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1, Introduction.

Given v objects 1,2,...,v, a relation satisfying the following
conditions is said to be an association scheme with m classes:

th

a) Any two objectslare either 1lst, or 2nd, ..., or m~ associates,

the relation of association being symmetrical i.,e., if the object o is
the ith associate of the object B, then B is the 1¥h gggociate of a.

b) Each object o has D, 1th associates, the number n; being in-
dependent of «.

c) If any two objects o and B are ith associates, then the number
of bbjects vhich are Jth assoclates of o, and k*B associates of B, 1s '
pék and is independent of the pair of ith associates ¢ and B.

The numbers v, n, (i=1,2,...,m) and pzk (1,4,k=1,2,..s,m) are the
parameters of the association scheme.

If we have an association‘scheme with m classes and given parame-
ters, then we get a‘partially ﬁalanced design with r replications and

b blocks if we can arrange the v objects into b sets (each set corres-

ponding to a block) such that

1, The research by the first author was supported in part by the
United States Air Force under contract AF 18(600)-83, monitored by the
Office of Scientific Research.

Some of the work of the second author appeared in his doctoral
dissertation at the Michigan State Uhiversity'lrl5;7. He is now an
NRC-NBC Post Doctoral Research Associate at the Statistical Engineering
Laboratory, National Bureau of Standards.
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(1) Each set contains k objects (all different)
(ii) Each object is contained in r sets
(1ii) If two objecfs ¢ and B are ith associates, then they
occur together in Ki sets, the number Ai being inde-
pendent of the particular pair of 10 agsociates o
and B.

Partially balanced designs were introduced in experimental studies
by Bose and Nair ZTB.Iﬁ and have recently come into fairly general prac-
tical use. The concept of the association scheme, though inherent in
Bose and Nair's definition, was explicitly introduced by Bose and
Shimamoto 1P6;7, as an aid to the classification and analysis of partially

balanged designs.

2. Association schemes as concordant graphs.

An association scheme with v objects and m classes may be visualized
as follows:

Let the obJects be points. Suppose we have m colors Cl’CE”“’Cm'
If two obJjects are ith associates we connect them by a segment of the ith
color. Therpoints together with the segmentes of the ith color form a linear
graph which will be regular of degree n, as a result of property (b).
We may say that the n graphs together are concordant2 when properties (a)
and (c) are also satisfied, the meanings of these being as follows:

a) Every pair of points is connected by e single segment of one

of the m colors. The graphs are non-oriented.

2. Not to be confused with chromatic graphs, in which points, not
segments, are colored., For a general discussion of linear graphs, see

/17,
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b) If any two points ¢ and B are connected by a segment of the
ith color, then the number of points which are connected to o by a seg-
ment of color CJ and to § by a segment of color Ck’ is pék and is inde-
pendent of the particular pair of points chosen.,

Equivalently pgk is the number of 2 chains directed from o to B
and consisting of. segments of colors Cj and Ck in that order. (Clearly
the pzk are closely related to the number of triangles in the graph
formed of segments of colors C,, CJ, C,+ Properties (a), (b) and (c)
are Jjust enough to specify the number of segments of each color on each
point, and the number of triangles of each combination of colors on each
segment, The total number of seguents, the total number of 2-chains,
and the total number of friangles in the graph are then readily de-
termined. Methods based on the incidence matrices of the graphs /16 /
can be used with (3.6) to enumerate certein chains of more than two seg-
ments. The arrangement in thesé graphs of all configuratipns involving
two points or three points sho&s & striking regularity which does not ex-
tend to configurations having more than three points. It can be shown
by examples that the points of the graph of color Ci may not all lie on
the same number of complete L-points, and that two associatibn schemes
with the same parameter values may give graphs differing in the total num-

ber of complete 4-points. This shows that the structure of concordant

graphs is not determined completely by properties (a2) to (c).



3. Association matrices.

We define3
N
1 2 v
lbli Pyy e By
Py
1 2 v
1%y1 Pyy e By !

where
8 ' th
qai = 1 if the obJects ¢ and B. are 1~ associates (or
connected by a segment of the 4th graph),
= 0 otherwise.
B1 is a symmetric matrix, in which each row total and each column total
is ny.

Let each obJect be the zeroeth assoclate of 1tself and of no other

treatment, Then

i
L]

I, the v x v identity matrix,

0
n, = 1,
pgj = n, if k=J,
= 0O otherwise,
pék = 1 if i=k,
= (0 otherwilse,
xo = r for designs.

The following identitles are known /5 7/ and can be proved easily
by combinatorial methods. Proofs based on the matrices Bi will be given

in Section 5.

3. The convention will be adopted here of using a superscript as
the column index of a matrix, the first subscript as the row index, and
the second subscript as the index of the matrix itself. This choice is
dictated by the notation already established for the parameters Pﬁk'



m
L n,=v
1= * ’
noy
(5'1) JEO ij = nk ]
i i

ka = pkj )

npt =npd =0t .
1P5x T T3Pk T TkPiy

Further the following two identities hold for designs.

bk = vr ,
m
(3.2) L n,A, =1k,
1=0 i1 ‘
Among the numbers
B p B
bon’ bozl’ tere bam

only one is unity, i.e., boBzi if o and B are ith associates. Hence

(503) BO+ Bl+ ves + Bm = JV »

where Jv is the v x v matrix each of whose elements is unity.

It also follows that the linear form
(3.4) CoBg + €By + ess + € By

is equal to the zero matrix if and only if

hence the linear functions of BO, Bys ses Bm form a vector space with

basis BO, Bl, seey Bmo

Lemma (3.1)
v
7 B - 0 B i .8 m B

4
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The objects ¢ and B are either lst, 2nd, .,. or m-th assoclates from con-
dition (a) of Section 1. Suppose they are i-th essociates. Both terms

of the product b;j bB ere unity if and only if ¥ is the Jj-th associate

7k
of o as well as k-th associate of B. Hence from condition (c¢) Section 1,
the left hand side of (3.5) is pik. Again sinée o end B are i-th associ-
ates ng is unity if { = 1 and is zero otherwise. Hence the right hand
side of (5.5) is also egqual to pzk. This proves the Lemms.

We now note that the left hand side of (3,5) is the element in

the c-th row and B-th column of the product BJBk’ and an is the element

in the ¢-th row and g-th column of BQ (§=0,1,¢0.,m). Thush
0 1 m
(3.6) BB = Py Bo + Py By * eee ¥ Py By

The product of two matrices of the form (3.4), where the c, are
scalars, may be expressed'as a linear combination of terms of the form

B By and will reduce to the form (3.4). The set of matrices of this

J
form is therefore closed under multiplication. It is clear that it forms
an Abelian group under addition. Thus the linear functions of BO’ Bl’
soey Bm form a ring with unit element, which will be a linear assolative

algebra if the coefficients ¢, range over a field, Multiplication is

i
also commutative, This statement and the equivaient statement ij = pid

will be shown in Section 5 to follow from (3.6) and the symmetry of By .

4, The fundamental formula (3.6) first appeared in a thesis by
W. A. Thompson /17 7/ and was independently discovered by the second
author 15;7. Other results of section 3 were included in a set of
lectures 1’2;7 at the University of Frankfurt by the first author. Some
of these were independently obtained in another form by the first
author. When the two authors learned of each other 8 work, they de-
cided to collaborate in & Joint paper.
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Linear associative algebras have of course been extensively
studied and are treated, for example, in 1"13;7. The properties of
most importance in the present study are easily established, and brief
proofs will now be given for the sake of completeness.

We first find the consequences of the associative law of matrix

multiplication.
By(BjBy) = By z pgk B,
= E ng BiBu
o Py Py, Bye
Also

u
(BBy)B, = (%5} B,)B,

u
Z P15 B

5 oY t
u, b FiJ Puk

Bt .

From the independence of BO’ Bl’ teey Bm

u _t u _t

In these equations the summation over u runs from 0 to m and the remain-
ing indices are arbitrary but fixed,
0< 1i,dk,t <m,

Pty

Now let us define ', by 7

5+ It should be noted that these matrices differ from matrices
Pk = (pfd) which were defined in several earlier papers z”h_jﬁ 1r5 zﬁ

/6 7 but do not have the same algebraic properties.



"0 1 n |
Pox Pox °°° Pox
p04 p1 pm
1k 1k ree 1k
@ = (pd ) = k=l’0,oo:'m .
k ik 1 ] * e 0 [ ]
0 1l m

f’mk P P

Vg

th

Now the left side of (3.7) is the element in the 1i“® row and t*8 column

of GDJGEL' Also the element in the ith rov and tth column of GDu is pzu,

th

so that the right side of (3.7) is the element in the i row and tth

column of

° @ 6> ¥ oap. + p?k(EL .

PV o* ng

Hence we have
() m
(5.8) B, = 85T+ o Py + oo v G
Thus, the EFas multiply in the same manner as the B's. Since pék =1
if k=1 and O otherwise, the Oth row of ka contains a 1 in column k and
O's in other positions, which is enough to show that if
°0<P0'+ c16>1 + aee + cméF; = 0,

then Co =€) = ves=cCp = 0,

i.e., GPO’GDI’ ...,Q:; are linearly independent. They thus form the
basis for a vector space and combine in the same way as the B's under
addition, as well as under multiplication., They provide a regular
representetion in (m+1) x (m+l) matrices of the algebra given by the
B's which are v x v matrices. In particular, G:B = Im+l’

Since the B's are commutative, the G;aa are commutative. In gen-
eral they are not incidence matrices and are not symmetric. (§>k doee not
have equal row totals, but has the same equal column totals n, a8 Bk'

In analogy with (3.3), all elements of row J of E éFi are equal to na.
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Let B = COBO + clBl L cmBm

be any element of our algebra, and let f£(A) be a polynomial., Then we

can express

If
is the representation of B then

f(@) = aoéo"' Rl@l* ves qmé)m .

COQO"‘ Cl@l"’ eee cm@m

" Let f£(A) be the minimum function of B and ¢(A) the minimum func-
tion of . Then f(A\) is the moric polynomial of least degree for which
£(B) = O. |
£EB) = 0> = = oo = |, = 0 —> £f(P) = 0;
i.e, £(A\) is divisible by 6(\).
Siﬁilarly ¢(A\) is divisible by £(A). Since both are monic poly-

nomials,
£(A) = o(A).

That is, B and & nave the seme distinct characteristic roots, and every
matrix B has at most m+l distinct characteristic roots which are solu-

tions of the minimum equation of 63.

b, Applications to combinatorial problems,

Association matrices will be used to derive some results first
obtained in /79 7 by a longer method.
The incidence matrix N = (nid) of a design is defined by
nij = 1 if treatment i occurs in block J;

= 0 otherwise.
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Then

B = NN'= rBO + AlBl + oees t AmBm H

6’)= I'GDO+ }"IGD1+ ves + }‘m@m .
Also
M Mo

-E-Bl-....-];-B s

¢ = r(l - E)Bo - n

where C is the coefficient matrix in the normal equations for estimating
the treatment effects after adjusting for the block effects [67.
Clearly C is & symmetric matrix. If e is a characteristic root of C,
then k(r-e) is a characteristic root of B, It is known that C has rank
v-1l for a connected design.zﬁl;7o In this case6 therefore, O is a
simple root of C and rk is a simple root of B, a fact which could slso
be shown directly as follows.

The elements of B or NN' are non-negative, and for connected de-
signs B is irreducible, Also it is easy to verify that the sum of the

elements in any row or column of B is Z n,A, = rk, Hence

i1

1 1l
H o= — '
B T B = = RN

is a stochastic matrix, which shows that unity is a simple root of B%,
and is greater than all the other roots zf7;7. Thus rk is a simple
root of B. The results of Seétion 3 show that rk is a root of G;)and
exceeds the other roots. If this root is removed from |- I6] = O,
thep for the case m=2, the other two characteristic roots of Q> will be

roots of a quadratic equation which reduces to

6. Connectedness was assumed implicitly in /79 7.
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2 2 1
(r-Q) + [(}\l-}\e)(plE-plE) = (}"l'*'}"e)j (r-G)
1 2 _
+ LM (NP = MBpp) + MM, 7= 0
on using the identities (3.1) and (3.2). The roots are given by

-6 =3 [Ny )+ (Aprhy) 7

(b.1)

r -9y =2 [Ogh)(-r B) + (Mpry) 7
where

7 = pig 'Pie’ B = pi2+ pigy A= 72+ 28+ 1.
Therefore

o4 (07
INN' - I.0] = (rk-6)(6.-0) *(e,-0) .
: v ‘U1 2

To determine the multiplicities al and a2 we note that

TrIV = ] + al + a2 = v

TrNN' = vk + alei + a292 = vr,

Solving and using (k4.1)

o - ny+n, ) (nl-ne) + 7(n1fn2) ,
2 . 2 /A
(k.2)
o, - n,+n, . (nl-na) + 7(nl+n2) .
2 2 B

Thus the multiplicities ¢, and Gy of the roots of NN' are determined in

1
terms of the parameters of the design. It is striking that, being in-

dependent of r and xi, these multiplicities are the same for all designs
having a given association scheme, This is an instance of some general

properties of ¢, to be established in Section 6.

i

For a design to exist, o, and Oy must be integral. The condition

1
this imposes on the parameters appearing in (4.2) has been used in
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studies of the existence and non-existence of designs 37, /87, [97

[127, [157.

5., Applications of algebraic properties of associlation matrices.
In this section we assume only that By (1=0,+0.,m), are symmetric

incidence matrices satisfying

(5-1) Bo = IV 2
m
(5.2) LB = J,
=0
014
(5.3) BJBk = 150 ij‘Bi ’

for some set of constants pzk. All of the properties of the algebra ex-

cept commutativity follow immediately, including its representation in

terme of the matrices éF; = (pgk). Also, pék are elements of products

of incidence matrices and must be non-negative integers. From
i
B = BoBy = I Py By
we deduce the special values
i _ =
POk = 1 1if 1=k ,
= 0 if ik ,
The diagonal element in row t, column t of BJBi may be interpreted

as the number of positions occupied by 1l's in row t of BJ as well as in

row t of B, . (5.2) shows that if k#J this element is zero. If k=j it

is equal to the number of 1l's in row t of BJ' The expansions of

ByB; = BB, and B B! = Bg then show that

p?k = O’ j#k 2
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and that pgj is equal to each row total of BJ‘ These row totals must

therefore be equal. As a matter of notation set

0 .
P13
Row totals in (5.2) show

n

J .

In =V

J

Also

(? BJ)Bk = J.B, = nkJ& = f nBy
and

L(8B)=ZZpy B =Z(ps)B, .

FRC 319 i 3
Hence comparing coefficients,

1
z ka =10y .

J
We now show that commutativity follows from symmetry of Bi'
i
= RIN! = t = 1
BBy = BBy = (BjBy)' = (X py By)
= I pi B! =2 pi B, = B,B.
i Jdk 71 Jk 71 Jk

i
As a consequence,

io_ 1
Pik = Pyy

f;§<?i = GFLGFZ ’

Equating the elements in the sth row and tth column of GE(FL and (Eié}g,

We also deduce

it _s 1 .t
(5.4) D55 Pk = T Pak Pyy ¢

This relation is equivalent to (3.7). Taking t=0 we get

gt 0 _ o4 0
i Peg Pk T 7 Pex Piy
n k =n j
k P53 = %y Pek °
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We have now shown that all the known identities (3.1) follow from
the properties of the algebra which were stated at the beginning of this

gection, However the relation

Pyd = &3

leads to new identitles when m > 2,
To prove & new idéntity in the cese m=3, set J=s=1, k=t=2 in (5.L4),

giving

1 2 2 2 3 2 1.2 2 2 3 2
By * PpPip + PryPpop + P13Pap = PipPiy * PipPpy * PoP3y o

We remark that when m=3, other choices of J, k, 8, t lead to relations
equivalent to this one, The use of & smaller number of parameters will
make it easier to recognize equivalent expressions and will be helpful
in simplifying the identity, A fairly symmetric set of paraéeters is
the following:

n n

l’ 2 2 3 3
a = n pl = n 2
12 1P22 2P1p?
C 3 _ 1
821 % BgPyp T MyPyap
a = n.pe = n,p2
23 2P33 3P23?
X = n pl = n p2 = n p5 .
1P23 2P13 3P12

Known identities can be used to express all pgk in terms of these parame-

ters, whereupon the sbove identity reduces to

a
31
+ 5 =By -ny - ng - 1)

2

(5.5) % (=

n

1

21, 812 %23
n

+ + x ( +
o B3 nl n,

+

[ od

8,-8 8., A8 8,28
1 W -

= 0.
1 0y iz

- D855 ~DoByy -n3a12-+nln2n3)
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Thus when Dyy Doy na, Y, a23, 331 are given, x must satisfy a quadratic
equation. This is a new relation, since known identities (3.1) do not
determine x in terms of the other chosen parameters., An example will
illustrate this, Let

n, = 8, 854 = 2k,

Then sets of pgk which satiefy (3.1) are obtained for

x = 8, 16, 24, 32 or Lo,
However, (5.5) becomes

3%°/8 - 16x + 152 = 0
and has no integral solutions, showing that the parameter values n, = 8,
8y = 24 are impossible.,

An equivalent and perhaps easier way to impose the new necessary

conditions on a given set of parameters is to form the matrix products
63 3 ij and @k G)J and require that they be identical,

The property of symmetry in the matrices B, was used in the proof

i
of commutativity in the algebra, which has been of key importance in the

proofs of several of the foregoing identities. The fact that the ele-

ments of B, are O's and 1l's has been used in determining the special

i
form of the pék values but has not been vital in the algebra or the

identities relating p;k. The simple example

f[1 0 0 0 0 1 01 0
By= |01 0, By= (0210, By=1-11
o 01 1 0 0 01 0

shows that matrices with elements other than O's and 1's may have the

same algebralc behavior as associatlion matrices and may ;ead ﬁo the same
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identities. This shows the necessity of the word "incidence" in the

following lemma, which summarizes several results of this section.

Lemme 5.1 If Bi’ i=0,1,..s,m are symmetric incidence matrices satis-

fying

nooy
BB = X p. B
Fr T2 Pkt

for some set of constants pjk, then B, are the association matrices of
an association scheme satisfying (a) to (c) of Section 1,

This lemma provides a useful algebraic method of verifying whether
a given essoclation relation satisfies the conditions of partial balance,

Algebraic sufficiency conditions may be used for designs as well
as association schemes. It is easy to verify that an incidence matrix
N is the matrix of a PBIB design if and only if N has equal colummn totals
and :

NN!' = rBO+ }“lBl"' ves %Bm
fof some m and some numbers r, Al,...,xm, where Bo, Bl, veuy Bm satisfy
the conditions of Lemma 5.1. An application of this Lemme will be made
in the proof of the next theorem,

Given an association schemeCZiwith more than m classes, let the
indices of the associate classes be arranged into disjoint sets SO = {0} »
S1seeeyS,+ Define & nev association relation 63 in which associate classes
correspond to éets Si, two treatments being defined as 1B aggociates in
@5 if and only if the associate class of the two treatments in Cz_cor-

respond to one of the indices in set Si'
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Association relations obtained in this way do not in general sat-
1sfy the conditions of partial balance. Lemma 4.1 of /718 7/ s ates
neceesary and sufficient conditions for partial balance in the case
8, = (1,2}, 8, = {(+1), 1 > 2, 1.e., the case in which just two classes
are combined. Iteration may give schemes in which several classes have
been combined. However, examples are known l’15;7 in vhich a combina-
tion of 3 or more classes will give a new scheme with partial balance
vhile every combination of 2 classes falls, so that the iterative pro-
cedure is impossible, The following generalization is therefore non-
trivial,

Theorem 5.1 Glven an associlation scheme(ﬁl with v treatments and parame-

ter values qu

, let an asgsociation relation 63 with v treatments have
classes O,1,...,m determined by disjoint sets S, = (0}, 8,,.4.,8, of
indices offqz. In order for @B,to satisfy the conditions of partial

balance it is n.a.s. that there exist constants pgk such that

(5.6) 5 r & =
pes, 7es, o Jk

uniformly for aes,, and for i,Jj,k = 0,1,...,m; in this case 63 has
parameter values pék.
Proof: We deucte incidence matrices of 5( by Aa and of CB'by Bi' From

the definition of 65,
B, = X A_ .
i (67
aesi
Lemma 5.1 will now be applied,

Clearly B, are symmetric incidence matrices, Bo = Iv and T Bi = J 3

i v
i
in order for tho have partial balance it is thue n.a.s. that there

exist constants psk such that



i
= I . e
B 4By (oo Pk By
Substituting,
B.B, = Z A ' Z A
Jk ( B> ( 7)
BGSJ , 7€Sk
o
= ¥ I AA = b¥ z z A
By Yy Ay
BesJ “/eS'j BeSJ 7€Sk o4
o
= T b z qﬁ) A .
y o
(o4 (5€SJ 7€Sk
Also
m m
: i i
Z po,B, = I p Z A
=0 J& 1 =0 UK ces, &
o 1
= X L p.. A
1=0 qes, e -

the coefficient of Aa in this expression has the same value pék for every
aeSi. Equating to the coefficient of Aa in the previous equation we
obtain (5.6) as the n.a.s, conditions on the parameter values qu of‘@%,

completing the proof of the theorem.,

6. Characteristic roots of matrices in the algebras.

The procedure used in Section 4 to determine the multiplicites o

1
and Uy is readily generalized to association schemes with m classes, If
n
© is a characveristic root of B =i§0 ciBi’ where c; belong to the field

of real (or complex) numbers, then ¢® is & characteristic root of B".
Also, the trace of any matrix is equal to the sum of 1ts characteristic
roots., This leads to a system of equations in the roots Qu of

m
@ - Zy ¢, @, and the multiplicites o of the same roots of B. 9, will

m
designate ZO cynyy the common value of the row totals of B.
i=
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[0 8.+ Q.9 + see t+ (4] = TrB
(6.1) 00 171 mm
2 2 2 _ 2
aoeo + ochl + e+ amem = TrB
m bii} m
aogg + algl + e + amqm = TrB '

Equations of this form were used in 179;7'but were limited to the
cases m < 4 because of the difficulty of computing TrB® with methods
then availeble, (3.6) may be used to express B" in the form

n
B = co,nBO + °1,nBl * e t Cm,nB .

Then, since B, is the only Bi with non-zero diagonal elements,

0
n-—
TrB" = ch,n'
The right members of the equations are therefore easily computed. The

coefficients of au form the Vandermonde matrix with determinant

T (8 -8y
ocikm ¢

The system will therefors have a unique solution if and only if the m+l
roots Qu are distinct. It will be shown in Corollary 6,2 that this will
be the case for at least some cholce of Cye

The sc1ntions @, must be non-negative integers, If they can be

i
expressed in terms of the parameters cy and pzk this requirement will
provide neceesary conditions which the parameters must satisfy in order
for matrix B to exist. An explicit solution of (6.1) reqﬁires &8 general
solution of the equation |6I -GDI = 0, which may be difficult to obtain
for m > 2, but one observation may’be made at once. If the basis

matrices B, exist, then matrix B will exist for arbitrary values of Cys

i
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with characteristic roots which obviously occur with integral multipli-
cities. This indicates that the integral nature of au must be inde-
pendent of cy and dependent only on pgk. Theorem 6.3 will show that
this holds not only for the integral property but for the exact values
o+ This is somewhat surprising in view of the form of (6.1), since
the values Gu and TrB" depend strongly on Cye The other theorems of
this section will give further insight into the nature of the roots Ou
and multiplicites G, 0 a8 well as simplifying their computation. Re-
sults relsted to some of these have been obtained independently and by
a different approach in /710 7.

It was pointed out in Section b, that Gy = 1 for the nmatrix NN'
if 1t is irreducible (which is the case when the design is connected).
The same theorems for stochastic matrices_[‘7;7 apply to any B with non-
negative coefficients Cy In particular any matrix B1 which is irre-

ducible has n, as a simple root. It follows from theorems (6.1) ~ (6.3)

i
which we now proceed'to prove, that 90 is & simple root (i.e. &y = 1)

for any set of coefficients cy for which
m
B = 150 4By
is irreducible.

Thecrer 6.1 Let the characteristic roots of G?l be z .,

u=0,1,.es,mes Then for a suitable ordering of Z, for each i, the
characteristic roots of the matrix
m
= I
@ 1=0 ciGDi
are glven by

(6.2) e = I ¢

u iao izui, u = O,l,lco,m *
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Proof: The matrices GPO,...,GF; are pairwise commutative. Frobenius'
Theorem (/14 7/, Thm. 16.1) then states that for a suiteble ordering of
the characteristic roots of L of each 631, and for eany rational func-

tion

f(xo; oo "xm)
the roots of

£(Fgs e 0sf))
are given by

f(zuo".’}zum)’ u = O,l,o'o,m .

Also, the ordering of the roots is the same for every rational function

f. The required theorem follows by taking
m
f(xo,...,xm) = I cx .

Corollary 6.1: The distinct characteristic roots 8, of

n

L ¢,B

B
1=0 11

are given by
n

u = iEO LI u= 0,1,,.s,m ,

The problem of finding Qu is therefore golved if the values 2.4
can be found and ordered. When they are ordered as specified by Theorem
6.1, we define the matrix

z = (z,)
Since z,q 8re the characteristic roots of symmetric matrices Bi’ Z is a
real matrix. |

Theorem 6.2 Z = (z,4) 1s non-singular,

Proof: Let
yo,yl, . oo,ym
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be a real solution of the system of homogeneous equations
m
(6.3) iEO 2,4Yy = O u= 0,1l,,a.,m &
This system has coefficient matrix Z and will have a non-zero solution
if end only if 7 is non-singular. Since Z is real there 18 no loss of
generality in taking ¥y real. By Corollary 6.1 the characteristic roots
of the matrix
m
Bos 150 YiPy
are given by the left side of (6.3) and are therefore all equal to zero.
The sum of all products of roots taken s at & time is thus equal to
zero, 8 = 1,2,...,v; this sum is equal to the generalized trace Tr B,
the sum of all 8 x 8 principal minor determinants of B. B is symmetric
with diagonal elements Yo and other elements Yysvees¥ye This follows
by noting that among the incidence matrices Bo, Bl’ veey Bm there is

one and only one say B, for which the element in thé t-th row and u~th

i
column is unity, whereas for BJ, J # 1, the corresponding element is zero.
Hence B will have Yy in positions which correspond to unities of Bi' In
particular the diagonal elements of B will all be Yor Therefore
TrlB =V = 0

giving

A _ 2 2 2

ny element y, (1 =1,2,.0.,m) contributes Yo = ¥y or -y, to

TrB. Since each row of B, sums up to n,, the number of unities above

the diagonal in B, is vn /2, This is also the number of y;'s above the

diagonal in B. Hence
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v, 2 2 2, _
TrgB = - = (nyyy * mp¥p + vee Dy¥y) = O-

Since v, Dyy +se, B 8TE positive integers and Yys Yps evey ¥y are real

it follows that

Therefore (6.5) has no non-zero solution and Z is non~singular.

Corollary 6.2: Given a set of association matrices Bys Bys +ees By

any ordered set of real (or complex) numbers Ops +e0s G 18 the ordered
set of distinct characteristic roots of

B=c¢cB,.+ clB

oo *oeoe + Cp By

1
for a unique set of real (or complex) coefficients ci. In particular,
matrices B exist with m+1l distinct roots.

Proof: For arbitrary 90, sesy %m the system (6.2) can be solved
uniquely for Cor *e*s Cpe

Theorem 6.3: If

B = COBO+ clBl + ese t 'CmBm

is an element of an algebra with the assoclation matrices Bi as basis
then

m Otu
o1 -B|l= Y (e-0)",
u=0 u

vhere o, are independent of Cos e#ss Cpe
Proof: Let S be an element of the algebra which has m+1l distinct
characteristic roots. Then S does not satisfy any polynomial equation

with degree less than m+l.
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s¥ = By=1,

8 =DyBg* bpaBy toeee + BBy
8% = byBy + bygBy + eset BB
8% = by B+ by B+ eest b B

Since 8 does not satisfy any equation of degree m or less, these
equations must be independent and can be solved to give each Bi as a
linear expressilon in S'j with constant coefficlents. Hence any arbitrary
element B can be written

=} m
B"dOI+dlD+ ...+de .

if ¢ is & characteristic rcot of 8, then the corresponding characteristic
root of B will be

=4 +dl¢+ ooo+dm¢m.

0
All of the roots Gu of B may be obtained in this way by using all of the
roots of 3. If a root ¢u has multiplicity au, then the corresponding a“
roots of B will be equal. That is, the roots Qu of an arbitrary matrix
B have the same multiplicites q“ as the corresponding roots ¢H of the fixed
matrix S and are therefore lndependent of the coefficients cy occurring
in B.

This completes the proof but an additional remark should be made.
The element B may be such thet distinct roots ¢ lead to the same value
g, whose multiplicity 8 will be equal to the sum of two or more a“. Ih
general, if M is a subset of the set 0,1,..,,m, 9“ = 3 for peM, and
QM # g for u ¢ M, then 3 = I a“. The stetement of the theorem is cor-

ueM
rect whether QH are distinct or not.
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If the roots z,q 8re obteined separately for each 631, it may not

i
be immediately clear what ordering of them is required by Theorem 6,1.
However, each 2,1 is e root of Bi with multiplicity au. If the multi-
plicities are known, a suitable ordering will then be determined by

any orderipg of the o if the o, ere distinct, and partislly determined
if they are not all distinct. Theorem 6.5 will give another technique
for ordering the roots., Theorem 6.4 reveals another significance of the
distinctness or equslity of the &u.

Theorem 6.4 If t and only t of the multiplicities a, are equal,
then for each i the corresponding rootszui satisfy & monic polynomial
equation with integral coefficients and degree t. In particular, if
eny o, is distinct from the other multipliclties, the corresponding
roots z,y are rationel integers.

Proof: The term m-polynomial will denote "monic polynomial with
integral coefficients.,” The characteristic polynomial of e matrix with

integral coefficients is an m-polynomial. Denote the characteristic

polynomials of a basis matrix B, and its representation EPi by

m au
fi(g) = lGI - Bi‘ = -\);EO (Q - ZUi) ]
m
¢i(g) = IQI - 631' = T(O (e - zui) U
. us=

For a particular root 2,4 let g(©) be the m-polynomial of lowest degree
s with z,i 88 8 zero. g(e) is irreducible over the rational field. It
is determined uniquely by any of its zeros and any m-polynomial which

hes any of its zeros is divisible by g(©) and has all of its zeros 1"13,

Sec. 38 /. Therefore_fi(G) and ¢i(9) are divisible by g(©), which must
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be the product of s of the linear factors of ¢i(@). Moreover, the cor-
responding multiplicities must all have the same value au,; othervise,
after a certain number of successive divisions of fi(G) by g(©) the
quotient would be an m-polynomial which has some of the zeros of g(®)
but not all. In short, f,(8) contains zfg(g);7<1u' as a factor and at
least s of the multiplicities are equal, It may happen that the set of
distinct irreducible factors with multiplicity Ayt includes others along
with g(e). The product of the factors in the set will be the polynomial
of degree t described in this theorem, where t is the sum of the degree
s of g(©) and the degrees of any other factors in the set., (learly
s<t, If t=1, thens =1 and g(@) = 0 - 2,1y Since g(®) has 1n->
tegral coefficlents, 1t follows in this case that 2,14 is an integer,
i=20)¢0.,m,

Theorems 6,1 and 6.4 are illustrated in the case of m = 2 associ-
ate classes by expressions (4,1) for the roots Ol and 92, the roles of |
€0s€12%5 being played by r,hl,hz. Although in general the roots of a
quadratic equation are irrational functions of the coeffipients and al-
though Al and AQ occur severasl times in the coefficients, the roots in
thisg case are linear polynomials in r,klAE, with coefficients that are
rational if and only if the integer A is s perfect square. It is shown
in /79 7/ that if Gty F 0, 1t is in fact necessary that A be & perfect
square, implying that the roots are rational. The additional fact that
they are integers is not obvious from (4.1), It is further shown in /9 7/
that if Gy = Qpy it is possible that A will not be a square and that the

roots will be irrational. This is precisely the case in known designs

of cyclic type.
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Theorem 6.5 For fixed u = 0,,.,.,m, the roots Z.4 satisfy the

relations
ooy
(6.4) 2y 5%k = 150 Py Zut °

Proof: The relation is proved by applying Frobenius'! theorem to
both sides of (3.8).

It is interesting to note the amount of simplification that has
nov been made in the study of a matrix of the algebra, for example the

matrix

' =
NN rBo + hlBl + ee. * hmBm

of a design._ The characteristic equation of this matrix is of degree v.
The regular representation introduced in Section 3 reduces its solution
to the solution of an equation of dggree m+1l, The theorems of this
section show that the characteristic roots are linear combinations of r,
Al,...,xm'and that the multiplicitlies are entirely independent of these
parameters, depending only on the association scheme, The coefficients of
r,hl,...,hm are z#i, the characteristic roots of the matrices 19 which
also depend only on the asaociation schemes. In some cases the z,i °an
be shown to be integers and in any case they satisfy the system of quad-
ratic equations (6.4)., Once z 4 values are found for some of matrices
631,...,62n, the equations (6.4) may be particularly useful, not only per-
mitting an easy determination of the remainlng 2,47 but giying them in
the order required by Frobenius' theorem and used in Theorem 6,1.

The matrix 7 = (Zui) seems deserving of further study. As an in-

dication of its usefulness we make the following remark.



v, i=0,

nmMmg
Q
N
|
3
H
o
i

0, i=l,2, ...,m.
This is equivalent to the system of equations

providing an alternative to (6.1) for determining o,
The authors are thankful to William 8. Connor and Karl Goldberg

for several stimulating discussions during the preparation of this paper.
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