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1. Spreads and partial spreads., Let I be a projective space PG(3,q) of

dimension 3 and finite order q. Then I contains (q+1)(q®+l) points and an
equal number of planes, and (q®+1)(g®+g+l) lines. It will be convenient to con-
sider lines and planes as sets of points and to treat the incidence relation as
set inclusion. Each plene contains g®+q+l poimts and an equal number of lines,
Each line contains g+l points and is contained in an equal number of planes.
Each point is contained in ¢®+q+l planes and an equal number of lines.

A spread of lines of I is & set of ¢®+1 lines of & which are pairwise
disjoint, or skew; it can also be defined as a set of lines such that each
point (or each plane) is incident with exactly me of the lines.

A packing of lines in £ is & set of g°+q+l spreads such that every line
is in exactly one spread of the set, Spreads of lines exist in every PG(3,q)
and packings are known to exist in same cases,

A more general concept is that of a gspread or packing of disjoint
PG(m-1,q)'s, subspaces of dimension m-l, in PG(n-l,q), where m is a divisor
of n., Generalizations to infinlite geometries can also be formulated, All
spreads and packings mentioried in this paper are to be teken as spreads and
packings of lines in a finite 3~space. The terminology and the recent theory
of spreads are due to R, H. Bruck [1,2], although related ideas have been con-
sidered earlier, A linear congruence [3] in & 1s a special case of a spread.
A finite geometry which admits a packing is an instence of a balanced incomplete
block design which is resolvable,

Example, The 15 points of PG(3,2) may be represented as follows by

coordinate vectors over GF(2).
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0001 0100 Olll 1010 1101
0010 0101 1000 1011 1110
0011 0110 1001 1100 1111

Each of tiie 35 lines of this geometry contains 3 points and is displayed in

one row of Table I, Each section of the table contains a spread, a set of

5 disjoint lines whose union is the set of all 15 points. The 7 spreads listed
contain each line exactly once and therefore comprise a packing. Table II

is for later use.
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TABLE IT.

Points of PG(3,2) arranged by lines,

lines arranged into spreads,

Points of PG(3,L4).

Spread 1, 1line 1 0001 0010 0011 00la 001b
line 2 0100 1000 1100 1200 1b00
line 3 0101 1010 1111 lala 1blb
line &4 0110 1011 1101 labl lbal
line 5 0111 1001 1110 laab lbba

Spread 2, line 1 0001 0100 0101 010a 010b
line 2 0010 1000 1010 10b0 10a0
line 3 0011 1101 1110 1lba 1lab
line 4 0110 1001 1111 1bbl laal
line 5 0111 1011 1100 labb lbaa

Spread 3, line 1 0001 0110 0111 Olla Ollb
line 2 0010 1001 1011 10al 10bl
line 3 001l 1100 1111 11bb llaa
line b 0100 1010 1110 1b10 1al0
line 5 0L0L 1000 1101 1la0a 1bOb

Spread 4, 1line 1 0001 1000 1001 100a 100b
line 2 0010 1101 1111 11bl llal
line 3 001l 0100 011l Olbb Olaa
line 4 0101 1011 1110 lalb ibla
line 5 0110 1010 1100 1ba0 1ab0

Spread 5, line 1 0001 1010 1011 10la 101b
line 2 0010 1100 1110 11a0 11b0
line 3 0011 0101 0110 Olba Olab
line 4 0100 1001 1101 1a0l 1bO1
line 5 0111 1000 1111 1bbb laaa

Spreed 6, 1line 1 0001 1100 1101 110a 110b
line 2 0010 0101 o111 Olal 0lbl
line 3 0011 1001 1010 10ab 10ba
line 4 0100 1011 1111 lall 1bll
line 5 0110 1000 1110 1bbO laa0

Spread 7, line 1 0001 1110 1111 11la 111b
line 2 0010 0100 0110 01b0 0la0
line 3 001l 1000 1011 10aa 10bb
line 4 0101 1001 1100 1bOa 1a0b
line 5 011l 1010 1101 laba lbab




L

Any set 57 of mutually disjoint lines of X will be called a partial
spread. If -¥ comtains q2+l-d lines, d will be called the deficiency of A .
A spread is thus a partial spread of deficiency zero. Exactly (q+1)(q®+1-d)
points and an equal number of planes are incident with lines of GJ , leaving
residual sets of points and planes defined as follows.

(1.1) (L : the set of d(q + 1) points of £ not on lines of ?J .
(1.2) A : the set of d(q + 1) planes of & not containing lines of 1) .

A line £ is disjoint from all lines of ¢ if and only if the g+l
points contained in £ are all points of C{. Equivalently, the g+l planes con-
taining £ are all planes of . If no such line exists, ¢ will be called a
complete partial spread.

The procedure of choosing lines of X one at a time, each disjoint from
those previously chosen, will terminate in a complete partial spread and possibly
in a spread. The conjecture and question which are tsken up in this paper are
motivated by the following observations, accumulated by the author (and his
children) in empiricel trials of this procedure with the 35 lines of PG(3,2)
and the 130 lines of PG(3,3). Every partial spread in PG(3,2) can be completed
to a spread of 5 lines, but not all partial spreads in PG(3,3) can be completed
to spreads of 10 lines., The choice procedure is sometimes blocked at 7 lines.
On the other hand, once we get as far as 8 or 9 lines, it always seems to be
possible to find the remeining lines required for a spread.

Conjecture: There exists a critical size d, = do(q) such that for
d < do , every partial spread of deficiency d can be completed to a spread.

Question: If a partial spread of positive deficiency d is complete,
what can be said about its structure, or about the structure of the residual
sets A and z? of points and planes?

This paper shows that the canjecture is true for d. = 1 + Jé_, gives
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an answer to the question in the case d = 1 + NE q, and shows by an example

with q = 4 that this case actually arises,

2. A lower bound for positive deficiency of a complete partial spread.

IEMMA 1., Let @/ be a partial spread in I = PG(3,q) with residual sets
a and ] of points and planes, Then any line 4 in I is incident with
the same mumber, say A = A (£), of points of ZL as planes of 6 .

PROCF. The statement is trivial, with A= 0, for £ €& . To see it
for £ £, » let v be the number of lines of which intersect £ .

Since the lines on/ are mutually skew, these lines meet £ in distinct
points and lie in distinct planes on £ . The remaining g+l-v points on 4
are the points ofﬂ on £ , while remaining g+l-v planes on £ are the planes
of ﬁ on £ . Therefore the statement is true for 4 #J , with

A= qtl=v .

THEOREM 1. If a partial spread‘/ in I = PG(3,q) has positive deficiency

d and is complete, then

(2.1) da> 1++aq.

"PROCF . Q/ contains ¢® + 1 - & 1lines., The residual setsf( andg
of points and plenes are not incident with lines of have been defined and
erumerated in (1.1) and (1.2). A plane n which contains v lines ofa/ ,
v =0 or 1, meets the remaining o + 1 - d - v lines of J in distinct
points, accounting for

WgHl) + P +1-d-v=g +vg+1l-4d
points of n on lines on/ . By subtraction plane x contains,
(2.2) q+dpo:mtsoféz,ne5,
(2.3) . d points of A , © ¢ ﬁ.
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By a dual argument, a point P is contained in
(2.4) q + 4 planes of 23 , Pe C(,
(2.5) d planes of Z? , P §# A,

Let £ Dbe incident with A points of aQ and, by Lemma 1, with A planes
of 23 . Using (1.1) and (2.2), there are d(g+l)-A points of ({ not on £ ,
of which gt+d-A 1lie on each of the A planes of"fg on £ . This gives the
inequality
(2.6) d(g+1) -A > Ma+d-2A) ,
whicn reduces to
(2.6) (AN-a)(A-q-1)> O .

Now take £ k ﬂj , and let ﬁj be complete, Then £ contains fewer than
a1 points of A ; otnerwise it could be adjoined to o . That is,

A-g-1<0 ,

which with (2.7) implies
(2.8) AN-d<o0 .

Let )ij be the number of points of A which are on the line of inter-
section of the i-th and j-th planes of 13 , and let A be the mean of )ij
over the (dg+d)(dg+d-l) ordered pairs i, j. There are dg+d points of (]
in all, each of which is on g+d planes of ‘13 and therefore on the lines of
intersection of (q+d)(g+d-1l) pairs of planes. Counting points two ways,
we have
(2.9) Nag + da)(dg +a - 1) = (dg + d)(qg + d)(qg+a - 1) .
Taking o complete, (2.8) implies
(2.10) A< a .
Taking o with positive deficiency, d > 1, statements (2.9) and (2.10) imply

d(dg +d - 1) > (q+ d)(q+d -1).

Solving for d, and disregarding negative solutions, we obtain (2.1),
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noting for later use that equality holds only if equality holds in (2.10).

The next theorem is obvious but useful.

THEOREM 2. A partial spread 6} in I = PG(3,q) with deficiency 4 <gq
can be completed to a spread in at most one way.

PRO(F., Suppose the residual set a contains d disjoint lines with
which the spread can be completed., Then any other line can contein at most
one point of each of these lines and mist have points not in A . Thus q
does not contain any other sets of 4 lines, disjoint or otherwise.

Theorems 1 and 2 give the following.

COROLIARY 1. A partial spread in PG(3,q) with more than ¢2 - Wq lines
can be completed uniquely to a spread.

PROOF, The partial spread has deficiency less than »fq + 1. It follows
from Theorem 1 that if it is not a spread, it is not complete and at least
one more line can be adjoined, Continuing, we obtain a spread. Theorem 2
implies uniqueness,

It is easy to enumerate partial spreads in PG(3,q) with up to four or
five lines, while partial results can be obtained for the number of spreads.
It can be proved that if £, m, n and £' , m', n' are two sets of three
mutually skew lines in L , there exists a collineation mepping £ onto £' ,

m onto m' and n onto n'. In this sense, all partial spreads of three or
fewer lines are equivalent,

In PG(3,2), a partial spread with 3 lines has mare than ¢© - fq 1lines
and 1t follows from Corollary 1 that any partial spread in this géometry can
be completed to a spread.

In PG(3,3), Corollary 1 implies that a partial spread with more than
32 _ \f3 7,27 lines can be completed to a spread, confirming the empirical

findings mentioned for partial spreads of 8 or 9 lines. On the other hand,
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the existence of complete partial spreads with 7 lines shows that the inequality
of Theorem 1 is essentially the best possible for g = 3.

With q = 4, the possibility arises that (2.1) may hold with equelity.
This situation is discussed in the next theorem, and an example with q = 4

follows,

3. Complete partial spreads in PG(3,s®) with deficiency 1 + s

DEFINITION. With %, of , (L, and B as defined before, the

residual geometry of ﬂ} is & system I' whose elements are certain points,

lines, and planes of I specified as follows:

the points of L,

the planes of '73 s

the lines of intersection of planes of 13 .
An incidence relation for elements of I' is defined to coincide with the inci-
dence relation for the same elements, regarded as elements of Z,

We are now ready to investigate a complete partial spread whose deficiency
d is equal to the lower bound 1 + Jﬁ of Theorem 1. Without loss of generality
we may assume that g is a square, say
(3.1) q=:5%,
(3.2) d

U
THEOREM 3, Let Gd be a complete partial spread of deficiency d = s + 1

l+s .

in © = PG(3,5%). Then the residual geometry I' of 'ﬂj is a PG(3,s).
PROCF, For easy reference, we specialize (1.1), (1.2), (2.2), (2.3),

(2.4), (2.5) to the present case as follows.

(3.3) I' contains (s + 1)(s® + 1) points ,

(3.4) ' contains (s + 1)(s® + 1) planes .
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A plane  of & contains
(3.5) s2+s+1 points of I', m eI ,
(3.6) s + 1 points of T, m T .
A point P of Z is contained in
(3.7) s2 + s+ lplanesof 'y, Pel |,
(3.8) s + 1 planes of ', P AT .
By definition of lines of I' and the geometric properties of I,
(D) any two planes of I' intersect in exactly one line of I,

Let the line of intersection of the i-th and j-th planes of I’ contain

7‘1;3 points of I,  Since (2.1) holds with equality, the same is true for (2.10),

implying

(3.9) f,j (N -d) =0 .

But Cd is complete and from (2.8) we have

(3.10) 7\135 a, all i,j .

(3.9) and (3,10)imply 7\13 = d, all i,Jj, proving that

(3.11) every line of I contains exactly s + 1 points oi" r .
By Lemma 1,

(3.12) every line of I' is contained in exactly s + 1 planes of I' .

Two points of I' are on & unique line of X and hence on at most one line
of T'. We must show that it is a line of I'. From (3.%4), I' contains
(3.13) (s + 1)(s® + s + 1)(s® + 82 + s) ordered pairs of planes,
If these are enumerated by the lines in which they intersect. By (3.12), each
line accounts for (s+l)s ordered peirs, showing that tie number of distinct
lines of T is
(3.14) (s+1)(s2+s+1)s/[(s+1)s] = (52 + 1)(s® + s + 1) .

By (3.11),each of these lines contains s+l points of I' and accounts for
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(s+1)s ordered pairs of points, Taken jointly, the lines of I' account for
(~+1)(s2+1) (s®+s+1)s pairs of points, which from (3.3) is the totality of such

pairs., Therefore,

(A) any two points of I' are contained in exactly one line of TI.
From properties of £ , if two points of T lie in a plane of I' , which is
also a plane of £ , the line joining them lies entirely in the same plane.
Thus
(c) if two points of I' are in a plane of I' , the line of T
containing the tﬁo points is also in that plane.
Consider 3 points of I' which are not all on a line of I'y Then they are
not collinear in I and hence determine a unique plane, say x, of Z . From
(¢) and (3.11), n contains at least 3 lines and at least 3s points of T,

Comparison with (3.5) and (3.6) shows that = must be & plane of I'. Therefore,

(B) three points of I' which are not collinear lie on a unique
plane of T'

Three planes of I' meet either in a common line of T or by'pairs in 3
lines of I' . In the 1latier case their intersection is a point of Z
which is on at leest 3 lines of I and by (3.12) is on at least 3s planes of
' « Comparison with (3.7) and (3.8) shows that it must be & point of T .

Therefore,

(E) three planes of I' which do not meet in a common line nust
intersect in a unique point of I' .

Statements (A), (B), (C), (D), (E), taken as postulates, are sufficient
to show that I' is a projective space. We need existence postulates to the
effect that I' does not reduce to & degenerate form such as a single plane and
that I' has order s. (3.4) and (3.11), among others, will do, and the proof

is complete,
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Suppose that £ = PG(3,s52) contains a complete partial spread ) of
s* - s lines. A coordinate system can be set up for T = PG(3,s®) so that
points are represented by non-null vectors X = (xo, Xy X5 x3) over the
field GF(s?) with s® elements, where x and ox represent the same point if
@ is a nonzero field element. If x and y are two points, then the points
of the line joining x and y are those which can be expressed
(3.15) ax +By ,
where Q and P are field elements not both zero.

Without going into details, we remark that this field has a subfield
GF(s) with s elements, and the coordinate system may be set up so that the
points of a specified subgeometry I' = PG(3,s8) are precisely those which can
be represented by coordinate vectors over the subfield. Let us make such a
choice of coordinate system, taking I' as the residual geometry of the partial
spread ?ﬂ o+ Two points xand y in I are joined by a line of I' whose
s+l points may be represented by (3.15), where « and B are taken from
GF(s2).

Taking s = 2, suppose that T = PG(3,4) contains a complete partial spread
o/ with 14 1lines and deficiency 3, and let ' = PG(3,2) be the residual
geometry of Qf . Representing the elements of the subfield GF(2) by O and 1
and the remaining elements of GF(4) by a and b, there is no loss of general-
ity in representing the 15 points and 35 lines of I' in the form displayed in
Table I,

Each line of I' contalns 3 polnts and each line of % contains 5 points.
Table II augments Table I by listing coordinate vectors for the two remaining
points of T on each of the 35 lines of I' ., The 70 points of £ thus obtained
are seen to be distinct, exhausting the points of X which are not in T .

These are the 70 points which must occur on the lines of QJ .
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Each section of Table I lists a spread of 5 lines. Each spread deter-
mines a set of 10 points, listed in the corresponding section of Table II.

In each case this set may be observed to be the union of two disjoint lines;
each of the two columns of each section of Table II displays one of these
lines, 1In all, the 7 sections of Table II contain 14 such lines, mutually
disjoint, exhausting the poimts of X which are not in I', and comprising a
complete partial spread ﬂi with deficiency 3.

Thus we have an example, for q = 4, of a complete partial spread with
deficiency equal to the lower bound 1 + JE_ of Theorem 1.

It may be fairly criticized that this example has been produced like a
rabbit fran a hat. The author's defense is that it i1s only & small rabbit
(the assertions made for this example being easily verfied by computation),
and that the hat is now empty (since the analogous construction using spaces .
I and £ for s >2 fails to furnish enough lines in PG(3,s2) for a partial
spread of deficiency 1 + s). The author does not know whether the inequality
of Theorem ] is the best possible for q > L.

It would be of interest to have a lower bound for the number of lines

(upper bound for the deficiencr) in a complete partial spread.
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