives bounds on vertex connectikity.edge connectivity
one has

Proposition 4.7.3 (Alon & Milman [8]) Let A and B be subsets offVsuch that
each point of A has distance at legsto each point of B. Let F be the set of edges
which do not have both ends in A or both in B. Then

Al
AT+ B

IF| > p?u

For p = 1 this yields:
Corollary 4.7.4 Letl" be a graph on n vertices, A a subset df Vand F the set of
edges with one end in A and one end outside A. Then

A
Fl > mlaa- ),

Let x be the characteristic vector of A. Then equality holds if anty if x — @1 is
a Laplace eigenvector with eigenvalpeg.

Proof. Letuy; be an orthonormal system of Laplace eigenvectors, sd.that ;.
Takeu; = %1. Letx = aiui. Now |A| = (x, x) = ¥ a? anday = (x,u) = L |A).
We find|F| = Yacabzaabl= Txuy(Xx— Xy)?> = X 'LX = 3 0l > (Ti=107) pho-
O

This is best possible in many situations.

Example The Hoffman-Singleton graph has Laplace spectrd&t&10?! and we
find |[F| > |A||B|/10 and this holds with equality for the 10-40 split into a Pste
subgraph and its complement.



74 4 The second largest eigenvalue

4.7.1 Bandwidth

A direct consequence of Proposition 4.7.1 is an inequalitiieimberg, Mohar,
Poljak and Rendl [204], concerning the bandwidth of a grédplymmetric matrix

M is said to have bandwidtiv if (M); j = O for all i, j satisfying|i — j| > w. The
bandwidthw(I") of a graphl” is the smallest possible bandwidth for its adjacency
matrix (or Laplace matrix). This number (and the vertex ondmlizing it) is of
interest for some combinatorial optimization problems.

Theorem 4.7.5 Supposé™ is not edgeless and definetb[nﬁw , then

b if n—Db iseven,
W(r)z{bl if n—b is odd.

Proof. Order the vertices of such that. has bandwidtiw =w(I"). If n—w is
even, leiX be the first%(n—w) vertices and leY be the Iast%(n—w) vertices. Then
Proposition 4.7.1 applies and thus we find the first inequdfitn — w is odd, take
for X andY the firstand Ias% (n—w-—1) vertices and the second inequality follows.
If b andw have different parity, thew —b > 1 and so the better inequality holds.

In casen—wis odd, the bound can be improved a little by applying Prapms#.7.1
with [X| = 3(n—w+1) and|Y| = $(n—w—1). Itis clear that the result remains
valid if we consider graphs with weighted edges.

4.7.2 Perfect matchings

A more recent application of Proposition 4.7.1 is the follogvsufficient condition
for existence of a perfect matchingarfect matchingn a graph is a subset of the
edges, such that every vertex of the graph is incident witlttx one edge of the
subset).

Theorem 4.7.6 ([56]) Let " be a graph with n vertices, and Laplace eigenvalues
0=y < <...< Uy Ifnis even angiy < 2up, thenl” has a perfect matching.

Except for Proposition 4.7.1, we need two more tools. Thedins is Tutte’s famous
characterization of graphs with a perfect matching. Theséone is an elementary
observation.

Theorem 4.7.7 (Tutte [321])A graphl” = (V,E) has no perfect matching if and
only if there exists a subsetSV, such that the subgraph 6finduced by W S has
more thanS odd components.

Lemma4.7.8 Let x...X, be n positive integers such thaf ;x =k < 2n—1.
Then for every integef, satisfyingd < ¢ <k, there exists and {1,...,n} such that

Yiel Xi = L.
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Proof. Induction onn. The casen = 1 is trivial. If n > 2, assumey > ... > Xq.
Thenn—1<k—-x <2(n—1)—1 and we apply the induction hypothesis to
S o% = k—xq with the same if £ <n—1, and/ — x; otherwise. [l

Proof of Theorem 4.7.6.Assumel” = (V,E) has no perfect matching. By Tutte’s
theorem there exists a SBtC V of sizes (say), such that the subgraph of I" in-
duced by \ Shasq > s odd components. But sinceis even,s+ q is even, hence
q>s+2.

First assuma < 3s+ 3. Thenl"’ has at most 2+ 3 vertices and at least- 2 com-
ponents. By Lemma 4.7.8, and hencé , has a pair of disconnected vertex 9¢ts
andY with |[X| = [ 3(n—s)] and|Y| = [3(n—s)]. Now Proposition 4.7.1 implies

(Hn—uz>2> XYl (n-sP—e
Un + U2

)

~ns+[X[-]Y] (n+s)2-¢

wheres = 0 if n—sis even and = 1 if n—sis odd. Usingh > 2s+ 2 we obtain

un—ug>n—s—1Z s+1 >£
Un+ M2 n+s 3s+2 3

Hence 24 < Up.

Next assumen > 3s+4. Now "', and hencd ™, has a pair of disconnected vertex
setsX andY with [X| + Y| = n—sand mif{|X|,|Y|} > s+1, so|X|-|Y| > (s+
1)(n—2s— 1) > ns— 2s%. Now Proposition 4.7.1 implies

po-p\* XY ns-28 1 s 1
Un+ptz) ~ ns+|X[-[Y] T 2ns—22 2 2n—-2s” 4

by use ofn > 3s+4. So
Hn—t2 1 1
—_— > >,
Hn+Hz 27 3

hence 21 < Up. O

The complete bipartite grapkg , with | < mhave Laplace eigenvalugs = mand
Un = n =1+ m. This shows that @, can get arbitrarily close ta, for graphs with
n even and no perfect matching.

If the graph is regular, the result can be improved conskdgra

Theorem 4.7.9 ([56, 92]) A connected k-regular graph on n vertices, where n is
even, with (ordinary) eigenvalueskA; > A,... > Ap, which satisfies
k—14 2 ifkis even,
Az < kzl L
k—1+ 55 ifkis odd,
has a perfect matching.

Proof. LetI” = (V,E) be ak-regular graph witn = |V| even and no perfect match-
ing. By Tutte’s Theorem 4.7.7 there exists a Set V of size s such thatv \ S
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induces a subgraph witih> s+ 2 odd components, I>,...,[q (say). Let denote
the number of edges ih betweenSand[;, and letn; be the number of vertices of
[i. Then clearlyziq:lti <ks s>1, andt > 1 (sincel” is connected). Hendg < k
andn; > 1 for at least three values afsayi = 1, 2 and 3. Let; denote the largest
eigenvalue of;;, and assumé; > ¢, > /3. Then eigenvalue interlacing applied to
the subgraph induced by the unionlaf I'; andl; givest; < A fori =1, 2, 3.

Consider3 with n3 vertices anes edges (say). Thereg=kng —tz < ng(nz—1).
We saw thatz < k andns > 1, hencek < nz. Moreover, the average degreégof I3
equals 23/n3 = k—t3/n3. Becauses is odd andkng — t3 is even k andts have the
same parity, thereforig < k impliests < k— 2. Alsok < ng impliesk < nz— 1 if k
is even, ank < nz3— 2 if kis odd. Hence

4o k— 52 if kis even,
= k- <2if kis odd.

Note thatts < nz implies thatlz cannot be regular. Next we use the fact that the
largest adjacency eigenvalue of a graph is bounded fromnbbiothe average
degree with equality if and only if the graph is regular (Rysiion 3.1.2). Thus
ds < /3. We saw thatz < Az, which finishes the proof. O

From the above it is clear thateven and\, < k— 1 implies existence of a perfect
matching. In terms of the Laplace matrix this translates:int

Corollary 4.7.10 A regular graph with an even number of vertices and algebraic
connectivity at least has a perfect matching.

But we can say more. The Laplace matrix of a disjoint uniom@d® edges has
eigenvalues 0 and 2. This implies that deletion of the ed§agerfect matching of
a graphl” reduces the eigenvalues of the Laplace matrik dify at most 2 (by the
Courant-Weyl inequalities 2.8.1). Hence:

Corollary 4.7.11 A regular graph with an even number of vertices and algebraic
connectivityi, has at least (2 + 1) /2| disjoint perfect matchings.

Fig. 4.1 A 3-regular graph with no perfect matching

Cioalh, Gregory and Haemers [93] have improved the sufficient itiondfor a
perfect matching from Theorem 4.7.9X¢ < 3¢ whereds = 2.85577.. (the largest
root of x3 — x2 — 6x+2), I = (k—2+vVkZ+12)/2 if k> 4 and even, andy =



4.8 Block designs 7

(k—3++/(k+1)2+16)/2if k> 5 and odd. They also prove that this bound is best
possible by giving examples &fregular graphs witim even, and\z = 9y that have
no perfect matching. The example for= 3 is presented in Figure 4.1.

4.8 Block designs

In case we have a non-symmetric mathix(say) we can still use interlacing by
considering the matrix
0 N
a2,

We find results in terms of the eigenvaluesfofwhich now satisfyg = —6,_j1
fori=1,...,n. The positive eigenvalues @éfare the singular values of, they are
also the square roots of the non-zero eigenvalu@ehdf (and of N N).

SupposeN is the 0-1 incidence matrix of an incidence struct(Pd3) with point
setP (rows) and block seB (columns). Then we consider the so-calledidence
graph I of (P,B), which is the bipartite graph with vertex setU B, where two
vertices are adjacent if they correspond to an incidenttgadotk pair. An edge of
I is called aflag of (P, B).

An incidence structur¢P,B) is called at-(v,k,A) design if|P| = v, all blocks
are incident withk points, and for every-set of points there are exacthy blocks
incident with allt points. For exampléP, B) is a 1{v,k,r) design precisely wheN
has constant column surkgi.e.N" 1 = k1), and constant row sumgi.e. N1 =r1),
in other words” is biregular with degreels andr. Moreover,(P,B) is a 2{v,k,A)
design if and only ifN"1 = k1 andNN'" = AJ+ (r —A)l. Note that fort > 1, a
t-design is also & — 1)-design. In particular a 2v,k,A) design is also a 1v,k,r)
design withr = A (v—1)/(k—1).

Theorem 4.8.1 Let (P,B) be al-(v,k,r) design with b blocks and |¢P’,B') be a
substructure with fflags. Define b= |B|, V = |P'| and B = |B'|. Then

(r‘d% —b’k)(n'{g V) < B2(v—V)(b—b).

Equality implies that all four substructures induced ByoPV \ V' and B or B\ B
form al-design (possibly degenerate).

Proof. We apply Corollary 2.5.4. The substructyf, B') gives rise to a partition
of A with the following quotient matrix

m m
0 0 v r—v
0 0 bkfn'(r b k—m/
B= v—V v—V/
mook-m 0 0
Vr—nt vVr—m'
b K- by O 0
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We easily havéd, = —6, =11 = —ns =+/rk and
my —b'k\ (Mg —vr
det(B)rk( Y )( b b .

detB)
rk

which proves the first statement. If equality holds ter= N1, 6> = N2, 6,1 =n3
and 6, = ng4, so we have tight interlacing, which implies the seconcestant. [

Interlacing gives

=—N2nz < —6:6,1= 65,

The above result becomes especially useful if we can exgtess terms of the
design parameters. For instancéRfB) is a 2{v,k,A) design, then922 =r—A=

A ‘é%'{ (see exercises) and (P,B) is a generalized quadrangle of ordert), then
A2 =s+t (see§9.6). Let us consider two special cases. (A 2-desigiB) with

|P| = |B| is calledsymmetric)

Corollary 4.8.2 If asymmetri@-(v,k, A ) design(P,B) has a symmetri2-(V', k', A")
subdesigr{P’,B') (possibly degenerate) then

(Kv—kV)2 < (k= A)(v—V)?,

If equality holds, then the subdesi@f,B\ B') is a2-(V, V' (k—K')/(v—V),A —A")
design (possibly degenerate).

Proof. InTheorem4.8.1take=v,r =k b/ =V, m =vK and6Z=k—A. O

Corollary 4.8.3 Let X be a subset of the points and let Y be a subset of the blocks
of a2-(v,k,A) design(P,B), such that no point of X is incident with a block of Y.
Then

kriX[[Y] < (r=A)(v—[X])(b—[Y]).

If equality holds then the substructui,B’) = (X,B\Y) is a 2-design.

Proof. Takem =0,V = [X|, b =|Y| and6Z =r — A. Now 4.8.1 gives the in-
equality and thatX,B') is a 1-design. But the(X,B') is a 2-design, because, B)
is. O

An example of a subdesign of a symmetric design is the incielstructure formed
by the absolute point and lines of a polarity in a projectilenp of orderg. This
gives a (degenerate) (&£, 1,0) design in a 29> +q-+ 1,9+ 1, 1) design. The bound
givesV < q,/q+ 1. (See also the following section.) The@;/q+ 1,9+ 1,1) de-
sign, which is obtained in case of equality is callaghital. Other examples of sym-
metric designs that meet the bound can be found in Haemersi&hande [196] or
Jungnickel [227]. Wilbrink used Theorem 4.8.1 to shortenhoof of Feit’s result
on the number of points and blocks fixed by an automorphismgod a symmetric
design (see [64]). The inequality of the second corollarforsexample tight for
hyperovals and (more generally) maximal arcs in finite fotbje planes.
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4.9 Polarities

A projective plands a point-line geometry such that any two points are on augiq
line, and any two lines meet in a unique point. It is said to berder q when all
lines haveg+ 1 points and all points are ap+ 1 lines. A projective plane of order
q hasg? +q+ 1 points and as many lines.

A polarity of a point-block incidence structure is a map of order 2 tttanging
points and blocks and preserving incidence. ghsolute poinis a point incident
with its image under the polarity.

Suppose we have a projective plane of orgevith a polarity g. The polarity
enables us to write the point-line incidence maltias a symmetric matrix, and then
the number of absolute points isNr By definition we haveN? = NNT = J +q,
which has one eigenvalue equaltp+ 1)? and all other eigenvalues equakioThat
means thaN has spectruntq+ 1), \/qm, —\/q”, for certain integersn, n, where
this time exponents indicate multiplicities. The numberabbolute points equals
a=q+1+(m-n),/q. It follows that if g is not a square them = n and there are
preciselyq+ 1 absolute points. 1§ is a square, ang is a prime dividingg, then
a=1 (modp) so thata is nonzero.

(This is false in the infinite case: the polarity sending thimp(p, g, r) to the line
pX+qY+rZ = 0 has no absolute points ovRr)

With slightly more effort one finds bounds for the number o$albte points:

Proposition 4.9.1 A polarity of a projective plane of order q has at least ¢ and
at most q/q+ 1 absolute points.

Proof. Suppose is a non-absolute point. Now induces a mag on the linez®
defined fory € 2° by: y" is the common point 0§ andz®. Now 12 = 1, andy’ =y
precisely whery is absolute. This shows that the number of absolute points on
non-absolute line ig+ 1 (mod 2).

Now if gis odd, then take an absolute ponT his observation says that each line
on x different fromx? contains another absolute point, for a total of at lepstl.
On the other hand, if| is even, then each non-absolute line contains an absolute
point, so that? +q+1—a < aganda>q+ 1.

For the upper bound, use interlacing: partition the matrixto absolute / non-

absolute points/lines and find the matrix of average row s ral§ d aq
vadtl-y=

wherev = ¢? + g+ 1, with eigenvalues|+ 1 and 1- 2. Now interlacing yields

1- V%‘L > —,/0, thatis,a < q,/q+ 1, just like we found in the previous section.

The essential part of the proof of the lower bound was to shawthere is at least
one absolute point, and this used an eigenvalue argument.
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4.10 Exercises

Exercise 1 Deduce Proposition 3.6.3(iii) (the part that s&ys— 1) & 1+ 6,_t(m-1)
> 0) from Theorem 3.5.4.

Exercise 2 Prove the following bipartite version of Proposition 4.4L&t " be a
connected and bipartite graph, semiregular with degkemsd!. Let 6] < A for
every eigenvalu® # +/kl. If Ris a subset of the sét of vertices of degrek, and
p =|RI/IK], then
Ir(R)| K
> .

IR~ p(kl—A2)+A2

(This is the result from Tanner [317].)

Exercise 3 (i) Determine the isoperimetric numblefKp).
(i) Using Proposition 4.4.2, show that thecube ha$(Qn) = 1.

Exercise 4 An (¢,m)-biclique in a graph™ is a complete bipartite subgraplh ,, of
I" (not necessarily induced). LetOu; < ... < up be the Laplace eigenvalues/of
Show that/m/(n—£)(n—m) < ((Un — p2)/(2n— pip — Wn))? if T is non-complete
and contains af¥, m)-biclique.

Exercise 5 Let A be the incidence graph of a(2-k,A) design withb blocks and
blocks incident with each point. Express the spectrurh iofthe design parameters
v, k, A, bandr.

Exercise 6 Let (P,B) is a 2{Vv,k, A ) design, and suppose that some block is repeated
£ times (i.e.£ blocks are incident with exactly the same sekgioints). Prove that
b > ¢v (this is Mann’s inequality).



Chapter 5
Trees

Trees have a simpler structure than general graphs, andmwproee stronger re-
sults. For example, interlacing tells us that the multipliof an eigenvalue de-
creases by at most one when a vertex is removed. For trees’'&bdsmma gives
the same conclusion also when a path is removed.

5.1 Characteristic polynomials of trees

For a grapH™ with adjacency matri, let ¢ (t) := det(tl — A) be its characteristic
polynomial.

Note that since the characteristic polynomial of the digjainion of two graphs
is the product of their characteristic polynomials, restdt trees immediately yield
results for forests as well.

It will be useful to agree thapr\xy = 0if x=y.

Proposition 5.1.1 Let T be atree, and for,yc T, let Ry be the unique path joining
xandyinT.

() Let e=xy be an edge in T that separates T into two subtrees A and B, wit

x € Aandye B. Then
Or = BB — QaxPo\y-
(ii) Let x be a vertex of T. Then

or(t) :t(Pr\x(t) - Z (PT\{x,y}(t)~

yox

(iiif) Let x be a vertex of T. Then

(P]'\x(t)(PI'(S> - (Pr\x(S)(Pr(t) =(s—t) ZF (PT\RW(S)(pT\F&y(t)-
ye
(iv) Let x be a vertex of T. Then

81
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Prx@'t — Prixr = Zr (P?\pxy-
ye

(v) Let xy be vertices of T. Then
PrixPriy — PrixyPr = ‘p?\ny'
(vi) Let x y,z be vertices of T wherezPyy. Then
Prixyz@r = Or\xPriyz— Pr\zPrixy + Priy@Prixz-

(vii) We haV&P/T = 2 xeT Pr\x-
(viii) Let T have n vertices and,cmatchings of size m. Then

or(t) = 3 (~1)Mept™ 2.

m

Proof. Part (i) follows by expansion of the defining determinantcdn also be
phrased agr = @r\e — @r\(xy;- Part (ii) follows by applying (i) to all edges on
Note thatgy,, (t) =t. Part (iii) follows from (ii) by induction on the size df: expand
in the LHS¢r (s) andgr (t) using (i), and then use induction. Part (iv) is immediate
from (iii). Part (vii) follows by taking the derivative of #hdefining determinant.
Part (viii) is a reformulation of the description §1.2.1. Note that the only directed
cycles in a tree are those of length 2. Part (v) is tru& i Py, and the general
case follows from part (vi) and induction: the statementairs true when a subtree
Sis attached via an edgeat a vertexz € Byy,. Finally, part (vi) follows from:if
['\z=A+B, thengr = gaz¢5 + Cadluz — PaPiz @5, Where of coursey, (t) =t.

O

Theorem 5.1.2 (‘Godsil's Lemma’, [165])Let T be a tree and an eigenvalue
of multiplicity m> 1. Let P be a path in T. Thefl is eigenvalue of T P with
multiplicity at least m- 1.

Proof. By parts (iv) and (vii) of the above Proposition we have

@)=t (t)er(t) = (D%
T @ r(t)er XNZET%\PX

Now 6 is a root of multiplicity at leasti@— 2 of the left hand side, and hence also
of each of the terms on the right hand side. O

As an application of Godsil's Lemma, consider a tfewith e distinct eigenvalues
and maximum possible diameter 1. LetP be a path of lengtk— 1 (that is, withe
vertices) inT. ThenT \ P has a spectrum that is independent of the choide &br
each eigenvalu@ with multiplicity m of T, the foresfT \ P has eigenvalu@ with
multiplicity m— 1 (and it has no other eigenvalues).

In particular, all eigenvalues of a path have multiplicity 1

Note that going fromT to T \ x changes multiplicities by at most 1: they go
up or down by at most one. Godsil’s Lemma is one-sided: gaiomfT to T \ P,
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the multiplicities go down by at most one, but they may wellugoby more. For
example, if one joins the centexsy of two copies oKy m by an edge, one obtains a
treeT that has 0 as an eigenvalue of multiplicitm2 2. ForP = xy the foresfT \ P
has 0 with multiplicity 2n.

5.2 Eigenvectors and multiplicities

For trees we have rather precise information about eigéorgeand eigenvalue mul-
tiplicities (Fiedler [151]).

Lemma5.2.1Let T be a tree with eigenvalu@, and let Z= Zr(0) be the set
of vertices in T where alb-eigenvectors vanish. If for some vertex T some
component S of Tt has eigenvalud (in particular, if some68-eigenvector of T
vanishes at t), then Z 0.

Proof. Consider proper subtre&of T with eigenvalued and with a single edge
st joining some vertexs € S with some vertext € T \ S, and pick a minimal one.
If |§ =1, then6 =0, andt € Z. Assume|S > 1. If a 8-eigenvectoru of Sis
the restriction toS of a 8-eigenvectorv of T, thenv vanishes int. So, if some
@-eigenvectorv of T does not vanish &t thenu andv|s are not dependent, and
some linear combination vanishessand is aB-eigenvector ofS\ s, contradicting
minimality of S. This shows that € Z. O

Note that it is not true that the hypothesis of the lemma iegplhatt € Z. For
example, consider the tréle of type Dg given by 1~ 2 ~ 3 ~ 4 ~ 56. It has
Z(0) = {2,4}, and the componerg8= {4,5,6} of T \ 3 has eigenvalue 0, but{
Z(0).

Proposition 5.2.2 Consider a tree T with eigenvali® and let Z= Z(6) be the
set of vertices in T where aB-eigenvectors vanish. LepZ Zy(0) be the set of
vertices in Z that have a neighbor in\1Z.

(i) Let S be a connected component 6fZ. Then S has eigenval#ewith mul-
tiplicity 1. If u is a 8-eigenvector of S, then u is nowhere zero.

(i) Let T \ Z have c connected components, and let Zy|. Then8 has multi-
plicity c—d.

The components of \ Z(9) are called theigenvalue component$ T for 6.

Proof. (i) Supposefd is eigenvalue ofl with multiplicity greater than 1. Then
some eigenvector has a zero coordinate and hence indu@esiggenvector on a
proper subtree.

By Lemma 5.2.17 is nonempty.

If Sis a connected component ©f\ Z then it has eigenvalu@ (otherwiseS C
Z, contradiction). Apply Lemma 5.2.1 t8 instead ofT to find that if some6-
eigenvector ofS vanishes on a point d§, then there is a poird € Swhere all of
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its B-eigenvectors vanish. But the restriction$mf a 6-eigenvector ofT is a 6-
eigenvector of5, sos e Z, contradiction.

(ii) Each point of Zy imposes a linear condition, and singeis a tree, these
conditions are independent. O

We see that if the multiplicity 08 is not 1, therZ contains a vertex of degree at
least three. In particulag # 0, and henc&g # 0. Deleting a vertex irZg from T
increases the multiplicity of.

As an application we see that all eigenvalues of a path havigptiity 1.

5.3 Sign patterns of eigenvectors of graphs

For a path, the-th largest eigenvalue has multiplicity 1 and an eigenvewatith
i — 1 sign changes, that isareas of constant sign. It is possible to generalize this
observation to more general graphs.

Given a real vectou, let thesupportsuppu be the sef{iju; # 0}. For x one of
<,>,<,> we also write supfu for {i|u;x0}. LetN(u) (resp.N*(u)) be the number
of connected componen@of the subgraph induced by supresp. supfu) such
thatu does not vanish identically d@. LetNg(u) be the number of connected com-
ponentsC of the subgraph induced by suppuch thati (does not vanish identically
onC and) induces an eigenvector with eigenvauen C.

Proposition 5.3.1 Let I be a graph with eigenvalue®, > ... > 6,, and let6 =
0j = 0j+m-1 be an eigenvalue with multiplicity m. Let u be a vector with>Afu.
LetA be the subgraph df induced bysuppu, with eigenvalueg; > ... > n;. Then
(i)
N”(u)+NS(u) <#i|n>6}<j+m-1
(ii)
N (u) +N=(u) —Ng(u) <#{i | mi > 0} < -1

(iii) if I has ¢ connected components, then
N=(u)+N=(u) < j+c—1.

Proof. For a subse$of the vertex set of , letls be the diagonal matrix with ones
on the positions indexed by elementsSHnd zeros elsewhere.

Let C run through the connected components of sup@nd supp u (resp.
supp-u and supp u). Putuc = Icu. Then the spac® := (uc|C) has dimension
N~ (u) +N<(u) (resp.N=(u) + N=(u)).

Let A be the adjacency matrix df (resp.l"). Define a real symmetric matri
by Bcp = ug(A— 01)up. ThenB has nonnegative row sums and nonpositive off-
diagonal entries, s8 is positive semidefinite. It follows that for € U we have
y' (A—61)y > 0. This means thai intersects the space spanned by the eigenvectors
of A— 61 with negative eigenvalue in O.
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For (i) N (u) + N<(u) < #{i | n; > 6} follows.

The vectors/ € U with y" (A— 61)y = 0 correspond to eigenvectors with eigen-
value 0 ofB, and by Lemma 2.10.1 there are at mhg{u) (resp.c) independent
such. This proves (ii) (resp. (iii)). O

Remark For j = 1 the results follow from Perron-Frobenius. (Ifis connected,
then the eigenvector fd# is nowhere zero and has constant sign.)

Examples a) Letl" be connected and bipartite, and febe the smallest eigenvalue
of I'. The corresponding eigenvectothas different signs on the two sides of the
bipartition, so suppu and supp u are the two sides of the bipartitio®~ (u) +
N<(u) =nandN(u) = 1. We have equality in (i)—(iii).

b) LetI™ be the staKy s. The spectrum ig/s’, 051, (—,/5)%. Letu be an eigen-
vector with eigenvalu@ = 0 that hag nonzero coordinates. (Ther2t <s.) Now
N~ (u) +N<(u) = N(u) =t andN=(u) + N=(u) = 2, and fort = sequality holds in
(i)—(iii).

c) Let I be the Petersen graph. It has spectrum13, (—2)*. Let u be an
eigenvector with eigenvalu@ = 1 that vanishes on 4 points, so that supp-
duces ¥, with spectrum 3, (—1)3. We find N> (u) + N<(u) = N(u) = 3 and
N=(u) +N=(u) = 2, again equality in (i)—(iii).

d) Let " be the pathP,. The eigenvalues ar = 2cogkrm/(n+ 1)) for k =
1,...,n. The eigenvectou corresponding tdd hask — 1 sign changes, so that
N~ (u) +N<(u) =k. If gcd(k,n+ 1) = 1 thenu has no zero entries, so thdfu) = 1.
Now we have equality in (i)—(iii). Iigcd(k,n+ 1) =r, thenu hasr — 1 zero entries,
so thatN(u) = r. Also, the eigenvaluéy is thek/r-th of each component of supp
sothat#i|n > 60} =kand #i | n; > 6} = k—r, with equality in (i) and the first
inequality of (ii).

Remark Itis not true thatN(u) < mif mis the multiplicity of@ for I . For example,
in case b) above we hawé(u) = sandm=s— 1. (And in case c) the opposite
happensN(u) =3 andm=>5.)

5.4 Sign patterns of eigenvectors of trees

Proposition 5.4.1 Let T be a tree with eigenvalu® and put Z=Z(0). Let T\ Z
have eigenvalueg; > ... > nm. Letg=#{i | ni > 6} and h=#{i | ni > 6}. Letu
be af-eigenvector of T. ThenNu) +N<(u) =g and N (u) +N<(u) —N(u) = h.

Proof. SinceN() andg andh are additive over connected components, we may
assume thaZ is empty. Now by Proposition 5.2.2(i§, has multiplicity 1 andu is
nowhere 0. Lefl haven vertices, and let there be edgesxy with uxuy > 0 and
g edgesxy with uxuy < 0. Thenp+qg=n—1. SinceT is bipartite, also—0 is
an eigenvalue, and an eigenvectdor —6 is obtained by switching the sign af
on one bipartite class. By Proposition 5.3.1 we hgve N~ (u) + N<(u)—1<h
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andp=N~(v)+N<(v)—1<n-—h-1, that isq > h, and hence equality holds
everywhere. O
Let asign changédor an eigenvectou of T be an edge = xy such thatiuy < 0.

Proposition 5.4.2 Let T be a tree with j-th eigenvalug If u is an eigenvector for
6 with s sign changes, and-d |Zy(0)|, then d4-s< j—1

Proof. LetT \Z havec connected components, andugte identically zero ol
of these. Theis+c—co =N~ (u) +N<(u). Let 8 = 6; = 6jym-1, wherem=c—d
is the multiplicity of 6. By Proposition 5.3.1(i) we hav@+ ¢ — ¢p < j +m—1, that
is,d+s—cp < j—1. But we can makey zero by adding a small multiple of some
eigenvector that is nonzero on all'®f\ Z. O

Example ForT = Eg all eigenvalues have multiplicity 1, amdt (u) + N<(u) takes
the values 1, 2, 3, 4, 4, 6 for the six eigenvectarhe sign patterns are:

+ + + + + + + 0 - - + + - + +
+ - - - + + - 0 + - + - + - +

We see that a small perturbation that would makenzero everywhere would give
the two zeros in the second eigenvector the same sign, btwtheeros in the fifth
eigenvector different sign (becau8ge> 0 and6s < 0) and for the perturbed vector
u’ we would find 0, 1, 2, 3, 4, 5 sign changes.

5.5 The spectral center of a tree

There are various combinatorial concepts ‘center’ for dre@ne has the cen-
ter/bicenter and the centroid/bicentroid. Here we definerecept of center using
spectral methods. Closely related results can be found imfdeer [272].

Proposition 5.5.1 Let T be a tree (with at least two vertices) with second larges
eigenvaluel. Then there is a unique minimal subtree Y of T such that noexiad
component of K'Y has largest eigenvalue larger than If Z(A) # 0 (and in par-
ticular if A has multiplicity larger than 1) then ¥ Zp(A) and |Y| = 1. Otherwise
Y| =2, and Y contains the endpoints of the edge on which the uriegigenvector
changes sign. In this latter case all connected componenis\o¥ have largest
eigenvalue strictly smaller thah.

We call the seY thespectral centepf T.
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Proof. If for some vertexy all connected components ©f\ y have largest eigen-
value at mosf, then pickY = {y}. Otherwise, for each vertexof T there is a
unigue neighbos/ in the unique component of \ y that has largest eigenvalue
more than). SinceT is finite, we must have” =y for some vertex. Now pick

Y ={y,y'}. ClearlyY has the stated property and is minimal.

If Z=0thenA has multiplicity 1 and by Proposition 5.4.2 there is a uniqdge
e = pgsuch that the uniqug-eigenvector has different signs grandq, and both
components off \ e have largest eigenvalue strictly larger thanso thatY must
contain both endpoints &

If Z £ 0, then all eigenvalue components fohave eigenvalug, and any strictly
larger subgraph has a strictly larger eigenvalugy, saust contairZy. By Proposition
5.4.2 we havéZp| = 1, sayZp = {y}. If Y is not equal to{y}, thenY also contains
y. This proves unigueness.

Suppose thafy = {y} andT \ y has a component with eigenvalue larger than
Letube a vector thatis 0 oy) and induces an eigenvector with the largest eigenvalue
on each component df\ y. Letc be the number of connected component$ 9.
Proposition 5.3.1(i) now gives+ 1 < 2+ (c—1) — 1, a contradiction. This shows
that|Y| = 1 whenZ is nonempty.

Finally, suppose thaY = {y,y'} and thatT \ Y has largest eigenvaluk. By
Lemma 5.2.1Z # 0, contradiction. O

Example If T is the pattR, with nvertices, thed =2cos2t/(n+1). If n=2m+1
is odd, ther¥ consists of the middle vertex, aid\ Y is the union of two pathBy,
with largest eigenvalug = 2cost/(m+1). If n=2mis even, ther¥ consists of
the middle two vertices, and \ Y is the union of two path®my_1, with largest
eigenvalue 2cog/m< A.

5.6 Integral trees

An integral treeis a tree with only integral eigenvalues. Such trees are Fatist
of all integral trees on at most 50 vertices can be found if. [49
A funny result is

Proposition 5.6.1 (Watanabe [329]An integral tree cannot have a perfect match-
ing, that is, must have an eigenvaldeunless it is K.

Proof. The constant term of the characteristic polynomial of a iseap to sign,
the number of perfect matchings. It is also the product okméenvalues. If it is
nonzero, then it is 1, since the union of two distinct perf@ettchings contains a
cycle. But then all eigenvalues a#iel andPs is not an induced subgraph, so we
haveKs. O

This result can be extended a little. 1S3 1, be the tree on+ 1 vertices obtained
by subdividing all edges df1 m. The spectrum is-y/m+1 (+1)™1 0.
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Proposition 5.6.2 (Brouwer [49]) If an integral tree has eigenvalu&with multi-
plicity 1, then it is SK m, where m= t? — 1 for some integer t 1. O

For a long time it has been an open question whether thereietdgral trees of
arbitrarily large diameter. Recently, this was settledhia affirmative by Csikari.
The construction is as follows. Define tréEgry,...,rm) by induction:T’() is the
tree with a single vertexg. T'(r1,...,rm) is the tree obtained from’(rq,...,rm-1)
by addingry, pendant edges to each vertexvith d(u,xg) = m—1 (mod 2). The
diameter of this tree isrfl (assuming; > 1) and it has &+ 1 distinct eigenvalues:

Proposition 5.6.3 (Csikvari [107]) The tree T(r4,...,rm) has eigenvalue® and
+/5 (1<i<m), where $=ri+--+rn.

Now all treesT’(n? —n3,...,n2_; —n2 n2) are integral of diameterr@ when
N>y >...> N

A short proof can be given using the following observatidrA bndB are trees
with fixed verticesx andy, respectively, then [eA~ mB be the tree constructed on
the union ofA andmcopies ofB, wherex s joined to them copies ofy. Now Propo-
sition 5.1.1(i) and induction immediately yields that= A~ mBhas characteristic
polynomialgr = cpg‘*l((pA@ — M@\ xP\y), Where the last factor is symmetric A
andB.

Proof. Induction onm. The statement holds fon < 1. With A= T'(rs3,...) and
B=T'(rrs,...) we haveT’(rq,r2,r3,...) = A~riBandT/(ry +r2,r3,...) = B~
r{A. U

5.7 Exercises

Exercise 1 Show that there are 6 integral trees on at most ten vertieesely (i)
Ky, (i) Ky, (iii) Ky 4 = Dag, (iv) Ds, (v) Eg, (vi) Ky 9. (For notation, cf§3.1.1.)

An integral tree on 31 vertices.
What is the spectrum?

Exercise 2 Show that the only trees that have integral Laplace spectmarthe
starsKy m.
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Exercise 3 ([102, 184]) Theenergy EI") of a graphl", as defined by Gutman, is
vi |6, the sum of the absolute values of the eigenvalues of the@aljg matrixA.
It can be expressed in terms of the characteristic polyniogrdid by

E(r) = %/::o [n—x(;jxlog(p(ix)} dx

Show that ifT is a tree om vertices, different from the st&= K1 ,_1 and the path
P = R,, then
E(S) <E(T) <E(P).






Chapter 6
Groups and graphs

6.1 (G,H,S)

Let G be afinite group, anHl a subgroup, an8a subset o&5. We can define a graph
I (G,H,S) by taking as vertices the coseagbl (g € G), and callingg:H andg,H
adjacent wher gglng C HSH. The groupG acts as a group of automorphisms
onl (G,H,9) via left multiplication, and this action is transitive. Te&bilizer of
the vertexH is the subgroup.

A graphl™ (G,H,S) with H = 1 is called aCayley graph

Conversely, lel” be a graph with transitive group of automorphis&d.etx be
a vertex ofl, and letH := G be the stabilizer ok in G. Now I can be identified
with I (G,H, S), whereS= {g € G| x ~ gx}.

If I is moreover edge-transitive, th&tan be chosen to have cardinality 1.

Instead of representing each vertex as a coset, one caseapeach vertexhby
the subgroufs, fixing it. If H = Gx andy = gx, thenGy = gHg 1, so that nowG
acts by conjugation.

6.2 Spectrum

Let I be a graph an& a group of automorphisms. L& be a matrix with rows
and columns indexed by the vertex set’gfand suppose th& commutes with all
elements ofG (so thatgM = Mg, or, equivalentlyMyy = Mgy gy). Now trgM only
depends on the conjugacy classgin G, so the map — trgM defines a class
function onG.

(Also the spectrum ofM only depends on the conjugacy clasgah G, but it is
not clear how the spectrum should be ordered. Having the tramwever, suffices:
one can retrieve the spectrum of a mawiXrom the traces of the poweks'. People
also introduce the zeta function of a graptby {r (—s) = S A% = trLS, where the
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sum is over the eigenvaludsof the LaplaciarL, in order to have a single object
that encodes the spectrum.)

If I has vertex seX, andV = R* is theR-vector space spanned by the vertices
of I, then by Schur’'s Lemmisl acts as a multiple of the identity on each irreducible
G-invariant subspace &f. In other words, the irreduciblé-invariant subspaces are
eigenspaces d¥l. If M acts likeBl on the irreducibleés-invariant subspace/ with
charactely, then tgM|w = 6x(Q).

Example Let " be the Petersen graph, with as vertices the unordered pains f
a 5-set, adjacent when they are disjoint, andMet A, the adjacency matrix. Now
f(g) :=trgA=#{x| x ~ gx} defines a class function on Afit= Sym(5). Below
we showf together with the character table of Sym(5) (with top rowi¢ating the
cycle shape of the element):

12 2 3 4 523
x111 1 1 1 1 1
Xoll-11 1-11 -1
X342 0 1 0-1-1
Xald-20 1 0-11
X551 1 -1-10 1
Xs/5-1 1 -11 0 -1
X716 0 —20 0 1 0
foo 4 0 2 5 6

We see thaf = 3x; — 23+ xs. It follows that/™ has spectrum?3(—2)* 1°, where
the eigenvalues are the coefficientsfofiritten as linear combination of irreducible
characters, and the multiplicities are the degrees of tbleamacters. The permuta-
tion character isT= X1 + X3+ X5 (obtained forM = 1). It is multiplicity freg that
is, no coefficients larger than 1 occur. In the general casedkefficient of an irre-
ducible charactey in the expression fof will be the sum of the eigenvalues bf
on the irreducible subspaces with charagter

6.3 Nonabelian Cayley graphs

Let G be a group an&C G. TheCayley graphCay(G, S) is the (directed) graph
with vertex seG and edge séf = {(g.99) | g € G, se S} (so thatSis the set of out-
neighbors of 1). Now™ is regular with in- and outvalendd. It will be undirected
if and only if Sis symmetric, i.e.5' =S whereS ! = {s™! |sc S}.

The graph Ca§G, S) is connected if and only i generate§. If H = (S) is the
subgroup ofG generated by, then CayG, S) consists of G/H| disjoint copies of
Cay(H,S).

The spectrum of Cayley graphs in an abelian gr@uwas discussed i§1.4.9.
More generally one has



6.4 Covers 93

Proposition 6.3.1 ([138, 268]) Let G be a finite group and S a subset that is
symmetric and invariant under conjugation. The grapéy(G, S) has eigenvalues
Oy = Wll)zsgsx(s) with multiplicity x(1)?, where x ranges over the irreducible
characters of G.

Proof. SinceSis a union of conjugacy clases &f the adjacency matriA com-
mutes with the elements &, and the previous discussion applies. The regular rep-
resentation ofs decomposes into a direct sum of irreducible subspaces ewber
each irreducible charactgrthere arex (1) copies ofVy. On each copy acts like

61, and dimVy = x(1), so6 has multiplicity x (1)2. We saw that tAglw = 6x(g),

so that in particulaB x (1) = trAjw = S s X (S), whereW =V,. O

For example, the grapKs 3 can be described as the Cayley graph (Gag)
whereG = Sym(3) andS= {(12),(13),(23)}. Its complement B3 is the Cayley
graph CayG, S) whereS = {(123),(132)}. The character table @& is

12 3
xi1 1 1
X2l1 -1 1
Xx32 0 -1

and we read off the spectrum 33, 0* of K33 from column 2 and the spectrum 2,
2, (—1)* of 2K3 from column 3.

As an application, Renteln [284] computes the smallestwigee of the derange-
ment graph (the graph on Syn) whereg; ~ g Whengzlgz has no fixed points),
and finds6min = —k/(n— 1), providing an easy proof for the result that this graph
has independence number= (n— 1)!.

6.4 Covers

Let agraphl” = (X,E) consist of a set of vertice and a set of edgels and an
incidence relation betweet andE (such that each edge is incident with one or two
points). An edge incident with one point only is calledoap. A homomorphism
f: I — A of graphs is a map that sends vertices to vertices, edgeg#&s eldops
to loops, and preserves incidence.

For example, the chromatic number/ofs the smallest integen such that there
is @ homomorphism from to Kp,.

The mapf is called acoveringwhen it is a surjective homomorphism, and for
each vertex of I" and each edgeof A that is incident withf (x), there is a unique
edgeeof I that is incident withx such thatf (&) = e. Now I" is called acoverof A.

If fisa covering, then paths ify starting at a vertey of A lift uniquely to paths
starting at a vertex of I, for eachx € f~(y).
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Theuniversal covenf a connected graph is the unique tre@ that is a cover. If
ais a fixed vertex oA, then the vertices of can be identified with the walks i
starting ata that never immediately retrace an edge, where two walksdjeeent
when one is the extension of the other by one more edge. Tée& tnéll be infinite
whenA contains at least one cycle. fifis the covering map (that assigns to a walk
its final vertex), thenl has a group of automorphisni acting regularly on the
fibers of f.

Given an arbitrary collection of cycleg’ in A, and a positive integenc for
eachC € ¢, one may consider the most general cover satisfying theatsh that
the inverse image of the walk traversi@gnc times is closed. (For example, the
‘universal cover modulo triangles’ is obtained by reqgugrithat the preimage of
each triangle is a triangle.) There is a unique such grapdtjent of the universal
cover. Again the covering group (the group preserving ther§ipacts regularly on
the fibers.

Conversely, lef” be a graph, anéi a group of automorphisms. Theiotient
graphl” /H has as vertices thd-orbits on the vertices df, as edges thel-orbits
on the edges af , and a vertex! is incident with an edge” when some element
of x is incident with some element ef!.

The natural projectiomr: ' — I /H is a homomorphism. It will be a covering
when no vertex of I is on two edges in an orb@”. In this case we also say that
" is a cover of” /H.

Now letl” be finite, andf : ' — A a covering. LetAr andA, be the adjacency
matrices ofl” andA. Then(AA)f(X),z = Yyet-1() (Ar)xy- If we view Ar andA, as
linear transformations on the vector spadesandV, spanned by the vertices bf
andA, and extend to a linear map, then this equation becorAgs f = f o Ar. If
uis an eigenvector o with eigenvalued, thenuo f (defined by(uo f)y = uy )
is an eigenvector of with the same eigenvalue, and the same holds for Laplace
eigenvectors and eigenvalues.

(This is immediately clear, but also follows from the factkhe partition o¥/ I
into fibersf~1(z) is an equitable partition.)

For example, lef” be the path on 6 vertices with a loop added on both sides and
A the path on 2 vertices with a loop added on both sides. Themtye sending
vertices 1, 4, 5 of” to one vertex ofA and 2, 3, 6 to the other, is a covering.
The ordinary spectrum d is 2,0, and hence alsb has these eigenvalues. (It has
spectrum 2y/3, 1, 0,—1, —/3.)

Thus, the spectrum df is a subset of the spectrumGf We can be more precise
and indicate which subset.

LetV = RX be the vector space spanned by the verticds. tfet G be a group of
automorphisms af . We can view the elemengs= G as linear transformations of
(permuting the basis vectors). Lidtbe a subgroup dB, and letwW be the subspace
of V fixed byH.

Lemma 6.4.1 Let M be a linear transformation of V that commutes with adl .
Then M preserves W artdM|w = (14, @v|n) = (15, @u) where @y is the class
function on G defined by (g) = trgM.
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Proof. The orthogonal projectioR fromV ontoW is given by

1
P:Hh;h.

If M commutes with alh € H thenMPu = PMu, soM preserves the fixed space
W, and its restrictioM |y has trace #M. ExpandingP we find trM |y = trPM =

ﬁ S hen trhM = (14, @u|H ). The second equality follows by Frobenius reciprocity.
]

Now assume that the map: I — " /H is a covering. Thermo Ar = Ar o L.
One can identify the vector spav y spanned by the vertices 6f/H with the

vector spaciV: the vertex<t! corresponds te\/ﬁ > heH x" € W. This identification

identifiesAr 4 with Al. This means that the above lemma (applied With= A)
gives the spectrum of /H. In precisely the same way, fod = L, it gives the
Laplace spectrum df /H.

We see that for a covering the spectrum of the quotiefitt does not depend
on the choice oH, but only on the permutation characteﬁ.lThis is Sunada’s
observation, and has been used to construct cospectréisgisge14.2.4.

6.5 Cayley sum graphs

In §1.4.9 we discussed Cayley graphs for an abelian g@up variation is the
concept ofCayley sum grapkvith sum set $h an abelian grougs. It has vertex set
G, and two elementg, h € G are adjacent wheg+ h € S. (Other terms araddition
Cayley graph®r justsum graphg

It is easy to determine the spectrum of a Cayley sum graph.

Proposition 6.5.1 ([137]) LetI” be the Cayley sum graph with sum set S in the finite
abelian group G. Lej run through the n= |G| characters of G. The spectrum of
" consists of the numbepg(S) for each realy, and+|x(S)| for each pairy,x of
conjugate non-real characters, whexgS) = S s-sx(S).

Proof. If x : G — C* is a character of5, theny, yX(Y) = YscsX(S—X) =

(SsesX(9)X(—x) = x(9x(x). Now I" is undirected, so the spectrum is real. If
X is a real character, then we found an eigenvegtarith eigenvaluey (). If x is
non-real, then pick a constamtso that x (S)| = a?x(S). Then Réa x) and Im(a )
are eigenvectors with eigenvalugdS)| and—|x(S)|, respectively.
O
Chung [88] constructs Cayley sum graphs that are good ewpsinBor further
material on Cayley sum graphs, see [6], [86], [175], [180].
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6.5.1 (3,6)-fullerenes

An amusing application was given by DeVos et al. [137].346)-fullereneis a cubic
plane graph whose faces (including the outer face) have 8ine 6. Fowler conjec-
tured (cf. [156]) that such graphs have spectr@ {3,—-1,—1,—1} (as multiset),
where® = — @, and this was proved in [137].

For example, the graph

has spectrum 3,5, 1, (—1)%, —/5 with eigenvalues 3-1, —1, —1 together with
the symmetric part-+/5, +1.

The proof goes as follows. Construct the bipartite doubteK, of . Thisis a
cover ofl", and both triangles and hexagons lift to hexagons, threzcht eertex, so
thatl” ® Kz is a quotient of7Z, the regular tesselation of the plane with hexagons.

Let 57 have set of verticebl, and letl” ® K, have vertex sdt), and letl” have
vertex seV. Letm: H — U andp :U — V be the quotient maps. The grapt® Ky is
bipartite with bipartite halveld; andU,, say. Fix a vertexy; € U; and call it 0. Now
m1(Uy) is a lattice inR?, andm*(ay) is a sublattice (because the concatenation
of two walks of even length i starting and ending i again is such a walk),
so the quotienG = m1(U;)/m*(a;) is an abelian group, an@ can be naturally
identified withV. The automorphism df @ K that for eachu € V interchanges the
two verticesus, up of p~(u), lifts (for each choice ofi € m(ap)) to an isometry
of 27 with itself that is a point reflectior — v — x (wherev = @). It follows that
if two edgesxiy, andz;w, in 7 are parallel, thex+y = z+w. Hencerl™ is the
Cayley sum graph fo where the sum s@is the set of three neighbors ain I".

Now the spectrum follows. By the foregoing, the spectrunmstgis of the values
+|x(9)| for non-real characterg of G, and x(S) for real characters. SinceAr=
0 andrl is cubic and not bipartite (it has four triangles) it suffitesshow that
there are precisely four real characters (then the cornelipg eigenvalues must be
3,—1,—1 —1). But this is clear since the number of real charactersasmtimber



6.6 Exercises 97

of elements of order 2 i, an abelian group with (at most) two generators, hence
at most four, and fewer than four would force nonzerA. tThis proves Fowler’s
conjecture.

6.6 Exercises

Exercise 1 Show that a (3,6)-fullerene has precisely four triangles.






Chapter 7
Topology

In the discussion of the Shannon capacii$.{) we encountered the Haemers in-
variant, the minimum possible rank for certain matriceg fliaa given graph. By
far the most famous such invariant is de Colin de Mergliinvariant of a graph, an
algebraic invariant that turns out to have a topological mrea

7.1 Embeddings

An embeddingf a loopless graph iiR" consists of a representation of the vertices
by distinct points inR", and a representation of the edges by curve segments be-
tween the endpoints, such that these curve segments oetgeat in endpoints. (A
curve segment betweenandy is the range of an injective continuous mgajrom
[0,1] to R" with @(0) =x andg(1) =vy.)

Every finite graph can be embedded®T if m > 3. A graph isplanar if it
admits an embedding iR?. A graph isouterplanarif it admits an embedding in
R?, such that the points are on the unit circle, and the reptatens of the edges
are contained in the unit disc. A graphis linklessly embeddabléf it admits an
embedding inR3 such that no two disjoint circuits df are linked. (Two disjoint
Jordan curves ifR® are linked if there is no topological 2-sphereRd separating
them.)

Examples of outerplanar graphs are all tr&asandPs. Examples of graphs that
are planar, but not outerplanar akg;, 3K,, Cg and K2n—2 for n> 5. Examples of
graphs that are not planar, but linklessly embeddablekaeandKs 3 for n > 6.
The Petersen graph, aig for n > 6 are not linklessly embeddable.
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7.2 Minors

A graph minorof a graphl” is any graph that can be obtained frdmby a se-
quence of edge deletions and contractions, and deletiosot#fted vertices. Here
the contractionof an edgee of the graph(VI ,EI") is the operation that merges the
endpoints ofe in VI, and deleteg from EI". A deep theorem of Robertson and
Seymour [285] states that for every graph prope#ythat is closed under taking
graph minors, there exists a finite list of graphs such thaiagly™ has property
& if and only if no graph from the list is a graph minor bf Graph properties
such as being planar, being outerplanar, being embeddaklenie given surface,
being linklessly embeddable, are closed under taking gnaiplors. For example,
the Kuratowski-Wagner theorem states that a graph is pléaad only if no minor
is isomorphic taKs or Kz 3.

The Hadwiger conjecturd185] says that if a graph has chromatic number
then it has &, minor.

7.3 The Colin de Verdiere invariant

A symmetric real matriM is said to satisfy th&trong Arnold Hypothesishenever

there exists no symmetric nonzero mafiith zero diagonal, such th&dX = O,

Mo X = O, whereo denotes the componentwise (Hadamard, Schur) multipticati
The Colin de Verdgre parameteu (") of a graph™ is defined by (see [97, 216]):

") = max corankM
p(r) ynax

where_ Zr is the set of symmetric real matricks indexed by I that satisfy (a)
The Strong Arnold Hypothesis, and

(b) Myy < 0 if u ~ v, andMy, = 0 if u «¢ v (nothing is required for the diagonal
entries ofM), and

(c) M has exactly one negative eigenvalue, of multiplicity 1.

We agree tha (") = 0 if I has no vertices.

Although u(I") is an algebraic parameter, it is directly related to someoiramt
topological graph properties, as we shall see below. It siyeaeen thaj (K,) =
n—1 (takeM = —J), and thatu(") = 1 if n> 1 andl" has no edged{ must be a
diagonal matrix with exactly one negative entry, and the®jrArnold Hypothesis
forbids two or more diagonal entries to be 0)['Thas at least one edge, the(” +
A) =max{u(l),u(4)}.

The Colin de Verdére parameteu (") is graph minor monotone, that is,Af is
a graph minor of ", thenu(A) < u(r). In other words, for a given integés the
propertyu (") < kis closed under taking graph minors (see [216]).

Theorem 7.3.1([97, 250, 286])The Colin de Verdire parametey(I") satisfies:

(i) u(r)<1iifandonly ifl" is the disjoint union of paths,
(i) p(r)<2ifandonly ifl" is outerplanar,
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(iiiy p(r)<s3ifandonlyifl is planar,
(iv) p(r)<4ifandonlyifr is linklessly embeddable.
(v) If I is embeddable in the real projective plane or in the Kleintleothen
p(r) <s.
(vi) If I is embeddable in the torus, therilm ) < 6.
(vii) If I is embeddable in a surface S with negative Euler charadierjgS),
thenu () <4-—2x(9). O

Colin de Verdere [97] conjectures that(") < p(IM)+ 1 forall I, wherex(I")
is the chromatic number df. (This would follow immediately from the Hadwiger
conjecture.) If true, this would imply the 4-color theorem.

7.4 The Van der Holst-Laurent-Schrijver invariant

Van der Holst, Laurent & Schrijver [215] define the graph iaatA (I") of a graph
' = (V,E) as the largest integekfor which there exists d-dimensional subspace
X of RY such that for each nonzexoc X the positive support supgx) (cf. §5.3)
induces a (nonempty) connected subgraph ofAll results in this section are from
[215].)

Lemma 7.4.1 One has\ (I') = d if and only if there is a map : V — RY such that
for each open halfspace H iRY the setp~1(H) induces a (nonempty) connected
subgraph of".

Proof. Given X, with basisxy,..., X4, let @(v) = (xa(v),...,X4(Vv)). Conversely,
given ¢, defineX to be the collection of maps sendings V to ¢’ ¢(v), where
ceRY. O

Proposition 7.4.2 If A is a minor ofl", thenA (A) < A(IN).

Proof. Given a suitable mag :V(A) — RY as above, we construct a suitable map
@. There are three cases. (i)Afarises from” by deletion of an isolated vertex
then letg(u) = @(u) for u# v, andg(v) = 0. (ii) If A arises from™ by deletion of
an edgee, then letp = . (iii) If A arises from” by contraction of an edge= uv

to a single vertexv, then letp(u) = @(v) = Y(w), and@(z) = Y(z) for z#£ u,v. O

One has\ (K,) =n—1. More generally, if” is the 1-skeleton of d-dimensional
convex polytope, theA (") > d. In particularA (I") > 3if " is a 3-connected planar
graph. IfA is obtained fronT™ by deleting a single vertex, then™) < A(A) +1.
Let Vg be the Cayley graph with vertex sB¢ and difference sef+1,4}. We have

Proposition 7.4.3 (i) A(I") <1ifand only if has no K minor,
(i) A(r) <2ifand only ifl" has no K minor,
(i) A(r) <3ifandonlyifl" has no K or Vg minor.
(iv) A(I") <4if I is linklessly embeddable.






Chapter 8
Euclidean representations

The main goal of this chapter is the famous result by Came&oethals, Seidel and
Shult [80] characterizing graphs with smallest eigenvaloiless than-2.

8.1 Examples

We have seen examples of graphs with smallest eigenliie> —2. The most
important example is formed by the line graphs ($&4.5), and people wanted to
characterize line graphs by this condition and possiblyesadditional hypotheses.

Another series of examples are the so-caltedktailparty graphsthat is, the
graphsKn2, i.e., mKy, with spectrum th— 2, 0", (—2)™1, Form > 4 these are
not line graphs.

And there are exeptional examples like the Petersen grajph $pectrum 3 1
(—2)%), lots of them. It is easy to see that the Petersen graph ia tioe graph.
More generally, no line graph can hav8law, that is, an induce# 3 subgraph,
as is immediately clear from the definition.

8.2 Euclidean representation

Now supposé has smallest eigenval,i, > —2. ThenA-+ 2l is positive semidef-
inite, so thatA+ 21 is the Gram matrix of a collection of vectors in some Euclidea
spaceR™ (wherem=rk (A+2l)), cf. §2.9.

In this way we obtain a may+—> X from vertices of” to vectors inR™, where

2ifx=y
(xy)=9 lifx~y
OifxALy.
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The additive subgroup dR™ generated by the vectoxs for x in the vertex set
X of I, is aroot lattice an integral lattice generated byots vectors with squared
length 2. Root lattices have been classified. That classdités the subject of the
next section.

8.3 Root lattices

We start with an extremely short introduction into lattices

Lattice

A lattice A is a discrete additive subgroup®&f. Equivalently, it is a finitely gener-
ated freeZ-module with positive definite symmetric bilinear form.

Basis

Assume that our latticd has dimensiom, i.e., span®". Let {ay,...,a,} be aZ-
basis ofA. Let A be the matrix with the vectorg as rows. If we choose a different
Z-basis{by,...,by}, so thatt; = 3 sja;, andB is the matrix with the vectork; as
rows, thenB = SA with S= (s;). SinceSis integral and invertible, it has deter-
minant+1. It follows that|detA| is uniquely determined bg, independent of the
choice of basis.

\Volume

R"/A is ann-dimensional torus, compact with finite volume. Its volurag¢tie vol-
ume of the fundamental domain, which equalstA|.
If A”is a sublattice of\, then vo[R"/A") = vol(R"/A).|A /A'|.

Gram matrix

Let G be the matriXa;, a;) of inner products of basis vectors for a given basis. Then
G=AAT, so vo[R"/A) = v/detG.

Dual Lattice

Thedual A* of a latticeA is the lattice of vectors having integral inner products
with all vectors inA: A* = {xe R" | (x,r) e Zforallr € A}.

It has a basigaj, ..., a;} defined by(a, a;) = §;.

Now A*AT =, soA* = (A1) T andA* has Gram matriG* = G 1.

It follows that vo(R"/A*) = vol(R"/A)~L.

We haveA™ = A.

Integral Lattice

The latticeA is calledintegralwhen every two lattice vectors have an integral inner
product.
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For an integral latticé\ one has\ C A*.
The latticeA is calledevenwhen (x,X) is an even integer for eache A. An
even lattice is integral.

Discriminant

Thedeterminantor discriminant discA of a latticeA is defined by disé = detG.
WhenA is integral, we have dist = |A*/A].

A lattice is calledself-dualor unimodularwhen/A = A*, i.e., when it is integral
with discriminant 1. An even unimodular lattice is call@gpe Il the remaining
unimodular lattices are calle/pe |

It can be shown that if there is an even unimodular lattid@nthenn is divisible
by 8.

Direct sums

If A andA’ are lattices inR™ andR", respectively, them\ L A’, the orthogonal
direct sumof A andA’, is the lattice{(x,y) € R™™" | xe A andy € A’}. A lattice is
calledirreduciblewhen it is not the orthogonal direct sum of two nonzero lagtic

Examples

The lattice Z"

The latticeZ" is unimodular, type .
The lattice Ao

[ ] ()
S 2r+s

Qe
=e

The triangular lattice in the plar®? has basigr, s}. Choose the scale such thatas

length/2. Then the Gram matrix i§ = (_21 _21>, so that deG = 3 andp,q € A;.

A fundamental region fo#; is the parallelogram on,@s. A fundamental region
for A; is the parallelogram on,®,q. Note that the area of the former is thrice that
of the latter.
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The representation of this latticeRf has nonintegral coordinates. It is easier to
work in R3, on the hyperplang x; = 0, and choose = (1,-1,0), s= (0,1,—1).
ThenA; consists of the pointéy, X2, x3) with X, € Z andy x; = 0. The dual lattice
A; consists of the points, X2, X3) with X1 = Xo = x3 = 0 (mod 1) andy x; = 0 (so

that 3 € Z). It contains for example = 3(2r +s) = (3, -3, -1).

The lattice Eg

Let p : Z" — 2" be coordinatewise reduction mod 2. Given a binary linearecod
C, the latticep—1(C) is integral, since it is contained A", but never unimodular,
unless it is all ofZ", a boring situation.

Now suppose tha€ is self-orthogonal, so that any two code words have an
even inner product. Then\%p*l(C) is an integral lattice. If dir® = k then we

have vo[R"/p~1(C)) = 2" X and hence VQR”/%pfl(C)) — 22"k |n particu-
lar, %p‘l(C) will be unimodular wher€ is self-dual, and even whedis ‘doubly
even’, i.e., has weights divisible by 4.

Let C be the [8,4,4] extended Hamming code. Th%p‘l(C) is an even uni-
modular 8-dimensional lattice known B&s.

The codeC has weight enumeratord14X* + X8 (that is, has one word of weight

0, 14 words of weight 4, and one word of weight 8). It followatlkheroots (vectors

r with (r,r) = 2) in this incarnation oEg are the 16 vectorﬁ%(z, 0,0,0,0,0,0,0)
(with 2 in any position), and the 184 = 224 vectors\%(il, +1,+1,+10,0,0,0)

with +1 in the nonzero positions of a weight 4 vector. Thus, theee2d0 roots.

Root lattices

A root latticeis an integral lattice generated hyots (vectorsr with (r,r) = 2).
For exampleA; andEg are root lattices.

The set of roots in a root lattice is a (reduceah)t system®, i.e., satisfies
@) If r e @ andAr € @, thenA = +1.
(i) @ is closed under the reflection that sendsto s— 2S¢ for eachr € @.

(rr)
(i) 2 £ € 2.
Since® generateg\ and @ is invariant undewW = (w; | r € @), the same holds
for A, so root lattices have a large group of automorphisms.

A fundamental systeof roots/T in a root latticeA is a set of roots generatiny
and such thatr,s) < 0 for distinctr,s € I1. A reduced fundamental systerhroots
is a fundamental system that is linearly independent. A reoluced fundamental
system is calle@xtended

For example, irA, the set{r,s} is a reduced fundamental system, gne, —r —
s} is an extended fundamental system.
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TheDynkin diagranof a fundamental systefi such thatr,s) # —2 forr,se 1,
is the graph with vertex sél wherer andsare joined by an edge whéns) = —1.
(The cas€r,s) = —2 happens only for a non-reduced system wlifhcomponent.
In that case we do not define the Dynkin diagram.)

Every root lattice has a reduced fundamental system: Fixeseactoru, not
orthogonal to any root. P@™ (u) = {r € @ | (r,u) >0} and/1(u) = {r € ®@*(u) |r
cannot be written as+t with s;t € @*(u)}. ThenlT(u) is a reduced fundamental
system of roots, and written on this basis each root has adyipe or only negative
coefficients.

(Indeed, ifr,s€ M(u) and(r,s) = 1, then say —se ®*(u) andr = (r —s) +s5,
contradiction. This shows thdd (u) is a fundamental system. ¥ yr = 0, then
separate the into positive and negative ones to getr;r = S 5= x # 0 where
all coefficientsa;, s are positive. Now G< (x,x) = 3 o, Bs(r,s) < 0, contradiction.
This shows thafT (u) is reduced. Now also the last claim follows.)

Proposition 8.3.1 Let I'1 be a reduced fundamental system.

(i) For all x € R" there is a we W such thafw(x),r) > Oforallr € 1.

(i) 11 = I(u) for some u. (That is, W is transitive on reduced fundamem s
tems.)

(iii) If A is irreducible, then there is a uniquée @ such thatl7 U {f} is an
extended fundamental system.

Proof. (i) Let G be the Gram matrix of1, and writeA = 2| — G. SinceG is
positive definite A has largest eigenvalue less than 2. Using Perron-Frohdatus
Yy = (W )ren be a positive eigenvector &. If (x,s) < 0 for somes € [1, then put
X' = wg(X) = x— (X,5)s. Now

(X, 3 W) = 063 %) = (GYs(x.9) > (X Y %r).
r r r
ButW is finite, so after finitely many steps we reach the desiredlosion.

(i) Induction on |1]. Fix x with (x,r) > 0 for all r € 1. Then [Ty = M Nx*
is a fundamental system of a lattice in a lower-dimensiopats, so of the form
Mo = IMp(up). Takeu = x+ €up for smalle > 0. ThenlT = 1 (u).

(iii) If r € ®*(u) has maximal(r,u), thenr"= —r is the unique root that can
be added. It can be added, sin€es) > 0 meang’r,s) < 0, so thatr +sis a root,
contradicting maximality of. And it is unique because linear dependencies of an
extended system correspond to an eigenvector with eigeen&lbof the extended
Dynkin diagram, and by Perron-Frobenius up to a constametisea unique such
eigenvector when the diagram is connected, that is, whenirreducible. |

Classification

The irreducible root lattices one finds akg (n > 0), D, (n > 4), Eg, E7, Eg. Each
is defined by its Dynkin diagram.



108 8 Euclidean representations

(1) An: The lattice vectors arece Z"1 with Y % = 0. There are(n+ 1) roots:
e —ej (i # j). The discriminant i+ 1, andA;,/A, = Zn.1, with the quotient
generated by (e + -+ + & — Nény1) € A

(e1—€ns1)

€—€ € —& €n+1—€n
(2) Dp: The lattice vectors arece Z" with ¥ x = 0 (mod 2). There arern—1)
roots+e £ e (i # j). The discriminant is 4, anB}, /Dy, is isomorphic taZ4 when
nis odd, and tdZ, x Z, whenn is even.Dj, containse; and%(eﬁ— ---+en). Note
thatD3 = As.

e te (—€n-1—6n)

€—€ GB—& €h-1—€-2 En—6n-1

(3) Es: (Recall that we already gave a constructionggffrom the Hamming
code.) The lattice is the span Bfg andc := %(elJr ---+eg). There are 246-

112+ 128 roots, of the forms-g +ej (i # j) and%(ieli .-+ eg) with an even
number of minus signs. The discriminant is 1, djd= Eg.

1111,-1,-1,-1,-11)

&—€e €-€& e-€ 6e-€ 66 e -6 —€ —€g (c)
(4) E7: TakeE; = Egnct. There are 126- 56+ 70 roots. The discriminant is 2,
andE; contains(1,1,1,1,1,1,—3,-3).

1(1,1,1,-1,-1,-1,-1,1)

(e1—€) €&—€ -6 €-6 -6 6€—6 €6
(5) Eg: For the vectod = —e; — eg, takeEg = Egn {c,d}*. There are 72- 32+
40 roots. The discriminant is 3, aiigf contains the vecto%(L 1,1,1,-2,-2,0,0).
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(e7—eg)

3(1,1,1,-1,-1,-1,-1,1)

&—6 €€ e—-6 &€& 66

That this is all, is an easy consequence of the Perron-FiabtreoremA =21 — G
is the adjacency matrix of a graph, namely the Dynkin diagrama this graph has
largest eigenvalue at most 2. These graphs were deternmingtebrem 3.1.3. The
connected graphs with largest eigenvalue less than 2 arBythkin diagrams of
reduced fundamental systems of irreducible root systemdsreconnected graphs
with largest eigenvalue 2 are the Dynkin diagrams of extdmdet systems.

In the pictures above, the reduced fundamental systemsdvavnen with black
dots, and the additional element of the extended systemamtbpen dot (and a
name given in parentheses).

8.4 Cameron-Goethals-Seidel-Shult

Now return to the discussion of connected graphgith smallest eigenvalu@,i, >
—2. In 8.2 we found a map — x from the vertex seKX of I' to some Euclidean
spaceR™ such that the inner produt,y) takes the value 2, 1, 0 when=y, X ~ y
andx ¢y, respectively.

Let > be the image oK under this map. The& generates a root lattiek. Since
I is connected, the root lattice is irreducible.

By the classification of root lattices, it follows that theotdattice is one ofA,,
Dn, Es, E7 or Eg. Note that the graph is determined by so that the classification
of graphs with6i, > —2 is equivalent to the classification of subsét®f the root
system with the property that all inner products are 2, 1, @eQ nonnegative.

Now A, andD, can be chosen to have integral coordinates,Bnd E; C Eg,
so we have the two cases ) Z™?, and (i) = C Eg. A graph is callecexcep-
tional in case (ii). SincéEg has a finite number of roots, there are only finitely many
exceptional graphs.

In case (i) one quickly sees what the structurd ofias to be. Something like
a line graph with attached cocktailparty graphs. This $tmechas been baptised
generalized line graphThe precise definition will be clear from the proof of the
theorem below.

Theorem 8.4.1 (i) LetI” be a connected graph with smallest eigenvalyg > —2.
Then either™ is a generalized line graph, ar is one of finitely many exceptions,
represented by roots in thesattice.
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(ii) A regular generalized line graph is either a line graph a cocktailparty
graph.

(iii) A graph represented by roots in thes Hattice has at mosB6 vertices, and
every vertex has valency at m@&

Proof. (i) Consider the cas& C Z™1. Roots inZ™?! have shapete =+ g;. If
someeg has the same sign in alt € > in which it occurs, then choose the basis
such that this sign is-. Let | be the set of all such indicesThen{x | x=& +

ej for somei, j € 1} induced a line graph i, with x corresponding to the edge
ijonl.If j¢1, thene; occurs with both signs, and there arer € > with 0 =
+e +ej andT = e/ — e;. Since all inner products i are nonnegative, = i’
withi € l, ando = g +€j, T = g —€j. Thus,i is determined byj and we have
a mape: j — i from indices outsidé to indices inl. Now for eachi € | the set
{x| x= g *ej for somej with ¢(j) =i} induces a cocktailparty graph. Altogether
we see in what way is a line graph with attached cocktailparty graphs.

(i) Now let I be regular. A vertex with X = g — e; is adjacent to all vertices
with imagee + g different frome; + ;. But a vertexy with y = & + e, wherei, k € |
is adjacent to all vertices with image=+ e without exception (and also to vertices
with imagee + g). Sincerl is regular both types of vertices cannot occur together,
so thatl” is either a line graph or a cocktailparty graph.

(iii) Supposex C Eg. Consider the 36-dimensional space of symmetric®B
matrices, equipped with the positive definite inner prod&cQ) = trPQ. Associ-
ated with the 240 roots of Eg are 120 rank 1 matricd® = rr T with mutual inner
products(P, Ps) = trrr 'ss" = (r,5)2. The Gram matrix of the set & forr € S is
G =4l + A. SinceG is positive definite (it has smallest eigenvalu®), the vectors
R are linearly independent, and herjéé < 36.

Finally, letr be a root ofEg. The 56 rootss of Eg that satisfy(r,s) = 1 fall into
28 pairss,s where(s,s') = —1. So,% can contain at most one member from each
of these pairs, and each vertexiohas valency at most 28. O

The bounds in (i) are best possible: Take the grigph- L(Kg) and add edges join-
ingi € Kg with jk € L(Kg) wheneveii, j, k are distinct. This graph has 36 vertices,
the vertices irKg have 28 neighbours, and the smallest eigenvalue?isA repre-
sentation irEg is given byi — 1(ey + - +eg) — & and jk — ej + &

There is a large amount of literature on exceptional graphs.

8.5 Exercises

Exercise 1 Show that the following describes a root system of tfe Take
the following 72 vectors ifR®: 18 vectors+(u,0,0), +(0,u,0), +(0,0,u) where
ue {(1,-10),(0,1,—-1),(—1,0,1)}, and 54 vectorst(u,v,w) where u,v,w €
{(%7 _%7 _%)7 (_%’ %7 _%)7 (_%’ - ’%)}

~—

Wl
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Exercise 2 Show that the following describes a root system of tifpe Take the
following 126 vectors ifR”: 60 vectorste + g with 1 <i < j <6, and 64 vectors
+ (X1, ..., X, \%) with x; = £ where an even number gfhas+ sign, and 2 vectors

+(0,...,0,1/2).






Chapter 9
Strongly regular graphs

9.1 Strongly regular graphs

A graph (simple, undirected and loopless) of ordés calledstrongly regularwith
parameters, k, A, 4 whenever it is not complete or edgeless and

(i) each vertex is adjacent tovertices,
(i) for each pair of adjacent vertices there areertices adjacent to both,
(i) for each pair of non-adjacent vertices there greertices adjacent to both.

We require that both edges and non-edges occur, so thatrii@eters are well-
defined.

In association scheme terminology (¢11.1), a strongly regular graph is a sym-
metric association scheme with two (nonidentity) classeshich one relation is
singled out to be the adjacency relation.

9.1.1 Simple examples

Easy examples of strongly regular graphs:

(i) A quadrangle is strongly regular with paramet&ts2,0,2).

(i) A pentagon is strongly regular with paramet¢®s2,0,1).

(iii) The 3 x 3 grid, the Cartesian product of two triangles, is strongigular
with parameterg$9,4,1, 2).

(iv) The Petersen graph is strongly regular with parametes3,0,1).

(Each of these graphs is uniquely determined by its parasjete if you do not
know what a pentagon is, or what the Petersen graph is, tfireedeét.)

Each of these examples can be generalized in numerous waysx&mple,

(v) Letq=4t + 1 be a prime power. ThRaley graphPaleyq) is the graph with
the finite fieldlFy as vertex set, where two vertices are adjacent when thesr dijf
a (nonzero) square. It is strongly regular with parameférs- 1, 2t,t — 1,t), as we

113



114 9 Strongly regular graphs

shall see below. Doing this fay= 5 andqg = 9, we find the examples (ii) and (iii)
again. Forg = 13 we find a graph that is locally a hexagon. ot 17 we find a
graph that is locally an 8-gon + diagonals.

(vi) Themx mgrid, the Cartesian product of two complete graphsmrertices,
is strongly regular with parametefs?,2(m—1),m—2,2) (for m> 1). Form= 2
andm = 3 we find the examples (i) and (iii) again.

(vii) The complete multipartite grapKm.a, with vertex set partitioned intm
groups of size, where two points are adjacent when they are from differesgs,
is strongly regular with parametefima (m—1)a, (m—2)a, (m—1)a) (form> 1 and
a>1). Form=a= 2 we find Example (i) again.

Thecomplemenof a graph™ is the graph™ with the same vertex set &s where
two vertices are adjacent if and only if they are nonadjagehnt. The complement
of a strongly regular graph with parametévsk, A, i) is again strongly regular, and
has parameters,v—k— 1 v—2k+ u—2,v—2k+A). (Indeed, we keep the same
association scheme, but now single out the other nonigeelition.)

(viii) The Paley graph Paldy) is isomorphic to its complement. (Indeed, an
isomorphism is given by multiplication by a nonsquare.) &rtigular we see that
the pentagon and thex33 grid are (isomorphic to) their own complements.

(ix) The disjoint unionmK, of m complete graphs of siza&is strongly regular
with parametergma a— 1,a— 2,0) (for m> 1 anda > 1). These graphs are the
complements of those in Example (vii).

(x) Thetriangular graphon the pairs in am-set, denoted by (m), or by (%),
has these pairs as vertices, where two pairs are adjacenewdrethey meet in one
point. These graphs are strongly regular, with parame{8hs 2(m— 2),m— 2, 4),
if m> 4. Form= 4 we findKs». Form=5 we find the complement of the Petersen
graph.

The four parameters are not independent. Indeqd AfO we find the relation

v:1+k+w

by counting vertices at distance 0, 1 and 2 from a given vertex

9.1.2 The Paley graphs

Above we claimed that the Paley graphs (with vertexIggtwhereq is a prime
power congruent 1 mod 4, and where two vertices are adjade their difference
is a nonzero square) are strongly regular. Let us verify this

Proposition 9.1.1 The Paley graptPaley(q) with g= 4t + 1 is strongly regular with
parametergV,k, A, i) = (4t+1,2t,t — 1,t). It has eigenvalues K1+ ,/7) /2 with
multiplicities 1, 2t, 2t, respectively.
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Proof. The values for andk are clear. Lel : Fq — {—1,0,1} be the quadratic
residue character defined ky(0) = 0, x(x) = 1 whenx is a (nonzero) square,
and x (x) = —1 otherwise. Note thay, x(x) = 0, and that for nonzera we have
s, X(Z—az = S220X(1—2)=—1. NowA andy follow from

4% 1=% (X(z=x+D(x(z—y)+1) = -1-2x(x—y)+(q—2).

For the spectrum, see Theorem 9.1.3 below. O

9.1.3 Adjacency matrix

For convenience we call an eigenvakhastrictedif it has an eigenvector perpendic-
ular to the all-ones vectdr.

Theorem 9.1.2 For a simple graph™ of order v, not complete or edgeless, with
adjacency matrix A, the following are equivalent:

(i) I is strongly regular with parameter,k, A, i) for certain integers kA, p,
(i) A2= (A — u)A+ (k— )l + pJd for certain real numbers K, y,
(iii) A has precisely two distinct restricted eigenvalues.

Proof. The equation in (ii) can be rewritten as
A2 =Kl +AA+p[@—1—A).

Now (i) <= (ii) is obvious.

(i) = (iii): Let p be a restricted eigenvalue, anda corresponding eigenvector
perpendicular td. ThenJu = 0. Multiplying the equation in (ii) on the right by
u yields p? = (A — u)p + (k— p). This quadratic equation ip has two distinct
solutions. (IndeedA — p)? = 4(u — k) is impossible sinc@t < kandA <k—1.)

(iii) = (ii): Let r ands be the restricted eigenvalues. Thén-rl )(A—sl) = aJ for
some real numbex. SoA? is a linear combination oA, | andJ. O

9.1.4 Imprimitive graphs

A strongly regular graph is callednprimitive if it, or its complement, is discon-
nected, angbrimitive otherwise. Imprimitive strongly regular graphs are boring

If a strongly regular graph is not connected, then- 0 andk = A + 1. And
conversely, ifu =0 ork = A + 1 then the graph is a disjoint uni@Ky, of some
numbera of complete graphKy,. In thiscaser=am k=m—-1,A =m—-2,u=0
and the spectrum ign—1)2, (—1)am-1),



116 9 Strongly regular graphs

If the complement of a strongly regular graph is not conrsdteenk = . And
conversely, itk = u then the graph is the complete multipartite grdffim, the
complement o&K,, with parameters =am k=pu = (a—1)m, A = (a—2)mand
spectrumia— 1)mt, 0Am™-1 (—m)a-1,

Letr ands (r > s) be the restricted eigenvalues Af For a primitive strongly
regular graph one hds>r > 0 ands < —1.

9.1.5 Parameters

Theorem 9.1.3Let I' be a strongly regular graph with adjacency matrix A and
parametergv,k,A, ). Let r and s(r > s) be the restricted eigenvalues of A and let
f, g be their respective multiplicities. Then

(i) k(k—1—A)=p(v—k—-1),
(i) rs=p—k r+s=A—p,
(iii) f g:%(v_leW)
9 —s .
(iv) If r and s are non-integral, then £ g and (v,k,A, 1) = (4t +1,2t,t — 1t)
for some integer t.

Proof. (i) Fix a vertexx of I'. Let " (x) and A(x) be the sets of vertices adja-
cent and non-adjacent i respectively. Counting in two ways the number of edges
betweern™ (x) andA(x) yields (i). The equations (ii) are direct consequences efTh
orem 9.1.2(ii), as we saw in the proof. Formula (iii) follofvem f +g=v—1 and

0 = traceA = k+ fr +gs=k+ 3(r +)(f +9) + 5(r —s)(f —g). Finally, when

f # g then one can solve farands in (iii) (using (ii)) and find thatr ands are ra-
tional, and hence integral. Biit= g implies (u — A)(v— 1) = 2k, which is possible
only foruy—A =1,v=2k+1. O

These relations imply restrictions for the possible valfagbe parameters. Clearly,
the right hand sides of (iii) must be positive integers. Ehae the so-calledtio-
nality conditions

9.1.6 The half case and cyclic strongly regular graphs

The case of a strongly regular graph with parameteisA , 1) = (4t +1,2t,t —1t)

for some integet is called thehalf case Such graphs are also callednference
graphs If such a graph exists, theris the sum of two squares, see Theorem 10.4.2
below. The Paley graph$9.1.2,§10.4,§13.6) belong to this case, but there are
many further examples.

A characterization of the Paley graphs of prime order ismgive
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Proposition 9.1.4 (Kelly [230], Bridges & Mena [41])A strongly regular graph
with a regular cyclic group of automorphisms is a Paley grayith a prime number
of vertices.

(See the discussion of translation association scheme€h[B1], §2.10. This
result has been rediscovered several times.)

9.1.7 Strongly regular graphs without triangles

As an example of the application of the rationality condifowe classify the
strongly regular graphs of girth 5.

Theorem 9.1.5 (Hoffman & Singleton [211])Suppos€V,k,0,1) is the parameter
set of a strongly regular graph. Theér k) = (5,2), (10,3), (50,7) or (325057).

Proof. The rationality conditions imply that eithdr= g, which leads tqv, k) =
(5,2), orr —sis an integer dividingr + s)(v— 1) + 2k. By Theorem 9.1.3(i)—(ii)
we have

s=—r—1 k=r’+r+1 v=r*+2r343r2 4+ 2r +2,

and thus we obtain=1, 2 or 7. O

The first three possibilities are uniquely realized by thetagon, the Petersen graph
and the Hoffman-Singleton graph. For the last case existenanknown (but see
§11.5.1).

More generally we can look at strongly regular graphs ofhgat least 4. Seven
examples are known.

(i) The pentagonwith parameters (5,2,0,1).

(ii) The Petersen graphwith parameters (10,3,0,1). This is the complement of
the triangular grapf (5).

(iif) The folded 5-cubewith parameters (16,5,0,2). This graph is obtained from
the 5-cube 2 on 32 vertices by identifying antipodal vertices. (The céenpent of
this graph is known as the Clebsch graph.)

(iv) The Hoffman-Singleton graptwith parameters (50,7,0,1). There are many
constructions for this graph, cf., e.g., [531,3.1. A short one, due to N. Robertson,
is the following. Take 25 verticef§, j) and 25 verticegi, j)’ with i,j € Zs, and
join (i, j) with (i, j+ 1), (i,j) with (i, +2)’, and (i,k) with (j,ij + k)’ for all
i, ],k € Zs. Now the subset§, x) become pentagons, tliex)’ become pentagons
(drawn as pentagrams), and each of the 25 union@, ef with (j,*)" induces a
Petersen subgraph.

(v) The Gewirtz graph with parameters (56,10,0,2). This is the graph with as
vertices the 77 21 = 56 blocks of the unique Steiner syst&{8, 6,22) not con-
taining a given symbol, where two blocks are adjacent whew #ne disjoint. It is a
subgraph of the following.
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(vi) The M2, graph with parameters (77,16,0,4). This is the graph with as ver-
tices the 77 blocks of the unique Steiner sys®®16,22), adjacent when they are
disjoint. It is a subgraph of the following.

(vii) The Higman-Sims graphwith parameters (100,22,0,6). This is the graph
with as 1+ 22+ 77 vertices an elemem, the 22 symbols 08(3,6,22), and the
77 blocks 0fS(3,6,22). The elemento is adjacent to the 22 symbols, each symbol
is adjacent to the 21 blocks containing it, and blocks aracatjt when disjoint.
The (rank 3) automorphism group of this graptHiS.2, whereHS is the sporadic
simple group of Higman and Sims. This graph can be partiddng two halves,
each inducing a Hoffman-Singleton graph, cf. [5il]3.1.

Each of these seven graphs is uniquely determined by itsnedeas. It is un-
known whether there are any further examples. There arateifirmany feasible
parameter sets. For the paramet8®4, 57,0, 12) nonexistence was shown in Gavri-
lyuk & Makhnev [160] and in Kaski &)stergard [229].

9.1.8 Further parameter restrictions

Except for the rationality conditions, a few other restdos on the parameters are
known. We mention two of them. Thérein conditions due to Scott [295], can be
stated as follows:

(r+1)(k+r+2rs) < (k+r)(s+1)?,

(s+1)(k+s+2rs) < (k+s)(r+1)2

When equality holds in one of these, the subconstituentseofitaph (the induced
subgraphs on the neighbours and on the nonneighbours ota gaint) are both
strongly regular (in the wide sense) again. For exampléheérHigman-Sims graph
with parametergv,k, A, u) = (10022 0,6) andk,r,s = 22,2, —8 the second sub-
constituent of any point has parameté€rg, 16,0, 4).

Seidel'sabsolute boundor the number of vertices of a primitive strongly regular
graph (see Corollary 10.6.8 below) reads

v< f(f+3)/2, v<g(g+3)/2

For example, the parameter set (28,9,0,4) (spectriif®(—5)®) is ruled out
both by the second Krein condition and by the absolute bound.

A useful identity is an expression for tiieame quotien{cf. [51], 2.2.4 and 2.7.2).
One has
fg(r—s)? = vk(v—1—Kk).

(as is easy to check directly from the expressionsff@ndg given in Theorem
9.1.3(iii)). From this one immediately concludes that i prime, therr —s= /v
and we are in the ‘half casél kA, ) = (4t +1,2t,t —1,1).
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The Frame quotient, Krein conditions and absolute boundpeeial cases of gen-
eral (in)equalities for association schemes—see#l&at below. In Brouwer & van

Lint [59] one may find a list of known restrictions and constians. It is a sequel

to Hubaut’s [219] earlier survey of constructions.

Using the above parameter conditions, Neumaier [270] dstifreu-bound:

Theorem 9.1.6 For a primitive strongly regular graphu < s3(2s+ 3). If equality
holds, then r= —s?(2s+ 3).

Examples of equality in thei-bound are known fos = —2 (the Schifli graph,
with (v, k, A, u) = (27,16, 10,8)) ands= —3 (the McLaughlin graph, witkv,k, A, 1)
= (275162105 81)).

Brouwer & Neumaier [61] showed that a connected partialdingpace with
girth at least 5 and more than one line, in which every poinblnear withm other
points, contains at Iea%ztm(m+ 3) points. It follows that a strongly regular graph
with p = 2 either hak > A (A +3) or has(A +1)|k.

Bagchi [14] showed that anif; 1,-free strongly regular graph is either the
collinearity graph of a generalized quadrangle or satisfizs(A + 1)(A + 2). (It
follows that in the above condition gm = 2 the (A + 1)|k alternative only occurs
for them x mgrid, wherem= A +2.)

9.1.9 Strongly regular graphs from permutation groups

SupposeES is a permutation group, acting on a €2t Therank of the action is the
number of orbits ofc on Q x Q. (These latter orbits are call@dbitals.) If Ris an

orbital, or a union of orbitals, theff2,R) is a directed graph that admiBsas group
of automorphisms.

If G is transitive of rank 3 and its orbitals are symmetric (fdray € Q the
pairs (x,y) and (y,x) belong to the same orbital), say with orbitd|sR, S, where
I = {(x,x) | x € Q}, then(Q,R) and (Q,S) is a pair of complementary strongly
regular graphs.

For example, le6G be Syn{n) acting on a sek of size 5. This action induces an
action on the se® of unordered pairs of elements i and this latter action is rank
3, and gives the pair of grapfig5) andT (5), where this latter graph is the Petersen
graph.

The rank 3 groups have been classified by the combined effonbay people,
including Foulser, Kantor, Liebler, Liebeck and Saxl, s&2g, 242, 243].

9.1.10 Strongly regular graphs from quasisymmetric dessgn

As an application of Theorem 9.1.2, we show that quasisymenielock designs
give rise to strongly regular graphs.quasisymmetric desiga a 2{v,k, A ) design
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(seet4.8) such that any two blocks meet in eitheor y points, for certain fixed
distinctx, y. Given this situation, we may define a graplon the set of blocks, and
call two blocks adjacent when they meekipoints. LetN be the point-block matrix
of the design and the adjacency matrix df. ThenNTN =kl +xA+y(J—1 —A).
Since each oNNT, NJ, andJN is a linear combination of andJ, we see that
AZ? can be expressed in termsAfl,J, so that™ is strongly regular by part (i) of
Theorem 9.1.2. (For an application, $46.3.2.)

A large class of quasisymmetric block designs is providedhiey2{v,k,A) de-
signs withA =1 (also known as Steiner syste®&, k, v)). Such designs have only
two intersection numbers since no two blocks can meet in rtiae one point.
This leads to a substantial family of strongly regular gsgghcluding the trian-
gular graphsT (m) (derived from the trivial design consisting of all pairsiran
m-set).

9.1.11 Symmetric 2-designs from strongly regular graphs

Conversely, some families of strongly regular graphs |leadesigns. LefA be the
adjacency matrix of a strongly regular graph with paransstek,A,A) (i.e., with
A = u; such a graph is sometimes callefvek, A ) graph). Then, by Theorem 9.1.2

AAT = A2 = (k= A)I +AJ,

which reflects thaf is the incidence matrix of a symmetric(2-k, A ) design. (And

in this way one obtains precisely all symmetric 2-desigrsspesing a polarity with-
out absolute points.) For instance, the triangular gréf#) provides a symmetric
2-(15,8,4) design, the complementary design of the design of pointparks in
the projective spacBG(3,2). Similarly, if A is the adjacency matrix of a strongly
regular graph with parametefg k,A,A + 2), thenA+1 is the incidence matrix of a
symmetric 2¢v,k+ 1, A +2) design (and in this way one obtains precisely all sym-
metric 2-designs possessing a polarity with all points hitep For instance, the
Gewirtz graph with parameters (56,10,0,2) provides a hip:(56,11,2).

9.1.12 Latin square graphs

A transversal desigof strength tandindexA is a triple (X,¥, %), whereX is a
set of points¥ is a partition ofX into groups and% is a collection of subsets of
X calledblockssuch that (i} < |4/, (ii) every block meets every group in precisely
one point, and (iii) every-subset oiX that meets each group in at most one point is
contained in precisely blocks.

Suppos« is finite andt < |¢|. Then all group$ € ¢ have the same sizg, and
the number of blocks ia mf. Given a pointxy € X, the groups not omg together
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with the blocksB\ {xo} for Xo € B € # form a transversal design of strength 1
with the same index.

Equivalent to the concept of transversal design is thairtifogonal array An
orthogonal array with strengthand indexA over an alphabet of sizmis ak x N
array (withN = Am) such that for any choice ¢frows and prescribed symbols on
these rows there are precis@lycolumns that satisfy the demands.

Whent = 2 the strength is usually not mentioned, and one talks abangtersal
designsT D, (k,m) or orthogonal array®A, (m, k), wherek is the block size anth
the group size.

When A = 1 the index is suppressed from the notation. Now @&(k,m) or
OA(m,k) is equivalent to a set df — 2 mutually orthogonal Latin squares of or-
derm. (Thek rows of the orthogonal array correspond to row index, columaex,
and Latin square number; the columns correspond tafhgositions.)

The dual of a transversal design isnat An (m k)-netis a set ofn? points
together withkm lines partitioned intok parallel classes, where two lines from
different parallel classes meet in precisely one point.

Given a point-line incidence structure, theint graphor collinearity graphis the
graph with the points as vertices, adjacent when they atiaeat. Dually, theblock
graphis the graph with the lines as vertices, adjacent when theg hapoint in
common.

The collinearity graph of afm,t)-net, that s, the block graph of a transversal design
TD(t,m) (note the new use dfhere!), is strongly regular with parameters- nv,
k=t(m—1),A =m-2+(t—1)(t—2), u =t(t—1) and eigenvalues = m—t,

s= —t. One says that a strongly regular graph ‘is a pseudo Latiarsqgraph’, or
‘has Latin square parameters’ when theretasadm such that(v,k,A, 1) have the
above values. One also says that it f28(m,t) parameters’.

There is extensive literature on nets and transversal nesig

Proposition 9.1.7 Supposé is a strongly regular graph with O@n,t) parameters
with a partition into cocliques of size m. Then the graptobtained froml" by
adding edges so that these cocliques become cliques is agaimgly regular and
has OAm,t + 1) parameters.

Proof. More generally, lel” be a strongly regular graph with a partition into co-
cliques that meet the Hoffman bound. Then the grAgibtained fromT™ by adding
edges so that these cocliques become cliques has spectrum— 1, (r — 1)f,
(s+m—1)", (s—1)9", wherem is the size of the cocliques, ard=v/m— 1.
The proposition is the special case=r —s. O

For example, from the Hall-Janko graph wi\(10,4) parameter$100, 36, 12, 14)
and a partition into ten 10-cocliques (which exists) oneawmist a strongly regular
graph withOA(10,5) parameter$100,45,20,20), and hence also a symmetric de-
sign 2-(100,45,20). But a®A(10,5) (three mutually orthogonal Latin squares of
order 10) is unknown.
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9.1.13 Partial Geometries

A partial geometrywith parameter$s,t, o) is a point-line geometry (any two points
are on at most one line) such that all lines have sizé, there aré+1 lines on each
point, and given a line and a point outside, the point is neli witha points on the
given line. One calls this structurepay(s,t, a). Note that the dual of ag(s,t, a) is
apg(t,s a) (where ‘dual’ means that the names ‘point’ and ‘line’ are pped).

Partial geometries were introduced by Bose [33].

One immediately computes the number of points(s+1)(st+ a)/a and lines
b=(t+1)(st+a)/a.

The extreme examples of partial geometriesgeneeralized quadranglépartial
geometries witln = 1) and Steiner systen&2, K, V) (partial geometries witlr =
s+ 1). Many examples are also provided by nets (vith a) or their duals, the
transversal designs (with= a).

The collinearity graph of gg(s,t, a) is complete ifa = s+ 1, and otherwise
strongly regular with parametevs= (s+ 1)(st+a)/a, k=s(t+1),A =s—1+
t(a—1), u=a(t+1), and eigenvalue§;, =s—a, 6, = —t — 1. (Note: earlier we
useds for the smallest eigenvalue, but hexrkas a different meaning!)

A strongly regular graph is callegeometricwhen it is the collinearity graph of
a partial geometry. It is callggseudo-geometriwhen there are integesst, a such
that the parameters, k, A, i) have the above-given values.

Bose [33] showed that a pseudo-geometric graph with givemd sufficiently
larges must be geometric. Neumaier [270] showed that the same usinol works
in all cases, and hence derives a contradiction in the nengmsgeometric case.

Theorem 9.1.8 (Bose-NeumaierA strongly regular graph with sc —1 and r >
%s(s+ 1)(u +1) —1is the block graph of a linear space or transversal design.

It follows immediately (from this and thg-bound) that

Theorem 9.1.9 For any fixed s= —m there are only finitely many primitive strongly
regular graphs with smallest eigenvalue s, that are not tleekograph of a linear
space or transversal design withtl = —m. O

9.2 Strongly regular graphs with eigenvalue—2

For later use we give Seidel’s classification [299] of therstity regular graphs with
s=-2.

Theorem 9.2.1Let I be a strongly regular graph with smallest eigenvalug.
Thenl™ is one of

(i) the complete n-partite graphK», with parametergv,k, A, i) = (2n,2n—
2,2n—4.2n—-2),n> 2,
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(i) the lattice graph Lo(n) = K,OKp, with parametergv,k,A, u) = (n?,2(n —
1),n—2,2),n>3,
(iii) the Shrikhande graph, with parametefgk, A, 1) = (16 6,2, )
(iv) the triangular graph Tn) with parametergv,k, A, 1) = ((3),2(n ,N—2,
4),n>5,
(v) one of the three Chang graphs, with parameteri, A, u) = (28,12,6,4),
(vi) the Petersen graph, with parametéksk, A, 1) = (10,3,0,1),
(vii) the Clebsch graph, with parametefgk,A, 1) = (16,10,6,6),
(viii) the Schéfli graph, with parametersv, k, A, u) = (27,16, 10,8).

Proof. If I" is imprimitive, then we have case (i). Otherwise, findoound gives
p < 8, and the rationality conditions give + 2)|(u — 2)(u — 4) and integrality of
v gives u|2r(r+1). For u = 2 we find the parameters ah(n), for u = 4 those
of T(n), and for the remaining values fer only the parameter sets,k, A, ) =
(10,3,0,1), (16,10,6,6), and(27,16,10,8) survive the parameter conditions and
the absolute bound. It remains to show that the graph is ehiqietermined by
its parameters in each case. Now Shrikhande [308] proveglianiess of the graph
with L(n) parameters, with the single exceptionnof 4, where there is one more
graph, now known as the Shrikhande graph, and Chang [82,82¢@ uniqueness
of the graph withT (n) parameters, with the single exceptionmof 8, where there
are three more graphs, now known as the Chang graphs. Intiaéniag three cases
uniqueness is easy to see. O
Let us give definitions for the graphs involved.

The Shrikhande graplis the result of Seidel switching the lattice grapt{4) with
respect to an induced circuit of length 8. It is the complenaérthe Latin square
graph for the cyclic Latin square of order 4. It is locally acagon.

Drawn on a torus:

The threeChang graphsre the result of switching(8) (the line graph oKg) with
respect to (a) a 4-cocliqué, that is, 4 pairwise disjoint edges iKg; (b) Kz + Ks,
that is, 8 edges forming a triangle and a (disjoint) pentagdss; (c) the line graph
of the cubic graph formed by an 8-circuit plus edges betwexosite vertices.

TheClebsch graphs the complement of the folded 5-cube.
TheSchéfli graphis the complement of the collinearity graph®Q(2,4) (cf. §9.6).

9.3 Connectivity

For a graph™, let [i(x) denote the set of vertices at distandeom x in I". Instead
of 1(x) we writel” (x).
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Proposition 9.3.1 If I" is a primitive strongly regular graph, then for each vertex x
the subgraptz(x) is connected.

Proof. Note thatl(x) is regular of valencyk — p. If it is not connected, then
its eigenvalu&k — u would have multiplicity at least two, and hence would be not
larger than the second largest eigenvaloé/ . Thenx? 4 (u —A)x+ u —k < 0 for
x=k—p,i.e.,(k—u)(k—A —1) <0, contradiction. O

The vertex connectivitk (") of a connected non-complete graphs the smallest
integermsuch that™ can be disconnected by removingvertices.

Theorem 9.3.2([60]). Let " be a connected strongly regular graph of valency k.
Thenk (I") =k, and the only disconnecting sets of size k are the setsréiglhbors
of some vertex x.

Proof. Clearly,k(I") < k. Let She a disconnecting set of vertices not containing
all neighbors of some vertex. Lét\ S= A+ B be a separation df \ S. Since the
eigenvalues oAU B interlace those of , it follows that at least one oA andB,
sayB, has largest eigenvalue at mostt follows that the average valency Bfis at
mostr. SinceB has an edge, > 0.

Now let |§ < k. SinceB has average valency at mastwe can find two points
x,yin BsuchthatSNI (x)|+|SNT (y)| > 2(k—r), so that these points have at least
k —2r common neighbors i8.

If I has nonintegral eigenvalues, the we havk, A, 1) = (4t +1,2t,t — 1,t) for
somet, andr = (—1++/v)/2. The inequality mafd, 1) > k— 2r givest < 2, but
for t = 2 the eigenvalues are integral, so we havel andl” is the pentagon. But
the claim is true in that case.

Now letr,sbe integral. Ifs < —3, thenuy =k+rs<k—3randA = pu+r+s<
k—2r — 3, so that no two points can hake- 2r common neighbors.

Therefores = —2, and we have one of the eight cases in Seidel’s classificatio
But not case (i), since> 0.

Since bothA andB contain an edge, bofB andA have size at mogt = v— 2k +
A, so that bothA andB have size at least— A, andv > 3k— 2A. This eliminates
cases (vii) and (viii).

If Bis a clique, theriB| <r+1=k—A —1, contradiction. SoB contains two
nonadjacent vertices, and their neighbors must s, so X— u < |B|+ |5 -2
andk—u+2<|B| < p.

In cases (iii), (v), (vi) we havgl = k — u + 2, so equality holds an{B| = u
and|S| = k. Sincev < 2u +k, we have|A| < u and A must be a clique (of size
v—k— = k—A). But the Petersen graph does not contain a 3-clique, and the
Shrikhande graph does not contain 4-cliques; alsé, i a 6-clique in a Chang
graph, anda,b,c € A, thenl"(a)N'S, I (b)N'S, andl™ (c) N Sare three 7-sets in the
12-setSthat pairwise meet in precisely two points, impossible séliminates cases
(iii), (v), (vi).

We are left with the two infinite families of lattice graphsmiangular graphs. In
both cases itis easy to see that ij are nonadjacent, then there eXxigtaths joining
xandy, vertex disjoint apart from, y, and entirely contained ifx,y} U™ (X)UT (y).
Hence|S| = k, and ifSseparates,y thenSC I (x) UT (y).
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The subgrapd := T\ ({x,y} Ul (x) UT (y)) is connected (if one removes a
point and its neighbors from a lattice graph, the result imalker lattice graph, and
the same holds for a triangular graph), except in the cadgedfiangular grapt@‘;’)
whereA is empty.

Each vertex of ' (x) U™ (y)) \ Shas a neighbor id and we find a path of length
4 disjoint from S joining x andy, except in the case of the triangular gra@),
where each vertex df (x) \ Sis adjacent to each vertex bf(y) \ S, and we find a
path of length 3 disjoint fron$joining x andy. O

We remark that it is not true that for every strongly reguleapinI” with vertexx
the vertex connectivity of the subgrapy(x) equals its valencit— p. A counterex-
ample is given by the graph that is the complement of the strongly regular graph
A with parameters (96,19,2,4) constructed by Haemerg fo#, see [189], p. 76 or
[59], §8A. Indeed, we havA (x) = Kz+4C4, so thatlz(x) has degree 16 and vertex
connectivity 15.

Erdds & Chvatal [91] showed that if a graph on at least 3 vertices has vertex con-
nectivity k and largest independent set of sizeanda < k thenl” has a Hamilto-
nian circuit. Bigalke & Jung [27] showed thatl/if is 1-tough, witha < kK +1 and

k >3, andl” is not the Petersen graph, thEris Hamiltonian. Such results imply
for example that if” is strongly regular with smallest eigenvalsieands is not in-
tegral, or—s< u+1, thenl" is Hamiltonian. This, together with explicit inspection
of the Hoffman-Singleton graph, the Gewirtz graph, andihe graph, shows that
all connected strongly regular graphs on fewer than 99 cestare Hamiltonian,
except for the Petersen graph.

9.4 Cocliques and colorings

In §2.5 we have derived some bounds the size of a coclique in tefrgigenvalues.
These bounds are especially useful for strongly regulgstgraMoreover, strongly
regular graphs for which the bounds of Hoffman and Cvetkave tight have a very
special structure:

Theorem 9.4.1 Letl" be a strongly regular graph with eigenvalues k (degree),d an
s (r > s) and multiplicitiesl, f and g, respectively. Suppose tifiats not complete
multi-partite (i.e. r+ 0) and let C be a coclique if. Then

() ICl<g,
(i) [C| <ns/(s—k),
(iii) if |C| = g = ns/(s—k), then the subgrapii’ of I" induced by the vertices
which are not in C, is strongly regular with eigenvalués=kk + s (degree),
r' =rand $ =r +s and respective multiplicitie f —g+1and g— 1.

Proof. Parts (i) and (ii) follow from Theorems 3.5.1 and 3.5.2. AssC| =g =
ns/(s—k). By Theorem 2.5.4[" is regular of degre&+s. Apply Lemma 2.11.1
toP=A-— k—;rJ, whereA is the adjacency matrix df. Sincel” is regular,A and
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J commute and therefoie has eigenvaluesands with multiplicities f + 1 andg,
respectively. We tak€ = —¥-'J of size|C| = g andR= A’ — ¥-LJ, whereA' is
the adjacency matrix of /. Lemma 2.11.1 gives the eigenvaluesRofr (f +1—g
times),s (0 times),r +s(g— 1 times) and +s+g(k—r)/n (1 time). Sincel’ is
regular of degre& + sandA’ commutes with] we obtain the required eigenvalues
for A'. By Theorem 9.1.Z "/ is strongly regular. O

For instance, agm— 1)-coclique inT (m) is tight for both bounds and the graph on
the remaining vertices i§(m—1).

Also for the chromatic number we can say more in case of aglyaagular graph.
Theorem 9.4.21f I" is a primitive strongly regular graph, not the pentagon,rthe

X(ryz1-2.

Proof. Sincerl is primitive,r > 0 and by Corollary 3.6.4, it suffices to show that
the multiplicity g of ssatisfiegy > —s/r for all primitive strongly regular graphs but
the pentagon. First we check this claim for all feasible paater sets with at most
23 vertices. Next we consider strongly regular graphs with24 andr < 2. The
complements of these graphs have —3, and by Theorem 9.1.3 (iv3= —2. By
use of Theorem 9.2 we easily find that all these graphs sdtisfglaim.

Assume tharl is primitive, thatr > 2, and that the claim does not hold (that is
g< —s/r). Now (v—1—g)r +gs+ k=0 gives

g? < —sg/r=v—1—g+k/r<v—1—-g+k/2<3v/2—qg.

This impliesg(g+ 3) < 3v/2 = 2,/3v/2. By use of the absolute bound< g(g+
3)/2, we getv/2 < 2,/3v/2, sov < 24. Contradiction. O

For example if” is the complement of the triangular grapkm) thenrl” is strongly
regular with eigenvaluds= %(mf 2)(m—3),r =1ands=3—m(form>4). The
above bound giveg (") > m— 2, which is tight, whilst Hoffman’s lower bound
(Theorem 3.6.2) equa%m. On the other hand, i is even, Hoffman’s bound is
tight for the complement of whilst the above bound is much less. We saw (see
83.6) that a Hoffman coloring (i.e. a coloring with-1k/s classes) corresponds to
an equitable partition of the adjacency matrix. For the cemgnt this gives an
equitable partition into maximal cliques, which is called@ead of the strongly
regular graph. For more application of eigenvalues to therohatic number we
refer to [149] and [169]. See al$0.7.

9.5 Automorphisms

Let A be the adjacency matrix of a graph andP the permutation matrix that
describes an automorphisgof . ThenAP = PA. If ¢ has ordem, thenP™ =1,
so that the eigenvalues AP arem-th roots of unity times eigenvalues Af
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Apply this in the special case of strongly regular graphg®sep hasf fixed
points, and moveg points to a neighbor. Theh= trP andg = tr AP. Now consider
M = A—sl. It has spectruntk — s), (r —s)f, 09 with multiplicities written as ex-
ponents. HenchIP has eigenvalues—s, (r —s){ for certainm-th roots of unity,
and 0. It follows thag —sf =trMP = k—s (modr —s).

For example, for the Petersen graph every automorphisrsfisatf = g+
1 (mod 3.

For example, for a hypothetical Moore graph on 3250 vertick§11.5.1), every
automorphism satisfiesf8-g= 5 (mod 15.

In some cases, where a structure is given locally, it mukeeibe a universal
object, or a quotient, where the quotient map preserves sbieecture, that is, only
identifies points that are far apart. In the finite case argusbke those in this
section can be used to show that g = 0 is impossible, so that nontrivial quotients
do not exist. For an example, see [50].

9.6 Generalized quadrangles

A generalized n-gois a connected bipartite graph of diameteand girth 2. (The
girth of a graph is the length of a shortest circuit.)

Itis common to call the vertices in one color class of the uaig-coloringpoints
and the other verticdines For example, a generalized 3-gon is the same thing as a
projective plane: any two points have an even distance at &deence are joined
by a line, and similarly any two lines meet in a point; finallyotlines cannot meet
in two points since that would yield a quadrangle, but théhgs 6.

A generalized quadranglie a generalized 4-gon. In terms of points and lines, the
definition becomes: generalized quadranglis an incidence structur@, L) with
set of points? and set of line4, such that two lines meet in at most one point, and
if pis a point not on the linen, then there is a unique poigonmand a unique line
non p such tha is onn.

9.6.1 Parameters

A generalizedh-gon is calledfirm (thick) when each vertex has at least 2 (resp. 3)
neighbors, that is, when each point is on at least two (tHmnee3, and each line is
on at least two (three) points.

An example of a non-firm generalized quadrangle is a penciines on one
common pointg. Each point different fronxg is on a unique line, anf(xo) = 0.

Proposition 9.6.1 (i) If a generalized n-gori™ has a pair of opposite verticesy
where x has degree at least two, then every vertex has an ibgpasd/™ is firm.
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(ii) A thick generalized n-gon has parameters: each line thessame number of
points, and each point is on the same number of lines. Wheeaver n is odd then
the number of points on each line equals the number of limesigih each point.

Proof. For a vertexx of a generalizeah-gon, letk(x) be its degree. Call two ver-
tices of a generalized-gon oppositewhen they have distanae If x andy are
opposite then each neighbor of one is on a unique shortdstg#ie other, and we
find k(x) = k(y).

(i) Being non-opposite gives a bijection betweEfx) andl (y), and hence if
k(x) > 1 then also each neighbopf x has an opposite and satisflég) > 1. Since
I is connected, it is firm.

(ii) Let x,z be two points joined by the ling. Let w be opposite toy. Since
k(w) > 2 there is a neighbarof w opposite to botlx andz. Nowk(x) = k(u) = k(z).
Sincerl is connected and bipartite this shows tk@p) is independent of the point
p. If nis odd, then a vertex opposite a point is a line. O

A firm, non-thick generalized quadrangle is the vertex-ddgilence graph of a
complete bipartite graph.

The halved graphof a bipartite graph™, is the graph on the same vertex set,
where two vertices are adjacent when they have distancd 2 irhe point graph
andline graphof a generalizedh-gon are the two components of its halved graph
containing the points and lines, respectively.

The point graph and line graph of a finite thick generalinaggbn are distance-
regular of diametefn/2| (see Chapter 12). In particular, the point graph and line
graph of a thick generalized quadrangle are strongly redsése Theorem 9.6.2).

It is customary to leGQ(s,t) denote a finite generalized quadrangle veth 1
points on each line anich- 1 lines on each point. Note that it is also customary to
usesto denote the smallest eigenvalue of a strongly regulargispin this context
one has to be careful to avoid confusion.

It is a famous open problem whether a thick generalizegbn can have finite
s and infinitet. In the special case of generalized quadrangles a littlen@svk:
Cameron, Kantor, Brouwer, and Cherlin [77, 46, 84] show thi&t cannot happen
fors+1<5.

9.6.2 Constructions of generalized quadrangles

Supposé#/ is a vector space provided with a nondegenerate quadraticffaf Witt
index 2 (that is, such that the maximal totally singular galees have vector space
dimension 2). Consider in the projective sp&éthe singular projective points and
the totally singular projective lines. These will form a gealized quadrangle.
Indeed,f defines a bilinear forrB onV viaB(x,y) = f (x+y) — f(x) — f(y). Call
x andy orthogonalwhenB(x,y) = 0. When two singular vectors are orthogonal, the
subspace spanned by them is totally singular. And conwgliseh totally singular
subspace any two vectors are orthogonal. The collectiotl @kators orthogonal
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to a given vector is a hyperplane. We have to check th&t= (x) is a singular
projective point, andL is a totally singular projective line not containify thenP
has a unique neighbor dn But the hyperplane of vectors orthogonaktmeetsL,
and cannot contaih otherwisef would have larger Witt index.

This construction produces generalized quadrangles obéray fields. IfV is a

vector space over a finite fielfy, then a nondegenerate quadratic form can have

Witt index 2 in dimensions 4, 5, and 6. A hyperbolic quadrididimensions yields

a generalized quadrangle with parameté3(q,1), a parabolic quadric in 5 di-

mensions yields a generalized quadrangle with param@®(s,q), and an elliptic

quadric in 6 dimensions yields a generalized quadranglepétameter§Q(q, ¢°).
Other constructions, and other parameters occur.

In the below we’ll meelGQ(2,t) fort = 1,2,4 andGQ(3,9). Let us give simple
direct descriptions fo6Q(2,1) andGQ(2,2).

The uniqueGQ(2,1) is the 3-by-3 grid: 9 points, 6 lines. Its point graph is
K3OKs.

The uniqueGQ(2,2) is obtained by taking as points the 15 pairs from a 6-set,
and as lines the 15 partitions of that 6-set into three pliosv collinearity is being
disjoint. Given a poingc, and a line{ab, cd, e f}, the two pointsab andcd on this
line are not disjoint fronac, so thate f is the unique point on this line collinear with
ac, and the line joiningac andef is {ac,bd, ef}.

9.6.3 Strongly regular graphs from generalized quadrangle

As mentioned before, the point graph (collinearity grapha dinite thick general-
ized quadrangle is strongly regular. The parameters arheddue can be obtained
in a straightforward way (see exercises).

Theorem 9.6.2 The collinearity graph of a finite generalized quadranglé¢hwa-
rameters GQs,t) is strongly regular with parameters

v=(s+1)(st+1), k=s(t+1), A=s—-1, u=t+1
and spectrum
s(t+ 1) with multiplicity 1,
s—1 with multiplicity st(s+1)(t+1)/(s+t1),
—t — 1 with multiplicity $(st+1)/(s+t1).

In particular, if a GQ(s,t) exists, ther{s+t)|s?(st+1).
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9.6.4 Generalized quadrangles with lines of size

Let aweak generalized quadrangbe a point-line geometry with the properties that
two lines meet in at most one point, and given a lmand a pointp outside there

is a unique pai(q, n) such thatp ~ n ~ q ~ m, where~ denotes incidence. The
difference with the definition of a generalized quadrangléhat connectedness is
not required. (But of course, as soon as there is a point ainé glen the geometry
is connected.)

Theorem 9.6.3 A weak generalized quadrangle where all lines lines have3ig
one of the following:

() acoclique (no lines),

(i) a pencil (all lines passing through a fixed point),
(i) the unique G@2,1),

(iv) the unique G@2,2),

(v) the unique G@,4).

Proof. After reducing to the case dBQ(2,t) one finds(t + 2)|(8t + 4), i.e.,
(t+2)]12, i.e.,t € {1,2,4,10}, andt = 10 is ruled out by the Krein conditions.
Alternatively, or afterwards, notice that the point graplase eigenvalue 1, so that
their complements have smallest eigenvahk® and apply Seidel’s classification.
Cases (iii), (iv), (v) here have point graphs that are themlements of the lattice
graphKs[OKs, the triangular grapfi (6), and the Scfifli graph, respectively. O

This theorem can be used in the classification of root lattieénere the five cases
correspond t@\,, Dy, Es, E7, Eg, respectively.

And the classification of root lattices can be used in thesdiaation of graphs
with smallest eigenvalue-2. Indeed, for such graphs+ 2l is positive semidefi-
nite, and one can represent these graphs by vectors in alBaclspace such that
(x,y) = 2,1,0 whenx andy are equal, adjacent, nonadjacent, respectively. The lat-
tice spanned by these vectors is a root lattice.

9.7 The (81,20,1,6) strongly regular graph

Large parts of this section are taken from [54]. Sometimegytlaph of this section
is called theBrouwer-Haemers graph

Let =(X,E) be a strongly regular graph with parameter, A, 1)=(81,20,1,6).
Thenl has spectrunf20t,2%0, 720}, where the exponents denote multiplicities.
We will show that up to isomorphism there is a unique suchlyfapgMore generally
we give a short proof for the fact (due to lvanov & Shpecto2®d]) that a strongly
regular graph with parametefgk, A, 1) = (g%, (9° +1)(q—1),q—2,q(q— 1)) that

is the collinearity graph of a partial quadrangle (thatisyhich all maximal cliques
have sizeq) is the second subconstituent of the collinearity graph geaeral-
ized quadrangl&Q(q,q?). In the special casg = 3 this will imply our previous
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claim, sinceA = 1 implies that all maximal cliques have size 3, and it is kn¢see
Cameron, Goethals & Seidel [79]) that there is a unique gdized quadrangle
GQ(3,9) (and this generalized quadrangle has an automorphism ¢yi@nsitive on
the points).

9.7.1 Descriptions

Let us first give a few descriptions of our graph on 81 vertid&ste that the unique-
ness shows that all constructions below give isomorphiplisasomething, which
is not immediately obvious from the description in all cases

A. Let X be the point set 0AG(4, 3), the 4-dimensional affine space oWy, and

join two points when the line connecting them hits the hyfsere at infinity (a
PG(3,3)) in a fixed elliptic quadricQ. This description shows immediately that
v =81 andk = 20 (since|Q| = 10). AlsoA = 1 since no line meet® in more than
two points, so that the affine lines are the only trianglesaliy u = 6, since a point
outsideQ in PG(3,3) lies on 4 tangents, 3 secants and 6 exterior lines with réspec
to Q, and each secant contributes 2.toWe find that the group of automorphisms
containsG = 3*- PGQ - 2, where the last factor 2 accounts for the linear transfor-
mations that do not preserve the quadratic f@nbut multiply it by a constant. In
fact this is the full group, as will be clear from the uniqussi@roof.

B. A more symmetric form of this construction is found by stagtivith X = 1+ / (1)
in Fg provided with the standard bilinear form. The correspogdjoadratic form
(Q(x) = wt(x), the number of nonzero coordinatesxfis elliptic, and if we join
two verticesx+ (1),y+ (1) of X whenQ(x—y) =0, i.e., when their difference
has weight 3, we find the same graph as under A. This congirustiows that the
automorphism group contair® = 3*- (2 x Sym(6)) - 2, and again this is the full
group.

C. There is a unique strongly regular graphwith parameterg112 30,2,10), the
collinearity graph of the unique generalized quadrangkh warameter§&Q(3,9).

Its second subconstituent is &8il, 20,1, 6) strongly regular graph, and hence iso-
morphic to our graplf . (See Cameron, Goethals & Seidel [79].) We find that Aut
contains (and in fact it equals) the point stabilizeti{3) - Dg acting onGQ(3,9).

D. The graph is the coset graph of the truncated ternary Golay c@dike the
3* cosets ofC and join two cosets when they contain vectors differing ity@ame
place.

E. The graphl” is the Hermitean forms graph dfg; more generally, take the®
matricesM overFg satisfyingM " = M, where™ denotes the field automorphism
X — X4 (applied entrywise), and join two matrices when their difece has rank 1.
This will give us a strongly regular graph with parameter, A, 1) = (g%, (° +
1(9-1),a-2,q(a—1)).
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F. The graph™ is the graph with vertex ség1, where two vertices are joined when
their difference is a fourth power. (This construction wagg by Van Lint & Schri-
jver [245].)

9.7.2 Uniqueness

Now let us embark upon the uniqueness proof./Let (X, E) be a strongly regular
graph with parameters,k,A, 1) = (g*, (¢ +1)(q—1),q—2,q(q— 1)) and assume
that all maximal cliques (we shall just call them linesyohave sizey. LetI” have
adjacency matrixA. Using the spectrum oA - it is {k%, (q—1)7,(q— 1—¢?)9},
wheref = q(q—1)(¢? +1) andg = (q— 1)(g + 1) - we can obtain some structure
information. LetT be the collection of subsets of of cardinality g° inducing a
subgraph that is regular of degrge- 1.

1. Claim. If T € T, then each point of X T is adjacent to g points of T.
Look at the matrixB of average row sums @, with sets of rows and columns
partitioned according t§T, X \ T }. We have

p_[a-1d(@-1)
¢ k—q

with eigenvaluesk and q— 1 — ¢?, so interlacing is tight, and by Corol-
lary 2.5.4(ii) it follows that the row sums are constant ickealock ofA.

2. Claim. Given a line L, there is a uniqug E T containing L.
Let Z be the set of vertices iX \ L without a neighbor irL. Then|Z| =
q*—g—q(k—q+1) =qg®—q. LetT = LUZ. Each vertex o is adjacent to
gu = g2(q— 1) vertices with a neighbor ih, soT induces a subgraph that is
regular of degreg— 1.

3. Claim. If T € T and xe X\ T, then x is on at least one line L disjoint from
T, and T is disjoint from T for any such line L.
The pointx is ong? + 1 lines, but has onlg? neighbors inT. Each point of
L hasg? neighbors iril, so each point of has a neighbor oh and hence is
notinT,.

4. Claim. Any T € T induces a subgrapA isomorphic to &Kq.
It suffices to show that the multiplicityn of the eigenvalueg— 1 of A is
(at least)g? (it cannot be more). By interlacing we find > ¢ — g, so we
need some additional work. Lbt := A— (q— 1/g?)J. ThenM has spectrum
{(g—1)*1 (g—1—g?)9}, and we want thaM, the submatrix oM with
rows and columns indexed bly, has eigenvalug — 1 with multiplicity (at
least)g® — 1, or, equivalently (by Lemma 2.11.1), thiddt\ + has eigenvalue
q— 1— g? with multiplicity (at least)g— 2. But for eachJ € TwithUNT =0
we find an eigenvectoy = (2—q)Xu + Xx\(tuu) of Mx\7 with eigenvalue
q—1—?. Acollection{xy|U € U} of such eigenvectors cannot be linearly
dependent wheld = {U;1,Uy,...} can be ordered such tHat ¢ Uj<iUj and
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UU # X\ T, sowe can find (using Claim 3) at le@st 2 linearly independent
such eigenvectors, and we are done.

5. Claim. Any T € T determines a unique partition of X into memberg of
Indeed, we saw this in the proof of the previous step.

Let 1 be the collection of partitions oX into members off. We have|T| =
q(g? +1) and || = ¢? + 1. Construct a generalized quadran@€)(q,g?) with
point set{eo} UT U X as follows: They? + 1 lines one are{eo} U rtfor e 1. The
g remaining lines on each € T are{T}UL for L C T. It is completely straight-
forward to check that we really have a generalized quades®@(q, o?).

9.7.3 Independence and chromatic numbers

We havea (') =15andx(lr) =7.

Clearly, the independence number of our graph is one leaghieandependence
number of the uniqu&Q(3,9) of which itis the second subconstituent. So it suffices
to show thatr (A) = 16, whered is the collinearity graph 06Q(3,9).

Itis easy to indicate a 16-coclique: defi@€)(3,9) in PG(5, 3) provided with the
nondegenerate elliptic quadratic forz@l x2. There are 112 isotropic points, 80 of
weight 3 and 32 of weight 6. Among the 32 of weight 6, 16 havedioate product
1, and 16 have coordinate produet, and these two 16-sets are cocliques.

That there is no larger coclique can be seen by cubic counting

LetC be a 16-coclique id. Let there bay; vertices outside that havaeighbors
inside. Then

=96 Yin=480 Yy ('2) n=1200 Y (;) n = 224Q

so that
S (i—4)?(i—10)n =0.

(Here the quadratic counting is always possible in a styoregular graph, and the
last equation can be written because the second subcemstisttself strongly reg-
ular.) Now each pointis on 10 lines, and hence cannot have than 10 neighbors
in C. It follows that each point has either 4 or 10 neighbor€irnn particular,C is
maximal.

As an aside: Solving these equations gimgs= 80, njg = 16. LetD be the set
of 16 vertices with 10 neighbors i@. If two verticesd;,d, € D are adjacent then
they can have only 2 common neighborsGnbut each has 10 neighbors @)
contradiction. So, alsb is a 16-coclique, which means that 16-cocliqued icome
in pairs.

Since 8J15> 5, we havex (") > 6. SinceA has a split into two Gewirtz graphs,
and the Gewirtz graph has chromatic number 4, it follows gh@t) < 8. (And in
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fact equality holds.) This shows that for our grapki ¢ (") < 8. Infactx (') =7
can be seen by computer (Edwin van Dam, pers. comm.).

SinceA = 1, the maximum clique size equals 3. And from the uniquensessf p
it is clear that™ admits a partition into 27 triangles. So the complemenf dfas
chromatic number 27.

9.8 Strongly regular graphs and 2-weight codes

9.8.1 Codes, graphs and projective sets

In this section we show the equivalence of three kinds ofaibje

(i) projective two-weight codes,
(i) subsetsX of a projective space such tha¢NH| takes two values wheH
ranges through the hyperplanes of the projective space,
(i) strongly regular graphs defined by a difference set tha cone in a vector
space.

This equivalence is due to Delsarte [132]. An extensiveesupf this material was
given by Calderbank & Kantor [76].

A linear codeis a linear subspace of some finite vector space with fixedsbasi
For basic terminology and results on codes, see MacWilli&nsoane [254] and
Van Lint [244]. A linear codeC is calledprojectivewhen its dualC+ has minimum
weight at least three, that is, when no two coordinate postiofC are linearly
dependent. Theveight of a vector is its number of nonzero coordinatestwo-
weightcode is a linear code in which precisely two nonzero weightsin

Let us first discuss the correspondence between linear esdesubsets of pro-
jective spaces.

9.8.2 The correspondence between linear codes and subsets o
projective space

A linear codeC of word lengthn over the alphabefy is a linear subspace of the
vector spacéy. Theweightof a vector is its number of nonzero coordinates. We call
C an[n,m,w]-code ifC has dimensiom and minimum nonzero weight. We say
thatC haseffective lengtt{or suppor) n— zwhen there are precisefycoordinate
positionsj such thatc; = 0 for all c € C. Thedual C- of a codeC is the linear
code{d € FFg | (c,d) = 0 for allu € C}, where(c,d) = ¥ cid; is the standard inner
product (bilinear form).

Let us call two linear codes of length over Fq equivalentwhen one arises
from the other by permutation of coordinates or multiplicatof coordinates by
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1111 1212
a nonzero constant. E.g., tfig-codes generated b( 0012) and <1100> are

equivalent. If we study codes up to equivalence, and asshate is chosen mini-
mal, i.e., that the generator matrix has no zero columns, agidentify the set of
columns in anx n generator matrix with points of a projective sp&®m—1,q).

In this way, we find a subs&t of PG(m— 1,q), possibly with repeated points, or, if
you prefer, a weight functiow : PG(m—1,q) — N.

Choosing one code in an equivalence class means choosipgeseatative in
Fa” for eachx € X, and fixing an order oX. Now the code words can be identified
with the linear functionald, and thex-coordinate position i$(x).

Clearly, the code has word length= |X|. Note that the code will have dimension
mif and only if X spansPG(m— 1,q), i.e., if and only ifX is not contained in a
hyperplane.

The weight of the code wordl equals the number ofsuch thatf (x) # 0. But a
nonzerof vanishes on a hyperplane BG(m— 1,q). Consequently, the number of
words of nonzero weighw in the code equalg— 1 times the number of hyperplanes
H that meefX in n—w points. In particular the minimum distance of the coda is
minus the maximum size ¢ N X for a hyperplanéd.

The minimum weight of the dual code equals the minimum nunobeoints of
X that are dependent. So, it is 2 if and onlyithas repeated points, and 3 when
has no repeated points but has three collinear points.

Example Take forX the entire projective spad®G(m—1,q), so thatn = |X| =
(9™ —1)/(q—1). We find the so-called simplex code: all words have wegght!,
and we have afm, m, g™ J-code overfy. Its dual is theln, n—m, 3] Hamming
code. It is perfect!

9.8.3 The correspondence between projective two-weighesp
subsets of a projective space with two intersection numbers,
and affine strongly regular graphs

Given a subseK of sizen of PG(m—1,q), let us define a graph with vertex
setlFg', with x ~ yif and only if (y — x) € X. Then clearlyl is regular of valency
k= (g—1)n. We show below that this graph has eigenvakiegiw; when the linear
code has weights;. Hence if a linear code has only two nonzero weights, and its
dual has minimum weight at least 3, then we have a stronglylaegraph.

Let us look at the details.

Let F =Fq andK = Fy and let tr (K — F be the trace map defined byxy =

X+ X3+ - +x3". Then theF-linear mapsf : F — K are precisely the mapf,
defined byfa(x) = tr(ax), fora € K. If tr(ax) = O for all x, thena = 0.

(Indeed, first of all, these maps are inddedinear. If a # 0, then tfax) is a
polynomial of degreef* ! and cannot have® zeros. It follows that we finaj
distinct mapsf,. But this is the total number é¢f-linear maps fronK to F (sinceK
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is a vector space of dimensisroverF, and such a map is determined by its values
on a basis).)

Let G be a finite abelian group. H: G — C is any function, and we define the
matrix A by Ay = a(y — x), then the eigenspaces Afhave a basis consisting of
characters of.

(Indeed, ify : G — C* is a character (a homomorphism from the additively writ-
ten groupG into the multiplicative group of nonzero complex numbetisgn

ye

(AX)x = %a(y—x)x(y) = (%a(z)x(2)> X(x)

so that x (regarded as column vector) is an eigenvectorAofvith eigenvalue
Y zeca(2)X(2). But G has|G| characters, and these are linearly independent, so this
gives us the full spectrum &.)

bca w?
a+ bw+ cw?, wherew runs through the cube roots of unity.

abc 1
Example. The matrixA = (c a b) has eigenvector{ w ) with eigenvalues

Now apply this to the adjacency matrixof the graph. Let D := {d € Fg' |
(d) € X}, so that|D| = (q— 1).|X|. Then the neighbors of the vertexof I are
the pointsx+d for d € D, and we see thdt has valenck = |D| = (q— 1)n. The
eigenvalues oA are the sumg 4cp X(d), where is a character of the additive
group of Fy'. Let = e?™/P be a primitivep-th root of unity, and let tr Fq — Fp, be
the trace function. Then the charactgrare of the form

Xa(X) _ Ztr((a,x)).

Now

> Xa(Ax) = {q if (a,x) =0

It 0 otherwise.

(Indeed, ifS denotes this sum, thexa(ux)S= Sfor all u, so if S+ 0, then
tr((a, ux)) = tr(u(a,x)) = 0 for all i, and by the abovéa, x) = 0.)
Thus, we find, ifDg is a set of representatives &

dbea(d) = % Xa(Ad) = g.[HanX|—[X]
€ deDo A€Fq\{0}

whereH, is the hyperplang(x) | (a,x) = 0} in PG(m— 1,q). This shows that iH,

meetsX in my points, so that the correspondigg- 1 code words have weight; =

n—my, then the corresponding eigenvaluejig, —n = (g— 1)n— qwa = K— qws.
We have proved:

Theorem 9.8.1 There is a 1-1-1 correspondence between

(i) linear codes C of effective word length n and dimensiomih(g— 1) f; words
of weight w, and
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(i) weighted subsets X of total size n of the projective saGm— 1,q) such
that for f hyperplanes H we hayX\H| =w;, and

(iif) graphs[, without loops but possibly with multiple edges, with vesetFg',
invariant under translation and dilatation, and with eigatues k- qw of
multiplicity (q— 1) f;, where k=n(gq— 1).

If the codeC is projective that is, is no two coordinate positions are dependent
(i.e., is the dual code has minimum weight at least 3), théxas no repeated points,
and we find an ordinary subset under (ii), and a simple graglem(ii) (that is,
without multiple edges).

Corollary 9.8.2 There is a 1-1-1 correspondence between

(i) projective linear codes C of effective word length n anghehsion m with
precisely two nonzero weightg &nd w, and
(i) subsets X of size n of the projective space(RG 1,q) such that for each
hyperplane H we haveX \H| =w;, i € {1,2}, and
(i) strongly regular graphsl™, with vertex seth", invariant under translation
and dilatation, and with eigenvalues-kqw;, where k= n(q—1).

For example, if we take a hyperoval RG(2,q), g even, we find a two-weight
[0+ 2,3,q)-code overFq. If we take the curve{(1,t,t?,....t"1) |t € Fq} U
{(0,0,...,0,1)} in PG(m—1,q), q arbitrary, we find gq+ 1,m,q— m+ 2|-code
overFq. (These codes are optimal: they reach the Singleton bound.)

A 1-1 correspondence between projective codes and 2-weiglgs was shown
in Brouwer & van Eupen [53].

9.8.4 Duality for affine strongly regular graphs

Let X be a subset dPG(m— 1,q) such that all hyperplanes meet it in eithey or
mp points. In the dual projective space (where thkes of points and hyperplanes
have been interchanged), the collecti6of hyperplanes that me&tin my points,
is a set with the same property: there are numhg@ndn, such that each point is
in eitherny or in ny hyperplanes frony.

Indeed, letx € X be inny hyperplanes frony. We can findn; (independent of
the choice ok) by counting hyperplanes on paigy of distinct points inX:

qm_l—l _ qm—271
1 —mHme=1) = (X -1

In a similar way we findh,, the number of hyperplanes frovhon a point outside
X. Computation yieldgmy, — mp)(ng —ny) = ¢ 2. This proves:

nl.(ml— l) —l—(

Proposition 9.8.3 The difference of the weights in a project®sveight code, and
the difference of the nontrivial eigenvalues of an affinergity regular graph, is a
power of p, where p is the characteristic of the field involved
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Let I andA be the strongly regular graphs correspondingtandY, respec-
tively. We see thal andA both haveg® vertices; has valenck = (q— 1)|X| and
multiplicity f = (q—1)|Y|, and forA these values have interchangétes. We call
A thedual of I'. (More generally it is possible to define the dual of an asgmri
scheme with a regular abelian group of automorphisms, tf, £ 68.))

Example. The ternary Golay code is a perfétf, 6, 5] code oveifs, and its dual
Cisa[l1,5,6] code with weights 6 and 9. The corresponding strongly regukph
I has parametersv,k,v—k — 1 A u,rs f,g) = (243 22,220, 1,2,4, —5,132
110) (it is the Berlekamp-van Lint-Seidel graphand its dual has parametg243
110, 132 37, 60, 2, —25, 220, 22), and we see thdt,v— k — 1 interchange place
with g, f. The code corresponding tbis a[55,5, 36 ternary code.

Example. The quaternary Hill code ([208]) is &8,6,56] code overF, with
weights 56 and 64. The corresponding strongly regular ghagtparameter@096
234,3861, 2, 14,10, —22 2808 1287). Its dual has parametef4096 1287, 2808
326,440, 7, —121 3861 234), corresponding to a quaternaf$29 6,320 code
with weights 320 and 352. This code lies outside the rangdeftables, but its
residue is a world recorfll09,5,80] code. The binary234,12 112 code derived
from the Hill code has #122 11,56] code as residue—also this is a world record.

9.8.5 Cyclotomy

In this section we tak® to be a union of cosets of a subgroup of the multiplicative
group of a fieldFq. (l.e., theq here corresponds to thy of the previous sections.)

Letq = p*, p prime ande|(q— 1), sayq=em+ 1. LetK C [ be the subgroup
of the e-th powers (so thak| = m). Let a be a primitive element of 4. ForJ C
{0,1,...,e—1} putu:=|J| andD : =Dy := J{alK | je I} = {a™®"]|j€J,0<i <
m}. Define a (directed) graph = I'; with vertex seffy and edgesx,y) whenever
y—x € D. Note that/ will be undirected iff either—1 is ane-th power (i.e.q is
even ore|(q—1)/2) orJ+(q—1)/2=J (arithmetic inZe).

Let A= A; be the adjacency matrix &f defined byA(x,y) =1 if (X,y) is an edge
of ' and= 0 otherwise. Let us compute the eigenvalueg\ofFor each (additive)
charactery of Fq we have

(A =3 x(y)=( EDX(U))X(X)-
y~X ue

So each character gives us an eigenvector, and since treeadl exdependent we
know all eigenvalues. Their explicit determination regsisome theory of Gauss
sums. Let us writdyy = 6(x) x. Clearly,8(1) = mu, the valency of . Now assume
X # 1. Theny = xq4 for someg, where

Xolah) = exp(zftr(a”g»
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and tr :Fq — F is the trace function. _ '
If u is any multiplicative character of order (say, u(a') = !, where{ =
exp(22)), then

e-1 .
i Jeifux)=1
i;“ (x) = {O otherwise.

Hence,

9) = ugDXg(u) ZJ Z<XJ+9 ZJxe]F*XHg Z}u
1+ZX§OX1+Q(X)M(X)) = % %(1+Tzilu—i(aj+g)ei)

whereG; is the Gauss Surfiyzo Xo(X) ' (X).
In general, determination of Gauss sums seems to be coneuljdaut there are
a few explicit results. For our purposes the most intergstirthe following:

Proposition 9.8.4 (Stickelberger and Davenport & Hasse, see McEliece & Rumsey
[261]) Suppose e 2 and p is semiprimitivenode, i.e., there exists an | such that
| = —1 (mode). Choose | minimal and write = 2It. Then

Gi = (-1 y/a,

where
. | —lifeiseven andp' +1)/eis odd
~ | +1 otherwise.

Under the hypotheses of this proposition, we have

. (-1tya  ifr#1,
Ziu aJ+g ZZ |+g t+lgt q= {(_1)t+1\/q\{;_1) ifr=1,

where{ = exp(27i /) andr =rq ; = { 179! (so thatr® = £° = 1), and hence

6(Xg) = §<—1+ (—1)'y/a) + (1) ya#j € Irgj = 1).

If we abbreviate the cardinality in this formula with # théhst = 1 then #= 1 if
g € —J (mode), and= 0 otherwise. Ife! = —1 (theneis even and is odd) then
#=1if g€ $e—J (mode), and= 0 otherwise. We proved:

Theorem 9.8.5Let g= p*, p prime and §q— 1), where p is semiprimitivenode,
i.e., there is an b 0 such that p= —1 mode. Choose | minimal with this property
and writek = 2It. Choose ul <u < e—1and assume that q is even or u is even or
€/(q—1)/2. Then the graphs; (where J is arbitrary for q even or|g—1)/2 and
satisfies 3 (q—1)/2 = J mode otherwise) are strongly regular with eigenvalues
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k= %tu with multiplicity 1
He( 1+ ( 1)',/9) with multiplicity g— 1 —k,
6 = ( +(=1)t/0) + (-1)*"1,/g with multiplicity k

(Obviously, when't is even we have-18;, s= 6,, and otherwise &= 6, s= 0;.)

Clearly, ifel€'|(g— 1), then the set of-th powers is a union of cosets of the set of
€-th powers, so when applying the above theorem we may ashahehas been
chosen as large as possible, iee= p' + 1. Then the restrictionq is even oru is
even ore|(q—1)/2’ is empty, and) can always be chosen arbitrarily.

The above construction can be generalized. Pick severaésal (i € |) with
&|(q—1). LetK; be the subgroup dFa of the g-th powers. Let); be a subset of
{0,1,...,6 — 1}. Let D := Dy := U{a’K; | j € J}. PutD := UD;. If the D; are
mutually disjoint, therD defines a graph of which we can compute the spectrum.

For example, letp be odd, and take, = pli +1 (i = 1,2) andq = p* where
Kk =4lis (i = 1,2). PickJ; to consist of even numbers only, afidto consist of odd
numbers only. Thed; "D, = 0 andg € —J; (mod &) cannot happen far= 1,2
simultaneously. This means that the resulting graph wilstsengly regular with
eigenvalues

B(xg) = (% + %)(*14‘ Va) —+/0.0(g € —Ji(mode) fori =1 ori =2)
(whered(P) = 1 if P holds, andd(P) = 0 otherwise). See also [65]. In the special
casep=3,11=1,12=2,e1 =4, e =10, 3 = {0}, I, = {1}, the difference
set consists of the powers with i =0 (mod 4 ori =1 (mod 10, i.e., is the
set{1,a,a* a® alt al? a'f}(a?%, and we found the first graph from De Lange
[237] again. (It has parametefg k, A, u) = (65612296 787,812) and spectrum
2296 28%264 (-53)22%)

9.9 Table

Below a table with the feasible parameters for strongly lggraphs on at most
100 vertices. Herdeasiblemeans that the parameters, A, u and multiplicities
f,g are integers, with 8 A < k—1 and O< pu < k < v. In some cases a feasible
parameter set is ruled out by the absolute bound or the Kiamdlitions, or the
restriction that the order of a conference graph must beuired two squares. For
some explanation of the comments, see after the table.

J v kApu of ¥ comments

I'5 20 1 0618 —1.61& pentagon; Paley(5); Seidel 2-graph

19412 ¢ —2*  Paley(9); 3; 2-graph-*

110301 *? —2*  Petersen graph [280O; (2); NO;*(5); 2-graph
634 1 ~25  (3); 2-graph

113 6 2 3 130% —2.30% Paley(13); 2-graph+
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3 v kA u ot g comments
! 156 1 3 i -3 0Os(2) polar graphSp(2) polar graphNQ; (3); 2-graph-x
8 4 4 2 22 (%); 2-graph-*
1 165 0 2 %0 -3 qu = 0; vanLint-Schrijver(1)V O, (2) affine polar graph; projec-
tive binary [5,4] code with weights 2, 8SHCD ; 2-graph
106 6 2 —21°  Clebsch graph [96, 104, 95, 298}, = 0; vanLint-Schrijver(2);
2-graph
20 166 2 2 2 —29  Shrikhande graph [308];24 from a partial spread: projective bi-
nary [6,4] code with weights 2, RSHCD"; 2-graph
9 46 P —35  OA(4,3); Biliny.»(2); Goethals-Seidel(2,3)/ O; (2) affine polar
graph; 2-graph
117 8 3 4 1562 —2562 Paley(17); 2-graph+
! 2110 3 6 14 —45
105 4 % 24 (7
— 2110 4 5 1791*° —2.791*° Conf
! 25 8 3 2 3 —216 52
16 9 12 #  —48 OA(54)
151 2512 5 6 % —312  complete enumeration by Paulus [276]; Paley(25); OA(5,3); 2-
graph-x*
100 2610 3 4 2 —312  complete enumeration by Paulus [276]; 2-graph
158 9 & -3 5(2,3,13); 2-graph
1 27101 5 —55 g3, =0;O; (2) polar graphGQ(2,4); 2-graph-x
16 10 8 & —220 Schiafli graph; unique by Seidel [2994}, = 0; 2-graph-+
- 289 0 4 ®© —5%  Kreiny,; Absolute bound
18 12 10 4 —221 Kreiny; Absolute bound
4 2812 6 4 4 —2%  Chang graphs [83]3); 2-graph
15 6 10 #° —5"  NOf(2); Goethals-Seidel(3,3); Taylor 2-graph fds(3)
41! 29 14 6 7 2193* —3.193"“ complete enumeration by Bussemaker & Spence [pers.comm.];

Paley(29); 2-graphx

— 3316 7 8 23726 —3.372'6 Conf
38541 3516 6 8 % —41%  complete enumeration by McKay & Spence [263]; 2-graph
189 9 3 —3% 5(2,3,15); lines iPG(3,2); Of (2) polar graph; 2-graphx
! 3610 4 2 40 -2 82
2516 20 #° —510
180! 36 14 4 6 2 —41%  U3(3).2/L2(7).2 - subconstituent of the Hall-Janko graph; com-
plete enumeration by McKay & Spence [26BSHCD ; 2-graph
21 12 12 3 —3?1 2-graph
! 36147 4 8 22 ()
211015 % 68
32548/ 36 15 6 6 % —3?0  complete enumeration by McKay & Spence [263]; OA(6,3);
NO; (2); RSHCD'; 2-graph
20 10 12 %0 —415  NOj; (3); 2-graph
+ 3718 8 9 25418 35418 Paley(37); 2-graphx
28! 4012 2 4 % —4%5  complete enumeration by Spence [310](3) polar graphSy(3)
polar graph
271818 35 34 NU(42)
+ 4120 9 10 2702° —3.702° Paley(41); 2-graphx
78! 4512 3 3 B —3%  complete enumeration by Coolsaet, Degraer & Spence [101];
U4(2) polar graph
322224 34 49 NO(3)
! 45168 4 6 =255 (Y
28 15 21 #° -7°
+ 45 22 10 11 B542 —3.8542 Mathon [259]; 2-graph *
! 49 12 5 2 g2 —28%6 72
362530 # 62 OA(7.6)
— 4916 3 6 32 —516  Bussemaker-Haemers-Mathon-Wilbrink [73]
32 21 20 4% —3%
+ 4918 7 6 48 —3%0  OA(7,3); Pasechnik(7)

3017 20 3° 5%  OA(7,5)
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3 v kA u oo’ g comments
T 492411 12 &  —47 Paley(d9), OA(7,4), 2-graphs
1 507 0 1 28 —~3?t Hoffman-Singleton graph [211}J3(5%).2/Sym(7)
42 35 36 2t —3%8
- 5021 4 12 ¢# -9’ Absolute bound
281812 8 —2%2 Absolute bound
+ 5021 8 9 @ —424  switch skewhatl+ ; 2-graph
28 15 16 3% 4%  5(2,4,25); 2-graph
+ 53 26 12 13 3140°° —4.140°° Paley(53); 2-graph+
! 5518 9 4 2 2% (1Y
36 21 28 14 gt
1 56100 2 % —4%0  Sims-Gewirtz graph [162, 163, 58]3(4).22/Alt(6).22
45 36 36 30 —3%  Witt: intersection-2 graph of a 2-(21,6,4) design with block inter-
sections 0, 2
— 5622 3 12 8 —10"  Kreiny; Absolute bound
332215 § —2%8 Krein,; Absolute bound
— 5714 1 4 38 —5'8  Wilbrink-Brouwer [331]
423130 48 -3
+ 572411 9 8 38 5(2,319)
3216 20 28 —618

— 57 28 13 14 2758 —4.27%8 Conf
+ 61 30 14 15 3050 —4.405° Paley(61); 2-graph+

— 6322111 % —117  Kreiny; Absolute bound
40 28 20 10 —25  Kreiny; Absolute bound
+ 63301315 & —5%7  intersection-8 graph of a 2-(36,16,12) design with block intersec-
tions 6, 8;07(2) polar graphSps(2) polar graph; 2-graphx
32 16 16 47 —4%5  5(2,4,28); intersection-6 graph of a 2-(28,12,11) design with block
intersections 4, BNU(3,3); 2-graph-x
I 6414 6 2 @ —2% g2 from a partial spread of 3-spaces: projective binary [14,6] code
with weights 4, 8
4936 42 10 7Y OA@B7)
167! 64 18 2 6 ¥ —6'®  complete enumeration by Haemers & Spence [198Q)(3,5);
from a hyperoval: projective 4-ary [6,3] code with weights 4, 6
4532 30 38 —3%
— 6421 0 10 %° —117  Kreiny; Absolute bound
42 30 22 10 —256  Krein;; Absolute bound
+ 6421 8 6 5 —3*2 OA(8,3); Bilina.3(2); from a Baer subplane: projective 4-ary [7,3]
code with weights 4, 6; from a partial spread of 3-spaces: projec-
tive binary [21,6] code with weights 8, 12
42 26 30 22 -6 OA(8,6)
+ 64271012 & —527  from a unital: projective 4-ary [9,3] code with weights 6, 8;
VQ; (2) affine polar graphRSHCD ; 2-graph
36 20 20 47 —4%  2-graph
+ 64281212 & —4%  OA(8,4); from a partial spread of 3-spaces: projective binary [28,6]
code with weights 12, 16RSHCD ; 2-graph
351820 % —-5%  OA(8,5); Goethals-Seidel(2,7)/Of (2) affine polar graph; 2-
graph
— 64301810 1® -2 Absolute bound
331222 % —11%  Absolute bound
? 65 32 15 16 5312 —4.531%2 2-graph-*?
! 662010 4 & -2 (P
45 28 36 P4 —git
? 69207 5 B —3%
48 32 36 2° —6%  5(2,6,46) does not exist
— 69 34 16 17 B5F* —4.653 Conf
+ 702712 9 8 -39 5(2321)
42 23 28 29 -7
4+ 73 36 17 18 F72% —4.772° Paley(73); 2-graphs
? 75321016 P —8'8  2-graph-x?

42 2521 78 —3%  2-graph-x?
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3 v kA pu ot L comments
— 7621 2 7 20 —7%  Haemers [190]
54 39 36 @° —3%6
? 7630 8 14 ¥ —8'8  2-graph?
45 28 24 7° -3 2-graph?
?2 763518 14 ® 36 2.graph?
40 18 24 26 —8'°  2-graph?
17716 0 4 25 —6% S(3,6,22);M2.2/2*: Sym(6); unique by Brouwer [45]; subcon-
stituent of Higman-Sims graph; intersection-6 graph of a 2-
(56,16,6) design with block intersections 4, 6
60 47 45 3! —3% Wit 3-(22,6,1): intersection-2 graph of a 2-(22,6,5) design with
block intersections 0, 2
— 77 38 18 19 B87PE —4.8878 Conf
1782211 4 ¢ 255 (Y
55 36 45 f° —1012
18116 7 2 7 —264 92 from a partial spread: projective ternary [8,4] code with
weights 3, 6
64 49 56 $4 816 OA(9,8)
181201 6 2° —720  unique by Brouwer & Haemers [54Y,0, (3) affine polar graph;
projective ternary [10,4] code with weights 6, 9
60 45 42 6&° —360
+8124 9 6 6 —3%  0A(9,3);VNOj; (3) affine polar graph; from a partial spread: pro-
jective ternary [12,4] code with weights 6, 9
56 37 42 2 7?4 0A(9,7)
+8130 9 12 % -6%0  VNO, (3) affine polar graph; Hamada-Helleseth [202]: projective
ternary [15,4] code with weights 9, 12
50 31 30 5° 450
+81321312 ® —4%%  OA(9,4); Biling2(3); VO (3) affine polar graph; from a partial
spread: projective ternary [16,4] code with weights 9, 12
48 27 30 38 6% OA(9,6)
— 81401326 12 —148  Absolute bound
40 25 14 18 —22 Absolute bound
+ 814019 20 & —5%  paley(81); OA(9,5); projective ternary [20,4] code with weights
12, 15; 2-graph
+ 82361516 &4 540 2-graph
45 24 25 40 5 g(2,541); 2-graph
2814 3 2 & 350
70 57 60 2° —5%
+8520 3 5 & 5% Os(4) polar graphSpy(4) polar graph
64 48 48 & —430
? 8301110 % 450
543336 30 6% 5(2,651)?
? 85 42 20 21 4102 —5.1101 2-graph-+?
728276 9 ¥ —6%2
60 41 40 %2 —455
+ 89 44 21 22 £17* —5.217** Paley(89); 2-graphx
to12412 4 18 277 (3
66 45 55 17 —1118
— 93 46 22 23 8226 53226 Conf
? 95401220 2  -10° 2-graph-+?
54 33 27 ¢&° —37°  2-graph-+?
+9619 2 4 & —5%  Haemers(4)
76 60 60 48 —457
+9620 4 4 45 40 GQB53)
75 58 60 3° —5%
? 963510 14 % —7%
60 38 36 62 —483
— 96381018 2  —10° Degraer
57 36 30 ¢° 376
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E N I comments

? 96 452418 ¥ —3™  2-graph?
502230 2 10 2-graph?

97 48 23 24 4248 —5.424% Paley(97); 2-graph

?

99 14 1 2 3 —4%4
84 7172 % —45
? 99 422115 % -37
56 28 36 27 —107*
+ 99 482224 & —6%*  2-graph-x
50 25 25 %% 554 S5(2,545); 2-graphs
1100 18 8 2 @8 —281 17
81 64 72 —9!8
110022 0 6 27 —8%2  Higman-Sims graph [207]HS012/M.2; unique by Gewirtz
[162]; g3, =0
776056 7 -37 g4,=0
11002710 6 ¥ -3 OA(103)
7250 56 32 87 OA(10,8)?
210033 8 12 % —7%
66 44 42 6 — 456
1+1003314 9 & -3 S(2,325)
66 41 48 3° 9%
— 1003318 7 1% —288  Absolute bound
66 39 52 %8 —14"  Absolute bound
+ 100 36 14 12 & —45%  Hall-Janko graph;,.2/U3(3).2; subconstituent 0G,(4) graph;
OA(10,4)
633842 £ 7% OA(10,7)?
+ 100 44 18 20 # -6 Jgrgensen-Klin graph [226RSHCD ; 2-graph
5530 30 8§ —5°  2-graph
+ 100 4520 20 % —5%  OA(10,5)?;RSHCD'; 2-graph
54 28 30 &* —6%°  0A(10,6)?; 2-graph
Comments
Comment Explanation

g, =0,03,=0  zero Krein parameter, sé&1.4
Hamming graptH (2,m), i.e., lattice grapt.,(m), i.e., grid
graphmx m, i.e.,KnOKqp, see§12.3.1,61.4.5

) Johnson grapl(m,2), i.e., triangular graphrl (m), see
§12.3.2,51.4.5

OA(n,t) (t > 3) block graph of an orthogonal arr®A(n,t) (t — 2 mutually
orthogonal Latin squares of ordey

S(2,k, V) block graph of a Steiner syste®2,k,v), i.e., of a 2-
(v,k, 1) design

Goethals-Seidék,r) graph constructed from a Steiner syst&®2,k,v) (with
r=(v—1)/(k—1)) and a Hadamard matrix of orde#- 1

asin[171]

2-graph graph in the switching class of a regular 2-graph;5@.2

2-graph-x descendant of a regular 2-graph, §&8.2

RSHCD Regular 2-graph derived from a regular symmetric
Hadamard matrix with constant diagonal (¢£0.5.1, [59],
[171])

continued...
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Explanation

Taylor 2-graph fotJs(q) graph derived from Taylor's regular 2-graph (cf. [59],

Paleyq)
vanLint-Schrijver()

Bilinz.q(q)
GQ(st)

0O54(a), O2d+1(0)

Sd(Q)

NG5, 1(0)
NO5. 1 (5)
NUn(q)

VGO54(a)

VNG, (a) (q odd)

[319], [320])

Paley graph offy, see§10.4,513.6

graph constructed by the cyclotomic construction of [245]
taking the union ofi classes

graph on the 2d matrices oveif'y, adjacent when their
difference has rank 1

collinearity graph of a generalized quadrangle with param-
etersGQ(s,t), see§9.6.3

isotropic points on a hondegenerate quadric in the projec-
tive spacePG(2d — 1,q) or PG(2d,q), joined when the
connecting line is totally singular

points of PG(2d — 1,q) provided with a nondegenerate
symplectic form, joined when the connecting line is totally
isotropic

isotropic points ofPG(d — 1,¢?) provided with a nonde-
generate Hermitean form, joined when the connecting line
is totally isotropic

nonisotropic points oPG(2d — 1, 2) provided with a non-
degenerate quadratic form, joined when they are orthogo-
nal, i.e., when the connecting line is a tangent

one class of nonisotropic points Bf5(2d — 1, 3) provided
with a nondegenerate quadratic form, joined when they are
orthogonal, i.e., when the connecting line is elliptic

one class of nondegenerate hyperplaneB®@f2d, q) pro-
vided with a nondegenerate quadratic form, joined when
their intersection is degenerate

one class of nonisotropic points &fG(2d,5) provided
with a nondegenerate quadratic form, joined when they are
orthogonal

nonisotropic points oPG(n— 1, q) provided with a nonde-
generate Hermitean form, joined when the connecting line
is a tangent

vectors of a @-dimensional vector space ovEg provided
with a nondegenerate quadratic fo@nwhere two vectors

u andv are joined whem(v—u) =0

vectors of a @dimsensional vector space ovEy pro-
vided with a nondegenerate quadratic fo@nwhere two
vectorsu and v are joined wherQ(v— u) is a nonzero
square
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9.10 Exercises

Exercise 1 ([171]) Consider the graph on the set of flags (incident phing pairs)
of the projective plan®G(2,4) where(p,L) and(g,M) are adjacent whep # q
andL =# M and eithemp € M or g € L. Show that this graph is strongly regular with
parametersv,k, A, 1) = (10532,4,12).

Exercise 2 ([23]) Consider the graph on the cosets of the perfect tgr@alay
code (an [11,6,5] code ovéts), where two cosets are adjacent when they differ
by a vector of weight 1. Show that this graph is strongly regwith parameters
(v,k, A, 1) =(24322,1,2). It is known as théerlekamp-van Lint-Seidel graph

Exercise 3 For a strongly regular graph and a vertex of I, let A be the subgraph
of I induced on the set of vertices different frerand nonadjacent ta If I" has no
triangles and spectrulkt, rf, 9, then show thaf\ has spectrungk — p)*, rf=K,
9K (—p)*1. Conclude if is primitive thatf > k andg > k, and that iff =k
or g =kthenA is itself complete or strongly regular. Determine all sgftyrregular
graphs withA =0 andf = k.

Exercise 4 ([34]) Show that having a constaktalmost follows from having con-
stantA, u. More precisely: Consider a graphwith the property that any two adja-
cent (non-adjacent) vertices ha¥gresp.u) common neighbors. Show that/ifis
not regular, then eithqr = 0 andrl” is a disjoint union of A 4 2)-cliques, oru =1,
andl™ is obtained from a disjoint union @f + 1)-cliques by adding a new vertex,
adjacent to all old vertices.

Exercise 5 Prove Theorem 9.6.2.

Exercise 6 A spread in a generalized quadrangle is a suBséthe lines such that
every point is on exactly one line & Prove that &Q(g?,q) has no spread. Hint:
A spread is a coclique in the line graph.

Exercise 7 Show that the ScBfli graph is obtained frorh(Kg) (that is, T (8)) by
switching one point isolated, and removing it.

Exercise 8([226]) Show that the strongly regular graph with paransfek, A, u)=
(100,45,20,20) obtained from the Hall-Janko graph§f.1.12 can be switched into
a strongly regular graph with parameters (100,55,30,30).

Exercise 9 There exist strongly regular graphslﬁé, invariant for translation and
dilatation, with parametens, k, A, ) = (81,20,1,6) and(81,30,9,12). Determine
the corresponding ternary codes and their weight enunrsrato

Exercise 10 With C andD as in§9.7, show tha€C U D induces a distance-regular
graph of diameter three with intersection ar{dy, 9,4; 1,6, 10}.

Exercise 11 With ' as in§9.7, show thaty(I") > 6 also follows from Corol-
lary 3.6.4 applied to the induced subgraphigfobtained by deleting all vertices
of one color class.
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Exercise 12Under what conditions is the Hamming code cyclic? Negac9dlion-
stacyclic?

Exercise 13 A capin a projective space is a collection of points, no three dne |
Show that gn,n—m, 4] code oveify exists if and only if there is a cap of sinen
PG(m— 1,q). Construct fom > 0 a[2™1,2™1 _m 4] binary code.

Exercise 14 Given a two-weight code ovéfy of word lengthn, dimensionm and
weightsw; andws,. Express the parameters, A, u, r, s, f, g of the corresponding
strongly regular graph in terms gf n, k, w; andws.






Chapter 10
Regular two-graphs

10.1 Strong graphs

Let us call a graplpossibly improper) strongly regulavhen it is strongly regular or
complete or edgeless. Above (Theorem 9.1.2) we saw thaph gra (possibly im-
proper) strongly regular if and only if its adjacency matigatisfiesA? € (A,1,J),
where(...) denotes th&®-span. In particular, this condition implies thais regular,
so thatAJ = JA

Consider the Seidel matris = J — | — 2A (see§1.8.2). We have(Al,J) =
(S1,3). If A2 € (A1,J) then alsc& € (S1,J), but the converse does not hold. For
example, consider the palg of length 2. We hav&® = S+ 21, butA only satisfies
the cubic equatiod® = 2A.

We call a graptstrongwhenever its Seidel matri@satisfiess? € (S,1,J). Thus a
(possibly improper) strongly regular graph is strong, amaversely a regular strong
graph is (possibly improper) strongly regular. As we sawtrang graph need not
be regular. Another example is given 8y + Kz, where the Seidel matrix satisfies
& =51. But the following properties are satisfied (recall that meevalue is called
restrictedif it has an eigenvector orthogonal to the all-ones vetjor

Proposition 10.1.1 For a graphl™ with v vertices and Seidel matrix S the following
holds:

(i) I is strong if and only if S has at most two restricted eigenealun this
case(S—p11)(S—p2l) = (v— 1+ p1p2)d, wherep; and p, are restricted
eigenvalues of S.

(i) I is strong and regular if and only i is (possibly improper) strongly reg-
ular. In this case the eigenvalys of S forl satisfies(pp — p1)(po — p2) =
V(V—1+p1p2).

(i) If I is strong with restricted eigenvalugs and p,, and v— 1+ p1p2 # 0,
thenrl is regular, and hence (possibly improper) strongly regular

(iv) S has a single restricted eigenvalue if and only# S (J—1), that is, if and
only if I" is complete or edgeless.

149
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Proof. (i) If I is strong thens + aS+ Bl = yJ for some constants, B and
y. If p is a restricted eigenvalue & with eigenvectorv orthogonal tol, then
(p?>+ap+ B)v = yIv =0, sop?+ap+ B = 0. ThereforeS has at most two re-
stricted eigenvalues. ConverselyShas just two restricted eigenvalugsandp,,
then(S—p1l)(S—p2l) € (J), sol is strong. And if(S— p1l)(S— p2l) = yJ, then
the diagonal entries show that= v— 1+ p10o.

(i) We know that (possibly improper) strongly regular irgd strong and regular.
Supposd” is strong and regular, the®f € (S1,J) andSJe (J), this implies that
the adjacency matriR = (J—S—1)/2 of I" satisfiesA® € (A,1,J), sol” is (possibly
improper) strongly regular by Theorem 9.1.2.

(i) If I is not regular, thed is not a polynomial ir§, sov— 1+ p1p> = 0 follows
from part (i). O

We see thav — 1+ p;po = 0O if and only if Shas exactly two distinct eigenvalues
p1 and p,. Recall that two graph$é and ™ are switching equivalent (see Sec-
tion 1.8.2) if their Seidel matriceS and S are similar by some diagonal matrix
D =diag(+1,...,+1) (i.e.S= DSD). So switching equivalent graphs have the same
Seidel spectrum, and therefore the property of being stratigtwo Seidel eigen-
values is invariant under Seidel switching.

Supposd” is a strong graph om vertices with two Seidel eigenvalugs and
P2 (sov— 1+ p1p2 = 0). Clearly,I” is regular of degre& if and only if its Seidel
matrix has constant row sum- 1 — 2k. Thereforev — 1 — 2k = pg is an eigenvalue
of S so eitherpy = p1, or pp = p2. Switching inl” produces another strong graph,
which may or may not be regular. If it is regular, then it isuleg of degree either
(v—1—p1)/20r(v—1—py)/2.

Examples (i) If I is P, then the Seidel eigenvalues ard and 2, so a regular
graph that is switching equivalent must have degree eitfi2ro8 0. The former is
impossible, but the latter happems:is switching equivalent tolg;.

(ii) If I is Cs+ Ky, then the eigenvalues atiey/5, and so can never be equal to
the row sum. So this graph cannot be switched into a regukar on

(iii) If I is the 4x 4 grid (the lattice graph(4)), thenv= 16 andpy = p1 =
3, p2 = —5. Sol is strong with two eigenvalues. Switching inwith respect to
a coclique of size 4 gives again a regular graph with the saananpeters a$,
but which is not isomorphic té . This is the Shrikhande graph (see Section 9.2).
Switching with respect to the union of two parallel lines lretgrid (that is, two
disjoint 4-cliques in") gives a regular graph of degree 10, the Clebsch graph (see
Section 9.2).

Strong graphs were introduced by Seidel [299].
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10.2 Two-graphs

A two-graphQ = (V,A) consists of a finite séf, together with a collectiod of
unordered triples fror, such that every 4-subsetéfcontains an even number of
triples fromA. The triples fromA are calledcoherent

From a grapl” = (V,E), one can construct a two-gragh= (V,A) by defining
a triple fromV to be coherent if the three vertices induce a subgragh with an
odd number of edges. It is easily checked that out of the fiples in any graph on
four vertices, 0, 2, or 4 are coherent. Qds a two-graph. We cal2 the two-graph
associatedo I

Observe that Seidel switching does not change the parityeofitmber of edges
in any 3-vertex subgraph éf. Therefore switching equivalent graphs have the same
associated two-graph. Conversely, from any two-gr@ph (V,A) one can construct
a graph” as follows. Takew € V. Define two vertices,y € V \ {w} to be adjacent
inI if {w,x,y} € A, and definev to be an isolated vertex 6f. We claim that every
triple {X,y,z} € A has an odd number of edgesfiinwhich make«2 the two-graph
associated t6 . If w € {x,y,z} thisis clear. Ifw & {x,y,z}, the 4-subgraph condition
implies that{x,y,z} € A whenever from the triple§w,y, z}, {w, X, y}, {w,x,z} just
one, or all three are coherent. Herfoey, x} has one or three edges/in Thus we
have established a one-to-one correspondence betweegrawhs and switching
classes of graphs.

Small two-graphs were enumerated in [74]. The number ofs@morphic two-
graphs om vertices for smalh is

23456 7 8 9 10
12 37 16 54 243 2038 33120

There is an explicit formula for arbitrary. See, e.g., [255].

For the graph™ with an isolated vertexw, obtained fromQ as indicated above,
the graph™ \ w plays an importantile. It is called thelescendamf Q with respect
to w, and will be denoted by,.

Since switching equivalent graphs have the same Seiddirapgave can define
the eigenvalues of a two-graph to be the Seidel eigenvaltiesyograph in the
corresponding switching class.

Seidel & Tsaranov [303] classified the two-graphs with sestliSeidel eigen-
value not less than 3:

Theorem 10.2.1(i) A graph " with smallest Seidel eigenvalue larger thas3 is
switching equivalent to the void graph on n vertices, to the-edge graph on n
vertices, or to one of the followir@+ 3+ 5 graphs ornb, 6, 7 vertices, respectively:

o0 HEEDEBED,
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(i) A graph I with smallest Seidel eigenvalue not less thad® is switching

equivalent to a subgraph of mkr of T(8), the complement of the line graph af.K
U

10.3 Regular two-graphs

A two-graph(V,A) is calledregular (of degreen) if every unordered pair frofd is
contained in exactly triples fromA. Suppose? = (V,A) is a two-graph, and let
0 be the set of non-coherent triples, then it easily follovat B = (V,0) is also a
two-graph, called theomplemenof Q. Moreover,Q is regular of degrea if and
only if the complement? is regular of degrea = v— 2 — a. The following result
relates regular two-graphs with strong graphs and stromgjylar graphs.

Theorem 10.3.1For a graphl™ with v vertices, its associated two-gragh, and
any descendarii, of Q the following are equivalent.

(i) I is strong with two Seidel eigenvalugsand p,.
(ii) Q isregular of degree a.
(ii) Iy is (possibly improper) strongly regular with parameteérs— 1,k A, i)
with u =k/2.

The parameters are related by=v1—p1py, a=k=2u=—(p1+1)(p2+1)/2,
andA = (3k—vVv)/2=1—(p1+3)(p2+3)/4. The restricted Seidel eigenvalues of
[warepsandpy, andp1 +po=v—2a—2=3a—a.

Proof. (ii) = (iii ): Letx be a vertex of ,. The number of coherent triples containing
w andx equals the number of edges/ip containingx, sol, is regular of degrea.
For two verticesx andy in I, let p(x,y) denote the number of verticegz # x,y)
adjacent tocbut not toy. If x andy are distinct non-adjacent, thexx, y) + p(y,Xx) =
a, and the numbeu of common neighbors ofandy equalk— p(x,y) = k— p(y, X).
Thereforeu = k/2=a/2 is independent ofandy. Similarly, if xandy are adjacent,
then p(x,y) + p(y,x) = a (the degree of the complement), and the numbesf
common neighbors ofandy equalk—1— p(x,y) = k—1— p(y,x), which implies
A = (3k—V)/2, which is independent ofandy.

(iii ) = (ii): If I, is strongly regular anét = 2y, then Theorem 9.1.3 gives =
(3k—v) /2. With the relations above this shows tlfais regular of degrek.

(i) = (iii): Switch inl" with respect to the neigbors of, thenw becomes isolated,
andlm \ w=Ty. If Sy, is the Seidel matrix of,, then

01"
S= LS«J

is the Seidel matrix of . We know (S— p11)(S— p2l) = 0. This gives(S, —
p1l)(Sw — p2l) = =3, Thereforel, is strongly regular with restricted Seidel eigen-
valuesp; andp; andv— 1 = —p;p, vertices. Fron5=J— 2A—| we get the adja-
cency eigenvalues= —(p1 +1)/2 ands= —(p2+1)/2 of I,. Now the parameters
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of Iy, follow from Theorem 9.1.3.

(iii ) = (i): Supposéy, is strongly regular wittk = 21 and Seidel matri§,,. Then it
follows readily thatS,1 = (p1 + p2)1 and(S, — p1l ) (Sw— p2l) = —J. This implies
thatSsatisfiesS— p1l)(S—p2l) = 0. O

Small regular two-graphs have been classified. The tabtewbgives the num-
bers of nonisomorphic nontrivial regular two-graphs with—= —3 or p; = —5 or
v < 50.

% 6 10 14 16 18 26 28 30 36
p,p2 | £vV/5 43 +V13 —-35 417 45 -3,9 429 -57
# 1 1 1 1 1 4 1 6 227
% 38 42 46 50 76 96 126 176 276
p1,02 | £v/37 +V41 +/45 +7 -5,15 —519 —525 —535 —5 55
# >191 >18 >97 >54 2 ? 1 1 1

10.3.1 Related strongly regular graphs

Given the parameters of a regular two-graphwe find three parameter sets for
strongly regular graphs that may be related, namely thahefdescendants, and
the two possible parameter sets for regular graphs in thietswg class of2. The
parameters are given by:

Proposition 10.3.2 (i) Let I be strongly regular with parametels,k,A, 1t). The
associated two-grapl®@ is regular if and only if v=2(2k— A — ). If this is the
case, then it has degree-a2(k— ), andly, is strongly regular with parameters
(v—21,2(k— ), k+A —2u,k—p).

(i) Conversely, ifl" is regular of valency k, and the associated two-graplis
regular of degree a, thef is strongly regular with parameterd = k— (v—a)/2
andu = k—a/2, and k satisfies the quadrat@k® — (v+ 2a)k+ (v—1)a= 0.

Proof. (i) By definition, Q is regular of degrea if and only ifa= A + (v—2k+
A) =2(k— ). The parameters follow immediately.
(i) The quadratic expresses that 3v € {r,s}. O

In the case of the regular two-graph on 6 vertices, the delscés are pentagons,
and there are no regular graphs in the switching class.

In the case of the regular two-graph on 10 vertices, the delsces are grid
graphs 3x 3. The switching class contains both the Petersen graphsodrinple-
ment. Therefor&2 is isomorphic to its complement (and so are the descendants)

In the case of the regular two-graph on 16 vertices, the delsces are isomor-
phic to the triangular grapfi(6) (with parameters (15,8,4,4) and spectrui28
(—2)9). The switching class contains the grid grapk 4 and the Shrikhande graph
(both with parameters (16,6,2,2) and spectrdr@®(—2)°), and the Clebsch graph
(with parameters (16,10,6,6) and spectrur 20(—2)19).
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It remains to specify what switching sets are needed to bvaigtween two strongly
regular graphs associated to the same regular two-graph.

Proposition 10.3.3Let " be strongly regular with parameters,k,A, ), associ-
ated with a regular two-graph.

(i) The graphl” is switched into a strongly regular graph with the same param
eters if and only if every vertex outside the switching seta&ljacent to half
of the vertices of S.

(i) The graphr” is switched into a strongly regular graph with parametérk+
C,A +c, L +c) where c= %v— 2u if and only if the switching set S has size
%v and is regular of valency & u. O

For example, in order to switch thexd4 grid graph into the Shrikhande graph,
we can switch with respect to a 4-coclique. And in order totglwihe 4x 4 grid
graph into the Clebsch graph, we need a split into two halvasdre regular with
valency 4, and the union of two disjoiKt’s works.

Regular two-graphs were introduced by Graham Higman ankdumvestigated
by Taylor [318].

10.3.2 The regular two-graph on 276 points

If N is the point-block incidence matrix of the unique SteinesteynS(4,7,23), then
NN' =56l 4213, NJ = 77J, JN = 7J. Since any two blocks in this Steiner system
meet in 1 or 3 points, we have'N = 71 + A+ 3(J— | — A) whereA describes the
relation of meeting in 1 point. As we already saw§®.1.10,A is the adjacency
matrix of a strongly regular graph—in this case one with pat@ns(v,k,A, 1) =
(253 112 36,60) and spectrum 112230 (—26)22, The Seidel matriS=J—| —2A
has spectrum 28(—5)2%0 5122 and satisfiegS— 511)(S+5l) = —3J. Now S =

<J i;[iﬂ J _SZN> satisfieg'S — 551 )(S +5l) = 0 and hence is the Seidel matrix
of aregular two-graph on 276 vertices. This two-graph isjuai(Goethals & Seidel
[172]). Its group of automorphisms is gacting 2-transitively.

10.3.3 Coherent subsets

A clique, or coherentsubset in a two-grapl? = (V,A) is a subse€ of V such that
all triples inC are coherent. Ik ¢ C, thenx determines a partitiofiC,,C, } of C into
two possibly empty parts such that a tripdgzwith y,z € C is coherent precisely
wheny andz belong to the same part of the partition.
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Proposition 10.3.4 (Taylor [320]) Let C be a nonempty coherent subset of the reg-
ular two-graphQ with eigenvaluepi, p2, wherep, < 0. Then

(i) |C| < 1— po, with equality iff for each ¥ C we havdCy| = |C}],
and

(i) C] < m(p2).

Proof. (i) Let c=|C|. Counting incoherent triples that me&2in two points, we
find 3c(c— 1)@= Fysc Cxl.ICL| < Txec(c/2)? = 3c2(v—c). It follows thatc? —

(v—2a)c— 2a < 0. But the two roots ok?> — (v—2a)x—2a = 0 are 1— p; and
1—po, hence k- p; <c<1-—po.

(i) This follows by making a system of equiangular linesRf' as in§10.6.1
corresponding to the complement®@f We can choose unit vectors for the points in
C such that their images form a simplex (any two have the same¥ joroduct) and
hence|C| is bounded by the dimension=v—m(p;) = m(pz). O

10.3.4 Completely regular two-graphs

In a regular two-graph each pair isag = a coherent triples, that is, iap 3-cliques,
and each coherent triple is @ 4-cliques, whereas is the number of common
neighbours of two adjacent vertices in any strongly reggtaphl,, so thataz =
—2(p1+3)(p2+3)+1 by Theorem 10.3.1.

Let at-regular two-graphbe a regular two-graph in which eveirglique is con-
tained in a nonzero constant numlagiof (i 4+ 1)-cliques, for 2<i <t. By Propo-
sition 10.3.4 we must have< —p,. A completely regular two-grapls at-regular
two-graph witht = —p,. For example, the regular two-graph on 276 poifif(3.2)
is completely regular. Neumaier [273] introduced this @picand gave parameter
restrictions strong enough to leave only a finite list of flelesparameters. There are
five examples, and two open cases.

#| p1 P2 v a a a a as a | existence
1 3 -3 10 4 1 unique [298]
2 5 -3 16 6 1 unique [298]
3 9 -3 28 10 1 unique [298]
4 7 -5 36 16 6 2 1 unique (BH)
5/ 19 -5 96 40 12 2 1 none (NP)
6| 256 -5 126 52 15 2 1 none [273]
71 55 -5 276| 112 30 2 1 unique [172]
8| 21 -7 148 66 25 8 3 2 1| none[273]
9| 41 -7 288| 126 45 12 3 2 1] none[30]
10| 161 -7 1128| 48 165 36 3 2 12
11| 71 -9 640| 288 112 36 10 4 3 none (BH)
12351 -9 3160| 1408 532 156 30 4 37
13| 253 —11 2784|1270 513 176 49 12 5% none [273]

Table 10.1 Parameters of completely regular two-graphs
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Here (BH) refers to an unpublished manuscript by Blokhuid Blaemers, while
(NP) is the combination of Neumaier [273] who showed thatravdd graph on 95
vertices must be locallaQ(3,3), and Pasechnik [275] who classified such graphs
and found none on 95 vertices.

10.4 Conference matrices

The Seidel matrix oC5 + K is an example of a so callezbnference matrixAn
n x n matrix Sis aconference matrixf all diagonal entries are 0, the off-diagonal
entries aret1, andSS = (n—1)I.

Multiplying a row or column by—1 (switching) does not affect the conference
matrix property. It was shown in [134] that any conferencerin@an be switched
into a form where it is either symmetric or skew symmetric:

Lemma 10.4.1 Let S be a conference matrix of order n with-r2. Then n is even
and one can find diagonal matrices D and E with diagonal esttid such that
(DSE)" = DSE if and only if n= 2 (mod 4). One can find such D and E with
(DSE)" = —DSE if and only if = 0 (mod 4).

Proof. Switch rows and columns so as to make all non-diagonal entrighe
first row and column equal to 1. The second row nowmésentries 1 and equally
many entries-1 (since it has inner product zero with the first row). 8as even,
sayn = 2m-+ 2. Let there be,b,c,d entries 1-1,1, —1 in the third row below the
entries 11, —1,—1 of the second row, respectively. We may assume (by swijchin
the first column and all rows except the first if required) tBat= 1. If S3» = 1 then
a+b=m-1,c+d=ma+c+l=ma—-b—-c+d+1=0implya+l=b=
c=d= %mso thatmis even. IfS3, = —1thena+b=m—-1,c+d=m,a+c=m,
a—b-c+d+1=0implya=b=c—1=d=3(m-1) so thatmis odd. This
proves that after switching the first row and column to 1, tta#rim S has become
symmetric in case = 2 (mod 4), while after switching the first row to 1 and the
first column to—1, the matrixShas become skew symmetric in case 0 (mod 4).

O

Thus, ifn=2 (mod 4), Sgives rise to a strong graph with two eigenvalues and its
associated two-graph is regular of deg(ee- 2) /2. The descendants are strongly
regular with parametei®— 1, (n—2) /2, (n—6) /4, (n—2) /4). We call these graphs
conference graph<onference graphs are characterized among the strorggliare
graphs byf = g (f andg are the multiplicities of the restricted eigenvalues), arel
the only cases in which non-integral eigenvalues can occur.

The following condition is due to Belevitch [22].

Theorem 10.4.21f n is the order of a symmetric conference matrix, then his
the sum of two integral squares.

Proof. CCT = (n— 1)l implies thatl and (n— 1)I are rationally congruent (two
matricesA andB are rationally congruent if there exists a rational maRisuch
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thatRAR" = B). A well-known property (essentially Lagrange’s four soesthe-
orem) states that for every positive rational numbethe 4x 4 matrix aly is ra-
tionally congruent td4. This implies that then x n matrix al, is rationally con-
gruentto diadl,...,1 a,...,a) where the number of ones is divisible by 4. Since
n=2 (mod 4, | must be rationally congruent to digg...,1,n— 1 n—1). This
implies thatn — 1 is the sum of two squares. O

Note that this theorem also gives a necessary conditiorhéoexistence of confer-
ence graphs. For example, 21 is not the sum of two squaresfdhe there exists
no conference matrix of order 22, and no strongly regulaplynaith parameters
(21,10,4,5).

For many values ofi conference matrices are known to exist, see for example
[170]. The following construction, where— 1 is an odd prime power, is due to Pa-
ley [274]. LetS,, be a matrix whose rows and columns are indexed by the elements
of a finite fieldFq of orderq, g odd. by(Sy)i,j = x(i — j), wherey is the quadratic
residue character (that ig(0) = 0 andx(x) = 1 if xis a square, ané-1 if x is not
a square). It follows thab is symmetric ifq = 1 (mod 4), andSis skew symmetric
if =3 (mod 4. In both cases

-
S {0 1 }

1S

is a conference matrix. H= 2 (mod 4), Srepresents a regular two-graph and all its
descendants are isomorphic. They areRhkey graphsthat we already encountered
in §9.1.2.

10.5 Hadamard matrices

Closely related to conference matrices are Hadamard reatiicmatrixH of order
nis called aHadamard matrixif every entry is 1 or—1, andHH" =nl. If H is

a Hadamard matrix, then solk$'. If a row or a column of a Hadamard matrix is
multiplied by —1, the matrix remains a Hadamard matrix. Tdwee of a Hadamard
matrix H (with respect to the first row and column) is the matthof ordern —

1 obtained by first multiplying rows and columns ldf by +1 so as to obtain a
Hadamard matrix of which the first row and column consist acgsanly, and then
deleting the first row and column. Now all entriesare+1, and we hav€C'™ =
C'C=nl-J,andC1=C"1= —1. Thisimplies that th¢0, 1) matrixN = 3(C+J)
satisfiesN"1= (3n—1)1andNN" = Inl + (3n—1)J, so that, fom > 2, N is the
incidence matrix of a symmetric @— 1, %n -1 %n —1) design. Conversely, i

is the incidence matrix of a 2-design with these parametieesy N — J is the core
of a Hadamard matrix. Note that the design parameters inmalyntis divisible by

4 if n > 2. The famous Hadamard conjecture states that this condgisufficient
for existence of a Hadamard matrix of ordeiMany constructions are known (see
below), but the conjecture is still far from being solved.
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A Hadamard matriH is regularif H has constant row and column sufrsgy).
Now —H is a regular Hadamard matrix with row suat. FromHH " = nl we get
that¢? = n, so/ = +/n, andn is a square. IH is a regular Hadamard matrix with
row sum/, thenN = 1(H +J) is the incidence matrix of a symmetric(2;(n-+
0)/2,(n+2¢)/4) design. Conversely, N is the incidence matrix of a 2-design with
these parameters fdenon desig)) then N — J is a regular Hadamard matrix.

A Hadamard matrixH is graphical if it is symmetric with constant diagonal.
Without loss of generality we assume that the diagonal eisnare 1 (otherwise
we replaced by —H). If H is a graphical Hadamard matrix of ordethenS=H —|
is the Seidel matrix of a strong graphwith two Seidel eigenvalues:1+/n. In
other words/ is in the switching class of a regular two-graph. The deseenhdf
" with respect to some vertex has Seidel mafrix |, whereC is the corresponding
core ofH. It is a strongly regular graph with parametévsk, A, u) = (n—1, %n—

1, %n— 1, %n— 1). From trS= 0 it follows that also for a graphical Hadamard matrix
nis a square. If, in additionH is regular with row sun?¥ = +./n, thenl" is a
strongly regular graph with parametdrs (n—¢)/2,(n—2¢)/4,(n—2¢)/4). And
conversely, a strongly regular graph with one of the abovamater sets gives rise
to a Hadamard matrix of ordex

There is an extensive literature on Hadamard matrices.eSge[296, 297, 105].

10.5.1 Constructions

There is a straightforward construction of Hadamard mesricom conference ma-
trices. If Sis a skew symmetric conference matrix, thén= S+ 1 is a Hadamard
matrix, and ifSis a symmetric conference matrix, then

_[s+1 s—i
H= [S—I —S—I}

is a Hadamard matrix. Thus the conference matrices comsttin the previous
section give Hadamard matrices of orader 4mif 4m— 1 is a prime power, and if
mis odd and th— 1 is a prime power. Some small Hadamard matrices are:

1

Observe that the two Hadamard matrices of order 4 are regathgraphical. One
easily verifies that, iH; andH, are Hadamard matrices, then so is the Kronecker
productH; ® Ho. Moreover, ifH; andH, are regular with row sumé, and/,, re-
spectively, therH; ® Hy is regular with row sun?1/,. Similarly, the Kronecker
product of two graphical Hadamard matrices is graphicairag&/ith the small

and

-1
1 —
1
1
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|—\||—\|—\r—\
[l il
il
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el o
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Hadamard matrices given above, we can make Hadamard nsadficedern = 2!
and regular graphical Hadamard matrices of order4! with row sum¢ = +2t,

Let RSHCDbe the set of pairgn, €) such that there exists a regular symmetric
Hadamard matrixd with row sums/ = £,/n and constant diagonal, with diagonal
entries 1. If(m, &), (n,e) € RSHCD then(mn d¢) € RSHCD

We mention some direct constructions:

(i) (4,+1), (36,+1), (100, +1), (196 +1) € RSHCD

(ii) If there exists a Hadamard matrix of order then(n?, +£1) € RSHCD

(iii) If both a— 1 anda+ 1 are odd prime powers, théa?, 1) € RSHCD

(iv) If a+1 is a prime power and there exists a symmetric conferencexnoét
ordera, then(a?,1) € RSHCD

(v) If there is a set of — 2 mutually orthogonal Latin squares of order then
(4t?,1) € RSHCD

(vi) (4t%,+£1) € RSHCD

See [171], [59] and [296}5.3. For the third part of (i), see [226]. For the fourth
part of (i), cf. [171], Theorem 4.5 (fdt = 7) and [221]. For (ii), cf. [171], Theorem
4.4, and [193]. For (iii), cf. [296], Corollary 5.12. For Jiwf. [296], Corollary 5.16.
For (v), consider the corresponding Latin square graph(#jrsee [200].

10.6 Equiangular lines

10.6.1 Equiangular lines inRY and two-graphs

Seidel (cf. [238, 246, 135]) studied systems of lines in Eleen spac&Y, all pass-
ing through the origin 0, with the property that any two make $ame anglé. The
casesp = 0 (only one line) angy = Z (at mostd lines, mutually orthogonal) being
trivial, we assume & ¢ < 7. Leta = cosg, so that O< a < 1. Choose for each
line 4 a unit vectorx; on ¢; (determined up to sign). Thegl x; = 1 for eachi, and
X' Xj = £cosp = +a fori # j.

For the Gram matrix of the vectors; this means that = | + a S, whereSis the
Seidel adjacency matriaf a graphl”. (That is,Sis symmetric with zero diagonal,
and has entries-1 and 1 for adjacent and nonadjacent vertices, respec)ivédye
that changing the signs of some of theorresponds t&eidel switchingf I

Conversely, leS be the Seidel adjacency matrix of a graph on at least two ver-
tices, and le® be the smallest eigenvalue&f(Then < 0 sinceS# 0 and tIS=0.)
Now S— 01 is positive semi-definite, an@ =1 — %Sis the Gram matrix of a set of
vectors inRY, whered = rk (S— 61) = n—m(8) wheren is the number of vertices
of the graph, andn(0) the multiplicity of 6 as eigenvalue d&.

We see that there is a 1-1 correspondence between depeggémgular sys-
tems ofn lines and two-graphs amvertices, and more precisely between equiangu-
lar systems ofi lines spannindRY (with d < n) and two-graphs on vertices such
that the smallest eigenvalue has multipliaity- d.
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Thus, in order to find large sets of equiangular lines, onddéind large graphs
where the smallest Seidel eigenvalue has large multiplfoit, rather, small comul-

tiplicity).

10.6.2 Bounds on equiangular sets of lines &f or C¢

An upper bound for the size of an equiangular system of linad fience an upper
bound for the multiplicity of the smallest Seidel eigeneahf a graph) is given by
the so-calleddbsolute boundlue to M. Gerzon (cf. [238]):

Theorem 10.6.1 (‘Absolute bound’)The cardinality n of a system of equiangular
lines in Euclidean spac&? is bounded byd(d + 1).

Proof. Let X = ' be the rank 1 matrix that is the projection onto the line
ThenX? = X; and
1ifi=]j
N Ty )2
XX = (5 x))" = { a? otherwise.
We prove that the matrice§ are linearly independent. Since they are symmetric,
that will show that there are at mo%d(d +1). So, suppose thgtciX; = 0. Then
i CiXXj = 0 for eachj, so thatj (1— a2) + a2 ¢ = 0 for eachj. This means that
all c; are equal, and sincgc; =tr 5 ¢;X; = 0, they are all zero. O

In CY one can study lines (1-spaces) in the same way, choosingraisgaunit
vector in each and agreeing tha} and(y) make anglep = arccosx wherea =
Ix*y|. (Herex* stands fox".) The same argument now proves

Proposition 10.6.2 The cardinality n of a system of equiangular linesG# is
bounded by & a

There are very few systems of lineslitf that meet the absolute bound, but it is
conjectured that systems df equiangular lines irC? exist for all d. Such sys-
tems are known fod = 1,2,3,4.5,6,7,8,19 ([335, 213, 214, 174, 11]). In quantum
information theory they are known as SICPOVMs.

The special bound gives an upper boundrfan terms of the angle, or an upper
bound forg (equivalently, a lower bound far = cosg) in terms ofn.

Proposition 10.6.3 (‘Special bound)If there is a system of i 1 lines inRY or
CY such that the cosine of the angle between any two lines is sitamohena? >
(n—d)/(n—1)d, or, equivalently, i< d(1— a?)/(1— a?d) if 1—a?d > 0.

Proof. Letx (1<i < n) be unit vectors iRY or C% with |[x/xj| < a for i # .
PutX = xx andY = y;X — §l. Then tXXj = [x'xj|> < a® for i # |, and
trX =trX?=1. NowatrYY*gn(n—l)aZJrn—%z. O

Complex systems of lines with equality in the special bouredkmown asequian-
gular tight frames. There is a lot of recent literature.



10.6 Equiangular lines 161

If equality holds in the absolute bound, then tkkespan the vector space of all
symmetric matrices, and in particulais a linear combination of thk;. If equality
holds in the special bound, the same conclusion followsoth bases the following
proposition shows (in the real case) that the grag¥elongs to a regular two-graph.

Proposition 10.6.4 SupposeiX 1 <i < n) are unit vectors irR% or C% with [x"xj| =
a fori # j, where0 < a < 1. Put X = xx* and suppose that there are constants c
such that I= 3 ¢iX. Then ¢=d/n for alli and n=d(1— a?)/(1— a?d).

If the % are vectors inRY, and G is the Gram matrix of the,and G=1+aS,
then S has eigenvaluéa — d)/(ad) and —1/a with multiplicities d and n-d,
respectively. If n> d+ 1 and n+# 2d, then these eigenvalues are odd integers.

Proof. If I =3 c¢iX thenX; = ¥;ciXX; for eachj, sothatj(1—a?)+a?yc=1
for eachj. This means that altj are equal, and sinCgci =tr 3 ¢iX =trl =d,
they all equald/n. Our equation now becomed/n)(1— a?) + a?d = 1, so that
n=d(1-a?)/(1-a?d).

If F is thed x n matrix whose columns are the vectorsthenG = F TF, while
FFT =3xx' =3 X = (n/d)I. Itfollows thatFF " has eigenvalug/d with multi-
plicity d, andG = F ' F has the same eigenvalues, and in addition 0 with multiglicit
n—d. The spectrum o§follows. If the two eigenvalues of the integral mat&are
not integers, they are conjugate algebraic integers, agd hlave the same multi-
plicity, so thatn = 2d. SinceS=J—| — 2A, the eigenvalues @&, when integral, are
odd. O

Graphs for which the Seidel adjacency masias only two eigenvalues are strong
(cf. §10.1, Proposition 10.1.1) and belong to the switching ctdss regular two-
graph (Theorem 10.3.1).

The known lower and upper bounds for the maximum number ofaegular
lines inRY are given in the table below. For these bounds, see van Linei& S
del [246], Lemmens & Seidel [238], Seidel [302] (p. 884).

d 12345 6 7-141516 17-18
Nmax|1 366 1016 28 3640 48

d 19 20 21 22 23-42 43
Nmax|72—76 90-96 126 176 276 344

Bounds for the size of systems of linesRA or CY with only a few different, spec-
ified, angles, or just with a given total number of differengkes, were given by
Delsarte, Goethals & Seidel [135].

10.6.3 Bounds on sets of lines with few angles and sets of vector
with few distances

In the case of equiangular lines the absolute value of theriproduct took only
one value. Generalizing that, one has
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Theorem 10.6.5([135]) For a set of n unit vectors ifRY such that the absolute
value of the inner product between distinct vectors takeistindt values different

from1, one has < (“425%). If one of the inner products B then n< (%1%?).

There are several examples of equality. For example, fremdbt system oEg
one gets 120 lines ik8 with |a| € {0, 3}.

Theorem 10.6.6([135]) For a set of n unit vectors irC% such that the abso-
lute value of the inner product between distinct vectorsesgak distinct values

different from1, one has n< (djil)z. If one of the inner products i6, then

n< (%650 (651

For example, there are systems of 40 vector&rwith |a| € {0, %} and 126
vectors inC® with |a| € {0,3}.

For sets of unit vectors instead of sets of lines it may be mataral to look at the
inner product itself, instead of using the absolute value.

Theorem 10.6.7 ([136]) For a set of n unit vectors iiRY such that the inner product
between distinct vectors takes s distinct values, one hagh;*;") + (%159 If

the set is antipodal, theni 2(;%2).

For example, in the antipodal case the upper bound is metagithlity fors= 1
by a pair of vectorstx (with n = 2), for s= 2 by the vectorste of a coordinate
frame (withn = 2d), and fors= 6 by the set of shortest nonzero vectors in the Leech
lattice inR?* (with inner products-1,0,+3%, +1 and sizen = 2(%)).

In the general case the upper bound is met with equalitg forl by a simplex
(withn=d+1). Fors= 2 one has

d 25 6 22 23 3,4,7-21,24-39
Nmax|5 16 27 275 276-277 3d(d+1)

with examples of equality in the bourrd< %d(d+3) for d = 2,6,22. The upper
bounds ford > 6, d = 22 are due to Musin [269].

Corollary 10.6.8 ([136]) Let I' be a regular graph on n vertices, with smallest
eigenvaluéfmin < —1 of multiplicity n—d. Then n< %d(d +1)-1

(Earlier we saw for strongly regular graphs that %f(f +3).Hered = f+1,
so this gives the same bound, but applies to a larger clagaphg.)

Theorem 10.6.9([29]) A set of vectors iiRY such that the distance between distinct
vectors takes s values has size at m{8$f).

Ford < 8, the maximal size of a 2-distance seRifiwas determined by Lisdk
[247]. The results are
d 123456 7 8
Nmax|3 5 6 10 16 27 29 45

so that equality holds in the Blokhuis bou(&!z*z) ford =1 andd = 8.

The above gave generalizations of the absolute bound. Hneralso analogues of
the special bound, see [135, 136].




Chapter 11
Association schemes

11.1 Definition

An association scheme with d classga finite sefX together withd + 1 relations
R; on X such that
() {Ro,Ry,...,Rq} is a partition ofX x X;
(i) Ro={(xx)[xeX};
(i) if (x,y) € R, then alsqy,x) € R;, for all x,y € X andi € {0,...,d};
(iv) for any (x,y) € R¢ the numberp}‘j of ze X with (x,z) € R and(zy) € R;
depends only on j andk.
The numbergk are called théntersection numbersf the association scheme. The
above definition is the original definition of Bose & Shimam¢86]; it is what
Delsarte [133] calls a symmetric association scheme. Irsd&&d’'s more general
definition, (iii) is replaced by:
(iii") foreach €{0,...,d} there exists g € {0,...,d} such thafx,y) € R implies
(y7 X) € R]1
(i) pf = p, foralli,j,ke{0,...,d}.

It is also very common to require just (i), (i), ()i (iv), and to call the scheme
‘commutative’ when it also satisfies (fji. Definen = |X|, andn; = pi?. Clearly, for
eachi € {1,...,d}, (X,R) is a simple graph which is regular of degmge
Theorem 11.1.1The intersection numbers of an association scheme satisfy
() p§; = Sk, P = ajnj, pf = pf,

(i) Yipf=nj Tjnj=n,

(iif) pme= pjcn;,

(V) 31 Pij P = 31 i T
Proof. Equations (i), (ii) and (iii) are straightforward. The egpsions at both sides
of (iv) count quadruplesw, x,y, z) with (w,x) € R;, (X,y) € R;, (¥,2) € R, for a fixed
pair (W, z) € R. O

163
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It is convenient to write the intersection numbers as emtoiethe so-callednter-
section matricesd,...,Lq:

(Li)kj = pE.

Note thatLo = | andLiL; =¥ p}‘j Lx. From the definition it is clear that an asso-
ciation scheme with two classes is the same as a pair of comepi@ry strongly
regular graphs. IfX,Ry) is strongly regular with paramete(s,k,A, 1), then the
intersection matrices of the scheme are

0k 0 0 0 v—k—1
Li=|1Ak=A-1], Lp=|0k=A—-1 v—2k+A

opu k—p 1 k—pu v—2k+4+pu-2

11.2 The Bose-Mesner algebra

The relationdx; of an association scheme are described by their adjacenticesa
A; of ordern defined by

(A= 1 wheneverx,y) € R;,
™) 0 otherwise.

In other words A; is the adjacency matrix of the gragX,R). In terms of the
adjacency matrices, the axioms (i)—(iv) become

(i) SLoA =3,
(i) Ao=1,
@iy A=A, forallie{0,...,d},
(iv) AA] =S Pl A foralli, j ke {0,...,d}.

From (i) we see that th€0,1) matricesA; are linearly independent, and by use of
(i)—(iv) we see that they generate a commutafie- 1)-dimensional algebra/ of
symmetric matrices with constant diagonal. This algebra fivat studied by Bose

& Mesner [35] and is called thBose-Mesner algebraf the association scheme.

Since the matricegy commute, they can be diagonalized simultaneously (see

Marcus & Minc [257]), that is, there exists a matiSsuch that for each\ € o7,

S 1ASis a diagonal matrix. Therefore is semisimple and has a unique basis of
minimal idempotent&y, ..., Eq4 (see Burrow [70]). These are matrices satisfying

d
EE =3B, SE=1I.
2

The matrix%\] is a minimal idempotent (idempotent is clear, and minim#bfes

since rkJ = 1). We shall takegy = %J. LetP and%Q be the matrices relating our
two bases for7:



11.2 The Bose-Mesner algebra 165

d 1 d
Aj Z_ZJP.J'Ei, Ej= ﬁZ}QijA&.
i= i=

Then clearly
PQ=QP=nl.

It also follows that
AjEi =RjE,

which shows that th&®; are the eigenvalues @& and that the columns d&; are
the corresponding eigenvectors. Ths= rk E; is the multiplicity of the eigenvalue
Rj of Aj (provided thatRj # R for k # i). We see thatrp = 1, 3;m = n, and
m; = traceE; = n(E);j (indeedE has only eigenvalues 0 and 1, scHkequals the
sum of the eigenvalues).

Theorem 11.2.1The numbers;Pand Q; satisfy

(i) Po=Qio =1, R =ni, Qoi = m,

(i) PijRx = 3o PjPi,

(i) miRj =n;Qji, ¥i MR;Rk = nN;djk, ¥ niQij Qi = Nm; Oy,

(iv) [Rjl <nj, [Qijf <m;.
Proof. Part (i) follows easily fromy;E =1 = Ag, ;A =J = nk, AJ =n;J,
and traceE; = my. Part (i) follows fromAjA = 5, p'jkA|. The first equality in (iii)
follows frommR; = trA;Ei = n;Q;i, and the other two follow sincBQ = nl. The
first inequality of (iv) holds because tiifg are eigenvalues of thg-regular graphs
(X,Rj). The second inequality then follows from (iii). O

Relations (iii) are often referred to as tbethogonality relationssince they state
that the rows (and columns) &f (andQ) are orthogonal with respect to a suitable
weight function.

An association scheme is callpdmitive if no union of the relations is a nontrivial
equivalence relation. Or, equivalently, if no grapti R) with i # 0 is disconnected.
For a primitive association scheme, (iv) above can be shap&|R;j| < nj and
|Qij| <m; for j #0.

If d =2, and(X,Ry) is strongly regular with parametefgk, A, ) and spectrunk®
rf <9, the matrice$ andQ are

lkv—-k-1 1 f g
1r —r—1 |,Q=|1 fr/k gk |.
1s —s-1 1—f ol g St

P:

In general the matriceB andQ can be computed from the intersection numbers
of the scheme:

Theorem 11.2.2For i = 0,...,d, the intersection matrix Lhas eigenvalues;P
(0<i<d).
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Proof. Theorem 11.2.1(ii) yields

ZF’H (Lk(P Hkm=PRj ZF’lk(P_l)km: dmPj,

hencePLjP~1 = diag (Pyj,...,Pyj). -

Thanks to this theorem, it is relatively easy to compRt€ (= %P‘l) andm; (=
Qoi). It is also possible to expregsandQ in terms of the (common) eigenvectors
of theL;. Indeed PL;P~! = diag (Pyj,...,Py;) implies that the rows oP are left
eigenvectors and the columns @Qfare right eigenvectors. In particulamy can be
computed from the right eigenvectarand the left eigenvecta’, normalized such
that (uj)o = (Vi)o = 1, by use ofm uiTvi = n. Clearly, eachm; must be an integer.
These are theationality conditionsfor an association scheme. As we saw in the
case of a strongly regular graph, these conditions can lyepasverful.

11.3 The Linear Programming Bound

One of the main reasons association schemes have beerdsuttiat they yield
upper bounds for the size of substructures.

LetY be a nonempty subset of, and let itsinner distributionbe the vectora
defined bya; = |(Y x Y)NR|/|Y], the average number of elementsyoiin relation
R to a given one. Lex be the characteristic vector ¥f Thena, = WlleAix.

Theorem 11.3.1(Delsarte)aQ > 0.
Proof. We havelY|(aQ); =|Y|¥aQij = x' ¥ QijAXx =nx Ejx > 0sinceE; is
positive semidefinite. O

Example Consider the schemes of the triples from a 7-set, where fplesrare in
relationR; when they have 3 i elements in commofi = 0,1,2,3). We find

11218 4 1 6 14 14
|1 5-3-3 152 0-72
P=11 0-3 2| Q=11 4 _7/3 73

1-3 3-1 1-9/2 7 -7/2

How many triples can we find such that any two meet in at mosipoirg? For the
inner distributiona of such a collectiorY we havea; = 0, soa= (1,0,s,t), and
aQ > 0 gives the three inequalities

9 7 7 7
6-5—3t>0, 14— s+ 7t>0, 14+%s—It>0.

The linear programming problem is to maximixé = 1+ s+t given these inequal-
ities, and the unique solution &= 6,t = 0. This shows that one can have at most
7 triples that pairwise meet in at most one point in a 7-set,ibone has 7, then no
two are disjoint. Of course an example is given by the Fanoepla
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How many triples can we find such that any two meet in at leastpmint? Now
a=(1,r,s,0) and the optimal solution &Q > 0 is (1,8,6,0). An example of such
a collection is given by the set of 15 triples containing adipeint.

How many triples can we find such that no two meet in precisaly oint? Now

a=(1,r,0,t) and the maximum value of-tr +t is 5. An example is given by the
set of 5 triples containing two fixed points.

11.4 The Krein parameters

The Bose-Mesner algebra is not only closed under ordinary matrix multiplica-
tion, but also under componentwise (Hadamard, Schur) phigkition (denoted).
Clearly{Ao,...,Aq} is the basis of minimal idempotents with respect to this mult
plication. Write

13
EiOEJ' :ﬁkz qI]Ek
=0

The numberxq{‘j thus defined are called th&ein parameters(Ourqh- are those of
Delsarte, but differ from Seidel’s [301] by a factorn) As expected, we now have
the analogue of Theorems 11.1.1 and 11.2.1.

Theorem 11.4.1 The Krein parameters of an association scheme satisfy
() af; = Sk, of = &m;, o =df§,
(i) Sidf=mj, 5;mj=n,
(iii) qime = gfm;,
(V) 3o = 2 dia
(v) QjQk = 3o d}Qi,
(vi) nmea = 5 mQi Q1 Quk-
Proof. Lety (A) denote the sum of all entries of the mattixThenJAJ= S (A)J,
S (AoB) =traceAB'" andy (E) = 0if i # 0, since therEJ = nEEg = 0. Now (i)
follows by use ofg; o Eg = %Ei, qﬂ =5 (EioEj) =traceEEj = §jm;, andEi o Ej =
Ej o E, respectively. Equation (iv) follows by evaluatigo E;j o Ex in two ways,
and (iii) follows from (iv) by takingm = 0. Equation (v) follows from evaluating
A o EjoEy in two ways, and (vi) follows from (v), using the orthogortglielation
31 Q1 Qik = dmimkn. Finally, by use of (iii) we have

mcy df = 3 ghm; = n-trace(Ei 0 E) = nZ(Ei)n (B = mim,
] ]

proving (ii). O

The above results illustrate a dual behavior between orglimaultiplication, the
numbers:pikj and the matrice8; andP on the one hand, and Schur multiplication, the
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numbersq}(j and the matriceg; andQ on the other hand. If two association schemes
have the property that the intersection numbers of one ar&itein parameters of
the other, then the converse is also true. Two such schemeasiarto be (formally)
dual to each other. One scheme may have several (formaB,dwatone at all (but
when the scheme is invariant under a regular abelian grbepe is a natural way
to define a dual scheme, cf. Delsarte [133]). In fact usublyKrein parameters are
not even integers. But they cannot be negative. These iaparestrictions, due to
Scott [295] are the so-callg¢rein conditions

Theorem 11.4.2 The Krein parameters of an association scheme sat";sf}z qfor
alli,j,ke{0,...,d}.
Proof. The numbergig (0 < k < d) are the eigenvalues & o E; (since(E; o

Ej)Ex = £qfEx). On the other hand, the Kronecker prodiigt E; is positive

semidefinite, since eadh is. ButE; o E; is a principal submatrix oE; ® Ej, and
therefore is positive semidefinite as well, i.e., has no tregaigenvalue. O

The Krein parameters can be computed by use of equatiorl{\i)4This equation
also shows that the Krein condition is equivalent to

ZnIQ“QIjQIk >0 foralli,j,ke {0,...,d}.

In case of a strongly regular graph we obtain

f2 r3 r+1)°%
q%1=V<1+—(+)> >0,

k2 (v—k—1)2
2 3 3
> 9 s (s+1)
G2=" <1+ k2 (v—k—l)z) 20

(the other Krein conditions are trivially satisfied in thase), which is equivalent to
the result mentioned in secti@l.1.5.

Neumaier [271] generalized Seidel’s absolute bound tocéestson schemes, and
obtained the following.

Theorem 11.4.3The multiplicities m(0 <i < d) of an association scheme with d
classes satisfy
mm, ifi  j,
> me< { 1 el
Lo Im(m+1)ifi = J.

Proof. The left hand side equals 1€ o Ej). But rk(Ei o Ej) < rk(E ® Ej) =
rKEi - tkEj = mim;. And if i = |, then rk(Ei o E) < %m(m +1). Indeed, if the
rows of Ej are linear combinations afy rows, then the rows of; o E; are linear
combinations of theny + %m (m; — 1) rows that are the elementwise products of any
two of thesam, rows. O

For strongly regular graphs witiit, = 0 we obtain Seidel's bound: < %f(f +3).
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But in casegi; > 0, Neumaier's result states that the bound can be improved to
v< Sf(f+1).

11.5 Automorphisms

Let rbe an automorphism of an association scheme, and supposaths; points
x such thax andm(x) are in relatiorR.

Theorem 11.5.1(G. Higman)For each j the numbe;li ij:o NiQj; is an algebraic
integer.

Proof. The automorphism is represented by a permutation m&twkereSM =
MSfor eachM in the Bose-Mesner algebra. LIEt= E; be one of the idempotents.
ThenE has eigenvalues 0 and 1, aBtlas eigenvalues that are roots of unityFs®
has eigenvalues that are zero or a root of unity, aB&is an algebraic integer. But
trES= %ZI N Q.- O

If one putsaj = 1 5;N,Q;j, thenN, = 3 ; a;Pj, for all h.

11.5.1 The Moore graph on 3250 vertices

Let " be a strongly regular graph with parameterk, A, u) = (325057,0,1) (an
unknown Moore graph of diameter two, cf. Theorem 9.1.5).

11729 152

Forsuchagrapp= |1 %’ &0
1-13 10
3 3

Aschbacher [12] proved that there is no such graph with a thrée group.
G. Higman (unpublished, cf. Cameron [78]) proved that ther® such graph with
a vertex transitive group.

Proposition 11.5.2 (G. Higman)I" is not vertex-transitive.

Proof. Consider any nontrivial group of automorphis@f such a graph. The
collection of points fixed bys has the properties = 0 andu = 1. Also, two nonad-
jacent fixed vertices are adjacent to the same number of fizdites, so the fixed
subgraph is either a strongly regular Moore graph (and thsrbh10 or 50 vertices),

or all fixed vertices have distance at most 1 to some fixed ¥éstethat there are at
mostk+ 1 = 58 of them).

Consider an involutiort. If T does not interchange the endpoints of some edge,

thenN; = 0, andNp + Ny = 3250. But if {x,y} is an orbit of 7, then the unique
common neighbor of x andy is fixed, andz occurs for at most 28 paifs¢,y}, so
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N, < 56Np, S0 thatNg = 58, Ny = 0, Np = 3192 andg=,(58 x 1729- 3192x ) =
%3 is not an integer, contradiction.

So, T must interchange two adjacent pointandy, and hence interchanges the
remaining 56 neighbors of x with the remaining 56 neighborsof y. If {u,v} is
such an orbit, then the unique common neighbou ahdv is fixed, and these are
all the fixed points. SdNg = 56, that is,iT is an odd permutation, since it is the
product of 1597 transpositions. Litbe the subgroup d& consisting of the even
permutations. ThelN does not have any involutions, so is not transitive, ard if
was transitivaN has two orbits interchanged by any element outdid8ut o has
fixed points and cannot interchange the two orbitdloA contradiction, sds was
not transitive. O

11.6 P- and Q-polynomial association schemes

In many cases, the association scheme carries a distarst@®fusuch that relation
R is the relation of having distande Such schemes are calledketric They are
characterized by the fact the'gk is zero whenever one ofj,k is larger than the
sum of the other two, whilcpijk is nonzero foil = j +k. Note that whether a scheme
is metric depends on the ordering of the relatiBhsA scheme may be metric for
more than one ordering. Metric association schemes arategkethe same objects
as distance-regular graphs (see Chapter 12 below).
_ D_uallly, acometricscheme is defined by, = 0 fori > j + k andd, > 0 for
i=j+k

There are several equivalent formulations of the metriogtic) property.

An association scheme is call&dpolynomialif there exist polynomialsfy of
degreek with real coefficients, and real numbegssuch thatPy = fi(z). Clearly
we may always take = R;. By the orthogonality relation 11.2.1(iii) we have

> mfj(@z)f(@) = Y mPjPk = nn; i,
[ T

which shows that thé, are orthogonal polynomials.
Dually, a scheme is calle@-polynomialwhen the same holds wif instead of
P. The following result is due to Delsarte [133] (Theorem $.651).

Theorem 11.6.1An association scheme is metric (resp. cometric) if and drity
is P-polynomial (resp. Q-polynomial).

Proof. Letthe scheme be metric. Then
ALA = i A1+ PA A+ Py AL

Sincep‘li+1 # 0, Ai;1 can be expressed in termsAf, Ai_1 andA;. Hence for each
j there exists a polynomidl of degreej such thai\; = fj(A7), and it follows that
P|jEi :AjEi = fj(Al)Ei = fj(Rl)Ei, henceP|j = fj(P,l).
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Now suppose that the schemePigpolynomial. Then thd; are orthogonal poly-
nomials, and therefore they satisfy a 3-term recurrenctiosl (see Szdg[316],
p.42)

aj+1fj11(2) = (B — ) j(2) + yj-1fj-1(2).

Hence

RiRj = —aj11R j+1+BjRj +Vj—1R j—1 fori=0,...,d.
SinceP1Rj = 3| p'lj Ry andP is nonsingular, it follows thap'1j =0for|l —j| > 1.
Now the full metric property easily follows by induction. &lproof for the cometric
case is similar. O

Given a sequence of nonzero real numbers, let its numbgignfchangede ob-
tained by first removing all zeros from the sequence, and¢beanting the number
of consecutive pairs of different sign. (Thus, the numbesigh changes in 1;-1,
0,1is2)

Proposition 11.6.2 (i) Let (X, %) be a P-polynomial association scheme, with re-
lations ordered according to the P-polynomial ordering agidenspaces ordered
according to descending real order on tBe:= B1. Then both row i and column i

of both matrices P and Q have precisely i sign chan@es i <d).

(i) Dually, if (X,2) is a Q-polynomial association scheme, and the eigenspaces
are ordered according to the Q-polynomial ordering and tetations are ordered
according to descending real order on tbg:= Qj1, then row i and column i of the
matrices P and Q have precisely i sign chan¢@s< i < d).

Proof. Since mB; = n;Qj the statements abod® and Q are equivalent. De-
fine polynomialsp; of degreej for 0 < j < d+1 by p_1(x) =0, po(X) = 1,
(x—aj)pj(X) = bj_1pj-1+ Cj+1Pj+1(X), takingcy,1 = 1. ThenA;j = p;(A), and
pd+1(X) = 0 has as roots the eigenvaluesfofThe numbers in rovy of P arep; (6;)
(0<i <d), and by the theory of Sturm sequences the number of sign esasithe
number of roots ofoy1 larger thand;, which is j. The numbers in columiof P
are the values qgf; evaluated at the roots @fj, 1. Sincep; has degreg and there is
at least one root oy 1 between any two roots gf; there ard sign changes. The
proof in theQ-polynomial case is similar. O

Example Consider the Hamming schenig4,2), the association scheme on the
binary vectors of length 4, where the relation is their Hamgrdistance. Now
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11.7 Exercises

Exercise 1 Show that the number of relations of valency 1 in an assaciatheme
is 2" for somem > 0, and 2"|n. Hint: the relations of valency 1 form an elementary
abelian 2-group with operatidmp j = k whenAjA; = Ay

Exercise 2 Show that for the special case whé#fres a coclique in a strongly regular
graph, the linear programming bound is the Hoffman boune¢fém 3.5.2).

Exercise 3 Show that ifl" is a relation of valenck in an association scheme, and
0 is a negative eigenvalue 6f, then|S| < 1—k/6 for each cliqueSin I".

Exercise 4 Consider a primitive strongly regular graphonv vertices with eigen-
valuesk!,rf, <9 (k > r > s) with a Hoffman coloring (that is a coloring with-1k/s
colors). Consider the following relations on the vertexdfdt : Ry: identity,

Ry: adjacentin,

Ro: nonadjacent i with different colors,

Rs: nonadjacent i with the same color.

Prove that these relations define an association scheme aeittex set of, and
determine the matricd® andQ.

Exercise 5 Let (X,R) be a primitive association scheme, andlTet (X,Rs) be a
graph corresponding to one of the classes.rhet 1 be one of the multiplicities of
the scheme. Lef( ) denote the Haemers invaria§8(7.2). Them (') < m-+1.



Chapter 12
Distance regular graphs

Consider a connected simple graph with vertexX&ef diameterd. DefineR, c X?
by (x,y) € R whenevex andy have graph distande If this defines an association
scheme, then the gragK, Ry) is calleddistance-regularBy the triangle inequality,
pk =0ifi+j<korfi—j| >k Moreover,p:j+J > 0. Conversely, if the intersection
numbers of an association scheme satisfy these conditioais(X,R;) is easily
seen to be distance-regular.

Many of the association schemes that playdke iin combinatorics are metric.
Families of distance-regular graphs with unbounded dianmetlude the Hamming
graphs, the Johnson graphs, the Grassmann graphs and gsmoltsated to dual
polar spaces. Recently Van Dam & Koolen [127] constructeevasuch family, the
15th, and the first without transitive group.

Many constructions and results for strongly regular gregrlesthed = 2 special
case of corresponding results for distance-regular graphs

The monograph [51] is devoted to the theory of distanceteegyraphs, and
gives the state of the theory in 1989.

12.1 Parameters

Conventionally, the parameters aog= I05+1,1 andc = le,l (and & = p{_yl).
Theintersection arrayof a distance-regular graph of diametkis {by, ... ,bg_1;
C1,...,C4}. The valenciespﬁi, that were calledh; above, are usually calledg here.
We havecik; = b;_1ki_1. The total number of vertices is usually called

It is easy to see that one heg>b; > ... > by_; andc; <c, <... < cq and
Cj<bgj(1<j<d).

173
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12.2 Spectrum

A distance-regular graph of diameterd hasd + 1 distinct eigenvalues, and the
spectrum is determined by the parameters. (Indeed, theéce=l and Q of any
association scheme are determined by the paran‘;eéj;(ensnd for a distance-regular

graph thepijk are determined again in terms of theandc;.)

The eigenvalues df are the eigenvalues of the tridiagonal matrix= (p{k) of
orderd + 1 that here gets the form

0 bo 0
crag by
L= Co A bz

0 Cq &y

If Lyu= Buandug = 1, then the multiplicity o as eigenvalue of equals

m(6) = /(Y kit?).

12.3 Examples

12.3.1 Hamming graphs

Let Q be a set of sizg. TheHamming graph Hd,q) is the graph with vertex set
QY, where two vertices are adjacent when they agrek-irl coordinates.

This graph is distance-regular, with parametgrs- i, bj = (q— 1)(d — i), di-
ameterd and eigenvaluegq — 1)d — gi with multiplicity (¢)(q—1)" (0 <i <d).
(IndeedH(d,q) is the Cartesian product dfcopies ofg, see§1.4.6.)

For q = 2 this graph is also known as the hypercuBedften denotedy. For
d = 2 the graptH (2,q) is also called_»(q).

Cospectral graphs

In §1.8.1 we saw that there are precisely two graphs with theigprofH (4,2). In
§9.2 we saw that there are precisely two graphs with the spaatf H (2,4). Here
we give a graph cospectral with(3, 3) (cf. [197]).

The graphdH (d, q) haveq® vertices, andi¢f~! maximal cliques (‘lines’) of size
g. LetN be the point-line incidence matrix. Th&N" —dl is the adjacency matrix
of I =H(d,q), andN "N — gl is the adjacency matrix of the graghon the lines,
where two lines are adjacent when they have a vertex in cominimfiows that for

d = qthe graphg™ andA are cospectral. I any two vertices at distance two have
c2 = 2 common neighbors. f > 3, then two vertices at distance twoAnhave 1
or g common neighbors (and both occur), so thas not distance-regular, and in
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Fig. 12.1 The geometry of the Hamming grapt(3, 3)

particular not isomorphic t6 . Forq = 3 the geometry is displayed in Figure 12.1.
See als@14.2.2.

12.3.2 Johnson graphs

Let X be a set of size. The Johnson graph th,m) is the graph with vertex set
(i;) the set of alm-subsets oK, where twom-subsets are adjacent when they have
m— 1 elements in common. For examplén, 0) has a single vertexi(n, 1) is the
complete graptKy; J(n,2) is the triangular grapfi (n).

This graph is distance-regular, with paramet@rs i, by = (m—i)(n—m—i),
diameterd = min(m,n—m) and eigenvalue@m—i)(n—m—i) —i with multiplicity
() = ()

TheKneser graph Kn,m) is the graph with vertex seéfn) where twom-subsets
are adjacent when they have maximal distancd(mm) (i.e., are disjoint when
n > 2m, and have &h— n elements in common otherwise). These graphs are not
distance-regular in general, but tBeld graph Gy;1, which equalK(2m+ 1, m),
is.

Sending a vertexn-set) to its complement iX is an isomorphism frond(n,m)
ontoJ(n,n—m) and fromK (n,m) ontoK(n,n—m). Thus, we may always assume
thatn > 2m.

12.3.3 Grassmann graphs

LetV be a vector space of dimensiorover the fieldFy. The Grassmann graph
Gr(n,m) is the graph with vertex se{m the set of allm-subspaces o¥, where
two msubspaces are adjacent when they intersect ifimen 1)-space. This graph
is distance-regular, with parameters= [] ? by =2t (™A1, diameted =

min(m,n—m), and eigenvalueg +1[™ '] "] — [1] with multiplicity [7] —[,",].
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(Here[!] = (g"—1)---(q""*1—1)/(d' —1)--- (q— 1) is theg-binomial coefficient,
the number ofm-subspaces of amspace.)

12.3.4 Van Dam-Koolen graphs

Van Dam & Koolen [127] construct distance-regular grapb&(m) with the same
parameters &r(2m+1,m). (They call them théwisted Grassmann graphShese
graphs are ugly, the group of automorphisms is not traesifihe existence of such
examples reinforces the idea that the parameters of destagular graphs of large
diameter are strongly restricted, while there is some feefbr the actual structure.
The construction is as follows. L& be a vector space of dimensiom2- 1 over
Fq, and letH be a hyperplane of . Take as vertices thegn+ 1)-subspaces of not
contained irH, and the(lm— 1)-subspaces contained i, where two subspaces of
the same dimension are adjacent when their intersectioodtsiension 1 in both,
and two subspaces of different dimension are adjacent whemcantains the other.
This graph is the line graph (concurrency graph on the sehes$) of the partial
linear space of which the points are timesubspaces df, with natural incidence,
while the point graph (collinearity graph on the set of pgjris Gr(2m+ 1,m). It
follows thatvDK(m) andGr(2m+ 1, m) are cospectral.

12.4 Bannai-Ito conjecture

The most famous problem about distance-regular graphsheddannai-Ito conjec-
ture ([19], p. 237): show that there are only finitely manytali€e-regular graphs
with fixed valencyk larger than 2. After initial work by Bannai & Ito, the conjeice
was attacked by Jack Koolen and coauthors in a long seriepefrp. After 25 years
a complete proof was given by Sejeong Bang, Arturas Dubjckask Koolen, and
Vincent Moulton [17].

12.5 Connectedness

For strongly regular graphs we had Theorem 9.3.2 statirtghlavertex connectiv-
ity kK (I") equals the valendy. In [58] it was shown that the same holds for distance-
regular graphs.

For strongly regular graphs we also had Proposition 9.3t ghys that the in-
duced subgraph on the vertices at maximal distance from engrertex is con-
nected. This is a very important property, but for distaregular graphs additional
hypotheses are needed. For example, there are two geerdrhkxagons with pa-



12.7 Moore graphs and generalized polygons 177

rametersGH(2,2) (duals of each other) and in one of them the subgréiphe are
disconnected.

12.6 Degree of eigenvalues

For strongly regular graphs we saw that eigenvalues argradteexcept in the ‘half
case’ where they are quadratic. Something similar happensli§tance-regular
graphs.

Polygons have eigenvalues of high degree: fomayon the degree of thieth
eigenvalue igp(m) wherem = gcd(i,n), whereg is the Euler totient function. But
elsewhere only integral and quadratic eigenvalues seerrcia.o

For the case of 8- andQ-polynomial scheme of diameter at least 34, Bannai &
Ito [19] Theorem 7.11 show that the eigenvalues are integers

There is precisely one known distance-regular graph ofnegldarger than 2
with a cubic eigenvalue, namely the Biggs-Smith graph, thigue graph with in-
tersection array3,2,2,2,1,1,1; 1,1,1,1,1,1,3}. It has 102 vertices, and spectrum
312180 ((1++/17)/2)° 6° where thed; are the three roots & + 36> —3=0.

A result in this direction is

Proposition 12.6.1 The only distance-regular graph of diametgmwith a cubic
eigenvalue is the heptagon.

Proof. Let[l" be a distance-regular graph of diameter horertices with a cubic
eigenvalue. Since algebraically conjugate eigenvaluge kize same multiplicity
we have three eigenvalués with multiplicity f = (n—1)/3. Since tA =0 we
find that6, + 8, 4+ 63 = —k/f. Nowk/f is rational and an algebraic integer, hence
an integer, ank > (n—1)/3. The same reasoning appliesApfor i = 2,3 and
hencek; > (n—1)/3, and we must have equality. Sinke= k, = ks we see that
b1=C2=b2=Cg.

Write 1 := c. The distinct eigenvaluds 01, 65, 63 of A are the eigenvalues of
the matrixL; (Theorem 11.2.2) and henke-1=k+ 6, + 6, + 03 =trL; = a; +
a+ag=(k—pu—1)+(k—2u)+ (k—u), so thatkk = 2u anda, = 0.

Letd(x,y) =3 and putA =T (x) N2(y), B=2(X)NT (y), so that Al = |B| =
c3 = U. Every vertex irB is adjacent to every vertex iy and hence two vertices in
B have at leastt + 1 common neighbors, so must be adjacent. Thisa clique,
andu = |B| <ap+1, thatis,u =1,k=2. O

12.7 Moore graphs and generalized polygons

Any k-regular graph of diameter has at most

14+k+kk—1)+...+k(k—1)9"1
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vertices, as is easily seen. A graph for which equality hiddslled avioore graph
Moore graphs are distance-regular, and those of diameter@ dealt with in The-
orem 9.1.5. Using the rationality conditions Damerell [[L28d Bannai & Ito [18]
showed:

Theorem 12.7.1 A Moore graph with diameter & 3is a (2d + 1)-gon.

A strong non-existence result of the same nature is the ¢heorf Feit & G. Hig-
man [148] about finite generalized polygons. We recall thggreeralized m-gois a
point-line incidence geometry such that the incidencelgisjp connected, bipartite
graph of diametemand girth 2n. It is calledregular of order(s,t) for certain (finite

or infinite) cardinal numbers, t if each line is incident withks+ 1 points and each
point is incident witht 4+ 1 lines. From such a regular generalizeeyon of order
(s,t), wheres andt are finite andn > 3, we can construct a distance-regular graph
with valencys(t + 1) and diameted = | 7] by taking the collinearity graph on the
points.

Theorem 12.7.2 A finite generalized m-gon of ordgs,t) with s> 1 and t> 1
satisfies e {2,3,4,6,8}.

Proofs of this theorem can be found in Feit & Higman [148], Bxer, Cohen &
Neumaier [51] and Van Maldeghem [323]; again the ratiopaldnditions do the
job. The Krein conditions yield some additional informatio

Theorem 12.7.3 A finite regular generalized m-gon withcs1 and t > 1 satisfies
s<t?andt<s’ifm=4or 8 itsatisfies s<t®andt< s*if m=6.

This result is due to Higman [206] and Haemers & Roos [195].

12.8 Primitivity

A distance-regular graph of diameterd is calledimprimitive when one of the
relations(X,R) with i # 0 is disconnected. This can happen in three cases: either
[ is ann-gon, and|n, ori = 2, andrl" is bipartite, o = d, andl” is antipodal that

is, having distancel is an equivalence relation. Graphs can be both bipartite and
antipodal. The @-gons fall in all three cases.

12.9 Euclidean representations

Let ™ be distance regular, and létbe a fixed eigenvalue. L& = E; be the idem-
potent in the association scheme belonging tso thatAE = 6E. Letu; = Qjj/n,
so thatE = S uiA. Let f =rkE.

The map sending vertexof I” to the vectox = Eg, columnx of E, provides a
representation df by vectors in arf-dimensional Euclidean space, namely the col-
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umn span ok, where graph distances are translated into inner prodtidis, y) =i
then(X,y) = Exy = u;.

If this map is not injective, anct = y for two verticesx,y at distance # 0,
thenu; = up and any two vertices at distancbave the same image. Foe 1 this
happens whefl = k. Otherwise[ is imprimitive, and either= 2 andr" is bipartite
and6 = —k, ori =d andl" is antipodal, or 2 i < d and[l" is a polygon.

This construction allows one to translate problems abaytlgs into problems in
Euclidean geometry. Especially whéns small, this is a very useful tool.

As an example of the use of this representation, let us preveilliger's Tree
Bound. Call an induced subgraghof I' geodeticwhen distances measuredTn
equal distances measuredin

Proposition 12.9.1 Let " be distance regular, and lé€t be an eigenvalue different
from £k. Let T be a geodetic tree in. Then the multiplicity f of the eigenvaliée
is at least the number of endpoints of T.

Proof. We show that the span of the vectorfor x € T has a dimension not less

than the numbee of endpoints ofT . Induction on the size of. If T = {x,y} then

X # y sincek # 6. Assume|T| > 2. If x e T, andSis the set of endpoints of

adjacent te, then fory,z€ Sandw € T \ Swe have(w,y— z) = 0. Pickx such that

Sis nonempty, ana is an endpoint off’ = T\ S. By induction dimw|w e T’) >
—|9/+1. Sincef # £k we have dinfy—z|x,y € S) = |§ — 1.

Example For a distance-regular graph without trianglds> k. Equality can
hold. For example, the Higman-Sims graph is strongly ragulith parameters
(v,k,A, 1) = (100,22,0,6) and spectrum 22277 (—8)%2,

12.10 Extremality

This section gives a simplified account of the theory devedidpy Fiol and Garriga
and coauthors. The gist is that among the graphs with a gpectmim withd + 1
distinct eigenvalues the distance-regular graphs arerastrin the sense that they
have a maximal number of pairs of vertices at mutual distance

Let " be a connecteld-regular graph with adjacency matxwith eigenvalues
k=6, > --- > 6,. Suppose that has preciselyl 4 1 distinct eigenvalues (so that
the diameter of is at mostd). Define an inner product on ti{d + 1)-dimensional
vector space of real polynomials modulo the minimum polyrzb@f A by

(p,g) = ftrp le

Note that(p, p) > 0 for all p, and(p, p) = 0 if and only if p(A) = 0. By applying
Gram-Schmidt to the sequence of polynomidlf0 < i < d) we find a sequence of
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orthogonal polynomialg; of degree (0 <i < d) satisfying(pi, pj) = 0 fori # j
and(pi, pi) = pi(k). This latter normalization is possible sinpgk) # 0.

(Indeed, suppose that changes sign at valueg (0 < j < h) inside the interval
(6n,k). Putg(x) = |‘|*J-‘=1(x— aj). Then all terms inp;, ) have the same sign, and
not all are zero, sop;,q) # 0, hencen =1, so that all zeros ofy are in the interval
(6n,k), andpi (k) # 0.)

The Hoffman polynomial (the polynomialsuch thap(A) = J) equalspo+ ...+
pq. Indeed,(pi, p) = %tr pi(A)J = pi(k) = (pi, pi) for alli.

If I" is distance-regular, then theg are the polynomials for which = pi(A).

Theorem 12.10.1(‘Spectral Excess Theoremlet” be connected and regular of
degree k, with & 1 distinct eigenvalues. Define the polynomiajsap above. Let

ky:=+ s kda(x) be the average number of vertices at distance d from a giveexe
in . Thenky < pg(K), and equality holds if and only If is distance-regular.

Proof. We follow Fiol, Gago & Garriga [153]. Use the inner prodyt,N) =
%trMTN on the spacén(R) of real matrices of orden. If M,N are symmetric,
then(M,N) = %Zx,y(M oN)xy. If M = p(A) andN = q(A) are polynomials im,
then(M,N) = (p,q).

Since(Ad Pda(A)) = (Aq,J) = kg, the orthogonal projectiof, of Ay on the space
(LA, ...,A% = (po(A),..., pd(A)) of polynomials inA equals

(Ad, p] A)) <Ad Pd(A)) _
; .0 P;(A) = Tk Pa(A) = 50K Pa(A).

Now [|A}[|2 < ||Aq][? givesky’/pq(K) < kq, and the inequality follows singay (k) >
0. When equality holdsig = pg(A).

Now it follows by downward induction oh that An = ph(A) (0 <h <d). In-
deed, fromy ; pj(A) =J =3 ; A it follows thatpo(A) +-- -+ pn(A) = Ao+ - +An.
Hencepn(A)xy = 0if d(x,y) > h, andpn(A)xy = 1if d(x,y) = h. Since(Xpn,1, pj) =
(Pnt+1,Xpj) =0 for j #h,h+1,h+2, we havexpyi1 = apn+bphr1 + cpry2 and
henceAA, 1 = apn(A) + bAn 1 + cAny2 for certaina b,c with a # 0. But then
Pn(A)xy = 0if d(x,y) < h, so thatp,(A) = An.

Finally, the three-term recurrence for thg now becomes the three-term recur-
rence for theA, that defines distance-regular graphs. O

Noting thatpq (k) depends on the spectrum only, we see that this provides achar
terization of distance-regularity in terms of the spectiamd the number of pairs of
vertices far apart (at mutual distande See [120], [152], [153] and Theorem 14.5.3
below.
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12.11 Exercises

Exercise 1 Determine the spectrum of a strongly regular graph minusreexe
(Hint: if the strongly regular graph has characteristigypoimial p(x) = (x— k) (x—
r)f(x—s)9, then the graph obtained after removing one vertex has clegistic
polynomial (X —K)(x— A + ) + ) (x—r) =1 (x —5)971.)

Determine the spectrum of a strongly regular graph minus(tvam)adjacent ver-
tices.

Show that the spectrum of a distance-regular graph minustexvéoes not depend
on the vertex chosen. Give an example of two nonisomorptipedral graphs both
obtained by removing a vertex from the same distance-regudgh.






Chapter 13
p-ranks

Designs or graphs with the same parameters can sometimestimguished by
considering thep-rank of associated matrices. For example, there are tlugisox
morpic 2-(16,6,2) designs, with point-block incidence riais of 2-rank 6, 7 and 8
respectively.

Tight bounds on the occurrence of certain configurationsamngetimes obtained
by computing a rank in some suitable field, sineeanks of integral matrices may
be smaller than their ranks ovir

Our first aim is to show that given the parameters (say, thiespgsgctrum), only
finitely many primesp are of interest.

13.1 Reduction modp

A technical difficulty is that one would like to talk about eigvalues that are zero
or nonzero modp for some primep, but it is not entirely clear what that might
mean when the eigenvalues are nonintegral. Necessarilg adbitrariness will be
involved. For examplé5+ /2)(5— v/2) = 0 mod 23 and one point of view is that
this means that 23 is not a prime @(1/2), and one gets into algebraic number
theory. But another point of view is that if one ‘reduces m8d happing to a field
of characteristic 23, then at least one factor must beconk@ever, the sum of
5+ /2 and 5- /2 does not become 0 upon reduction mod 23, so not both factors
become 0. Since these factors are conjugate, the ‘reduttish23’ cannot be de-
fined canonically, it must involve some arbitrary choice® ftlow Isaacs [222],
who follows Brauer.

Let R be the ring of algebraic integers @, and letp be a prime. LeM be a
maximal ideal inR containing the ideapR PutF = R/M. ThenF is a field of
characteristicp. Letr — r be the quotient maR — R/M = F. This will be our
‘reduction modp'. (It is not canonical becaudd is not determined uniquely.)

Lemma 13.1.1 (Isaacs [222], 15.1)et U = {ze C | Z" = 1 for some integer m
not divisible by p. Then the quotient map R R/M = F induces an isomorphism

183
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of groups U— F* from U onto the multiplicative group Fof F. Moreover, F is
algebraically closed, and is algebraic over its prime field.

One consequence is that on integers ‘reduction pidths the usual meaning: if
mis an integer not divisible by then some power is 1 (mag) and it follows that
m# 0. More generally, if6 = 0, thenp|N(8), whereN(8) is thenormof 8, the
product of its conjugates, up to sign the constant term aghitémal polynomial.

13.2 The minimal polynomial

Let M be a matrix of orden over a fieldF. For each eigenvalu@ of M in F, let
m(6) be the geometric multiplicity o, so that rkM — 61) =n—m(8).

Let e(0) be the algebraic multiplicity of the eigenvalée so that the character-
istic polynomial ofM factors asc(x) := detxl — M) = [](x— 6)%%¢cy(x), where
co(X) has no roots ifF. Thenm(0) < e(0).

The minimal polynomial x) of M is the unique monic polynomial ovér of
minimal degree such that(M) = 0. The number® € F for which p(6) = 0 are
precisely the eigenvalues M (in F). By Cayley-Hamilton,p(x) dividesc(x). It
follows that if p(x) = [(x— 8)"®) py(x), wherepo(x) has no roots irF, then 1<
h(8) <e(0).

In terms of the Jordan decompositionMf m(6) is the number of Jordan blocks
for 6, h(0) is the size of the largest block, ae@d) is the sum of the sizes of all
Jordan blocks fo8.

We see thah—e(8) +h(8) — 1 <rk(M—61) <n—e(8)/h(8), and also that
1< rk((M—81)H) —rk((M—81)*+1) <m(@) for1<i<h—1.

13.3 Bounds for thep-rank

Let M be a square matrix of order and let rig(M) be itsp-rank. LetRandF be as
above in§13.1. Use a suffif or p to denote rank or multiplicity over the fielel or
Fp (instead ofC).

Proposition 13.3.1
Let M be an integral square matrix. Thekp(M) < rk(M).
Let M be a square matrix with entries in R. Thig (M) < rk(M).

Proof. The rank of a matrix is the size of the largest submatrix withzero de-
terminant. O

Proposition 13.3.2 Let M be an integral square matrix. Then

M) > {m(6) | 6 #0}.
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Proof. LetM have orden. Then ri,(M) =n—mp(0) > n—ep(0) =n—er(0) =
S{er(t) [t #0} =5 {e(0) |6 #0} > 5{m(6) | 6 # O}, O

Proposition 13.3.3 Let the integral square matrix M be diagonalizable. Then we

haverks (M — 61) < n—e(6) for each eigenvalué of M.

Proof. rke(M—61) <rk(M—61)=n—m(8) =n—e(6). O
It follows that ifg_: 0 for a uniqued, then rk,(M) = n—e(0). We can still say
something wher® = 0 for two eigenvalue#, when one has multiplicity 1:

Proposition 13.3.4 Let the integral square matrix M be diagonalizable, and sup-
pose thatd = 0 for only two eigenvalue8, say6y and 6;, where €6p) = 1. Let M
have minimal polynomial (x) = (x— 6o) f (x). Thenrkg (M) = n—e(6) — &, where
e=1if f(M) =0ande = 0 otherwise.

Proof. By the aboven—e(61) — 1 < rkg (M) < n—e(6;). By the previous section
n—er(0) +he(0) — 1 < rkg(M) < n—er(0)/hg(0). Sinceer (0) = e(61) +1 we
find rke (M) = n—e(61) — €, wheree = 1 if hg(0) = 1 ande = 0 otherwise. But

he (0) = 1 iff (M) = 0. O

If M is a matrix with integral entries, then the minimal polynamp(x) and its
factor f(x) have integral coefficients. In particular, M is an integral symmetric
matrix with constant row sumk, and the eigenvaluk of M has multiplicity 1,
then f(M) = (f(k)/n)J and the conditionf(M) = 0 becomes = 0, wherec =
1 Nox(k— ) is an integer.

13.4 Interesting primesp

Let A be an integral matrix of order, and letM = A— al for some integea. If 0 is
an eigenvalue of, then6 — ais an eigenvalue dfl.

If 8 =aforno6, then rix(M) =n. B

If 6 =afor a uniqued, then rig(M) = rkg (M) = rke(M — (6 —a)l) < rk(A—
81) = n—m(8) by Proposition 13.3.1, but alsogkM) > n—m(8) by Proposition
13.3.2, so that kM) = n—m(6).

So, if the p-rank of M is interesting, if it gives information not derivable from
the spectrum oA and the value, then at least two eigenvalues fbecome zero
upon reduction mogh. Butif 8 —a=n —a= 0, then6 —n =0, and in particular
p|N(6 — n), which happens for finitely mang only.

Example The unique distance-regular graph with intersection af#a$,2; 1,2, 4}

has 14 vertices and spectrum2’, (—v/2)®, —4 (with multiplicities written as
exponents).

Let A be the adjacency matrix of this graph, and considergiank of M =
A—al for integersa. The norms ofd — a are 4—a, a> — 2, —4 — a, and if these
are all nonzero mog then thep-rank of M is 14. If p is not 2 or 7, then at most



186 13 p-ranks

one of these norms can be 0 mpgdand fora= 4 (mod p) or a= —4 (mod p) the
p-rank of M is 13. If & = 2 (mod p) then precisely one of the eigenvalugg — a
and—+/2 — a reduces to 0, and the-rank of M is 8. Finally, forp =2 andp = 7
we need to look at the matri itself, and find ris(A) = 6 and rky(A+3l) = 8.

13.5 Adding a multiple of J

Let Abe an integral matrix of orderwith row and column sumis, and consider the
rank andp-rank of M = My = A+ bJ. SinceJ has rank 1, all these matrices differ
in rank by at most 1, so either all have the same maride two ranks, r + 1 occur,
and in the latter case rank- 1 occurs whenever the row spaceMfcontains the
vectorl.

The matrixM has row sum&+ bn.

If ptn, then the row space &fl overFy, containsl whenk+bnz 0 (mod p).
On the other hand, K+ bn= 0 (mod p), then all rows have zero row sum (moy
while 1 has not, so that is not in the row space ovél,. Thus, we are in the second
case, where the smallerrank occurs fob = —k/n only.

If pjnandptk, then all row sums are nonzero (mpyfor all b, and we are in
the former case: the rank is independenbptind the row space ovét, always
containsl.

Finally, if p/n and alsop|k, then further inspection is required.

Example (Cf. Peeters [279]). According to [197], there are pregigeh graphs

with the spectrum ¥ v/7° (—1)7 (—+/7)8, one of which is the Klein graph, the
unique distance-regular graph with intersection afg@dy, 1; 1,2, 7}. It turns out
that thep-ranks ofA — al + bJ for these graphs depend on the graph onlyger 2
([279]). Heren = 24 andk = 7 — a+ 24b.

graph rig(A+1) rko(A+1+J)

#1,2 14 14 rks(A—al +bJ)  rky(A—al)
#389 15 14 a\b0 1 2 a\b 0
#4,7 13 12 0 2424 24 0 15
#5 12 12 1 1615 16  1-5 24
#6 11 10 2 1616 16 6 17
#10 9 8

Interesting primes (dividing the norm of the difference wbteigenvalues) are 2,
3 and 7. All p-ranks follow from the parameters except possibly(A | + bJ),
rks(A— 1 +bJ), rks(A+1), rkz(A).

The interesting 2-rank is pkA+ 1), and inspection of the graphs involved shows
that this takes the values 9, 11, 12, 13, 14, 15 where 9 occauysfar the Klein
graph. The value of A+ 1 + J) follows, since a symmetric matrix with zero
diagonal has even 2-rank, and the diagonal of a symmetridxregs in the Fo-
space of its rows. Hence if skA+1) is even, then rk( A+ 1 +J) = rko(A+1), and
if rko(A+1) is odd then rk(A+1 +J) =rkao(A+1) — 1.
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The 3-rank ofA— | +bJis given by Proposition 13.3.4. Heféx) = (x4 2)((x+
1)? —7) andk = 6+ 24, so thatf (k) /n= 0 (mod 3) is equivalent to= 1 (mod 3).

One has rk(A+1) =16 in all ten cases.

The value of rk(A) can be predicted: We have dat-J) = —78.31, so the Smith
Normal Form §13.8) ofA+J has at most 8 entries divisible by 7 ang {k+J) >
16. By Proposition 13.3.3, #kA+J) = 16. Since #nand1 is in the row space of
A+ J but not in that ofA, rky(A) = 15.

13.6 Paley graphs

Let g be a prime powerg = 1 (mod 4), and lel” be the graph with vertex séf,
where two vertices are adjacent whenever their differemagionzero square. (Then
I" is called thePaley graphof orderg.) In order to compute thp-rank of the Paley
graphs, we first need a lemma.

Lemma 13.6.1Let p(x,y) = 3o ¢ 56Xy be a polynomial with coefficients in
a field F. Let AB C F, with m:= |A| > d and n:= |B| > e. Consider the nx n
matrix P= (p(a,b))aca bes and the dx e matrix C= (cij). Thenrkg (P) = rkg (C).

Proof. For any integers and subseX of F, let Z(s,X) be the|X| x s matrix
(xi)xexpgigs,l. Note that if| X| = s then this is a Vandermonde matrix and hence
invertible. We haveP = Z(d,A)CZ(e,B)", sorkg(P) < rkg(C), but P contains a
submatrixZ(d,A')CZ(e,B') with A C A, B' CB, |A| =d, |B'| = g, and this subma-
trix has the same rank & O

For odd prime powerg = p®, p prime, letQ be the{0,+1}-matrix of orderq with
entriesQxy = X (Y —X) (x,y € Fq, x the quadratic residue charactg(0) = 0).

Proposition 13.6.2 ([52]) rkpQ = ((p+1)/2)®.

Proof. Applying the above lemma witlp(x,y) = x(y — x) = (y — x)(4"1/2 =
5i(~1)i (‘- D/Axiyla-D/2-1 e see that hQ equals the number of binomial coef-
ficients (‘4"1/2) with 0 < i < (q— 1)/2 not divisible byp. Now Lucas’ Theorem
says that ifl = y;lip' andk = y;kip' are thep-ary expansions of andk, then
() =i () (mod p). Since3(q—1) = 3;3(p— 1)p', this means that for each
p-ary digit ofi there arg p+ 1)/2 possibilities and the result follows. d

For Lucas’ Theorem, cf. MacWilliams & Sloane [254],3.5, p. 404 (and refer-
ences given there). Note that this proof shows that each aubnof Q of order at
least(g+1)/2 has the same rank &

The relation betwee here and the adjacency matéxof the Paley graph is
Q=2A+1-J.FromQ?=ql—J=—-J (modp) and(2A+1)>=ql+ (q—1)J =
—J (mod p) it follows that both(Q) and (2A+1) containl, so rk(A+ 31) =
rkp(2A+1) =1kp(Q) = ((p+1)/2)".
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13.7 Strongly regular graphs

Let I be a strongly regular graph with adjacency ma&jand assume tha# has
integral eigenvaluek, r, s with multiplicities 1, f, g, respectively. We investigate the
p-rank of a linear combination d&, | andJ.

The following proposition shows that only the cggér — s) is interesting.

Proposition 13.7.1Let M= A+ bJ-+cl. Then M has eigenvaluéy = k+ bv+c,
61 =r +c, 6, = s+ ¢, with multiplicities g = 1, my = f, mp = g, respectively.

(i) If none of thed vanishes (mod p), thekpM = v.

(ii) If precisely oneg; vanishes (mod p), then M has p-rank wy.
Put e:= p+b?v+2bk+b(p —A).

(iii) If 6o = 61 =0 (mod p), B2 # 0 (mod p), thenrkpM = g if and only if ge,
andrk,M = g+ 1 otherwise.

(iii)" If 6= 6, =0 (modp), 6, # 0 (mod p), thenrk,M = f if and only if ge,
andrkpM = f + 1 otherwise.

(iv) In particular, if k=r = 0 (mod p) and s# 0 (mod p), thenrkp,A = g. And if
k=s=0(modp) and r# 0 (mod p), thenrk,A = f.

(v) If 6, = 6, = 0 (mod p), thenrk,M < min(f+1,g+1).

Proof. Parts (i) and (ii) and (v) are immediate from Propositions313 13.3.2.
Supposedy = 6; = 0 (mod p), 62 # 0 (mod p). Then we can apply Proposition
13.3.4 with the two eigenvalues 0 afd. Since rig(M — 621) =v—g, andg <
rkpM < g+ 1, it follows that rk,M = gif and only if M(M — 621) = 0 (mod p). But
using(A—rl)(A—sl)=puJandr+s=A — u, we findM(M — 621) = (A+bJ—
rl)(A-+bJ—sl) = eJd. Part (iii)’ is similar. O

Thus, the only interesting case (where the structure pfays a ble) is that where
p divides both6; and8,, so thatp | (r —s). In particular, only finitely many primes
are of interest. In this case we only have the upper bound (v).

Looking at the idempotents sometimes improves this bountt bye haveE; =
(r—s) Y(A—sl—(k—s)v 1) andE; = (s—r)"Y(A—rl — (k—r)v-1J). Thus, if
k—sandv are divisible by the same power pf(so that(k— s) /v can be interpreted
in Fp), then ri,(A—sl — (k—s)v*lJ) <rkE; = f, and, similarly, itk —r andv are
divisible by the same power gfthen rk,(A—rl — (k—r)v-1J) <rkE; = g.

ForM = A+bJ+cl andp|(r +c¢), p|(s+c) we haveME; = JE; = 0 (over[Fp)
so that rig(M,1) < g+1, and hence M < g (and similarly rikM < f) in case
1¢ (M),

Much more detail is given in [52] and [278].

In the table below we give for a few strongly regular graphseach primep
dividing r — sthe p-rank of A— sl and the uniqué such that ri(A— sl —bgJ) =
rkp(A—sl—bJ) — 1 for all b # bg, or *-" in case rk,(A— sl —DbJ) is independent of
b. (Whenptvwe are in the former case, ahglfollows from the parameters. When
p|lvandpt u, we are in the latter case.)

For a description of most of these graphs, see [59].
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Name v kA p ot F prkp(A—sl) by
Folded 5-cube 16 5 0 21 (-3° 2 6 -
Schifli 27 1610 8 & (-2 2 6 0
3 7 -
T(8) 28 12 6 4 4 (-2 2 6 0
3 8 2
3 Chang graphs 28 12 6 474(-2)% 2 8 -
3 8 2
G2(2) 36 14 4 6 2 (-4 2 8 -
3 14 -
Sm(3) 40 12 2 4 % (-4 2 16 -
3 11 1
Os(3) 40 12 2 4 3% (-4 2 10 -
3 15 1
Hoffman-Singleton 50 70 1% (-3225 21 -
Gewirtz 56 10 0 2% (—42° 2 20 -
3 20 1
Mo 77 16 0 4 25 (-6 2 20 0
Brouwer-Haemers 81 20 1 652 (-7)* 3 19 -
Higman-Sims 100 22 0 672 (-8%*2 2 22 -
5 23 -
Hall-Janko 100 361412% (-4)% 2 36 0
5 23 -
GQ(3,9) 112 30 210 ¥ (-10%*2 22 -
3 20 1
001...inS(5,8,24) 120 42 818 2 (-12%°2 20 -
7 20 5
Spu(5) 156 30 4 6 4 (—6)% 2 66 -
5 36 1
Sub McL 162 561024%°(-16212 20 0
3 21 -
Edges of Ho-Si 175 722036'F (-18%12 20 0
5 21 -
01...inS(5,8,24) 176 701834 %4 (-18212 22 -
5 22 3
a switched version 176 903854% (-18222 22
of the previous graph 5 22 3
Cameron 231 30 9 3% (—3)152 55 1
3 56 1
Berlekamp-van Lint-Seidel 243 22 1 2% (-5)1103 67 -
Delsarte 24311037 60°2 (—25223 22 -
S(4,7,23) 2531123660 20 (-26)222 22 0
7 23 5
McLaughlin 275112 3056%2% (-28)222 22 0

continued...



190 13 p-ranks

Name v k A oporf £ prkp(A—sl) by
3 22 1
5 23

a switched version 276 140 58 84% (-28)%3 2 24 -

of previous plus 3 23 2

isolated point 5 24 3

Gz2(4) 416100 36 20 2 (—4)%° 2 38 -
3 65 1

Dodecads mod 1288 792 476 504835 (—36)252 2 2 0
11 230 3

Table 13.1 p-ranks of some strongly regular graphs ([52])

13.8 Smith Normal Form

The Smith Normal Form @M) of an integral matribM is a diagonal matrib§M) =
PMQ = diagsy,...,S), whereP and Q are integral with determinantl and

S1|S2| - - |sn. It exists and is uniquely determined up to the signs ofsth&hes are
1111

called theelementary divisorer invariant factors For example, ifM = {3111 ,

1000
thenS(M) = {0200 :

Let (M) denote the row space & overZ. By the fundamental theorem for
finitely generated abelian groups, the grdilpy (M) is isomorphic to a direct sum
Ls, ® -+ ® Ls, ® Z° for certainsy,...,sm,s, wheresy|---|sn. SinceZ"/(M) =
Z"/(S(M)), we see that dig@y, . . .,Sm,0') is the Smith Normal Form dfl, when
M hasr rows andh = m+ s columns, and = min(r,n) —m.

If M is square therf]s = detS(M) = +detM. More generally[]}_;s is the
g.c.d. of all minors oM of ordert.

The Smith Normal Form is a finer invariant than fxeank: thep-rank is just the
number ofs not divisible byp. (It follows that if M is square ang®||detM, then
rkpM >n—e.)

We give some examples of graphs distinguished by Smith NoFoan or p-
rank.

Example Let A andB be the adjacency matrices of the lattice gr&aihK, and
the Shrikhande graph. The®(A) = S(B) = diag(1°,24 4°,12), but SA+21) =
diag(15,8%,0°%) andS(B+21) = diag(15,2¢,0°). All have 2-rank equal to 6.

Example An example where th@-rank suffices to distinguish, is given by the
Chang graphs, strongly regular graphs with the same pagasna$ the triangular
graphT (8), with (v;k, A, 1) = (28,12,6,4) and spectrum 1247 (—2)20, If Ais the
adjacency matrix of the triangular graph a@that of one of the Chang graphs then
S(A) = diag(1%, 215,85, 241) andS(B) = diag(18, 212,87, 24'), so thatA andB have
different 2-rank.
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Example Another example is given by the point graph and the line g@iptne
GQ(3,3) constructed i149.6.2. The 2-ranks of the adjacency matrices are 10 and 16
respectively.

Fig. 13.1 Graphs with same Laplacian SNE, 5,15,0)

Concerning the Smith Normal Form of the Laplacian, Gronerridé Watkins
[179] gave the pair of graphs in Figure 13.1 that both (g = diag(1%,5,15,0).
The Laplace spectrum of the left one (whichkis[IKz) is 0, 2, &, 52. That of the
right one is 0, 014, 3572, ¥, 5.514, where the three non-integers are roots of
A% 10024281 —18=0.

13.8.1 Smith Normal Form and spectrum

There is no very direct connection between Smith Normal Fanich spectrum. For
example, the matriﬁ ﬂ has eigenvalues 2 and 4, and invariant factors 1 and 8.

Proposition 13.8.1 Let M be an integral matrix of order n, with invariant factors
S1,...,Sn.

(i) If a is an integral eigenvalue of M, thensa.

(ii) If a is an integral eigenvalue of M with geometric muligity m, then
alsh-m1.

(iii) If M is diagonalizable with distinct eigenvalues a. ., an, all integral, then
we have glajay - - - am.

Proof. Part (i) is a special case of (ii). Part (ii) is Proposition8.3 below. For
(iii) we may assume that a8 are nonzero. It suffices to show that every element in
Z" /(M) has an order dividinga; - - - am. We show by induction okthatifu= Y u;

is integral and is sum dfleft eigenvectorsi; of M, with uiM = a;u;, thenay - - - agu €
(M). Indeed, sinceM = S aju; € (M) andayu—uM = S (ax — &)u; is integral and
sum of at mosk— 1 eigenvectors, we find by induction theat- - - a,_1(axu—uM) €
(M), henceay - - - acu € (M). O
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The invariant factors are determined when we know for eathepp and each
i > 0 how many invariant factors are divisible Ipy, and the following proposition
tells us.

Proposition 13.8.2 Let A be an integral matrix of order n, p a prime number and
i a nonnegative integer. Put M= M;(A) := {x € Z" | p'Axc Z"}. LetM; C Fg

be the mod p reduction of iMThenVi is an Fp-vectorspace, and the number of
invariant factors of A divisible by'mequalsdim, M;.

Proof. dimyM; does not change whehis replaced byPAQ whereP andQ are
integral matrices of determinant 1. So we may assumeAhatalready in Smith
Normal Form. Now the statement is obvious. O

There is a dual statement:

Proposition 13.8.3 Let A be an integral matrix of order n, p a prime number and
i @ nonnegative integer. PutiN= Nj(A) := {p~'Ax| x € Mj}. Then the number of
invariant factors of A not divisible by'pt equalsdim, N;.

Proof. dim,N; does not change whehis replaced byPAQ whereP andQ are
integral matrices of determinant 1. So we may assumeAhatalready in Smith
Normal Form. Now the statement is obvious. O

Proposition 13.8.4 Let A be a square integral matrix with integral eigenvaluefa o
(geometric) multiplicity m. Then the number of invariantttas of A divisible by a
is at least m.

Proof. LetW = {x € Q" | Ax= ax} be thea-eigenspace oA over Q, so that
dimg(W) = m. By the Proposition 13.8.2 it suffices to show that gith= m for

all primesp, whereW is the modp reduction ofW N Z". Pick a basixq, ..., Xm of

W consisting ofm integral vectors, chosen in such a way that them matrix X
that has columng; has a (nonzero) minor of orden with the minimum possible
number of factorg. If upon reduction mog these vectors become dependent, that
is, if 3 ¢;Xj = 0 where not alk; vanish, ther} cjx; has coefficients divisible by,

so thaty := %ZCJ'XJ' e WNZ", and we can replace somg (with nonzeroc;) by 'y
and get a matriX’ where the minors have fewer factquscontrary to assumption.
So, thex; remain independent upon reduction nmdand dinpW = m. O

Example Let q= p' for some primep. Consider the adjacency matrxof the
graphl” of which the vertices are the lines B(3,q), where two lines are adjacent
when they are disjoint. This graph is strongly regular, witrenvalue& = g*, r = q,
s= —¢? and multiplicities 1,f = q* 4+ ¢?, g = g%+ ? + g, respectively. Since dét
is a power ofp, all invariant factors are powers pf Let p' occur as invariant factor
with multiplicity g.

Claim. We have g+e1+---+gqg=fand e +---+ex =g and g = 1 and
g =0fort<i<2tand3t <i<4tandi> 4t. Moreover, g_j =¢ for0<i <t.
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Proof. The total number of invariant factors is the size of the masd y; e =
f +9+ 1. The number of factorp in detAis ¥jie; =t(f +29+4). Hencey (i —
t)e =t(g+3).

Letm := 3 ;- €. By (the proof of) Proposition 13.8.4 we haveg; > 1 andmy >
g+ 1. (The+1 follows becausé is orthogonal to eigenvectors with eigenvalue other
thank, but has a nonzero (mog) inner product with itself, so that ¢ W for an
eigenspack/ with 1 ¢ W.)

The matrixA satisfies the equatiofA —rl )(A—sl) = uJ, that is,A(A+q(q—
1)1) = ¢®l +g3(q—1)J, and the right-hand side is divisible /. If x € Z" and
p ' (A+q(g—1))x € Z", thenp ' (A+q(q— 1)1 )x € Ma_i(A) for 0 < i < 3t. If
0<i<t, thenp 'q(g—1)x =0 (modp), so thatN; C My _;. Also 1 € Mz_;, while
1¢ N becausd ' p—'Ax= p*~1Axreduces to 0 (mog) for integralx, unlike 1" 1.
By Proposition 13.8.3 we findhg_j > e+---+6+1 (0<i <t).

Adding the inequalities- 3 p<j<h & + Yi>z-n& > 1 (0< h<t), andt 5i- 6 >

t(g+1) andt ., & > tyields

> (i—t)a+2tz (i—t)a+2tst+é<4ta+3t & >1(g+3)

o<t J=at i>7t

and equality must hold everywhere sirfggi —t)g =t(g+3). O

Note that our conclusion also holds for any strongly reggtaph with the same
parameters as this graph on the line® &3, q).

In the particular casg = p, the invariant factors are b, p?, p°, p* with multi-
plicitiese, f —e, g—e€, g, 1, respectively, where= % p(2p? + 1) in the case of the
lines of PG(3, p) (cf. [142]). Indeed, the numberof invariant factors not divisible
by pis the p-rank of A, determined in Sin [309].

For p = 2, there are 3854 strongly regular graphs with parametérd §3%,8)
([263]), and the 2-ranks occurring are 6, 8, 10, 12, 14 (widgfiencies 1, 3, 44,
574, 3232, respectively)—they must be even becduselternating (mod 2).

The invariant factors of the disjointness graph of the lioiRG(3, 4) are £6 216
4220 1632 3216 6436 256! with multiplicities written as exponents.

One can generalize the above observations, and show forpdxdinat if p is a
prime, andA is the adjacency matrix of a strongly regular graph, afidk, p°||r,
p°||s, wherea > b+c andp{v, andA hase invariant factorss; with p'[|sj, then
g =0 for min(b,c) < i < max(b,c) andb+c < i <aandi > a. Moreovergeyc_j =
g for 0 <i < min(b,c).






Chapter 14
Spectral characterizations

In this chapter, we consider the question to what extenthgragpe determined by
their spectrum. First we give several constructions of fasof cospectral graphs,
and then give cases in which it has been shown that the graggtésmined by its
spectrum.

Let us abbreviate ‘determined by the spectrum’ to'DiSere, of course, ‘spec-
trum’ (and DS) depends on the type of adjacency matrix. Ifnttarix is not speci-
fied, we mean the ordinary adjacency matrix.

Large parts of this chapter were taken from Van Dam & Haenigd®,[123, 124].

14.1 Generalized adjacency matrices

Let A= Ar be the adjacency matrix of a graph The choice of 0, 1, 0 irA to
represent equality, adjacency and non-adjacency wasr rathigrary, and one can
more generally consider a matsik+ yA+z(J — | — A) that uses, y, zinstead. Any
such matrix, withy # z, is called egeneralized adjacency matrdf I . The spectrum
of any such matrix is obtained by scaling and shifting fromt tbf a matrix of the
form A+yJ, so for matters of cospectrality we can restrict ourseledhis case.

Call two graphd™ andA y-cospectralfor some real)) whenAr —yJandAp —yJ
have the same spectrum. Then 0-cospectral is what we calkguectral, and}—
cospectral is Seidel-cospectral, and 1-cospectralitpspectrality for the comple-
mentary graphs. Call two graphisst y-cospectralvhen they are/-cospectral but
notz-cospectral for ang #y.

The graph¥(; 4 andKj +C, are just O—cospectral. The graph§;2and XK; + Ky are
just %—cospectral. The graph§, + Cg andEg (cf. §1.3.7) arey-cospectral for ali.

Proposition 14.1.1 (i) (Johnson & Newman [225])
If two graphs are y-cospectral for two distinct values ofhert for all y.

1 We shall use the somewnhat ugly ‘(non-)DS graph’ for ‘graph (netpdnined by the spectrum’.

195
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(ii) (Van Dam, Haemers & Koolen [125]j two graphs are y-cospectral for an
irrational value of y, then for all y.

Proof. Definep(x,y) = detAr —xI —yJ). Thus for fixedy, p(x,y) is the charac-
teristic polynomial ofAr —yJ. SinceJ has rank 1, the degreeyrof p(x,y) is 1 (this
follows from Gaussian elimination i — xI —yJ), so there exist integes, . .., a,
andby, ..., b, such that

n .
p(xy) =Y (ai+biy)x.
2,0
Supposel” and "’ are y-cospectral for somg = yp but not for ally. Then the
corresponding polynomialg(x,y) and p'(x,y) are not identical, whilsp(x,yo) =
P (X,¥o). This implies thatg; + biyo = & + bjyo with b; # b{ for somei. Soyo =
(& —a)/(bi — b) is unique and rational. O

Van Dam, Haemers & Koolen [125] show that there is a pair ofismmorphic just
y-cospectral graphs if and onlyyfis rational.

Values ofy other than 0%, 1 occur naturally when studying subgraphs of strongly
regular graphs.

Proposition 14.1.2 Let " be strongly regular with vertex set X of size n, anddet

be an eigenvalue other than the valency k. Let (k— 6)/n. Then for each subset

S of X, the spectrum &éf and the y-spectrum of the graph induced on S determines
the y-spectrum of the graph induced on R.

Proof. Since A—yJ has only two eigenvalues, this follows immediately from
Lemma 2.11.1. O

This can be used to produce cospectral pairs. For examplE, e the Petersen
graph, and leSinduce a 3-coclique. Then thespectrum of the graph induced on
X\ Sis determined by that 08, and does not depend on the coclique chosen. Since
6 can take two values, the graphs induced on the complemen8afolique Eg
andKj + Cg) arey-cospectral for aly.

14.2 Constructing cospectral graphs

Many constructions of cospectral graphs are known. Mosittoctions from before
1988 can be found in [1136.1] and [110§1.3]; see also [164,4.6]. More recent
constructions of cospectral graphs are presented by S8@sis who gives an in-
finite family of cospectral 8-regular graphs. Graphs cospéto distance-regular
graphs can be found in [51], [122], [197], and§it4.2.2. Notice that the mentioned
graphs are regular, so they are cospectral with respeciytgemeralized adjacency
matrix, which in this case includes the Laplace matrix.

There exist many more papers on cospectral graphs. On regslaell as non-
regular graphs, and with respect to the Laplace matrix as agethe adjacency
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matrix. We mention [44], [158], [201], [251], [264] and [2B®&ut don't claim to be
complete.

Here we discuss four construction methods for cospectablgr. One used
by Schwenk to construct cospectral trees, one from incieleygometry to con-
struct graphs cospectral with distance-regular graphe poesented by Godsil and
McKay, which seems to be the most productive one, and finaléydue to Sunada.

14.2.1 Trees

Let ' andA be two graphs, with vertices andy, respectively. Schwenk [292]
examined the spectrum of what he called tioalescencef these graphs atand
y, namely, the result +yy A of identifying x andy in the disjoint union™ +A. He
proved the following (see also [111, p.159] and [164, p.65])

Lemma 14.2.1Letl andl’ be cospectral graphs and let x antibe vertices of
I and "’ respectively. Suppose that— x (that is the subgraph df obtained by
deleting x) and™’ — X’ are cospectral too. LefA be an arbitrary graph with a fixed
vertex y. Thet +y A is cospectral with™' +, y A.

Proof. Letzbe the vertex of ;=T +yyA that is the result of identifying andy.
A directed cycle irZ cannot meet both —xandA —vy. By §1.2.1 the characteristic
polynomialp(t) of Z can be expressed in the numbers of unions of directed cycles
with given number of vertices and of components. We faid = pr_x(t)pa(t) +

O

Pr () pa—y(t) —tpr—x(t)pa—y(t).
For example, lef = I’ be as given below, theh —x andl” — X’ are cospectral,
because they are isomorphic.

X X

Supposed = P; and lety be the vertex of degree 2. Then Lemma 14.2.1 shows that
the graphs in Figure 14.1 are cospectral.

Fig. 14.1 Cospectral trees

It is clear that Schwenk’s method is very suitable for cangtng cospectral trees.
In fact, the lemma above enabled him to prove his famous #meor

Theorem 14.2.2 With respect to the adjacency matrix, almost all trees ane-DS.
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After Schwenk’s result, trees were proved to be almost adwayn-DS with re-
spect to all kinds of matrices. Godsil and McKay [167] provbdt almost all
trees are non-DS with respect to the adjacency matrix of dngptementA, while
McKay [262] proved it for the Laplace matrixand for the distance matri2.

14.2.2 Partial linear spaces

A partial linear spaceconsists of a (finite) set of point%’, and a collection?’ of
subsets of” called lines, such that two lines intersect in at most onatdaind con-
sequently, two points are on at most one line). (&t,.) be such a partial linear
space and assume that each line has exgqtlyints, and each point is aplines.
Then clearlyl Z| = |.Z|. LetN be the point-line incidence matrix ¢£?,.%). Then
NN'—qgl andN'N — gl both are the adjacency matrix of a graph, calledgbiat
graph (also known agollinearity graph andline graphof (£2,.%), respectively.
These graphs are cospectral, sibhtdd” andN N are. But in many examples they
are non-isomorphic. An example was giver§ir?.3.1.

14.2.3 GM switching

Seidel switching was discussed abovéirB.2. No graph with more than one vertex
is DS for the Seidel adjacency matrix. In some cases Seid&itgng also leads to
cospectral graphs for the adjacency spectrum, for examipdagraph and switched
graph are regular of the same degree.

Godsil and McKay [168] consider a different kind of switchiand give condi-
tions under which the adjacency spectrum is unchanged bygeration. We will
refer to their method as GM switching. (See &48.3.) Though GM switching has
been invented to make cospectral graphs with respect todjeency matrix, the
idea also works for the Laplace matrix and the signless Icaptaatrix, as will be
clear from the following formulation.

Theorem 14.2.3Let N be &0, 1)-matrix of size bx ¢ (say) whose column sums are
0, b or b/2. DefineN to be the matrix obtained from N by replacing each column
v with b/2 ones by its complemert— v. Let B be a symmetric kb matrix with
constant row (and column) sums, and let C be a symmetric matrix. Put

B N ~ B N
M_{NTC} andM_{NTC]

Then M andV are cospectral.

2J-1, 0

Proof. DefineQ:[ 0 I
C

} . ThenQ ! =QandQMQ 1 =M. O
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The matrix partition used in [168] (and {{1.8.3) is more general than the one
presented here. But this simplified version suffices for auppses: to show that
GM switching produces many cospectral graphs.

If M andM are adjacency matrices of graphs then GM switching givesemigl
graphs with cospectral complements and hence, by the msldhnson & Newman
quoted in§14.1, it produces cospectral graphs with respect to anyrgkred adja-
cency matrix.

If one wants to apply GM switching to the Laplace matrixf a graphi”, take
M = —L and letB andC (also) denote the sets of vertices indexing the rows and
columns of the matriceB andC, respectively. The requirement that the maix
has constant row sums means tNabas constant row sums, that is, the vertices of
B all have the same number of neighbor€in

For the signless Laplace matrix, talde= Q. Now all vertices irB must have the
same number of neighbors @ and, in addition, the subgraph bfinduced byB
must be regular.

When Seidel switching preserves the valency of a graph, itsisezial case of
GM switching, where all columns dfl haveb/2 ones. So the above theorem also
gives sufficient conditions for Seidel switching to produwospectral graphs with
respect to the adjacency matfand the Laplace matrik.

If b=2, GM switching just interchanges the two verticesBpfand we call it
trivial. But if b > 4, GM switching almost always produces non-isomorphic lgsap

I S

Fig. 14.2 Two graphs cospectral w.r.t. any generalized adjacencyxmatri

A ==K

Fig. 14.3 Two graphs cospectral w.r.t. the Laplace matrix

In Figures 14.2 and 14.3 we have two examples of pairs of cbhspgraphs pro-
duced by GM switching. In both casbs= ¢ = 4 and the upper vertices correspond
to B and the lower vertices 6. In the example of Figure 14.B,induces a regular
subgraph and so the graphs are cospectral with respect p gereralized adja-
cency matrix. In the example of Figure 14.3 all vertice8dfave the same number
of neighbors irC, so the graphs are cospectral with respect to the Laplaaéxrhat
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14.2.4 Sunada’s method

As a corollary of the discussion k6.4 we have:

Proposition 14.2.4 Let " be a finite graph, and G a group of automorphisms. If
H; and H are subgroups of G such théatis a cover ofl” /H; (i = 1,2) and such
that each conjugacy class of G meetgahd H, in the same number of elements,
then the quotient§ /H; (i = 1,2) have the same spectrum and the same Laplace
spectrum.

Sunada [314] did this for manifolds, and the special caseaylts was discussed
in [201]. See also [44].

Proof. The condition given just means that the induced characﬁ?ré £12)
are the same. Now apply Lemma 6.4.1 with= AandM = L. O

Brooks [44] shows a converse: any pair of regular conneobsgectral graphs
arises from this construction.

14.3 Enumeration

14.3.1 Lower bounds

GM switching gives lower bounds for the number of pairs ofpmadral graphs with
respect to several types of matrices.

Let ' be a graph om— 1 vertices and fix a set of three vertices. There is a
unique way to extend by one vertexx to a graph™’, such thaX U {x} induces a
regular graph i’ and that every other vertex If has an even number of neighbors
in XU {x}. Thus the adjacency matrix 6 admits the structure of Theorem 14.2.3,
whereB corresponds tX U {x}. This implies that from a graph onn— 1 vertices
one can make{ngl) graphs with a cospectral mate arnvertices (with respect to
any generalized adjacency matrix) and every suefertex graph can be obtained
in four ways from a graph on— 1 vertices. Of course some of these graphs may
be isomorphic, but the probability of such a coincidencel$eto zero a: —
(see [199] for details). So, @, denotes the number of non-isomorphic graphsion
vertices, then:

Theorem 14.3.1The number of graphs on n vertices which are non-DS with espe
to any generalized adjacency matrix is at least

(33 —0(1))n°gn-1.

The fraction of graphs with the required condition wlith- 4 for the Laplace matrix
is roughly 2"n,/n. This leads to the following lower bound (again see [199] for
details):
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Theorem 14.3.2The number of non-DS graphs on n vertices with respect to the
Laplace matrix is at least

my/ng,-1,
for some constantr 0.

In fact, a lower bound like the one in Theorem 14.3.2 can baionbd for any matrix
of the formA+ aD, including the signless Laplace matfx

14.3.2 Computer results

The mentioned papers [167] and [168] by Godsil and McKay gise interest-
ing computer results for cospectral graphs. In [168] alpbsaup to 9 vertices are
generated and checked on cospectrality. This enumeratioiéden extended to 11
vertices by Haemers & Spence [199], and cospectrality vesdevith respect to the
adjacency matrix, the set of generalized adjacency matrick& @), the Laplace
matrix L, and the signless Laplace matfx The results are in Table 14.1, where
we give the fractions of non-DS graphs for each of the fouesa¥he last three
columns give the fractions of graphs for which GM switchirigeg cospectral non-
isomorphic graphs with respect£9 L andQ, respectively. So column GM-gives

a lower bound for columA& A (and, of course, for columa), column GML is a
lower bound for columih, and column GMQ is a lower bound for columm.

n #graphg A |A&A| L Q |[|GM-A|GM-L|GM-Q

2 2| O 0 0 0 0 0 0

3 4 0 0 0 0 0 0 0

4 11 © 0 0 |0.182| O 0 0

5 34{|0.059 O 0 [0.118 O 0 0

6 156/0.064 0 |0.0260.103| O 0 0

7 10440.1050.0380.1250.098|0.038/0.069] 0

8 12346|0.1390.0940.1430.097| 0.085/0.088 0

9 274668§/0.1860.16(00.1550.069( 0.139|0.110 O
10 120051680.2130.2010.1180.053|0.171|0.080| 0.001
11f 10189978640.2110.2080.0900.03§|0.174(0.060| 0.001
12{16509117259p0.188 0.0600.027

Table 14.1 Fractions of non-DS graphs

Notice that forn < 4 there are no cospectral graphs with resped tw to L, but
there is one such pair with respect@pnamelyKy 3 andK; +Kz. Forn= 5 there is
just one pair with respect tA. This is of course the Saltire paiK{4 andK; +Ca).
An interesting result from the table is that the fraction oh¥DS graphs is non-
decreasing for smah, but starts to decrease mt= 10 for A, atn =9 for L, and
atn = 6 for Q. Especially for the Laplace matrix and the signless Laphaeagrix,
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these data suggest that the fraction of DS graphs might tetichsn — co. In ad-
dition, the table shows that the majority of non-DS graph#hwespect toA& A
andL comes from GM switching (at least for> 7). If this tendency continues,
the lower bounds given in Theorems 14.3.1 and 14.3.2 willdyenptotically tight
(with maybe another constant) and almost all graphs will Bef@ all three cases.
Indeed, the fraction of graphs that admit a non-trivial GMtshing tends to zero as
ntends to infinity, and the partitions with= 4 account for most of these switchings
(see also [168]). For data for= 12, see [63] and [312].

14.4 DS graphs

In Section 14.2 we saw that many constructions for non-Dglgare known, and
in the previous section we remarked that it seems more likelyalmost all graphs
are DS, than that almost all graphs are non-DS. Yet much $ssawn about DS
graphs than about non-DS graphs. For example, we do not ki@satisfying
counterpart to the lower bounds for non-DS graphs givefil#h3.1. The reason is
that it is not easy to prove that a given graph is DS. Below vgeuwdis the graphs
known to be DS. The approach is via structural properties gifagh that follow
from the spectrum. So let us start with a short survey of suchepties.

14.4.1 Spectrum and structure

Let us first investigate for which matrices one can see froanstectrum whether
the graph is regular.

Proposition 14.4.1 Let D denote the diagonal matrix of degrees. If a regular grap
is cospectral with a non-regular one with respect to the ima®= A+ BJ+ yD +
ol,theny=0and—-1< 3 <O0.

Proof. W.l.o.g.0 =0. Letl" be a graph with the given spectrum, and suppose that
I hasn vertices and vertex degreds(1 <i <n).

First suppose thag # 0. Theny;d; is determined by {R) and hence by the
spectrum ofR. Since t(R?) = B2n? + (1+ 2B + 2By) 3, di + y*3,;d?, it follows
that alsoy; d? is determined by the spectrum. Now Cauchy’s inequalityestétat
(3idi)? < ny;d? with equality if and only ifd; = ... = dn. This shows that regular-
ity of the graph can be seen from the spectrurRof

Now supposey = 0 andf # —1/2. By considering {R?) we see thaf; d; is
determined by the spectrum & The matrixR = A+ BJ has average row sum
r = Bn+ ¥;di/ndetermined by its spectrum. LBthave eigenvalue8; > ... > 6.
By interlacing,6; > r > 6, and equality on either side implies tHahas constant
row sums, and” is regular. On the other hand, > 0 (resp.f < —1), thenR
(resp.—R) is a nonnegative matrix, hencelif is regular, therl is an eigenvector
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for eigenvalug = 6, (resp.r = —6,). Thus also here regularity of the graph can be
seen from the spectrum. O

It remains to see whether one can see from the spectrufn-o§J (with 0 <
y < 1) whether the graph is regular. Fpe= % the answer is clearly no: The Seidel
adjacency matrix iS=J— | — 2A, and forS a regular graph can be cospectral
with a non-regular one (e.d&z and Kj + Kz), or with another regular one with
different valency (e.g. ¥y andC,). Chesnokov & Haemers [85] constructed pairs
of y-cospectral graphs where one is regular and the other nallfmationaly, 0 <
y < 1. Finally, ify is irrational, then one can deduce regularity from the specof
A—yJ by Proposition 14.1.1(ii).

Corollary 14.4.2 For regular graphs, being DS (or not DS) is equivalent for the
adjacency matrix, the adjacency matrix of the complembatl_aplace matrix, and
the signless Laplace matrix.

Proof. For each of these matrices the above proposition says tztréy can be
recognized. It remains to find the valericyFor A, A, Q, the largest eigenvalue ks
n—1—Kk, 2k, respectively. FoL, the trace isk O

Lemma 14.4.3 For the adjacency matrix, the Laplace matrix and the sigsles
Laplace matrix of a grapli, the following can be deduced from the spectrum.

(i) The number of vertices.
(i) The number of edges.
(i) Whetherl" is regular.
(iv) Whether" is regular with any fixed girth.

For the adjacency matrix the following follows from the spe.

(v) The number of closed walks of any fixed length.
(vi) Whether™ is bipartite.

For the Laplace matrix the following follows from the speair.

(vii) The number of components.
(viii) The number of spanning trees.

Proof. Part (i) is clear. FolL and Q the number of edges is twice the trace of
the matrix, while parts (ii) and (v) foA were shown in Proposition 1.3.1. Part (vi)
follows from (v), sincel” is bipartite if and only if has no closed walks of odd
length. Part (iii) follows from Proposition 14.4.1, and)(fellows from (iii) and the
fact that in a regular graph the number of closed walks oftletess than the girth
depends on the degree only. Parts (vii) and (viii) follownfr®ropositions 1.3.7 and
1.3.4. O

The Saltire pair shows that (vii) and (viii) do not hold foethdjacency matrix.
The two graphs of Figure 14.4 have cospectral Laplace neatrithey illustrate that
(v) and (vi) do not follow from the Laplace spectrum. The drsi; + Kz andKj 3
show that (v)—(viii) are false for the signless Laplace iwatr
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Fig. 14.4 Two graphs cospectral w.r.t. the Laplace matrix
(Laplace spectrum: 0,3+/5, 2, 3, 3, 3+ v/5)

14.4.2 Some DS graphs

Lemma 14.4.3 immediately leads to some DS graphs.

Proposition 14.4.4 The graphs IK and Kym and G, and their complements are DS
for any matrix R= A+ 8J+ yD + dI for which regularity follows from the spectrum
of R. In particular this holds for the matrices A, L and R.

Proof. Since these graphs are regular, we only need to show thataileeipS
with respect to the adjacency matrix. A graph cospectrdi ijthasn vertices and
n(n—1)/2 edges and therefore equélls A graph cospectral witkmnm is regular
and bipartite with 2 vertices andr? edges, so it is isomorphic t6nm. A graph
cospectral withC,, is 2-regular with girtm, so it equals,. O

Proposition 14.4.5 The disjoint union of k complete graphsy K- . .. 4+ Kp,, is DS
with respect to the adjacency matrix.

Proof. The spectrum of the adjacency mathixf any graph cospectral witki, +
oo+ Km equals{[my — 1)1, ... [me— 1)1, [~ 1"k}, wheren = mq + ... + my. This
implies thatA+ 1 is positive semi-definite of rank, and hencé\+ | is the matrix

of inner products of vectors inRX. All these vectors are unit vectors, and the
inner products are 1 or 0. So two such vectors coincide or gh®gonal. This
clearly implies that the vertices can be ordered in such athalyA+ | is a block
diagonal matrix with all-ones diagonal blocks. The sizeshelse blocks are non-
zero eigenvalues &+ 1. O

The above proposition shows that a complete multipartiéplgis DS with respect
to A. In general, the disjoint union of complete graphs is not D wespect toA
andL. The Saltire pair shows thdt; + K4 is not DS forA, andKs + 5K; is not
DS forL, because it is cospectral with the Petersen graph extendteklisolated
vertices (both graphs have Laplace spectf0jf[2]° [5]*). See also Boulet [37].

Proposition 14.4.6 The path with n vertices is determined by the spectrum of its
adjacency matrix. More generally, each connected graplh Vetgest eigenvalue
less thar? is determined by its spectrum.

Proof. Letl" be connected with vertices and have largest eigenvalue less than 2,
and let the graplt be cospectral. TheA does not contain a cycle, and has 1
edges, so is a tree. By Theorem 3.1.3 (and following remavkdjnd thatA is one
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of Ay =Py, Dn, Es, E7, Eg, and has largest eigenvalue 2 ¢gosvhereh is the Coxeter
number. NowA is determined by andh, that is, by its number of vertices and its
largest eigenvalue. O

In fact, P, is also DS with respect té, L, andQ. The result forA, however, is
nontrivial and the subject of [141]. The hypothesis ‘cortadthere is needed, but
we can describe precisely which pairs of graphs with largegnvalue less than 2
are cospectral.

Proposition 14.4.7

(i) Dpy2+ By is cospectral with 2,1 + P, forn> 2.
(i) D7+ P is cospectral with E+ Ps.
(i) D10+ P is cospectral with E+ Ps.
(iv) Dig+Ps+ P, is cospectral with B+ Py + Ps.

(v) Iftwo graphg™ andA with largest eigenvalue less th&rare cospectral, then
there exist integers,®, ¢ such thatA +akP,+ bR+ cP, arises froml™ +aP; +
bR + cPy by (possibly repeatedly) replacing some connected conmtiy
some others cospectral with the replaced ones according-+6\).

For examplePy1 + P, + Py is cospectral withEg + Ps + Ps, andPy7+ P> + Py is
cospectral withe7 + Ps + Ps, andPyg + Py + P> + Py is cospectral wittEg + Prg +
Po+ Ps, andEg + D1o+ P is cospectral withe; + Ds + Py 1, andE7 + D4 is cospectral
with D19+ Py, andEg + Dg + D4 is cospectral wittD 16+ 2P.

It follows that B, + ...+ P, (with nj > 1 for all i) andDp, + ...+ Dp, (with
n; > 3 for alli) are DS.

We do not know whethel,, + ...+ Py, is DS with respect teA. But it is easy to
show that this graph is DS farand forQ.

Proposition 14.4.8 The union of k disjoint paths,,P+ ...+ P, each having at
least one edge, is DS with respect to the Laplace matrix L hasignless Laplace
matrix Q.

Proof. The Laplace eigenvalues & are 2+ 2005%, i=1,...,n (seesl.4.4).
SincePR, is bipartite, the signless Laplace eigenvalues are the $seeeProposition
1.3.10).

Supposd” is a graph cospectral with, + ...+ P, with respect td_. Then alll
eigenvalues of are less than 4. Lemma 14.4.3 implies thdtask components and
m +...+ng—kedges, sd is a forest. LeL’ be the Laplace matrix df; 3. The
spectrum ofl’ equals[0]* [1]2 [4]1. If degree 3 (or more) occurs if thenl’ + D
is a principal submatrix of for some diagonal matri® with nonnegative entries.
But thenL’ + D has largest eigenvalue at least 4, a contradiction. So thees
in " are at most two and hende is the disjoint union of paths. The length
(say) of the longest path follows from the largest eigenwalthen the other lengths
follow recursively by deleting, from the graph and the eigenvaluedpffrom the
spectrum.
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For a grapt™’ cospectral with?,, + ...+ P, with respect tdQ, the first step is to
see thaf ’ is a forest. But a circuit it/ gives a submatrik’ in Q with all row sums
at least 4. Sd.' has an eigenvalue at least 4, a contradiction (by Corollas22
and it follows that™’ is a forest and hence bipartite. Since for bipartite grdpasd
Q have the same spectruiit, is also cospectral witR,, + ...+ P, with respect to
L, and we are done. O

The above two propositions show that fgrA, L, andQ the number of DS graphs on
nvertices is bounded below by the number of partitions, @fhich is asymptotically
equal to V" for some constant. This is clearly a very poor lower bound, but we
know of no better one.

In the above we saw that the disjoint union of some DS graphgtiaecessarily
DS. One might wonder whether the disjoint union of regular @&phs with the
same degree is always DS. The disjoint union of cycles is BS;am be shown
by an argument similar to that in the proof of Propositior418.. Also the disjoint
union of some copies of a strongly regular DS graph is DS. hregad we expect a
negative answer, however.

14.4.3 Line graphs

The smallest adjacency eigenvalue of a line graph is at leagsees1.4.5). Other
graphs with least adjacency eigenvalu2 are the cocktailparty graphsK, the
complement ofm disjoint edges) and the so-called generalized line graphigh
are common generalizations of line graphs and cocktajipgraphs (see [110,
Ch.1]). We will not need the definition of a generalized limagh, but only use
the fact that if a generalized line graph is regular, it isre l[graph or a cocktail-
party graph. Graphs with least eigenvalu2 have been characterised by Cameron,
Goethals, Seidel and Shult [80] (¢8.4). They prove that such a graph is a gen-
eralized line graph or is in a finite list of exceptions thanas from root systems.
Graphs in this list are calleglikceptional graphsA consequence of the above char-
acterisation is the following result of Cvetk@v& Doob [109, Thm.5.1] (see also
[110, Thm.1.8]).

Theorem 14.4.9 Suppose a regular graph has the adjacency spectrum of the line
graph L(I") of a connected grapii . Supposd™ is not one of the fifteen regular
3-connected graphs dBivertices, or kg, or the semiregular bipartite graph with
vertices andL2 edges. The# is the line graph L") of a graphl™’.

It does not follow that the line graph of a connected regul& ddaph, which is
not one of the mentioned exceptions, is DS itself. The re&stimat it can happen
that two non-cospectral graphsand/l"’ have cospectral line graphs. For example,
both L(Ks) andKg 10 have a line graph with spectrum 1.8° 4° —2%5, and both
L(Petersen) and the incidence graph of thg§.23,2) design have a line graph with
spectrum 64° 14 0° —215, The following lemma gives necessary conditions for this
phenomenon (cf. [72, Thm.1.7]).
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Lemma 14.4.10Let I be a k-regular connected graph on n vertices andrlét
be a connected graph such thatf) is cospectral with ™). Then either™’ is

cospectral with!™, or I’ is a semiregular bipartite graph with # 1 vertices and
nk/2 edges, wherén, k) = (b? — 1,ab) for integers a and b with & %b.

Proof. Suppose thaf hasmedges. The(I") hasm vertices.

If N is the point-edge incidence matrix 6f, thenNN' is the signless Laplace
matrix of I, andNN" — kI is the adjacency matrix df, andN "N — 2| is the ad-
jacency matrix ofL(I"). Sincel” is connected, the matrid has eigenvalue 0 with
multiplicity 1 if I is bipartite, and does not have eigenvalue 0 otherwise. &ons
quently,L(I") has eigenvalue-2 with multiplicity m—n+ 1 if I" is bipartite, and
with multiplicity m— n otherwise. If # 0, then the multiplicity of7 — 2 as eigen-
value ofL(I") equals the multiplicity ofj — k as eigenvalue of .

We see that for a regular connected grd@pithe spectrum oE (/") determines
that of " (sinceL(G) is regular of valency R— 2 andn is determined byn= %nk).

SinceL(I"’) is cospectral with_(I"), alsol"" hasm edgesL(I"’) is regular and
hencel™’ is regular or semiregular bipartite. Suppose thais not cospectral with
. Thenl™" is semiregular bipartite with parametérs, ny, ki, ky) (say), and

m= %nk: n1k1 = nzkz.

Since the signless Laplace matric@@andQ of I’ andl"’ have the same non-zero
eigenvalues, their largest eigenvalues are equal:

2k =k +ko.
If n=nq1+ ny thenky = ky, contradiction. So
n=n+n—1
Write k; = k—aandk, = k+ a, thennk = nik; + noky yields
k=(np—np)a

Now nik; = ngky gives
(n1 — n2)2 =N+ nNy.

Putb = n; — ny, then(n,k) = (b? — 1,ab). Since b= k; +ky < np+ny = b?, it
follows thata < 1b. O

Now the following can be concluded from Theorem 14.4.9 anuina 14.4.10.

Theorem 14.4.11Supposd™ is a connected regular DS graph, which is no8a
connected graph witB vertices or a regular graph with%- 1 vertices and degree
ab for some integers a and b, Withia%b. Then also the line graph(C) of I" is
DS.
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Bussemaker, Cvetkawj and Seidel [72] determined all connected regular excep-
tional graphs (see also [115]). There are exactly 187 suaphg; of which 32 are
DS. This leads to the following characterisation.

Theorem 14.4.12Supposd” is a connected regular DS graph with all its adja-
cency eigenvalues at leas®, then one of the following occurs.

() I isthe line graph of a connected regular DS graph.
(i) r isthe line graph of a connected semiregular bipartite graphich is DS
with respect to the signless Laplace matrix.
(i) I is a cocktailparty graph.
(iv) I is one of the82 connected regular exceptional DS graphs.

Proof. Supposd™ is not an exceptional graph or a cocktailparty graph. Then
is the line graph of a connected grapfhsay. Whitney [330] has proved thAtis
uniquely determined front, unlessi”™ = Ks. If this is the case thef = L(K3) =
L(Ky3), so (i) holds. SupposA’ is cospectral withA with respect to the signless
Laplace matrixQ. Thenl” andL(A’) are cospectral with respect to the adjacency
matrix, sol” = L(A’) (sincel is DS). HenceAd = A’. Becausd is regularA must

be regular, or semiregular bipartite Afis regular, DS with respect 1Q is the same
as DS. ]

All four cases from Theorem 14.4.12 do occur. For (i) and {{iv$ is obvious, and
(iii) occurs because the cocktailparty graphk; are DS (since they are regular and
A-cospectral by Proposition 14.4.5). Examples for Casa(@)the complete graphs
Kn = L(K1,n) with n # 3. Thus the fact thakK, is DS implies thaK, , is DS with
respect tdQ if n# 3.

14.5 Distance-regular graphs

All regular DS graphs constructed so far have the propettydtiher the adjacency
matrix A or the adjacency matriA of the complement has smallest eigenvalue at
least—2. In this section we present other examples.

Recall that a distance-regular graph with diametdrasd + 1 distinct eigen-
values and that its (adjacency) spectrum can be obtaingdtfre intersection array.
Conversely, the spectrum of a distance-regular graphméates the intersection ar-
ray (see e.g. [122]). However, in general the spectrum ofaplydoesn’t tell you
whether it is distance-regular or not.

For d > 3 we have constructed graphs cospectral with, but non-igoimm to
H(d,d) in §14.2.2. Many more examples are given in [197] and [126].

In the theory of distance-regular graphs an important guess: ‘Which graphs
are determined by their intersection array?’ For many digaregular graphs this is
known to be the case. Here we investigate in the cases wreeggdph is known to
be determined by its intersection array, whether in fact dlready determined by
its spectrum.
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14.5.1 Strongly regular DS graphs

The spectrum of a graph determines whethdr is strongly regular. Indeed, by
Proposition 3.3.1 we can see whetlfers regular. And a regular graph with spec-
trum 6y > ... > 6, is strongly regular if and only if{6 | 2 <i <n}| = 2.

(That is, a regular graph is strongly regular if and only ther it is connected,
and then has precisely three distinct eigenvalues: itswegland two others, or it is
the disjoint unioraK, (a > 2, ¢ > 2) of a complete graphs of siz&)

Indeed, if has valency and all eigenvalue$; with i > 1 are in{r,s}, then
(A—rl)(A—sl) = cJ so thatA? is a linear combination oA, | andJ, andl" is
strongly regular.

By Propositions 14.4.4 and 14.4.5 and Theorem 14.4.11, wletlii@ following
infinite families of strongly regular DS graphs.

Proposition 14.5.1If n # 8 and m# 4, the graphs al L(K,) and L(Kmm) and
their complements are strongly regular DS graphs.

Note thatl (Ky) is the triangular grapfii (n), andL(Kmnm) is the lattice graphay(n).
Forn =8 andm = 4 cospectral graphs exist. There is exactly one graph ctrapec
with L(Ka4), the Shrikhande graph ([308]), and there are three grapésectral
with L(Kg), the so-called Chang graphs ([83]). See §82.

Besides the graphs of Proposition 14.5.1, only a few stsoregjular DS graphs
are known; these are surveyed in Table 14.2. (Héoea graph of a grapli is the
subgraph induced by the neighbors of a vertek gf

\ spectrum name reference
5/ 2 [(-1++/5)/2)? |pentagon
13| 6 [(—1++/13)/2]%|Paley [300]
17| 8[(—1++/17)/2®|Paley [300]
16| 5 11 (-3)°> |[folded 5-cube  |[299]
27| 10 #2° (-5°% [GQ(2,4) [299]
500 7 222 (-3)2' |Hoffman-Singleton197]
56| 10 5 (-4 |Gewirtz [162], [55]
771 16 25 (-6)21 [My [45]
81 20 #° (-7)2° |Brouwer-Haemers[54], §9.7
100 22 27 (—8)?2 |Higman-Sims [162]
105 32 B4 (-10%° |flags of PG(2,4) |[131]
112 30 2° (-10% |GQ(3,9) [79]
1200 42 2° (-12)2° |001...inS(5,8,24) |[131]
126 50 205 (-13)2° |Goethals [100]
162 56 249 (-16)?' |local McLaughlin |[79]
176 70 254 (—18)?' |01...inS(5,8,24) |[131]
275(112 252 (-28)?2 |McLaughlin [172]

Table 14.2 The known sporadic strongly regular DS graphs (up to complements)
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Being DS seems to be a very strong property for strongly eeguiaphs. Most
strongly regular graphs have (many) cospectral mates. amgle, there are ex-
actly 32548 non-isomorphic strongly regular graphs witcsum 15, 3°, (—3)2°
(cf. [263]). Other examples can be found in the survey [48h-Per-Flaass [155]
showed that the number of nonisomorphic cospectral styargjular graphs on at
mostn vertices grows exponentially im This implies that almost all strongly reg-
ular graphs are non-DS. One might be tempted to conjectatetiiere are only
finitely many strongly regular DS graphs besides the onen fPooposition 14.5.1.

14.5.2 Distance-regularity from the spectrum

If d > 3 only in some special cases does it follow from the spectriiangraph that
it is distance-regular. The following result surveys theasaknown to us.

Theorem 14.5.21f I is a distance-regular graph with diameter d and girth g sat-
isfying one of the following properties, then every grapbparctral withl™ is also
distance-regular, with the same parameterd-as

() g>2d-1,
(i) g >2d—2andr is bipartite,
(i) g >2d—2and g-1Cq < —(Cg—1+1)(61+ ...+ 6q),
(iv) I is a generalized Odd graph, thatisy & ... =aq_1 =0, aqg # 0,
V) a=..=c1=1
(vi) I is the dodecahedron, or the icosahedron,
(vii) I is the coset graph of the extended ternary Golay code,
(viii) I is the Ivanov-lvanov-Faradjev graph.

For parts (i), (iv) and (vi), see [55] (and also [192]), [218hd [197], respectively.
Parts (ii), (iii), (v), (vii) are proved in [122] (in fact, i{iis a special case of (iii)) and
(viii) is proved in [126]. Notice that the polygoits, and the strongly regular graphs
are special cases of (i), while bipartite distance-reggltaphs withd = 3 (these
are the incidence graphs of symmetric block designs, sedHl4, Thm.6.9]) are a
special case of (ii).

An important result on spectral characterisations of distaregular graphs is
the following theorem of Fiol & Garriga [152], a direct coggence of Theorem
12.10.1.

Theorem 14.5.3Let I’ be a distance-regular graph with diameter d ang
[F4(u)| vertices at distance d from any given vertex ul{fis cospectral with™
and |l (x)| = kq for every vertex x of’, thenl"" is distance-regular.

Let us illustrate the use of this theorem by proving casef(heorem 14.5.2. Since
the girth and the degree follow from the spectrum, any grfapbospectral with™
also has girtlg and degreé;. Fix a vertexxin I'’. Clearlycyy = 1 for every vertex
y at distance at mogg — 1)/2 from x, andayy = 0 (whereay is the number of
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neighbors ofy at distanceld(x,y) from x) if the distance betweexandy is at most
(g—2)/2. This implies that the numbd¢ of vertices at distancefrom x equals
ki(ky — 1)t fori=1,...,d— 1. Hencek = k; for thesei. But then alsdk, = kg
andl’ is distance-regular by Theorem 14.5.3.

14.5.3 Distance-regular DS graphs

Brouwer, Cohen & Neumaier [51] gives many distance-reggiaphs determined
by their intersection array. We only need to check which osessfy one of the
properties of Theorem 14.5.2. First we give the known irdifémilies:

Proposition 14.5.4 The following distance-regular graphs are DS.
(i) The polygons &
(i) The complete bipartite graphs minus a perfect matching
(iii) The Odd graphs @, 1.
(iv) The folded 2d + 1)-cubes.

As mentioned earlier, part (i) follows from property (i) ofidorem 14.5.2 (and from
Proposition 14.4.4). Part (ii) follows from property (iijf ®heorem 14.5.2, and the
graphs of parts (iii) and (iv) are all generalized Odd grasiusthe result follows
from property (iv), due to Huang & Liu [218].

Next, there are the infinite families where the spectrumrdétees the combinatorial
or geometric structure, where the graphs are DS if and orntlyeifcorresponding
structure is determined by its parameters.

Proposition 14.5.5 (i) A graph cospectral with the incidence graph of a symnaetri
block design with parameteBs(v,k, A) is itself the incidence graph of a symmetric
block design with these same parameters.

In case (i) the designs known to be uniquely determined hy fla@ameters are the
six projective plane®G(2,q) for q= 2,3,4,5,7,8, and the biplane 2-(11,5,2), and
their complementary designs with paramete(s,2— k,v—2k+A).

The remaining known distance-regular DS graphs are predémfables 14.3, 14.4,
14.5. For all but one graph the fact that they are unique {¢haketermined by their
parameters) can be found in [51]. Uniqueness of the Perlglhghas been proved
only recently [99]. The last columns in the tables refer te thlevant theorems
by which distance-regularity follows from the spectrumthese tables we denote
by IG(v,k,A) the point-block incidence graph of a(2k,A) design, and byGH,
GO, andGD the point graph of a generalized hexagon, generalized oetand
generalized dodecagon, respectively.

Recall that the point graph of@H(1,q) (GO(1,q), GD(1,q)) is the point-line in-
cidence graph of a projective plane (generalized quadeagghneralized hexagon)
of orderq. Recall that the point graph of @H(q, 1) is the line graph of the dual
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GH(1,q), that is, the line graph of the point-line incidence graghq&nown as the
flag graph) of a projective plane of order.

Finally, %3, %1 and %, denote the binary Golay code, the doubly truncated bi-
nary Golay code and the extended ternary Golay code, and iddis¢ Hoffman-
Singleton graph.

n spectrum g|name Thm.
12| 5 V5 (-1)® (—/5)% |3licosahedron 14.5.%i
143 V2 (—v2°®  (-3)! |6|HeawoodGH(1,2) [14.5.2
144 V2 (V28 (-4t |4)16(7.4,2) 14.5.3i
15| 4 % (-1* (=2)5 |3|L(Petersen) 14.4.11
21| 4 (14+v2)° (1-v2)® (=28 [3|GH(2,1) 14.5.%
22l 5 V30 (-3 (-5 |4[IG(115,2) 14.5.2i
220 6 V30 (-3 (-6 |4IG(116,3) 14.5.2i
26| 4 V37 (-3 (—a! |6|GH(1,3) 14.5.2
260 9 V37 (V312 (—9! [41G(13.9,6) 14.5.2i
36| 5 26 (—1)1®  (-3)° |5|Sylvester 14.5.2
42| 6 2t (18 (—3)# |5|antipodal 6-cover oK7|14.5.2
42| 5 20 (=220 (=51 |6|GH(1,4) 14.5.2
42|16 20 (=22 (-16)' |4[1G(21,16,12) 14.5.2i
52| 6 (2+v3)* (2-v3)2  (-2)?7 |3|GH(3,1) 14.5.%
57| 6 (35/5)18 (35)18  (_3)20 |5/Perkel 145.2
620 6 VB (—vB)®  (—6)! [6|GH(1,5) 1452
6225 VB (—/B)30 (—25! |4[IG(31,25,20) 1453
63| 8 V&’ (=18 (—/8)?" |4|antipodal 7-cover 0Kg|14.5.%/
105 8 520 120 (-2)% |3|GH(4,1) 14.5.%
114 8 V7° (VD)% (-8 |6lGH(L7) 1452
11449 V70 (—V7)®  (—49' |41G(57,49,.42) 14.5.2i
146 9 87 (=v872 (-9 |6|GH(L8) 1452
14664 87 (V872 (—64) |4]IG(73,64,56) 14.5.2i
17521 78 221 (=2)125 |3|L(HoSi) 14.4.11
186/10 (4+/5)% (4-v/5)3%0  (-2)1%5 |3|GH(5,1) 14.5.%
45614 (6+/7)%6 (6—v7)%8  (—2)343 |3|GH(7,1) 14.5.%
506(15 £30  (-3)258  (_8)22 |5|Mp3graph 14.5.2
51221 $10 - (-3)20 (~11)2! |4|Coset graph 0¥, 14.5.3ii
657|116 (7+/8)"? (7—/8)2  (—2)%12 |3|GH(8,1) 14.5.%
72924 @54 (—3)*0 (-12)%* |3|Coset graph o¥i, 14.5.%ii
81918 F24 (—3)%8  (-9)%6 |3|GH(2,8) 14.5.%

204823 P06 (~1)1288 (_9)253 |4|Coset graph oF23 14.5.3ii ,iv
245724 11824 3468 (_3)16643|GH(8,2) 14.5.%

Table 14.3 Sporadic distance-regular DS graphs with diameter 3

By Biaff(q) we denote the point-line incidence graph of an affine planerdér
g minus a parallel class of lines (sometimes callebiafine plang. Any graph
cospectral with a graph Bigff) is also such a graph. For prime powers: 9 there
is a unique affine plane of ordgr (Biaff(2) is the 8-gon.)
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n{nonnegative spectrum| g |name Thm.
18 3t 3 o 4| 6 |Pappus; Biaff3) 14.5.2i
30 3t 29 o0 4| 8 Tutte’s 8-cage30(1,2)|14.5.2
32 41 212 b 4| 6 |Biaff(4) 14.5.3i
500  51v508 |46 |Biaff(5) 1453
go| 460  |4/8|GO(L3) 14.5.2
98| 717012 |4] 6 |Biaff(7) 14.5.3i
126 316 V2 0% |612/GD(1,2) 1452
128 81v8°0“ |46 |Biaff(8) 14.5.3i
170 5t8P0%  |4]8|GO(1,4) 1452

Table 14.4 Sporadic bipartite distance-regular DS graphs with 4

n spectrum d|g/name Thm.
200 31V5 150° (—2)*(—v5)?®  |5/5|dodecahedror14.5.%i
28| 31 28 (—1+v/2)% (-1)7 (-1-/2)8 |4|7|Coxeter 14.5.2
45 4139110 (_1)%9 (—2)16 4(3|G0O(2,1) 14.5.%

102 31 (Ly17)9 718 g16 (17 7|9|Biggs-Smith |14.5.2/
B3 (57 e
(81, 82, 63 roots of 8% + 302 —3=0)

160 6 (2+v/6)%* 230 (2—1/6)* (—2)81 |4|3|GO(3,1) 14.5.%
189 4! (1+v6)?1 (1+1/2)%7 128 6/|3|GD(2,1) 14.5.%

(1_\@)27 (1_\/6)21 (_2)64
330 71 455 1154 (_3)99 (_4)2L 4|5|Mpp graph  |14.5.%
4258 (3+1/8)50 358 (3—1/8)%0 (—2)256/4(3|GO(4,1) 14.5.%
990 7% 542455 (=14y33)1541154 198 |g|5|vanov-Ivanov

(—3)99 (=L,/38)154 (_g)21 Faradjev  |14.5.%iii

Table 14.5 Sporadic non-bipartite distance-regular DS graphs @ith4

We finally remark that also the complements of distanceleeddS graphs are
DS (but not distance-regular, unless- 2).

14.6 The method of Wang & Xu

Wang & Xu [326] invented a method to show that relatively mgrgphs are deter-
mined by their spectrum and the spectrum of their complenfesketch.

LetI" be a graph om vertices with adjacency matrik. Thewalk matrix Wof I" is
the square matrix of orderwith i-th columnA—11 (1 < i < n). It is nonsingular if
and only ifA does not have an eigenvector orthogondl.to
(Indeed, let" A= 6u". Thenu'W = (1,6,...,8" Hu'1. If u"1 = 0 then this
shows that the rows & are dependent. If for no eigenvector we haveu'1 =0,
then all eigenvalues have multiplicity 1, and by VanderneWtis nonsingular.)
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Let p(t) = y it = dettl —A) be the characteristic polynomial 8f Let thecom-
panion matrix C= (cjj) be given byciy = —¢i and¢j = & j41 for 1< j <n-—-1.
ThenAW =WC.

(Indeed, this follows fronp(A) = 0.)

Assume thaf” andl"’ are cospectral with cospectral complements. Call theikwal
matricesV andwW’. ThenW "W =W'"W'.

(Indeed,(W'W); j = 1TA*+I=21, and we saw in the proof of Proposition 14.1.1
that if  andl"’, with adjacency matrice& andA’, arey-cospectral for two distinct
y, then1"A™1 = 1T A'™1 for all m.)

Suppose thatV is nonsingular. ThewV’ is nonsingular, an®) = W'W1! is the
unique orthogonal matrix such that= QAQ" andQ1 = 1.

(Indeed, sinc&V "W =W'TW’ alsoW’ is nonsingular, an@1 = 1 sinceQW =
W, andQQ" =W/ (WTW)~*W'T = |. Sincel" andI"’ are cospectral, their com-
panion matrices are equal a@AQ" = QWCW Q" =W/ CW 1 =A.If Qis
arbitrary with QQ" = I, Q1 = 1 (hence alsaQ'1 = 1) and QAQ" = A/, then
QAM™ = QA™Q" 1= A™1 for all m, andQW =W'.)

Forget abouf ' and study rational matric&g with QQ" =1, Q1 = 1 andQAQ"
a (0,1)-matrix with zero diagonal. Let thevel of Q be the smallest integérsuch
that /Q is integral. The matrice® of level 1 are permutation matrices leading to
isomorphic graphs. So the graph(without eigenvector orthogonal t is deter-
mined by its spectrum and the spectrum of its complement waliesuch matrices
Q have level 1.

If Qhas level, then clearly’| detW. A tighter restriction orf is found by looking
at the Smith Normal Forns of W. Let S=UWYV with unimodular integral and
V, whereS= diag(sy, . ..,s) with 51| ... |s,. ThenW~1 =V S-1U so thats,w—1
is integral, and|s;.

Let p be prime,p|¢. There is an integral row vect@ z # 0 (mod p) such that
ZW= 0 (mod p) andzz" = 0 (mod p).

(Indeed, letz be a row of¢/Q, nonzero modp. Now QW = W' is integral and
hencezW = 0 (mod p). And QQ" =1, sozz' = (2 =0 (modp).)

This observation can be used to rule out odd prime divisoré iof some cases.
Suppose that all numbessare powers of 2, except possibly the last gpelLet p
be an odd prime divisor af,, and suppose that" # 0 (mod p), whereu is the last
row of U. Thenp+ /.

(Indeed,zW = 0 (mod p) and W = U~1SV-1 with unimodularV implies
zU~1S= 0 (mod p). Assumep|/, so thatp|s,. Lety = zU~L. Then all coordinates
of y except for the last one are(fhod p). Andz=yU is a nonzero constant times
(mod p). This contradictsiu’ # 0 (mod p).)

It remains to worry aboup = 2. Assume thas, = 2 (mod 4), so that (with all of
the above assumptioné)= 2. Forz we now havez # 0 (mod 2),zZW = 0 (mod 2),
zZ' = 4,71 = 2, so thaiz has precisely four nonzero entries, three 1 and-ehe

We proved the following:
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Theorem 14.6.1Let" be a graph on n vertices without eigenvector orthogonal to
1, and let S=diag(sy, . ..,S) = UWV be the Smith Normal Form of its walk matrix
W, where U and V are unimodular. Let u be the last row of U , =2 (mod 4),
andgcduu’,s,/2) = 1, and zZW+ 0 (mod 2 for every(0, 1)-vector z with weight

4, thenl” is determined by its spectrum and the spectrum of its congriem O

Wang & Xu generate a number of random graphs where this methplies.

Let us abbreviate the condition ‘determined by its spectameh the spectrum of
its complement’ by DGS (determined by the generalized spegt Wang & Xu
[327] used their approach to find conditions for which a DG&pprremains DGS
if an isolated vertex is added.

Theorem 14.6.2LetI" be a graph without eigenvector orthogonallolf we have
gcd(detA, detwW) = 1, then the graph obtained frofm by adding an isolated vertex
is DGS ifand only if” is.

There is experimental evidence that in most cases whergacinal mate exists,
the levell is 2.

14.7 Exercises

Exercise 1 Show for the adjacency matri
(i) that there is no pair of cospectral graphs on fewer thaarfices,
(ii) that the Saltire pair is the only cospectral pair on Stiees,
(i) that there are precisely 5 cospectral pairs on 6 vegtic

He 0l Ul e

[ ) [ ]
[ ]
= S S S R
XE—xt X433 X5 Ha® et —aC X7 -4
+5x2 + 4x TR+ 4x—1
Table 14.6 The cospectral graphs on 6 vertices (with char. pol.)






Chapter 15
Graphs with few eigenvalues

Graphs with few distinct eigenvalues tend to have some kimdgularity. A graph
with only one eigenvalue (foh or L or Q) is edgeless, and a connected graph with
two distinct adjacency eigenvalues (#or L or Q) is complete. A connected regu-
lar graphl” has three eigenvalues if and onlyifis connected and strongly regular.
Two obvious next cases are connected regular graphs withefigenvalues, and
general graphs with three eigenvalues. In the latter casgrdphs need not be reg-
ular, so it matters which type of matrix we consider. For tlaplace matrix there is
an elegant characterization in terms of the structure, lwbices a natural general-
ization of the spectral characterization of strongly reggjraphs.

15.1 Regular graphs with four eigenvalues

Suppose” is regular withr distinct (adjacency) eigenvalués= A1 > ... > A.
Then the Laplace matrix has eigenvalues R— A1 < ... < k— A, and the signless
Laplacian has eigenvaluést A1 > ... > k+ A;. So for regular graphs these three
matrices have the same number of distinct eigenvalues Hddition, both™ and
its complement” are connected, theh also hag distinct eigenvalues, being—
k—1>—-A—1>...> —A2—1. However, for the Seidel matrix the eigenvalues
become—2A, —1> ... > —2A; — 1 andn—2k— 1. Butn— 2k — 1 may be equal
to one of the other eigenvalues in which c&leasr — 1 distinct eigenvalues. For
example, the Petersen has three distinct adjacency elgesyaut only two distinct
Seidel eigenvalues, beingg.

Connected regular graphs with four distinct (adjacencggmialues have been
studied by Doob [139, 140], Van Dam [117], and Van Dam & Spdh28]. Many
such graphs are known, for example the line graphs of priengirongly regular
graphs, and distance regular graphs of diameter 3. More@gnenost graphs de-
fined by a relation of a three-class association scheme bavefgenvalues. There
is no nice characterization as for regular graphs with teigenvalues, but they do
possess an interesting regularity property. A graptvagk-regular whenever for

217
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every/ > 2 the number of closed walks of lengttat a vertexv is independent of
the choice ofv. Note that walk-regularity implies regularity (take= 2). Examples

of walk-regular graphs are distance-regular graphs, artdx#ransitive graphs, but
there is more.

Proposition 15.1.1 LetI" be a connected graph whose adjacency matrix A has r
4 distinct eigenvalues. Thenis walk-regular if and only if Ahas constant diagonal
for2</<r-2

Proof. We know that the number of closed walks of lendtlat vertexv equals
(A")yy. Therefore[ is walk-regular if and only ifA’ has constant diagonal for all
¢ > 2. Supposeé\’ has constant diagonal for2 ¢ < r — 2. ThenA? has constant
diagonal, sd” is regular. The Hoffman polynomial éf has degree— 1, and hence
A-te (A2 A% Al1J). This impliesA’ € (A'=2,... A2, A1,J) for all £ > 0.
ThereforeA! has constant diagonal for &> 0. O

Corollary 15.1.2 If I is connected and regular with four distinct eigenvaluesnth
" is walk-regular. O

For a graph™ with adjacency matrip4, the average number of triangles through
a vertex equal%trA@ Supposd™ is walk-regular. Then this number must be an
integer. Similarly,z—lntrAf is an integer i is odd, and%trAZ is an integer ifh is even.
Van Dam and Spence [128] have used these (and other) caorgdititheir computer
generation of feasible spectra for connected regular grapth four eigenvalues.
For constructions, characterizations, and other resualteegular graphs with four
eigenvalues we refer to Van Dam [117, 118]. Here we finish tithbipartite case,

which can be characterized in terms of block designs {4e2).

Proposition 15.1.3 A connected bipartite regular graph with four eigenvalues is
the incidence graph of a symmet@alesign (and therefore distance-regular).

Proof. Sincerl” is connected, bipartite and regular the spectrum is
{k7 )\gila (_AZ)Vila _k}a

where % is the number of vertices. For the adjacency matrxf I, we have

| ON > [NNT O
A_{NTO],andA_[ 0 NTN]’

for some squar¢0,1)-matrix N satisfyingN1 = N'1 = k1. It follows thatNN"
has spectrunf(k?)%, (A2)"-11, wherek? corresponds to the row and column sum
of NNT. This implies thaNN' € (J,1), and hence\ is the incidence matrix of a
symmetric design. O
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15.2 Three Laplace eigenvalues

If a connected graph has three distinct Laplace eigenvalues © < v’ (say), the
complement” has eigenvalues@ n— v’ < n—v, soif I is connected, it also has
three distinct eigenvalues. To avoid the disconnectedpises, it is convenient to
use the notion of restricted eigenvalues (recall that aareiglue isrestrictedif it
has an eigenvector orthogonal to the all-one vet}pand consider graphs with two
distinct restricted Laplace eigenvalues.

We say that a graph has constari (") if " is not complete and any two distinct
nonadjacent vertices @t have the same number of common neighbors (equal to

u(r)).

Theorem 15.2.1A graphl™ has two distinct restricted Laplace eigenvalueand
v’ if and only if " has constanp(I") and its complemerft has constang(I"). If
I" is such a graph, only two vertex degrees d ahdctur, and

vtV =d+d +1=p(r)+n—p(l), v =dd +pu(r) = p()n.

Proof. Supposd™ has just two restricted Laplace eigenvalweandv’. Then(L —
vl)(L—V'l) has rank 1 and row sumv’, so

, vv/
(L—vl)(L—vI):TJ.

If uandv are nonadjacent vertices, thén)yy = 0, so(L?)y = vV'/n, andu(lr) =
vV’ /nis constant. Similarlyl” has constant(I") = (n—v)(n—v’)/n.

Next supposel = (") andfi = (") are constant. Il andv are adjacent ver-
tices, ther((nl —J —L)?),y = 1, SOff = (L?)yy+ N, and ifu andv are nonadjacent,
then(L?)yy = u. FurthermordL?),, = d2 4 d,, whered, is the degree afi. Writing
D = diag(dy, ..., dn), we obtain

L?=(HE-m(D-L)+uJ—1-D+L)+D*+D=
(M+n—TL+D?—(u+n—H—1)D—pl +pJ.

SinceL andL? have zero row sums, it follows the? — dy(pu+n—HT—1) — p +

un = 0 for every vertexu. SoL? — (i +n— @)L+ unl = pJ. Now letv andv’ be
such thav + v’ = p+n—pandvv’ = un, then(L—vI)(L—V'l) = VT"'J, soL has
distinct restricted eigenvaluesandv’. As a side result we obtained that all vertex
degreedl, satisfy the same quadratic equation, so thatan only take two values
d andd’, and the formulas readily follow. O

Regular graphs with constapt(") and u(I") are strongly regular. So Theo-
rem 15.2.1 generalizes the spectral characterizatiomarigly regular graphs. Sev-
eral nonregular graphs with two restricted Laplace eigeiegare known. A geode-
tic graph of diameter three with connected complement pes/ian example with
u(r) =1 (see [51], Theorem 1.17.1). Here we give two other constms. Both
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constructions use symmetric block designs (ge8). Correctness easily follows by
use of Theorem 15.2.1.

Proposition 15.2.2 Let N be the incidence matrix of a symme#gi¢n, k, A ) design.
Suppose that N is symmetric (which means that the design patasty). Then
L =kl — N is the Laplace matrix of a graph with two restricted eigdoes, being
k++/k—A. The possible degrees are k and k. O

If all diagonal elements dfl are 0, then the graph is a(n,k,A)-graph (a strongly
regular graph withiA = ), and if all diagonal elements &f are 1, therT” is such a
graph. Otherwise both degreleandk — 1 do occur. For example the Fano plane ad-
mits a symmetric matrix with three ones on the diagonal. Tdreesponding graph
has restricted Laplace eigenvalues32, and vertex degrees 2 and 3. See §46.

Proposition 15.2.3Let N be the incidence matrix of a symmetric block design.
Write
1N vi-J O N-1J
N= [ONl} ,anddefine l=| O VvI-J —N
2 N, —J —NJ 2(k—A)

Then L has two restricted eigenvalues. O

Other examples, characterizations and a table of feagildeti® can be found in
[121] and [118] (see also Exercise 1). See [328] for some marent results on
graphs with three Laplace eigenvalues.

15.3 Other matrices with at most three eigenvalues

No characterization is known of nonregular graphs witheétveeigenvalues, for a
matrix M other than the Laplacian. However several examples ancepiep are
known. Some of these will be discussed below.

15.3.1 Few Seidel eigenvalues

Seidel switching (se€1.8.2) doesn’t change the Seidel spectrum, so having few
Seidel eigenvalues is actually a property of the switchitagg of a graph. For
example the switching class &f,, the edgeless graph am vertices, consists

of the complete bipartite graph$mn—m, and all of them have Seidel spectrum
{(—=1)"1,n—1}. Only the one-vertex grapk; has one Seidel eigenvalue. Graphs
with two Seidel eigenvalues are strong (Sg€.1). To be precise, they are the
graphs whose associated two-graph is regular (Theorem1)0The Seidel ma-
trix is a special case of a generalized adjacency matrixsdlage matrices of the
form M(x,y,z) = xI + YA+ z(J —| — A) with y # z, whereA is the adjacency ma-
trix; see also Chapter 14. K is the adjacency matrix of a strongly regular graph
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with eigenvaluek > r > s, then bothnA— (k—r)J andnA— (k—s)J (these are
basically the nontrivial idempotents of the associatidmesaee) are generalized ad-
jacency matrices with two eigenvalues. We recall that angtgraph either has two
Seidel eigenvalues, or is strongly regular. Thus for evémyng graph there exist
numbersk, y andz, such thaiM(x,y,z) has two eigenvalues.

Proposition 15.3.1 A graph is strong if and only if at least one generalized adja-
cency matrix has two eigenvalues.

Proof.  Correctness of the ‘only if part of the statement has bedabdished
already. Without loss of generality we assume that the gajaas oM = M(x,y, z)
are 0 and 1. SH satisfiesM? = M. Let d; be the degree of vertéxthenx = M; =
(M?)ii =x24diy? + (n—1—d;)Z, which givesd;(y* — 22) = x—x* — (n—1)Z. So

y = —zor [ isregular. In the first cas8= %(M —xl) is the Seidel matrix of
with two eigenvalues, sb is strong. In cas€ is regular, the adjacency matix=
y%Z(M + (z—x)I —zJ) has three eigenvalues, Eois strongly regular and therefore
strong. O

So if a generalized adjacency mathk(x,y,z) of a nonregular graph has two
eigenvalues, thep= —z (and we basically deal with the Seidel matrix).

A strongly regular grapl onn vertices with adjacency eigenvalues, s (k >
r > s) has Seidel eigenvalugyy =n—1—2k, p1 = —2s—1, andp, = —2r — 1.
If po = p1, Or po = P2, thenl™ has two eigenvalues, otherwise and all graphs
switching equivalent té , have three eigenvalues. For example, the (switching class
of the) Petersen graph has two Seidel eigenvalues 3-8havhilst the pentago€s
has three Seidel eigenvalues 0 angd’5. However, not every graph with three Seidel
eigenvalues is switching equivalent to a strongly regulaph. Not even if the graph
is regular. Indeed, consider a graphwhose Seidel matri$ has two eigenvalues
p1 andp,. Then(S+1) @ (S+1) — 1 represents a gragh? with eigenvaluegp; +
1)?2—1,(p1+1)(p2+1) — 1, and(p2 +1)%> — 1. Moreover/[ ? is regular ifl" is.

15.3.2 Three adjacency eigenvalues

Connected regular graphs with three adjacency eigenvaleestrongly regular. The
complete bipartite graph§, m have spectrur{—+/¢m,0"~2,/fm}. If ¢ # mthey
are nonregular with three adjacency eigenvalues. Otheegatar graphs with three
adjacency eigenvalues have been constructed by Bridgesland [42], Klin and
Muzychuk [233], and Van Dam [118, 119]. Chuang and Omidi [8T4racterized
all such graphs with largest eigenvalue at most eight. Mamyegular graphs with
three eigenvalues can be made from a strongly regular gitaphgroducing one
new vertex adjacent to all other vertices. Such a graphlisccatoneover a strongly
regular graph.

Proposition 15.3.2 Let/” be a strongly regular graph on n vertices with eigenvalues
k>r >s. Then the conE overl” has three eigenvalues if and only ins(s— k).
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Proof. If A is the adjacency matrix df , thenA admits an equitable partition with
quotient matrix

on

)

with eigenvaluegk + vk?+4n)/2, which are also eigenvalues &f The other
eigenvalues oA\ have eigenvectors orthogonal to the characteristic veabthe
partition, so they remain eigenvalues if the all-one blookihe equitable partition
are replaced by all-zero blocks. Therefore they are prigctbe restricted eigen-
valuesr ands of I". So the eigenvalues dfare (k+v/k?+4n)/2, r ands. Two of
these values coincide if and onlysf= (k— vkZ +4n) /2. O

There exist infinitely many strongly regular graphs for whit= s(s— k), the
smallest of which is the Petersen graph. The cone over tleedeetgraph has eigen-
values 5, 1 and-2. If a cone over a strongly regular graph has three eigeesalu
then these eigenvalues are integers (see Exercise 3). Ti@ete bipartite graphs
provide many examples with nonintegral eigenvalues. It fac

Proposition 15.3.3If I" is a connected graph with three distinct adjacency eigen-
values of which the largest is not an integer, thieis a complete bipartite graph.

Proof. Assumel” hasn > 4 vertices. Since the largest eigenvajué nonintegral
with multiplicity 1, one of the other two eigenvalups(say) also has this property,
and the third eigenvalue has multiplicity- 2 > 2, so cannot be irrational. Thus the
spectrum of” is

{p = %(a+ \/B)a ﬁ: %(af\/B)v Cn_z}v

for integera, b andc. Now trA = 0 givesc = —a/(n— 2). By Perron-Frobenius’
theorem,p > | p|, thereforea > 0 andc < 0. If ¢ = 0, the eigenvalues df are
+v/b/2 and 0, and™ is bipartite of diameter at most 2, and hericés complete
bipartite. Ifc < —2, then tA2 > 4(n— 2)? sol” has at least(h— 2)? edges which is
ridiculous. Ifc = —1, thenp = 3(n—2++/b) <n—1, hencevb < nandp > —1.
This implies thatA+ | is positive semi-definite (of rank 2). S&+ 1 is the Gram
matrix of a set of unit vectors (iR?) with angles 0 andr/2. This implies that being
adjacent is an equivalence relation,[se= K;,, a contradiction. O

The conference graphs are examples of regular graphs whéreghe largest
eigenvalue is an integer. Van Dam and Spence [75] found a euoflmonregular
graphs on 43 vertices with eigenvalues 2—]% + %\/ﬂ It turns out that all these
graphs have three distinct vertex degrees: 19, 26 and 3Elijwias impossible in
case of the Laplace spectrum).
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15.3.3 Three signless Laplace eigenvalues

Recently, Ayoobi, Omidi and Tayfeh-Rezaie [13] startedrnieestigate nonregular
graphs whose signless Laplace mafikas three distinct eigenvalues. They found
three infinite families.

(i) The complete,, with one edge deleted h&sspectrum
1 o 1
{E(Sn—6+ V2 +4n—12), (n—2)"* é(3n—6— Ve +4n—12)}.

(i) The stay 1 hasQ-spectrum &, 12 nt.
(ii ) The complement okmm + MKz hasQ-spectrum

(5m—2)%, (3m—2)M (2m—2)°M-2,

In addition there are some sporadic examples (see alsoigadic Like in Proposi-
tion 15.3.3 the case in which the spectral radius is noniategn be characterized.

Proposition 15.3.4[13] Let I be a connected graph on at least four vertices of
which the signless Laplace has three distinct eigenvalliesn the largest of these
eigenvalues is nonintegral if and onlyfifis the complete graph minus one edge.

It is not known if there exist other nonregular examples veithonintegral eigen-
value. We expect that the above list is far from complete.

15.4 Exercises

Exercise 1 Prove that a graph with two restricted Laplace eigenvaluesse de-
greesd andd’ differ by 1, comes from a symmetric design with a polarity as d
scribed in Proposition 15.2.2.

Exercise 2 Let I' be a strongly regular graph with a cocliqgGevhose size meets
Hoffman’s bound (3.5.2). Prove that the subgrapli afiduced by the vertices out-
sideC is regular with at most four distinct eigenvalues. Can itehBawer than four

eigenvalues?

Exercise 3 Supposd: is a cone over a strongly regular graph. Show thali, ifas
three distinct eigenvalues, then all three are integral.

Exercise 4 Show that the cone over the Petersen graph has three sigalglsse
eigenvalues. Find a necessary and sufficient condition®panametersn, k, A. 1)

of a strongly regular graph under which the cone ovér has three signless Laplace
eigenvalues.
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partial geometry, 122

partial linear space, 198
pentagon, 117

perfect graph, 44

perfect matching, 74

period of an irreducible matrix, 22
Perron-Frobenius eigenvector, 59
Perron-Frobenius Theorem, 22

Petersen graph, 10, 12, 39, 47, 71, 73, 85,

117,123,125
planar, 99
point graph, 121, 128, 198
polarity, 79
positive definite, 30
positive semidefinite, 30
primitive association scheme, 165
primitive nonnegative matrix, 22
primitive strongly regular graph, 115
projective code, 134, 137
projective plane, 79
proper vertex coloring, 40
pseudo Latin square graph, 121
pseudo-geometric, 122

quasisymmetric design, 119
quotient graph, 94
quotient matrix, 24

Ramanujan graph, 67

Ramsey number, 64

rank of a permutation group, 119
ratio bound, 39

rationality conditions, 116, 166
Rayleigh quotient, 25
reconstruction conjecture, 16
reduced fundamental system, 106
regular generalizedh-gon, 178
regular graph, 4

regular Hadamard matrix, 158
regular tournament, 18

restricted eigenvalue, 115, 149, 219
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Seidel adjacency matrix, 15, 159
Seidel spectrum, 15

Seidel switching, 15, 159
self-dual lattice, 105
semi-bipartite graph, 54
Shannon capacity, 42
Shrikhande graph, 123, 190
SICPOVM, 160

sign changes, 171

signless Laplace matrix, 1
simplicial complex, 56
Singleton bound, 137

Smith Normal Form, 190
spectral center, 86

Spectral Excess Theorem, 180
spectral radius, 33

spectrum, 2

split graph, 54

star complement, 63

star partition, 63

star subset, 63

stepwise matrix, 36

strength, 120

strictly diagonally dominant, 30
Strong Arnold Hypothesis, 100
strong graph, 149

strong product, 11

strongly connected directed graph, 22

strongly regular, 113
subdividing, 35

sum graphs, 95
support, 84, 134
switching class, 15
symmetric design, 78

t-design, 77

ternary Golay code, 131, 138
tesseract, 14

thick generalizeah-gon, 127
threshold graph, 53

tight interlacing, 26
toughness, 71

tournament, 18

transitive tournament, 18
transversal design, 120
triangular graph, 10, 114, 123, 175
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twisted Grassmann graphs, 176
two-graph, 151

two-weight code, 134

Type | lattice, 105

Type Il lattice, 105

unimodular lattice, 105
unital, 78
universal cover, 94

van Dam-Koolen graphs, 176
vertex connectivity, 124

walk matrix, 213

walk-regular, 217

walks, 4

weak generalized quadrangle, 130
weight, 134

y-cospectral, 195

zero-error channel, 42



