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1. Introduction. In an m-class partially balanced incomplete block (PBIB)

design [2], any two distinct treatments are related as First, second, ..., or m=-th
associates in accordance with certain rules, and the resulting classification of
pairs of treatments is called an association scheme [3]. Parameters, including

V, D, p%k, which depend only on the association relation between treatments and

i
are common to all designs having a given association scheme, are called association

scheme parameters. Other parameters, including b, r, k, Ai’ depend in addition

on the arrangement of the treatments into blocks. Known results oh two=-class
association scheme parameters, reviewed in this section with some changes in
arrangement and notation, are used in Seection 2 to prove some new relations. De-
pendent as they are on known necessary conditions, our theorems will not provide
any new proofs of the nonexistence of particular designs. However, they are in a
form which is convenient for application and are oriented toward the fundamental
problem of the connection between number-theoretic properties of the parameters and

combinatorial structure of the designs.

;Prepared with the partial suppbrt of the National Science Foundation,
Grant GP-1660. ,
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' The association scheme parameters are non-negative integers which satisfy

the familiar zrelations

(1.1) nl+n2=v-l ’

(1.2) pil * Pie *lo= Pil * Pia =y ’
(1.3) Pie * Pée = Pie * ng *1lo= n, )

(1.4) nlpi2 = n2pil’ nlpée = nepie .

The following are immediate consequences.

(1.5) | nlpie " nepie = By ’

(1.6) Ofpiefnl-l s Ofpjg_2_<_ n, -1 .

. We take the four integérs n, s pie as fundamental parameters, subject o (1.5) and
(1.6). 1f (1.1), (1.2), (1.3) are then teken as definitions of the remaining
parameters it is easy té verify that they are all non~-negative integers and that
(1.4) is satisfied.

If N is the v xb incidence matrix of the design, then [4] the v x v

symmetric matrix NN' has only three distinct characteristic roots 90’ el, 32 5

with multiplicities ao, ozl, oz2 respectively, where X ozi = V. eo may be ex-
pressed
(1.7) B =T + A0, + A0 s

0 171 22

and on =1 1if NN' is irreducible (equivalently, if the design is connected).

Also,



8, = T+ At ha(-t-l) ’
(1.8)

By, = T+ A (-s-1) + Ay 8 ,

2

o, =[sn + (s + ny}/ b s
(1.9) !

o, = r(t+ l)nl + tn2} A
where .

S=%(A—2—"'Y"l) ’
(1.10) . :

t=%(A—2—+Y‘l) )

, .2 1
(1.11) Y =Pip " P1p ’
2 1 2

(1.12) A=y + 2D, +2p,t+ 1 .

s, t, o&, Qb, vy and A are association scheme parameters. The fact that

(1.13) @, and Q, are integral

turns out to be an additional constraint on n,» pia .
We need the following remarks about two special families of association schemes.
For a given v, an association scheme of group divisible (GD) type 1] exists
for each integer n which is a proper divisor of v, and the smaller of Ny, B,
is equal to n-1l. Moreover, the association scheme for given v, n is unigue,

and there exist no other GD schemes. A necessary and sufficient condition for

a two-class scheme to be of GD type is

(1.14)

=0, i=1 or 2 .

Association schemes of cyelic type are defined in terms of their cowmbina-
torial structure [3] and have parameters which can be expressed as follows in terms

of an integer q.
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n =n =0 =0, =

1
Plp=Pjp=9 » By =ny=0) =G, =29, v=A=hg+1 .

Knowledge of their existence is incomplete, though they are known to exist when-
ever v 1is a prime, Following a usage suggested by R. H. Bruck, we use the name

pseudo-cyclic for all two-class designs having these parameters; the existence of

pseudo-cyclic designs which do not have the structure of cyclic designs has not

been investigated. It follows from Theorems 5.3 and 5.5 of [4] that

(1.15) In a two-class association scheme not of pseudo-cyclic type, A must

be a perfect square.

2. Relations among parameters. Using (1.10), (1.11) and (1.12), we observe

that s and t are non-negative. We calculate

1

(2.1) A =s+t+ 1 , yv=t-s ,
1 2
(2.2) p =s(t+1) , Pip = (s+1)t .
12
1
If A2 is an integer, (2.1) shows that 2s and 2t are integers which must be

even in view of (2.2). Hence, using (1.15), s and t are non-negative integers
for all two-class association schemes not of pseudo-cyclic type, and the parameters
of such schemes may be expressed in terms of s, t, By5 By subject to (1.5),
(1.6) and (1.13). From (1.14), the scheme §s of GD type if and only if st = O.

Among various consequences of (2.2), we note that the product of pie and
p?e is divisible by 4 and that if neither is zero, their ratio is between %
and 2, since

3 < s/(s+1) < s(t+1)/(s+1)t < ft+1)/t <2 .

While (2.2) clarifies the nature of pig, it does not make the other restrictions
unnecessary. In (a), (b), (¢) bvelow, (1.5), (1.6), (1.13) respectively are

stated for the pio values corresponding to s = 1, t = 3, with examples to show
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' that each of the three conddtibns may be violated by n,, hﬂ values which satisfy

the other two.

(a) hnl + 6n2 =

“s

.0, violated by n, =9, n, = 8

1]
O\
e

> =
(v) n, 25 n,>7, violated by n, 18, n,

=12, n, =8 .

(c) (nl + 2n2)/5 is an integer, violated by n o

1

All three conditions are satisfiled by the values B = 8, n, = 16 and n, =1, = 10,

which correspond to known association schemes.

The following makes use of (1.9), (2.2) and (1.1) - (1.k).

L@, = [nls + ne(s +1)] [nl(t + 1) + net]
* = (n )2 Pp * My, (2st + s+t + 1)+ (n ) p12
o = 12P§1+nn(Ple““?ie*l)*nlepée
= n.n, (n * 0, + 1) s
giving
; (2.3) van, = A0 Q s

an interesting relations which seems to have received little notice.
THEOREM 1., A two-class association scheme with v equal to a prime must be
of pseudo=-cyclic type.

PROOF., Let v = p, a prime. Then =n Dy, O, 0, are positive integers

1’ 1’ "2
less than p. p but not p2 is a divisor of vnlne; from (2.3) the same is true

of A al aé

scheme is of pseudo-cyclic type.

and hence of A. Therefore A 1is not a square and by (1.15) the
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COROLLARY., There are no two-class association schemes with v equal to a
prime of the form Um + 3 ,

THEOREM 2. In a two-~class association scheme the products vn,, nin,, nip§k
are even integers, i, j, k = 1, 2.

PROOF. n, and n, are both even for pseudo-cyclic type schemes. For a

1 2
scheme not of pséudo-cyclic type, first suppose that ny and n, are both odd.
1
Then sn, + (s + 1)n2 is odd and from (1.9), A is odd. (2.1) shows that s

and t are of the same parity, from (2.2) pie are both even and from (1.5)

nln2 is even, a contradiction. Therefore nl and n2 are not both odd, and

two and hence all three terms of (1.5) are even., If either of n., say 1, is
odd, the remaining products involving it may be expressed vn

1
21P00
where the right hand side in each equation is even.

1 = 0y{my + 1)+ nyn,,

2 1 1 . ,
= BP0 DiPT; = nl(nl-l) - n,p), With the aid of (1.1), (1.4), and (1.2),

We remark that parity conditions related to those of Theorem 2 can be proved
for association schemes with any number of classes by suitable enumeration of
elements in the symmetric matrix NN®,

THEOREM 3. In a two-class association scheme not of GD type, ny and n,
are not relatively prime, |

PROOF. Let n, = mld, n, = m2d, where d is the greatest common divisor
of n,, n,. Then (1.5) leads to

1 2
(2.%) m,p;, + m.p
1712 2 12 = mimzd .
Each term in this equatlon must be divisible by each of the relatively prime inte-

gers m,, M. Hence there exist non-negative integers wu, w such that

; 1 2
(2'5) P12 = ume ’ Ple = Wml ’ u+w=4d.
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' In a non~GD scheme pi‘a and p§2 are positive; then u and w are positive
and 4 > 2.
COROLLARY. In a two-class asséciation scheme not of GD +type, v cannot be
of the form p+l, p a prime.
THEOREM 4. If p is an odd prime, there are exactly two GD association

schemes with v = 2p, but no other two-class schemes unless p is of the form
2
(2.6) p=2s"+2s+ 1 ,

in which case the only possible parameters are given by

(2.7) Pia =05, = s(s + 1) )
(2.8) n, = s(2s + 1), n, = (s + 1) (es +1) .

PROOF. The assertion about GD schemes is proved by noting that 2 and p
. are the only proper. divisors of v. Now assume the scheme not of GD +type. From

Theorem 3, ny and n, are not relatively prime and must be distinct from p and

p~l1. Then p but not pe is a factor of vnn, = A o0, . Since v #Z 1 (mod 4),

it follows from (1.15) that the integer A 1s a perfect square; not being divisi-

ble by p2, it 1s not divisible by p. Therefore the product of ozl and 042 is

12 oze is as large as 2p, since their sum is

v-l = 2p - 1; hence one of them is equal to p. We choose notation so that

divisible by p. DNeither of «

(2.9) Q=D , @ = p=-1 .
Then (2.3) reduces to

(2.10) 2on, = A (p-1) .

The parameters s and + are integers. From (1.9) ,
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2 o
p A = s(nl + ne) tn,
(2.11) .
-k .
(p-1)a2 = t(nl + n2) +n, .

Subtracting,

_%_
(2.12) 82 = (s~ t)(n; +ny)) +n,~n .

[V

The integer s-t 1is non-negative since A< 1is positive. If s-t is positive,

1
then (2.12) shows A% > en, and A > h(ng)e « Then

Mny)? (p=1) < 8 (p-1) =20y = 2(2p - 1= 1n))n,

reducing to ne.f 1, which is impossible for a non-GD association scheme. There-
fore s-t is non-positive, we have s=t, and (2.2) gives (2.7). Simplifying

(2.12) and using (1.1) we have

Ry
n, =n, =A°=s+t+1=2s+1 s

nyat+tn, =vels=2p-=-21 P

which can ke solved to give

n,=p-=s- 1, B, =P + 8 .

Using this in (2.10), we obtain this quadratic equation in p.

o(p -5 - 1)(p+s) = (25 + 1)2 (p-1) .
The solutions are p = %, extraneous to this problem, and p = 252 + 28 + 1,
proving (2.6) and leading to (2.8) to complete the proof,
Theorem 4 excludes two-class schemes not of GD type and with v = 2p for
many primes, including those of the form Um + 3., The only primes less than 300
of the form (2.6) are 5, 13, 41, 61, 113, 181l. Association schemes of the family

spectfied by (2.7) and (2.8) have the special property that v = A + 1 and are
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known for many values of s '61, including some in which 2s° + 25 + 1 is com-
posite; in the latter case, however, other non-GD schemes for the same v may
be possible. TFor example, s=3 glves 2s2 + 28 + 1 = 25, and two non-GD sghemes

are known with v = 50, one in the present family with parameters n, = 21,

1 2
n, = 28, P], = Pjp = 12, and another [5] with parameters n, =T, n, = Lo,
2 -6
Pio " Ppp = ° -

1
THEOREM 5., In a twoeclass association scheme not of GD type, ny > (v - 1)3,

i=l,2.

PROOF, The following proof for ny uses (l.l) « (1.4); it follows from
(1.14) and (1.4k) that we may assume pfl > 1, Interchanging the indices 1 and
2 gives a proof for .

1 1
By = P tPp *t1 )
2 1 1
()" = myppy v mpp

1
By ¥ 0y * Py

2
- > = - .
+ ny(pyy - 1) By * By =v-l

The inequality of Theorem 5 need not hold for GD schemes and is the best
possible for other schemes, as shown for example by the triangular scheme with
v = 10, nl = 3 and by the above parameters with v = 50, nl = T. On the other
hand, this equality is possible only in isolated cases. To see this, assume

(nl)2 =V « 1, It follows from the above proof that Pil = 0 and pil = 1,

which is enough to determine the parameters with pia = pia =0y - 1= s2 + 8 .

Then, using (1.9) ,
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[s (52 +s5+ 1)+ (s + l)(s2 + 8 + 1)(52 + s))/(2s + 1)

Q
1

2s + 533

- 7slL + 15s5/(as + 1) s

which is integral only if 2s + 1 1is a divisor of 15. The three possibilities
5 =1, 2, T lead to the examples Just mentioned and to gne more with v = 3250.

5. Acknowledgements, Theorems 1 (With a different proof), 2 and 3

appeared in the author's doctowxdal disseritation at Michigan State University.

Equation (2.3) was subsequently called to the author's attention by J. S. Frame.
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