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1. General properties of designs and association schemes. In a

balanced or partially balances incomplete block design, a collection of

b subsets, called blocks, is chosen from a set of v objects, commonly

called varieties or treatments, in such a way that every block contains

the same number k of objects, every object occurs 1n the same number r of

blocks, and a further regularity condition holds for the number of occurrences

together within blocks of pairs of distinct objects. In a balanced incom­

plete block (BIB) design this number has the same value ~ for all pairs

of distinct objects. In an m-class partially balanced incomplete block

(PBIB) design [5, 18], any two distinct objects are related as first, second,

... , or m-th associates in accordance with rules to be stated in (L1), and

all pairs of objects which are i-th associates occur together in the same

number ~i of blocks. The arrangement of pairs of distinct objects into

associate classes is called an m-class association scheme and involves

iparameters ni , p jk' i, j, k = 1, 2, ... , m. We denote by Pi the matriX

whose element in the j,k position is P~k. Association schemes have been

found useful in the combinatorial study of PBIB designs, as well as in the

analysis of data from experiments in which these designs are applied. To

each association scheme there corresponds a family of designs which share

1 Prepared with the partial support of the National Science Foundation,
Grant GP-1660.
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this association scheme and have common values of certain parameters, including

v, ni , P~k' but which differ in the arrangement of objects into blocks and

in values of b, r, k, and ~i.

An m-class association scheme with v objects is defined by the following

conditions [6].

(i) Any two distinct objects are either first, second, ••• , or m-th

associates.

(ii)
(1.1)

" (iii)

Each object has n. i-th associates, i = 1, ••• , m.
1.

For any pair of the v objects which are i-th associates, the

number P~k of objects which are j-th associates of the first

and k-th associates of the second is independent of the pair

of i-th associates with which we start.

The following are well-known identities which can be derived from this

definition.

m
E ni = v - 1,

i=l

i i
Pjk = Pkj'

mi.
E Pjk =ni , J ~ i,

k=l

= ni - 1, j = 1,

These relations among the parameters make it possible to simplify the

definition. A two-class association scheme with v objects may be defined

by the following conditions [3].
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(1.3) (i) Any two objects are either first or second associates.

(ii) Each object has nl first associates.

(iii) Given any two objects which are i-th associates, i = 1, 2, there

are exactly pil other objects which are first associates of both.

Then, defining other parameters by

each object has n2 second associates and, given any two objects which are

ii-th associates, there are Pjk other objects which are j-th associates of

the first and k-th associates of the second. AlSO,

If N is the v x b incidence matrix of objects and blocks in the

Tdesign, then the v x v symmetric matrix NN has only three distinct charac-

teristic roots 90, 9
1

, 92, With multiplicities 0:0, 0:1, 0:2 respectively,

where E O:i =v. 90 may be expressed

(1.6)

and 0:0 =1 if NNT is irreducible (equivalently if the design is connected).

Then
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If we define

(1.8) 2 1
'1 = P12 - P12'

2 1 2
t. = '1 + 2P12 + 2p12 + 1,

.!.
~ = (t.2 - r - 1)/2,

then it has been shown [13J that

(1.10)
1

al = [~nl + (~ + 1)n2J/t.2 ,

The parameters '1, t., ~, T, al , a
2

depend only on the association scheme and

not on blocks. Other known relations [17J that will be needed later are

(loll)

2
P12 = T(a- + 1).

If in a two-class association scheme we interchange the designation

of first and second associates we obtain another association relation

which satisfies (1.1). Two association schemes related in this way will
said to b-e

be/ complements of each other. If a scheme has parameters
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nl =K,
[~ :J , [~ ~] ,v, PI = P2 =

n2 = m,

its complement will have parameters

v,
nl = m,

PI [: ~J , P
2

[e d]= =
n2 =K, de·

There are m-class schemes for m > 2 which differ only by a permutation of

associate classes, although the term "complementll is not appropriate in

such cases.

Most known two-class PBIB designs have been classified by Bose and

Shimamoto [6] into five types, distinguished primarily by the structure of

their association schemes. The simplest type is group divisible, in which

the v =ron objects are arranged into m disjoint groups of n objects, and

objects are first associates if and only if they are in the same group.

For a group divisible scheme,

v = ron,

n2 = n(m-l),

= [n-2 0 ]
PI 0 n(m-l) ,

P
2

= [0 n-l)]
n-l n(m-2 •

Cyclic type schemes are defined in terms of certain combinatorial properties

and have parameters which may be expressed as follows in terms of an integer

t.

(1.14) v = 4t + 1,

PI = [t:t-l tt] , [t t J
P2 = t t-l '
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Association schemes with parameters (1.12), whatever their combinatorial

structure, will be called pseudo-cyclic. In the next section we take up

Latin square association schemes, another type in the Bose-Shimamoto class-

ification, then introduce the new family of designs, negative Latin square,

which are the principal topic of this paper.

2. Negative Latin square designs. An association scheme of' Latin square

type with v =n2 objects and g constraints, which we denote as an Lg(n) scheme,

is defined by an n x n square array of the objects and a set of g-2 pairwise

orthogonal Latin squares of order n. Two objects are first associates if

and only if they occur in the same row or column of the array or in positions

occupied by the same letter in any of the Latin squares. If to the set of

Latin squares we adjoin two more n x n arrays of n letters, one in which

the i-th letter occupies all positions in the i-th row and another in which

the i-th letter occupies all positions in the i-th column, we have g pair­

wise orthogonal squares (not all Latin) and may define first associates

somewhat more symmetrically as objects which occur in positions occupied by

the same letter in any of the squares. Finite nets [7, 9] and orthogonal

arrays [11] may be used as the basis for equivalent definitions. Lg(n)

parameters are given by

(2.1) 2v = n ,

nl = g(n-l) , P1 = [(g-1)(g-2)+n-2 (n-g+l)(g-l)J
(n-g+1) (8-1) (n-8+1) (n-g) ,

n2 =(n-8+1)(n-l) ,
P

2
= [g«g-l)

g n-g)
g(n-e;) J

(n-g)(n-g-l)+n-2 •
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These lead to further parameters

(J = g-l, 'T = n-g,

Ql = g(n-l), Q2 = (n-g+l)(n-l) •

Association schemes with parameters (2.1), whatever their combinatorial

structure, will be called pseudo-Latin square.

Since there can be at most n-l pairwise orthogonal Latin squares of

order n, g cannot exceed n+l; moreover, if g =n+l, all pairs of objects are

first associates and the design reduces to a BIB design. The result is the

same with g = O.

A Latin square association scheme with g = 1 constraint is a special

case of a group divisible scheme, while it is easy to show that its complement

has this structure in the case g =n. We may therefore assume

2 ~ g ~ n-l •

We observe that the complement of a Latin square association scheme with

g constraints is a pseudo-Latin square scheme with n+l-g constraints. This

was illustrated in the preceding paragraph and becomes obvious if we use the

brief notation f = n+l-g and note ~airs of symmetric expressions such as

nl = g(n-1),

and

2
Pll = g(g-l) •

As a result, any pseudo-Latin square association scheme may be reduced by

choice of notation to a pseudo-Latin square scheme with

(2.4) 2 ~ g ~ (n+1)/2 •
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These are simply the schemes of this family for which n
l

S. n
2

• An exam.ple

will show that not all pseudo-Latin square schemes have Latin square struc-

ture. An L
3

(6) scheme can be constructed from any 6x6 Latin square. Its

complement then has L
4

(6) parameters but cannot have Latin square structure

since no set of 4-2 = 2 orthogonal 6x6 Latin squares eXists. On the other

hand, it is known [21, 9, 16] for a wide range of values of nand g that an

association scheme with parameters (2.1) necessarily corresponds to a set

of g-2 pairwise orthogonal Latin squares of order n.

While minor infringements of inequality (2.3) lead only to trivial

special cases, we now obtain something interesting by committing a major

Violation. Negative values of nand g lead in many cases to parameters (2.1)

which are non-negative integers. These parameters satisfy conditions (1.4)

and (1. 5), which reduce to algebraic identities in n and g, but differ from

the parameters of any of the types of association schemes in the Bose-Shimamoto

classification. This suggests the eXistence of a new series of 2-class PBIB

designs, based on association schemes with such parameters. The name negative

Latin square will be used for designs and association schemes in the new series.

The simplest case is n = -4, g = -1, giving the follOWing, which could be

termed L-1(-4) parameters.

v =16,

[ 2 3
P2 = 3 6] ,
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Designs are known with these parameters, showing that the negative Latin

square family of designs is not vacuous.

Instead of using (2.l) with negative arguments for negative Latin

square parameters it is convenient to have expressions in terms of positive

arguments, which we shall still denote, however, by the same letters nand g.

Then using the negative integers -n and -g in (2.1) we arrive at

2v = n ,
PI = [(g+1)(g+e)-n-2

(n-g-l) (g+l)
(n-g-l) (g+l)]
(n-g-l) (n-g) ,

nl = g(n+l) ,

n2 = (n-g-l)(n+l) ,
P

2
= [g«g+l»

g n-g
g(n-g) ]
(n-g)(n-g+l)-n-2 •

In terms of the positive integers nand g, we denote these as NL en) parameters.
g

Using (2.5) in (1.8) and (1.10),

CT = n-g-l,
2

'T =g, 6. = n ,

al = (n-g-l)(n+l), O2 =g(n+l).

Alternat.ively, values of CT, 'T, o. could be obtained by using the negative
~

integers -n and -g in (2.2). This amounts to using the negative square root

of I:i in (1.8) and leads to negative values of CT and 'T, finally giving values

of a.and Oi. which differ from those of (1.9) and (2.6) by an interchange of
~ ~

indices 1 and 2. In adopting expressions (2.6) we are following the customary

[13] notation for e and 0 .•
i ~

The abbreviations L (n) and NL (n) will sometimes be shortened to Lg andg g

NLg when it is not necessary to specify the value of n.

Like the pseudo-Latin square family, which is also defined in terms of

the form of its parameters, the negative Latin square family of a.ssociation
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schemes contains the complement of each of its members; specifically, the

complement of an NL (n) scheme is an NL len) scheme. As a result, anyg n-g-

negative Latin square scheme may be reduced by choice of notation to one

for which

or equivalently

IThe requirement that P1I is non-negative places a lower bound on g.

If n is odd, we note that L~(n+l)(n) parameters are identical with

NL~(n_l)(n) parameters and that both agree with pseudo-cyclic parameters

(1.14) with argument t = (n2_1)/4. These are the only Lg or NLg schemes for

which nl = n2 and the only pseudo-cyclic schemes for which v is a square.

No other schemes are common to any two of these three families.

All NLg(n) parameters satisfying nl ~ n2 are listed in the following

table for the range n ~ 10. The six schemes which were previously known and

the four which are constructed for the first time in the present paper are

identified in the "Remarks" column, together with references to publications,

to known schemes in the Latin ..square family, and to sections of this paper in

which constructions are presented. Parameters of designs with NL (n) associa­g

tion schemes will be tabulated in section 9.
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TABLE 2.1

PARAMETERS OF NLg(n) ASSOCIATION SCHEMES

Scheme V 1 2 Remarksn1 n2 P11 P11

NL1<.~) 9 4 4 1 2 Known, L2(3); Sec. 5

NL1(4) 16 5 10 0 2 Known, [12]; Sees. 4, 5, 7, 8

NL2(5) 25 12 12 5 6 Known, L
3

(5); Sec. 5

NL2(6) 36 14 21 4 6

NL2(7) 49 16 32 3 6

NL
3

(7) 49 24 24 11 12 Known, L4(7); Sec. 5

NL2(8) 64 18 45 2 6 Known, [19]

NL
3

(8) 64 27 36 10 12 New, Sees. 5, 7

NL2(9) 81 20 60 1 6 New, Sees. 5, 7

NL3(9) 81 30 50 9 12 New, Sec. 5

NL4(9) 81 40 40 19 20 Known, L5(9); Sec. 5

NL2(10) 100 22 77 0 6 New, Sec. 8

NL3(10) 100 33 66 8 12

NL4(10) 100 44 55 18 20
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3. A characterizing property. We observe that for association

schemes of pseudo-cyclic, pseudo-Latin square and negative Latin square

T
types, the mUltiplicities a

l
, a

2
of the characteristic roots of NN are

equal in some order to the numbers nl , n2 of objects in the two associate

classes. This proves sufficiency in the following theorem. The necessity

statement shows that this property characterizes these three types of

association schemes.

Theorem 3.1. In order for the parameters a
l

, a
2

in a two-class

association scheme to be equal in some order to the parameters ~, n2 , it

is necessary and sufficient that the scheme be of pseudo-cyclic, pseudo-

Latin square or negative Latin square type.

Before completing the proof of this theorem, we state a simple lemma.

Lemma 3.1. The parameters al , a2 in a two-class association scheme

are equal in some order to the parameters nl , n
2

if and only if v = 11.

Proof of lemma. From (1.4) and (1.7),

The lemma follows from this and (1.11).

Proof of theorem (necessity). If the scheme is of pseudo-cycliC type

we are finished. If not, then by Theorems 5.3 and 5.5 of [13], 11 is the

square of an integer n, and using the lemma,

2
n =11=v.

Then
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Using (1.8)"

partially identifying a and T.

Case I. Suppose n1 = ale Then from (1.10) and (3.1),

reducing to

n1 = (a+1)(n-1) •

This identifies (1' and T completely. If we set a+1 = g we have

nl = g(n-1) ,

n2 = (n-g+1)(n-1) ,

and from (1.12),

The parameters v, n
i

, pk are of the form of (2.1), and it follows from

i(1.4) that the same is true of the remaining Pjk. Therefore the scheme is

of pseudo-Latin square type.

Case II. Suppose n
l

=a
2

• Then using (1.10) and (3.1) as in Case I

we find

and setting T = g we again use (1.12), this time arriving at parameters of'
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the form of (2.5). Therefore, the scheme is of negative Latin square

type and the proof is complete.

It is clear from Lemma 3.1 that the condition on ni and 0i in

Theorem 3.1 could be replaced by the condition l' = f!.. The fact that v is

a square is a distinctive property of the Latin square and negative Latin

square schemes but is not peculiar to them, as shown,for example, by numerous

group diVisible schemes and by the triangular scheme with v =36. However,

inSPection of a list of arithmetically possible parameters for two-class

association schemes leads to the interesting conjecture that when v is a

square, a high proportion of these parameters fall in the group divisible,

L and NL series. As an illustration, in the range V' < 100, v a square, n,< n2 ,g g -.!.- ,

there are at most 65 sets of two-class parameters, of which 59 are in these

three series.

4. Some Preliminary Theorems. Several results, most of them from

other sources, Which will be needed in sections 5 and 7 for the construc-

tion of association schemes, are collected in this section for convenient

reference.

In an association scheme with classes 1, ••• , m, we may introduce a

zero-th associate class by letting each object be the zero-th associate of

itself and of no other object. We define additional parameters

o
Pij = ni if i = j,

=0 otherwise,

i i
POk =PkO = 1 if i =k,

= 0 otherwise.
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This convention increases the conciseness and symmetry of many statements

about association schemes and their parameters. We shall retain the

term lim-class" for a scheme with classes 0, 1, ... , m.

The method of differences was introduced for construction of incom-

plete block designs in the module theorem of Bose and Nair [5] and later

stated in somewhat greater generality by Sprott [23]. The following is

the portion of the theorem which applies to association schemes, using

the terminology of the zeroth associate class.

Theorem 4.1. Module theorem. Let the elements of an additive

Abelian group G of finite order v be partitioned into disjoint sets

QO = {oj, 01" ... , am' Let \(1 contain ni elements, denoted by

Q. = {ai l' ai n' •• " ai J•
~ ,,,e ,n

i

We set up an association relation among the elements of G by taking y

as an i-th associate of x if and only if the difference y-x is in (:t
i
• Then

each element bas n
i

i-th associates, and the relation is an m-class

association scheme with parameters v, ni , P~k if and only if

(i) each group element is in the same (1i as its inverse;

(ii) for any i, j, k in the range 0" 1, "" m, and for any fixed

element x E'~i" there are exactly P~k ordered pairs u, w, where

1 ~ u ~ n j , 1 ~ w~~, such that

(4.1) a. - a
k

= x •J,u ,w

Our application of the module theorem will be to the additive group

of a finite field, using the multiplicative group in the construction of

the sets (-t i • Our procedure is similar to that of Sprott, but a self-con-



16

tained account will be given here.

Theorem 4.2. In a finite field of order v With additive group G and

multiplicative group G', let m be a divisor of the order v-l of G' such

that N = (v-l)/m is even if v is Odd, and let l; be a generator of G'. Let

Go = (0), let Gl be the mUltiplicative subgroup of order N generated by sm,

d 1 t . . ..1':'1 fan e Gi , J. = 2, ••• , m, be the coset of G1 which contaJ.ns ':) • De ine

an association relation J (v, m) in which two elements x, y of G are i-th

associates if and only if y-xEu., i =0, 1, ••• , m. Then for i, j, k inJ.

the range i, ••• , m and interpreted modulo m where necessary,

(4.2)

(4.4)

~(v,m) is an m-class partially balanced association scheme

i
With parameters v, ni =N, Pjk'

i i 1
Pjk =Pj +l , k+l =Pj-i.+l, k-i+l'

P~k is equal to the number of elements of Gj _i +l which occur

in the set obtained by adding the unit element 1 to each

element of uk-i+l.

Proof. To prove (4.2) we shall verify that the sets ai satisfy

conditions (i) and (1i) of Theorem 4.1. The first of these conditions is

automatic if v is even, since in this case every nonzero element is of

order 2 and is its own additive inverse. If v is odd, the unit element 1

is given by

1 = stuN

and its additive inverse is given by
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where N/2 is an integer by hypothesis. Therefore -1 is an element of

mthe subgroup a1 generated by t;. It follows that for every element y of any

Gi' -y = y(sm)N/2 is also in Gi' verifying condition (i) of Theorem 4.1.

.An element x = a.i,t e; a i ma.y be expressed

_ !=,mt + 1-1
ai,t - ~ ,

and (4.1) may be written

This equation is equ1valent to

(4.6) gm(u-t) + j-l • gm(w-t) + k-l =si-l •

As u and w range independently over the residue classes 1, 2, ••• , N modulo

m(u-t) m(w-t)
N, the same is true of u-t and w-t. Then each of S and S ranges

over al' and the two terms 1n the left hand side of (4.6) range independently

over Cb anda-
k

• The number of solutions u,w of (4.1) and of (4.5) is thus

equal to the number of solutions of

(4.7)

But this is independent of t and hence of the particular element x chosen

ifrom a i. Denoting the number of solutions by p jk' we have verified condition

(ii) of Theorem 4.1, completing the proof of (4.2).

MultiplYing (4.5) by gd gives the equivalent equation

(4.8) smu +j +d-l _ ~mw + k + d-l = smt + i +d-l ,
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which has the same number P~k of solutions for fixed i, j, k, t. But this

i+d
number of solutions may also be interpreted as p j+d, k+d' where indices are

d d-mreduced modulo m to fall in the range 1, 2, ••• , m. IS and S are in the

same coset of ul' and reducing modulo m merely means that the cosets are

still designated by the representatives named in the theorem. With this

interpretation of indices, we have

and two special cases give (4.3).

From (4.7), P~k is the number of solutions u,w of

a - a. + 1,j,u - K,W

that is, the number of elements of Uj in the set obtained by adding the

unit element 1 to each element of Uk' Together with (4.3) this gives (4.4)

and completes the proof of Theorem 4.2.

Determining the m3 parameters P~k of an m-class association scheme is

considerably simplified for the "';j(v,m) schemes by (4.3), which says that

matrices P2' ••• , Pm may be obtained from P1 by cyclic permutation of rows

iii j
and columns. The standard relations Pjk =Pkj and ni Pjk =n

j Pik, the latter

of which may be simplified because n
i

=n
j

, reduce the m
2

parameters P~k to

a subset of approXimately m2/6 of them. The analogous number of independent

parameters in the absence of (4.3) is m3/6. Enumerating solutions of (4.9)

to find the independent P~k values is still a non-trivial problem. It can

be reduced to finding the number of ordered pairs u,w, where 0 ~ u < m,

o ~ w < m, such that the equation
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(4.10) gj+mu + 19k +mw + 1 =0

holds in GF(v). This problem in ~inite ~ields has been extensively

studied, especially in the case of prime v, but not solved completely.

A survey is given in [8].

For given v, m, the association scheme a (v,m) is determined uniquely

up to a certain permutation of associate classes 2, 3, ••• , m. Since G' is

a cyclic group, the subgrouPG 1 of a given order N is unique, and With it the

first associate class. The partition of G' into cosets is also unique. How­

ever, there are t(v-l) choices of the generator g, where (Pis the Euler totient

function, and different choices may result in different assignments of the

indices 2, ••• , m to the cosets. The indexing of elements within cosets will

also be af~ected, but this is irrelevant for the association schemes. If s

is a positive integer less than and prime to m, and if instead o~ the generator

~ we use a generator ~ such that

tg = ~ ,

t = s (mod m),

i-lthen the coset representative If; will be expressed

gi-l = lls(i-l)

and the i-th associate class in our original formulation will receive a

new index congruent modulo m to 1 +S(i-l). The number of different permu-

tattons of associate classes that can arise for a given v and m will thus be

(p (m), the number of possible values of s.
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The associationmatrices AO' Al , ••• , Am of an m-class association

scheme are matrices of order v defined by

(4.11)

where a~~) = 1 if objects ~ and v are i-th associates,

=0 otherwise.

Clearly Ai is a symmetric matrix with all row and column sums equal to ni •

We may prove [24, 4]

Theorem 4.3. Matrices A
O

= I, Al , ••• , Am are association matrices of

oan m-class partially balanced association scheme with parameters v, ni =Pii'

i
Pjk if and only if

(4.12)

(4.13)

(4.14)

each Ai is a symmetric v x v matrix of O's and l's,

m
I: Ai = J, the v x v matrix of l'S,

i=O

m i °

Aj~ =I: POk Ai' J, k = 0, 1, ••• , m.
i=O J

This theorem can be simplified as follows in the case m =2.

Theorem 4.4. Al is the first association matrix of a 2-class partially

balanced association scheme With parameters v, ni , P~k if and only if,

defining A2 = J - I - AI'

(4.16)

Al and A2 are symmetric v x v matrices of O's and l's,

Useful information can be obtained from certain submatrices of

association matrices. We partition matrices Al and A2 for a 2-class scheme
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into submatrices whose sets of rows and columns correspond to an initial

object a, the set of nl first associates of a, and the set of n2 second

associates of a. For convenience, we may choose notation so that 0: is in

leading position with its first associates in the next nl positions. The

following illustrates the partition and defines notation for the submatrices.

71
10 ol: r· -I

(4.17) l l ' o! 0 0 fl 1... ... l I ... ... I
! , f I ~,

'0I
'. I,.I , I • !• B

l
Cl . : B2 C2

I i,
'0A

l
1 ,

A2= I , =
0 I

~ICT Dl
I CT D21 I.j 2

0 Ll i
-.i

matrices.

T l
Lemma 4.5. Submatrices Bl , Cl ' Cl ' Dl have uniform row totals Pll'

1 2 2 t· 1P12' Pll' P12 respec ~ve y.

Proof. The inner product of rows e and cp of Al is equal to the number

Tof first associates common to objects e and cp. The results for Bl and Cl are

obtained by setting e =1 while cp ranges over the remaining rows. The results

for Cl and Dl follow by subtraction from the uniform row totals nl of Al •

Theorem 4.6. A partitioned matrix Al of the form (4.17) is the first

association matrix of a two-class partially balanced association scheme With

iparameters v, ni , Pjk if and only if, defining A2 = J - I - Al , and defining

submatrices of A
2

by (4.17), .

(4.18) A
l

and A
2

are matrices of O's and lIs,
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(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

B1 and D1 are symmetric matrices of order n1 and ~

respectively,

1 T 2
B1 has row sums Pll and C1 has row sums Pll'

2 T 1 2
J + Bl + C1Cl = nlI + PllBl + P11B2,

1 2B1Cl + C1D1 = P11C1 + P1lC2 ,

T 2 1 2
C1C1 + D1 = nlI + P11D1 + PllD2 •

Proof. If A1 is any partitioned matrix of the form given in (4.17), the square

1

JL

of A1 is given in_part by
: I
!-'-t--~----=-!-------

!J -+- B2 + C CT
I 1 1 1
I

(4.24)

Now suppose A1 is the first association matrix of the specified two­

class scheme. Then (4.18) to (4.20) hold, (4.16) holds and implies

• • • • • • •

2
P11 j

I

and comparison of (4.24) and (4.25) gives (4.21) to (4.23).
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ConverE~ly, suppose Al satisfies (4.18) to (4.23). (4.18) and (4.19)

imply (4.15). (4.24) holds, and with the aid of (4.17) to (4.20) the first

row and column of Ai may be shovm to be as in (4.25), while (4.21) to (4.23)

give the rest of (4.25). But (4.25) implies (4.16), and by Theorem 4.4, Al

is the first association matrix of a two-class scheme with the specified

parameters.

While our primary concern in this paper is with association schemes,

some balanced and partially balanced designs will be discussed in Sections

7 and 8. The next theorem and corollary are well-know characterizations of

these designs in terms of the incidence matriX N of objects and blocks.

Theorem 4.7. N is the incidence matriX of objects and blocks in a

PBIB design with parameters v, b, r, k, Ai' ni , P~k if and only if

(i) N is a v x b matrix of O's and lIs,

(ii) every column of N contains exactly k l's,

T(iii) NN =rI + A1Al + ••• + AmAm, where

(iv) Ai' ••• , Am satisfy the conditions of Theorem 4.3 or Theorem 4.4.

Corollary 4.7.1. N is the incidence matrix of objects and blocks in a

BIB design with parameters v, b, r, k, A, if and only if

N is a v x b matriX of O's and lIs(1)

(ii)

(iii)

Every column of N contains exactly k l' s,

TNN = rI + A(J-I).

A matrix of the form rI + A1Al + ••• + AmAm, whether or not it arises

Tas a product NN , has characteristic roots whose values and multiplicities

are of some interest and have been discussed, for example, in (4]. In the

case m = 2 they are given by expressions (1.6) to (1.8) in this paper.
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It is sometimes possible to construct an m-class association scheme
...... .....,'....

G by the device of combining associate classes in an m-class scheme a with
,/'-

the same v, m > m. In terms of association matrices, this means that the

matrices Al , ••• , A~ of scheme C' are arranged into m disjoint non-empty sets,

and the i-th association matrix of a is taken as the sum of all matrices in

the i-th set. The resulting association relation does not in general meet

the conditions of partial balance; necessary and sufficient conditions that

it will do so are derived in Theorem 5.1 of [4J and are stated in Theorem 4.8

below for the case m=2. We continue to use the notion of the zero-th asso-

ciate class.

Theorem 4.8. Given a partially balanced association scheme a with more

" Aa
than two classes and with parameters v, na, P/3v' let the indices of the

associate classes be partitioned into disjoint sets So = {oJ, Sl' S2.

Define a two-class association relation a in which two objects are taken
/'

as i-th associates if and only if their associate class in G has its index

in Sl. Then Q satisfies the conditions of partial balance if and only if,

for i = 0, 1, 2 and for some integers pil'

...,a i
Z pi:). = Pl ' uniformly for a E S. •

/3 veS ... v 1 J., 1

If (4.26) is satisfied, Ghas parameters v, pil' where nl = P~l and the

iother parameters n2, Pjk are defined by the standard identities (1.3).

We note that for i = 0, (4.26) reduces to the statement Z ha = n
l

'
aesl

For i = 1, 2, the left hand side of
~\

which is equivalent to E na = n2•
aeS2

( 6) i4.2 represents Pll as the sum of the elements

Somewhat more generally, if (4.26) is satisfied,

/',

of a submatrix of Pa.

then for i, j, k = 1, 2,
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iand for any a € 8i , Pjk is the sum of the elements of the 6ubmatrix of
/"..

Pa which has 8j as its set of row indices and 8
k

as its set of column

indices.

Example. As the objects in an association relation /;; take the 16

ordered quadruples

000 0

000 1

o 0 10

o 0 1 1

010 0

010 1

o 1 1 0

011 1

1 0 0 0

100 1

1010

1011

110 0

110 1

111 0

1 1 1 1

and take two objects as i-th associates if they differ in exactly i positions.

By interpreting the quadruples as rectangular coordinates we may interpret

the objects as the 16 vertices of the 4-dimensional unit cube, two vertices

being i-th associates if their distance is \/1: ~. is found to be a 4-class

association scheme with parameters

v =16,

'n1 =4,
o 3 0 0 2 020 o 3 0 1 o 0 4 0

/\.

= 6,n2 /' 303 0 /'-, 040 1 / .... 303 0 /" 060 0Pl = , P2 = , P
3

= , P4 =/'-

n
3

= 4, o 3 0 1 202 0 o 3 0 0 4000
/'

= 1, o 0 1 0 010 0 100 0 o 0 0 0n4
............ ......."

The matrices Pa are repeated below, With Po included and with zero-th row

/'a
and column adjoined to each to display the 'Pt3v with zero indices. We now

combine associate classes, taking 80 = {O), 81 = {3, 4}, 82 ={l, 2}. The

matrices below are partitioned into the submatrices described in the preceding

paragraph.
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1 o 11 0i°0l *+tH0 1 0:3 0 0,,--, ",-

~,
/'.

Po = , PI = P2 = HHtH ,
o °1
OiOOllO 0.01100

I !

, I
000\01

/'-. .....•, 0100140
P

3 = , P
4

;;a 0'0·6 00

~~glgg
I _

The submatrices over which the sum in (4.26) is taken are, respectively,

and the sums are 5 for a € SO' ° for a € Sl' 2 for a € S2' showing that the

new association relation G is the two-class scheme with parameters

v = 16,

nl = 5, PI = [~ ~], P2 = [~ ~].

n2 = 10,

This is the Negative Latin Square type scheme Ntl (4) • An isomorphic scheme

is obtained by taking Sl = {I, 4J.
In Section 5, Theorem 4.8 will be applied to some schemes G of the

2«v, m) tamil~. Sums of elements of 'Pa in these schemes, a = 2, ••• , tn,
/'

may be expressed as sums of elements of PI by suitable application of (4.3).

A rather Simple consequence of (4.3), stated as a lemma'for later reference,

is that the form of the set Sl can be partially specified without loss of

generality.

Lemma 4.9. In applying Theorem 4.8 to a scheme ;:}(v, ill) any set Sl

satisfying (4.26) is related by a cyclic permutation of the class indices
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1, 2, ••• , ~ to a set [iI' i 2, ••• , i m} which satisfies (4.26) with the

isame Pll and satisfies

i 2-l < m+l - i •- m

5. Construction of NLg schemes from finite fields. This section will

make use of some special cases of the association schemes Z(v,M) of Theorem

4.2. For n2 a prime power, ;:::(n2, n+l) will first be described for reference,

then "':-:(n2
, n-l) will be used in the construction of some NL (n) schemes.g

The multiplicative subgroup used in constructing ~:(n2, n+l) from

GF(n2) has n-l elements l which along with the zero element are readily

shown to form a subfield of order n. Among the special features which

follow from this are the following simple expressions for the parameters

i ( 2Pjk of (,: n, n+l).

Pi = n-2, pi - pj - p j = 0, pi 1ii jj - ij - ji jk = ,

i, j, k distinct, 1 ~ i, j, k < n+l.

Because of the uniformity of these values, this scheme lends itself

exceptionally well to the formation of 2-class schemes by combination of

associate classes o If Theorem 4.8 is applied with an arbitrary set 81 of

g of the indices 1, ... , n+~ condition (4.26) 1s satisfied and the resulting

two-class scheme, in which nl = g(n-l), is of L (n) type. This turns out to
g .

be only a familiar construction in slightly disguised form. It can be shown

that the n+l associate classes in the scheme z..(n2, n+l) are equivalent to the
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n + 1 constraints of a complete set of pairwise orthogonal Latin squares

of order n, a fact which will betaken up in section 6 from the point of

view of finite geometry. Consideration of Latin squares gives (5.1) at once

and reduces the combination of associate classes to a simple application

of the definition of the L (n) scheme.
g

The scheme z:(n2, n-l) uses a multiplicative subgroup of order n+l and

has less regularity than ~~ (n2, n+l). In particular, the writer is unable

to give general expressions for P~k' though he conjectures that 0 < P~k ~ 2

for l~ i, j, k ~ n-l. However, there are analogies with thez(n2, n+l)

scheme and our success in combining g associate classes of size n-l to give

2a two-class scheme With n
l

= g(n-l) suggests an attempt, with the z. (n , n-l)

scheme, to combine g associate classes of size n+l to give a two-class scheme

with ~ = g(n+l), hopefully of negative Latin square type. It is not obvious

that a set 8
1

of g indices can be found which meets condition (4.26) of

Theorem 4.8, or that a tWO-Class scheme if obtained will be of NLg type.

However, in the range n < 10 it is easy to write down the association

schemes Z (n2, n-l) in sufficient detail that P~k values can be computed

explicitly, and then to search empirically for suitable sets 81• The results

of this computation are given in tables which follow, and fortunately several

schemes of NL type are obtained, including the three new schemes NL
3

(8),
g

NL2(9), NL
3

(9). It is not known Whether the same method yields any NL (n)
. g

schemes for n > 10.

The objects in all association schemes discussed in this section may

be taken as elements of finite fields and will be represented in a notation

which is convenient for field operations. The elements of GF(p) for a prime
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P will be denoted by the residues 0, 1, ••• , p-l, and a polynomial of

degree at most q-l with coefficients in GF(p) will be denoted briefly by the

q-tuple of its coefficients:

q-l
E aix

i
;(a l' ••• , ao) =aq_l ••• aO •

i=O q-

Under addition and multiplication modulo a polynomial Q(x) of degree q,

irredu~ible over GF(p), the polynomials (aq_l , ... , ao) represent the field

GF(pq). The polynomial Q will be chosen here so that a root ~ of Q(x) = 0

is a primitive element of GF(pq). This will in general be possible for

more than one choice of the polynomial Q and the primitive element S, and

while different choices lead to fields, and hence association schemes, which

are abstractly identical, the association schemes will differ by a permutation

of associate classes, as remarked in Section 4. For definiteness, the table

for each z(n2 , n-l) will list the equation Q(S) =0 used in its construction.

Each table of powers of g will be arranged so that row i contains the set

~ _ f~(n-l)u + i-l _ 0
-i - \~ , U - , 1, ••• , n)

of i-th associates of the zero element in z(n2, n-l). The i-th associates

of an element a are obtained by adding e to each of the i-th associates of

zero. The matrix Pl exhibits the parameters P~k' which are calculated by

means of (4.4); it follows from (4.3) that the matrices P2, ••• , Pn- l may

be obtained from Pl by cyclic permutation of rows and columns.

It may be verified by straightforward calculation that each set

81 = til' i 2, •• 0' i g} listed for an NL (n) scheme meets condition (4.26)
. g

iWith the appropriate values of Pllo In the NLg(n) scheme, the first
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associates of the zero object are the elements in rows i l , i 2, ••• , i g of

the table of powers of S, and the first associates of 8 are obtained by

adding e to the first associates of zero. The search by trial and error

for the sets 8
1

was the only part of the construction method which was

tentative as well as tedious. It was expedited by restricting 81 to the

form described in Lemma 4.9. The search was exhaustive and the author can

report for each 3 (n2, n-l) scheme considered, that the sets 81 listed,

other sets obtained from them by cyclic permutation of the indices 1, 2, ••• n,

and the complements of these sets, are the only sets of associate classes

which can be combined to give two-class associa.tion schemes.

The methods of this section base on finite fields thus fail to provide

constructions for the schemes Nt2(7) and NL2(8), or to give any new schemes

not of the Nt family in the range v < 100. The attempt to construct NL2(7)
g -

from:.: (49, 6) was supplemented by attempts with other:~ (v,m) schemes, such

as:: (49, 12), in which combination of classes could give two associate

classes of sizes nl =16, ~ =32, but condition (4.26) was not satisfied

in any case.



Elements of GF(32 ) represented as polynomials

alaO := a l S + aO' a
i

E GF(3), where Q(S) := s2 + 2s + 2 = 0

2u +i-lTable of powers S and of i-th associates of 00

31

" U

i
1

2

o
01

10

11

21

4
02

20

6
22

12

This is the known two-class scheme NL
I

(3) •

TABLE 5.2. Z(4~ 3)

4
Elements of GF(2 ) represented as polynomials

a
3

a
2

a
l

a
O

:= a
3

s3 + a
2

g2 + a
l

S + a
O

' a
i

e GF(2), where

Q(s) == s4 + S + 1 = 0

3u + i-ITable of powers S and of i-th associates of 0000

',~u

6i ~~ 0 9 12

1 0001 1000 1100 1010 1111

2 0010 0011 1011 0111 1101

3 0100 0110 0101 1110 1001
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•

32

'!he following two-class scheme may be ob"ta.ined by combining associa"te

2classes in 3'(4 , 3).

NL
l

(4), a known scheme. 8
1

= (It

2
TABLE 5.3. Z (5 , 4)

Elements of GF(52 ) represented as polynomials

ala
O

== a l If; + a
O

' a
i

€ GF(5), where Q(SP= s2 + 4 If; + 2 = O.

Table of powers s4u + i-l and
table of i-th associates of 00

4u
! 0 4 8 12 16 20

1 01 22 21 04 33 34 2 0 1 2

2 10 41 31 40 14 24 p = 0 2 2 2
1 •

1 2 1 2
3 13 02 44 42 03 11 2 2 2 0

4 43 20 32 12 30 23

'!he following two-class scheme may be obtained by combining associate

classes in c: (52, 4)
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2TABLE 5.4. ;J (7 , 6)

Elements of GF(72) represented as polynomials

33

a1aO == a1 ~ + aO' ai € GF(7), where Q(s)= ~2 + 6s + 3 = O.

6u + i-1Table of powers ~ and
table of i-th associates of 00

0 6 12 18 24 30 36 42

1 01 24 64 21 06 53 13 56

2 10 61 33 31 60 16 44 46 o 0 2 2 1 2
o 2 2 202

3 14 03 65 45 63 04 12 32 P = 2 2 1 0 1 2
2 2 0 2 2 0

..
1

4 54 30 43 22 23 40 34 55
1 0 1 2 2 2
2 220 2 0

5 26 35 02 41 51 42 05 36

6 11 15 20 52 66 62 50 25

The following two-class scheme may be obtained by combining associate

classes in c(72
, 6).

NL
3

(7), a known scheme. 81 = {I, 3, 5).
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TABLE 5.5.
2

~(8 , 7)

Elements of GF(26) represented by polynomials

a5a4a3a2a1aO == a5 g5 + ... + aO' ai € GF(2), where Q(S) 65S +S+l=O.

7u + i·1Table of powers ~ and
table of i-th associates of 000000

~ 0 7 14 21 28: . 35 42 49 56

1 000001 000110 010100 111011 011100 001011 111010 011010 011111

2 000010 001100 101000 110101 111000 010110 110111 110100 111110

3 000100 ' 011000 010011 101001 110011 101100 101101 101011 111111

4 001000 110000 100110 010001 100101 011011 011001 010101 111101

5 010000 100011 001111 100010 001001 110110 110010 101010 111001

6 100000 000101 011110 000111 010010 101111 100111 010111 110001

7 000011 001010 111100 001110 100100 011101 001101 101110 100001

2002022
o 2 202 1 2
0221220
2 0 1 0 222
o 2 2 2 2 0 1
212 2 0 0 2
2202120

The folloWing two-class scheme may be obtained by combining associate

classes in d(82 , 7) •

NL
3

(8), a new scheme. 8
1

= {1, 2, 6J.



2TABLE 5.6. 3' (9 , 8)

4Elements of GF(3 ) represented as polynomials

35

8u + i-1Table of powers S and of i-th associates of 0000

~u
0 8 16 24 32 40 48 56 64 72J. '-"

1 0001 0112 0212 2110 2012 0002 0221 0121 1220 1021

2 0010 1120 2120 0102 2122 0020 2210 1210 0201 1211

3 0100 2201 0202 1020 0222 0200 1102 0101 2010 0111

4 1000 1012 2020 1201 2220 2000 2021 1010 2102 1110

5 1001 1121 2202 0011 1202 2002 2212 1101 0022 2101

6 1011 2211 1022 0110 0021 2022 1122 2011 0220 0012

7 1111 1112 1221 1100 0210 2222 2221 2112 2200 0120

8 2111 2121 0211 2001 2100 1222 1212 0122 1002 1200

1 0 2 0 0 2 2 2
o 2 2 0 2 2 0 2
22201210

P1 = 000 2 2 2 2 2 •
02120212
22222000
20121022
2 2 0 2 2 020

The following two-class schemes may be obtained by combining associate

2classes in Z(9 , 8).

NL2(9), a new scheme. Sl = {1, 5}.

NL3(9) , a new scheme. Sl = {1, 2, 7).

NL4(9), a known scheme. 81 = {1, 3, 5, 7} or {1, 2, 5, 6}.
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To illustrate the computation of the matrix P1 for ;:.. (v, m) schemes,

we evaluate some of the values P~k for 3i (52, 4). We recall that if the

unit element, 01 in this example, is added to ea.ch element of uk = {ak,u'

u = 0, 1, ••• , nJ , the resulting set contains exactly P~k elements of G: j'

The following working table is so arranged that P~k is given by the number

of columns which contain k in the first row and j in the last row.

k 1 1 1 1 1 1 2 2 2 2 2 2

u 0 1 2 3 4 5 0 1 2 3 4 5

ak,u 01 22 21 04 33 34 10 41 31 40 14 24

ak,u + 01 02 23 22 00 34 30 11 42 32 41 10 20

j ~ ak + 01 Ea. 3 '4 1, 1. 4 3 3 4 2 2 4
,u J

Tabulation of the results gives

k 1 1 1 1 2 2 2 2

j 1 2 3 4 1 2 3 4

1 2 0 1 2 0 2 2 2P jk

6. Geometric interpretations of G(v, m) association schemes. The

finite field scheme ~(n2, n+1) furnishes an easy construction of a finite

2Euclidean plane geometry of order n. The n objects of the association

scheme are interpreted as points of this geometry. It is easy to show

that lines satisfying the incidence postulates of the geometry are obtained

by defining as a line every set consisting of a point and its n-l i-th

associates, i = 1, ••• , n+l. In partiCUlar, there are n2 + n lines, each

containing n pOints. For fixed i, the points fall into n pairwise disjoint.

lines, which com:prise a parallel class. The geometry obtained for any n
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(of prime power form.) is the unique Desarguesian plane.

We remark that if v =nk, t is a divisor of k, and N =n
t

_1, so that

( ) /
k-t k -2t ( )m = v-1 N = n + n'" + ••• + 1, then the association scheme 3' v, m

may be used to generate some of the t-dimensiona1 subspaces in EG(k, n),

the Euclidean geometry of dimension k and order n, giving all such sub­

spaces (lines) in the case t = 1.

Conversely, in the case t =1, a finite Euclidean geometry may be

k (k Iused to construct association schemes (;\ (n , mL where ni =N = n -1) m = n-l.

Associate classes are identified with the m parallel classes of lines and the

i-th associates of a point are the points which occur with it on a line of

the i ..th parallel class. In the case k =2 of a plane geometry, the

Desarguesian plane gives an:.' (n2, n+1) scheme while a non-Desarguesian

2 i
plane gives a pseudo- ;:;.,(n , n+l) scheme, which has the same parameters ni , Pjk

but whose elements do DOt correspond to those of~. (n2, n+1) under any one-

one mapping which preserves the association relation.

In the Lg(n) scheme which is obtained from s (n2, n +-1) by class combi­

nation, the set of first associates of an object can now be interpreted as

a simple geometric figure. Some g of the parallel classes are chosen--

speaking informally, g of the directions on the plane. The first associates

of a point e are the remaining points on the lines through e in the g chosen

directions.

Retaining the identification of the elements of' GF(n2) with the points

of EG(2,n), we turn to the association scheme J~n2, n-l) and ask what geometric

figure is formed by the n+l i-th associates of a point e.

As i ranges over the values 1, ••• , n-l, a collection of n-l disjoint

figures is obtained which exhausts the n2_1 points of the plane other than e.
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In an NL (n) scheme formed by combining g associate classes, the set of
g

first associates of e will be the union of g of these geometric figures.

DEFINITION. For ee:GF(n2), Ci (e) will denote the set of i-th asso­

ciates of e in J (n2, n+l) and f.;. (a) will denote the set of i-th associates
'-"J.

of 8 in z.: (n2, n-l).

Theorem 6.1. The number of elements in G: i (e)n c} e) is

1 if n is even,

u =0,

w =0,

2 if n is odd and i == j (mod 2),

o if n is odd and i ~ j (mod 2).

Proof. Ui(e) = {a + ~(n+l)u+ i-l ,

(8) = {a + g(n-l)w + j-lCj ,

... ,

... ,
n-2J.

nJ.

The number of elements common to these sets is the number of pairs u, w of

integers in the specified ranges for which

8 + ~(n+l) u + i-l = a + ~(n-l)w + j-l •

This equation is equivalent to

(6.1) (n + l)u + i-l = (n-l)w + j-l =y-l, say,

which in turn is equivalent to

(6.2) 2°< y ~ n - 1,

y == i (mod (n+l»,

y == j (mod (n-l».

Methods of elementary number theory applied either to the Diophantine equation

(6.1) or the congruences (6.2) show that if d =(n+l, n-l), the greatest
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common divisor of n+l and n-l, then the number of solutions is d if i =j

(mod d) and is zero otherwise. If n is even, d =1; if n is odd, d =2;

the conclusion of the theorem follows at once.

This theorem shows that if a is a point of EG(2,n) and if n is even,

then the points of each set C/a) are distributed one each over the lines

on e. If n is odd, the points of C/a) are distributed two each over half

the lines on a. The next theorem gives a deeper insight.

Theorem 6.2. For any e e GF(n2), and for any i, j, 1:5 i :5 n-l,

1 :5 j :5 n+l, no three elements of CJ. (e) are pairwise j-th associates in
23\(n , n+l).

Remarks. 2In terms of the EG(2,n) induced by the scheme 3«n , n+l) ,

this theorem says that no three points of a set '.3i (e) are collinear.

We are in the fortunate position of having three methods of proof of this

theorem, of which all are instructive and two will be given here. These

two proofs use the following well-known facts on finite fields. For x e GF(n
2

),
~ 2x = x. Also, the mapping x -> xn is an automorphism of GF(n ) which

reduces to the identify xn = x if and only if x e GF(n).

Proof Ie Three distinct elements of <; (e) may be

ut(n-l) .,. i-l
'Pt = e + g , t = 1, 2, 3,

represented

where S is a primitive element of GF(n2) and ul ' u2' u3 are distinct modulo

n + 1. It will be convenient to use the abbreviation

(6.4)

TIl' \' ~ are nonzero elements which are distinct since 'PI' 'P2, 'P3 are

distinct.
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The representation we are using for the geometry has the property

that CP1' cP2' CP3' regarded as points, are collinear if and only if, regarded

2as elements of GF(n ), they satisfy an equation

where a1, a
2

, a" not all zero, are elements of the subfie1d GF(n), and

Using (6.3), (6.4) and (6.6) and simplifying, we find that (6.5) is

equivalent to

Since the mapping x -> xn is an automorphism, a valid equation is obtained

if it is applied to all the field elements in equation (6.7). Under the

n-1 n2_n 1-nmapping, each of a1, a
2

, a
3

, 0 maps into itself, ~ maps into ~ = g ,
ut (l-n) -1

and 11t accordingly maps into S =11
t

• The new equation is

(6.8)

The system of equations (6.6), (6.7), (6.8) in a
1

, a
2

, a
3

has determinant

of coefficients

1 1 1 111 \ 113

111 112 113 = 11i
1

11~1 1131
11

2
~ ~1

11-1 ~1 11-1 1 1 1
1 3
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Since ~l' ~2' ~3 are distinct, the determinant is nonzero and the system

has no nontrivial solution a
l

, a2, a30 Then 'Pl , 'P
2

, 'P
3

are not collinear.

Proof I is complete 0

Proof II. We need the fact that for z € GF(n2 ), zn + z is an element

of the subfield GF(n). nThe proof is that under the automorphism x -:> x ,

this element maps into itself0

nz + z.

The elements 'Ps 'P(w) of :3i (e) may be expressed

i-l W
'P"= If; t3 , W =0, • 0 0, n,

1 "lw
where t3 == Sn- 0 Let 'PO == e'~ riJ.- f3 °and cp oe distinct elements of ci(e), Wl1ere(l.. 9)

determines a value w ~ wo corresponding to 'Po Then 'P and 'PO are j-th

associates in scheme z,.(n2, n+l) for some value of j, which we now determine.

j-l uThat is, we find j so that cp - 'PO can be expressed in the form sex,
n+lwhere ex =S •

cNow -1 = t3 , where

c = ~(n + 1) if n is odd,

c =a if n is even.

w+c
'P - 'PO = Si-l t3w + si-l t3 0

== Si-l + nw-w + gi-l + n(wo+C) - (wo+c)
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The factor in brackets is an element of GF(n) since it is of the form.
n u

z + z, and is nonzero since cP ~ CPO. It may therefore be expressed ex

for some u. Then

rn rn _ s:i-l + n(wo+c)-w u
T - TO - ~ ex ,

determining that cp and CPo are jth associates in ::;(n2, n+l) for 1 ~ j ~ n+l,

(6.10) j=i+n(w +c)-w (mod(n+l».o

As cP ranges over Ci (e), cpl: CPo' w ranges over distinct values 0, 1, ... , n,

w I: w. Clearly the corresponding values of j are distinct. Thus no twoo

elements of ci(a) are common jth associates of CPo for any j, where CPo is

an arbitrary element of Ci (e) • This implies the conclusion of the theorem

and completes Proof II.

An oval in a finite plane of order n is defined as a set of n + 1

points, n odd, or n + 2 points, n even, with the properly that no three

points of the set are collinear. It is known that an oval is a maximal

2set with this property. In the EG(2,n) generated by ~.:(n , n-l), let e be

any point and let i =1, 2, ••• , n-l. Theorem 6.2 shows for n odd that

Ci (a) is an oval. Theorems 6.2 and 6.1 show for n even that {a} U Ci (e)

is an oval.

The n + 1 points of a non-degenerate conic in PG(2,n) furnish an

example of an oval when n is odd.

A non-degenerate conic in PG(2,n), n = 2t , has the property that its

n + 1 tangent lines are concurrent in an (n + 2)nd point which together

with the points of the conic makes up an oval. It has been shown by Segre

[20] that in the Desarguesian projective plane of odd order n, every oval



is a conic. In particular, this holds for every oval in a Desarguesian

Euclidean plane of odd order n. The EG(2,n) constructed from z,(n2
, n+1) is

Desarguesian. Therefore for n odd, the n-l sets ci(e) for any element e

are conics, pairwise disjoint, all confined to the Euclidean plane (and thus

disjoint from the "Une at infinity"), all disjoint from the point e and with

2it exhausting the n points of the plane.
a 2 t

It is/plausible conjecture that the scheme d(n , n-l) for n =2 also

leads to sets c.(e) which are conics, and this has been verified for n =4
J.

and n = 8. Segre I s proof does not investigate ovals for even n.

Without giving details, we state that these conics can be exploited

to give information on:-:(n2, n-l). The algebraic statements that cl(e) is

a mUltiplicative subgroup in GF(n2), each Ci(O) is a coset, and each ci(e)

is obtained by addition, all have implications for the equations of the conics.

iEach Pjk can be interpreted as the number of points of intersection of two

conics. We conjecture that this will lead to a proof that 0 < P~k < 2.
- J -

After the author conjectured that the sets ci(e) were conics, the first

proof of Theorem 6.2 was found by R. C. Bose. Using some ideas from this

proof, the author then devised the second proof. While these were the first

premeditated proofs, a third method became a.vailable when R. H. Bruck noticed

that the configuration of n-l disjoint conics in the Euclidean plane of

order n could be obtained in many ways by taking suitable plane sections of

a configuration he had already discovered in the projective 3-space of order

n, consisting of two lines and n-l ruled quadrics, all disjoint and exhausting

the points of the space. The details, which will not be given here, are part

of the theory of spreads in projective space [10].
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The NLg(n) schemes obtained in section 5 by combination of associate

classes now inherit a geometric interpretation: the set of first associates

of a :point 0 is the union of g II concentricll conics about e. Unfortunately,

neither the algebraic construction nor the geometric representation has

enabled the author to determine in general which NL (n) schemes can be
g

2formed from ~(n , n-1) schemes. The case n = 2m + 1, g = m is rather special

and is discussed in the following paragraph.

As noted in section 2, the NL (2m + 1) scheme, the L l(2m+l) scheme,m m+

and the pseudo-cyclic scheme with v =(2m + 1)2 all have the same parameters.

The scheme ~;t<2m + 1)2, 2» is pseudo-cyclic; it is identical with the Lm+1(2m+l)

scheme obtained from Z«2m + 1)2, 2m + 2) by combining the set 61 = {l, 3'J ... ,

2m + 1} of associate classes; it is also identical with the NLm(2m + 1) scheme

obtained from ~«2m + 1)2,2m) by;combin:i.ng the s~t 8
1

(iE,), ••• , (2m~1} of

associate classes. Geometrically, the set of first associates of a point e

appears first as the union of half of the 2m + 2 lines through e (with 0

deleted), and second as the union of half of the 2m conics Ci (0). Even in

this special case there are association schemes with the same parameters

but With less geometric regularity. The L (2m + 1) scheme can be con­
m

structed using an arbitrary set 8
1

of m + 1 associate classes, giving each

point 0 a set of first associates which is a union of lines through 0 but

not in general a union of conics Ci (0) • At least one negative Latin square

construction, NL4(9) using 61 = (1, 2, 5, 6}, gives 0 a set of first asso­

ciates which is a union of conics C
i

(0) but not of lines. Two solutions

of the pseudo-cyclic scheme for a given n may be identical as association

schemes in spite of differences in geometric structure; that is, they may

be related by a one-one correspondence of objects which preserves the



association relation without preserving algebraic or geometric relationships.

Thus even in simple cases our geometric interpretation of negative

Latin square association schemes needs some clarification. It will probably

be of interest to make a geometrical investigation of J (v"m) schemes other

than those that have been employed here.

7. Direct construction of NL designs from finite geometries. A designg

with the nega.tive Latin square association scheme NL
3

(8) occurs as the case

s = 4 of a family of tWO-Class designs with parameters

3 t
v =s" s =2 ,

nl ::I (s + 2)(s - 1) "

1
Pu =s - 2 ,

2
Pll = s + 2 "

r=s+2,

k = s ,

r..l ::I 1 "

constructed by Ray-Chaudhuri [19]. The construction uses PG(3,s), the

projective 3-space of order s, s =2t , in which there are s + 1 points on

each line, s2 + s + 1 points on each plane, and s3 + s2 + s + 1 points in

all. In one plane r a non-degenerate conic Q is chosen. Each of the s + 1

points of Q is on one line of 'Y which contains no other points of Q and is

called a tangent line. A special property of :planesof even order is that

the tangents of a conic are all concurrent in a point P. Let R be the set

Q U {p}, containing s + 2 points of 'Y. The s3 points not on r are taken as



46

objects in the design, and two of these points are first associates if and

only if the line containing them also contains a point of R. All such lines,

with the points of R deleted, are the blocks of the design. The parameters

1 2are immediate with the exception of Pll and Pll' which follow from certain

properties of conics.

There is no value of s = 2t other than 4 for which the design of the

Ray-Chaudhuri family is of:NL type, but we shall describe a generalization
g

which leads to infinitely many:NL designs, among others. This generalization
g

seems to have gone unnoticed until now.

Various known theorems and formulas in finite geometry, which have been

adapted from [25] and from Chapter 2 of [2], will be stated as needed without

further reference. The number of elements in a finite set S will be denoted

by lsi.
Let E =PG(n,s) be a projective space of dimension n and order s, where

s is a prime power. Let r = PG(n-l"s) be a fixed subspace of dimension n - 1,

and let t::. be the complement of r in E. A set R of points of r is chosen.

Ii denotes the complement of R in r. n
t::. contains 8 points" which are taken

as the objects in a two-class designs: (R). Each line not entirely in r

contains s points of A and one point of r. Two points of A are taken as

first associates if and only if the line joinirg them contains a point of R.

All such lines, with the points of R delet~0., are the blocks of r (R).

Clearly"
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(7.2) n
v = s ,

nl = (s - 1) IRI ,

r = IRI ,

k =s ,

b = sn-l IRI ,

~l =1 ,

~2 =0 •

~(R) will be partially balanced if and only if condition (iii) of (1.3) is

satisfied. We proceed to interpret this as a condition on the set R.

If A and B are two points of ~ which are i-th associates, i =1, 2,

we denote by pil(A,B) the number of points C which are common first asso­

ciates of A and B. The required points C are of two types which will be

enumerated separately.

DEFmITION. D is the point of r on line AB. Let C be a cormnon first

associate of A and B. Then we define C to b~ a collinear common first assa-

ciate of A and B (c-point of A and B) if C i6 on line AB, and a diagona.l

common first associate of A and B (d-point of A and B) if C is not on line

AB.

Obviously there are 6 - 2 c-points of A CI1r'! B if D e R and none if D € 'R.

If C is a d-point of A and B, then lines AC and BC respectively must

meet r in points Dt and nil of R. Plane ABC meets r in a line m on n which

also contains nt and rr'. Suppose that m con~eins v points of R. Then the

orde:red pair of points nt, nil can be choser. :.n : \.) ~ 1)(v - 2) ways if n € R..
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and in v(v-l) ways if D € R, and the plane determined by m, A and B con­

tains a like number of d-points of A and B. The total number of d-points of

A and B can be obtained by summing over the lines m which are in r and con-

tain D.

DEFINITION. T)R) is the set of lines of r which conta.in exactly v

points of R, v = 0, 1, ••• , s+l.

DEFINITION. xv(D), v = 0, 1, ••• , s+l, is the number of lines of

Tv(R) which conta.in D.

Now if A and B are first associates, so ·that D € R,

1 s+l
Pll(A,B) =s - 2 + E (v - l)(v - 2) X (D),

v=O v

and if A and B are second associates, so that D E R,

This is enough to :prove

LEMMA 7.1. ~ (R) is a two-class PBIB design if and only if the right

hand side of (7.3) has the same value for all points D € R and the right

hand side of (7.4) has the same value for all points D E 'R. In this case

f., (R) will have parameters (7.2), along with

REMARK. The condition of Lemma 7el will be recognized as essentially

a condition on the variance of the numbers V. It is implied by the condition

the following lemma places on their frequency distribution.
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LEMMA 7.2. ~ (R) is a two-class PBIB design if for fixed '" :I 0" 1" ... s+l"

the frequencies X",(D) are equal for all D £ R and are equal for all D £ R.

In this case s., (R) will have parameters as stated 1.n Lemma 7.3.

In our first application of these lemmas we take R =Q" a non-degenerate

quadric in r :I PG(n-1" s)" denoting Q ='R. All lines of r fall into the

following four sets T",(Q) •

(7.5) TO(Q): non-intersectors" containing no points of Q"

Tl(Q): tangents" each containing 1 point of Q"

T2(Q): secants" each containing 2 points of Q"

Ts+l(Q): rulings" each containing s+l points of Q.

Thus nonzero frequencies X",(D) can occur only for'" =0" 1" 2" s+l" and (7.3)

and (7.4) reduce to

In a particUlar non-degenerate quadric Q in PG(n-l,s)" the number ~S+l(D)

of rulings on D is the same for all points D e Q" so that pil(A,B) has a
1uniform value Pll for all pairs A" B of first associates in ~ (Q).

We must specify the dimension n before proceeding further. If n =2t"

so that r has odd dimension 2t-l" the number x2(D) of secant lines on D is

- 2 ( ) 2the same for all points D e Q" so that Pll A"B has a uniform value Pll for

all pairs A" B of second associates in.~ (Q). If n is odd" so that Q is a

non-degenerate quadric in a space r of even dimension" the points D e Qare

of different types which are contained in different numbers X2(D) of secant
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lines. In this case pil(A,B) does not have the same value for all pairs

A, B o~second associates.

We conclude that if Q is a non-degenerate quadric in r, the design

~(Q) is a two-class partially balanced design if and only if the dimension

n of ~ is even.

Let n = 2t. In r =PG(2t-l,s) there are two types of non-degenerate

quadrics, which we shall call hyperbolic and elliptic, differing in the

number of :points, ruling lines, and secants. In the following formulas,

the upper signs hold for hyperbolic quadrics and the lower signs hold for

elliptic quadrics.

xS+l(D) = (st-2 ~ l)(st-l + l)/(s - 1), D € Q,

() t-l( t-l)1 -
~ D =s s ~ 1 2, D € Q •

The pal'ameters of e~ (Q) can now be computed in both cases and compared with

(2.1) and (2.5) to complete the proof of

THEOREM 7.1. If n = 2t and Q is a non-degenerate quadric in r, the

design X (Q) is a two-class PBIB design with association scheme parameters

2tv = s ,

( t-l )( t - )nl = s ~ 1 s + 1 ,

1 t-l ( t-l -) t
Pll = S s + 1 ~ s - 2,

2 t-l( t-l )Pll =s s ~ 1 ,
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and design parameters

r = (st-l ! l)(st + l)/(s - 1) ,

k = s,

2t-l
b = s r,

~l = 1,

~2 = o.

If' Q is hyperbolic the upper signs hold and J.: (Q) is of pseudo-Latin square

( t) t-1 ( )type Lg s ,g = s + 1. If Q is elliptic the lower signs hold and ~ Q

( t) t-lis of negative Latin square type NLg s ,g = s - 1.

Since the required projective spaces and quadrics exist for every s

which is a prime or a power of a prime and for every positive integer t, our

construction gives a doubly infinite family of designs having NL association
g

schemes. The following schemes with v < 100 are included.

s = 2, t =2, Nt
1

(4),

s = 2, t = 3, NL3(8),

s = 3, t = 2, NL
2
(9).

The spaces E, f, and 6 and the quadric Q may be used to construct other

designs which have the same association scheme as.£ (Q) •

We note that each block of .£ (Q) is the intersection K n 6 of 6 with a

line K of E, where K intersects f in a point of Q. We define a more

general design'£ v(Q), v = 0, 1, with sets of blocks constructed as follows

from the set of all lines Kwhich are in E but not in f.



"

Design

~;(Q)

Blocks

(K n l:. IKn r € 'QJ

(K n l:. IK n f € Q}
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The subscript v may be interpreted as the number of points of Q contained

in K. The following theorem is now obvious.

THEOREM 7.2. If n = 2t and Q is a non-degenerate quadric in f, then

~v(Q), v = 0, 1, is partially balanced with the same association scheme as

o~(Q) described in Theorem 7.1. ,r:':, tQ) has association scheme parameters '(7.9) •

..£1 (0.) is ideAtica1 ,-ritll·s, (0.). ''£0(0.). has. design parameters

(7.11) r = I"QI,

k = s,

A.
1

= 0,

Let ~ be a plane in ~ but not in f. ~ intersects l:. in a set of s2

points which we shall use as a block of a design, and intersects f in a line

which falls in one of the classes Tv(Q). We define designs f>v(Q) with sets

of blocks constructed as follows from the set of all planes ~ which are in

~ but not in f.

Design Blocks

(~ n l:. I~ n f € Tv(Q)}, v= 0, 1, 2, s + 1.
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The sUbscript v may be interpreted as the number of points of Q contained

in 1t'.

If A is a point of D., planes containing A are determined by the lines

of Tv(Q), and these planes lead to the blocks of Pv(Q) which contain A.

Therefore A is contained in IT'll(Q) I blocks.

If' A and B are two points of D. and D is the intersection of line AB

with r, planes containing A and B are determined by the lines of T)Q)

which contain D, and these planes lead to the blocks of Pv(Q) which con­

tain both A and B. Therefore A and B occur together in x)D) blocks. We

now use the fact, stated in part in (7.8), that for a non-degenerate Q in

r of odd dimension, all of the frequencies Xv(D) satisfy the uniformity

condition of Lemma 7.2. This gives us the following theorem.

THEOREM 7.3. If n =2t and Q is non-degenerate, then P)Q), v = 0, 1,

2, s+l, is partially balanced with the same association scheme as ~(~), des­

cribed in Theorem 7.1. ?v(Q) has association scheme parameters (7.9) and

design parameters

(7.12)

Al = Xv(D), D E Q,

A2 = xv(D), D E Q.

Formulas for ITV(Q)I and xv(D) are listed below. In each case Q is under­

stood to be a non-degenerate quadric in r = PG(2t-l,s). The upper signs

hold if Q is hyperbolic and the lower signs hold if Q is elliptic.



TABLE 7.1

\I IT)Q) l x (D), D E Q X)D) , DEQ
\I

s2t-2(st + l)(st-l + 1) t-l( t-l - )
0 0

s s + 1

2(s+1) 2

1
I t-2( 2t-2 )( t - ) t-2( t-l - ) 2t-2

- 1s s -2 s + 1 s s + 1 s
s-l

s - 1

2
s2t-2(st + l)(st-l *1) 2t-2 st-1(St-l ± 1)

s 2
2(8 - 1)

s+l I

(s2t-2 _ l)(st + 1)(st-2 ± 1) (st-l + 1)(st-2 + 1)
0

(s2 _ l)(s - 1) s - 1

There are sets R other than quadrics for which the design.t (R) is·

partially balanced, as illustrated by the Ray.."Chaudhuri family of designs

described at the beginning of the section. Our final construction uses

an interesting set whose properties have been investigated by Bose [1].

Take ~ =PG(2,q), r =PG(2,q), where q =s2, and represent the points

of r by homogeneous coordinates (Yl' Y2' Y3)' Yi E GF(q). Take R = W,

where W is the set of points of r for which the equation

s+l + s+l + s+l 0
Yl Y2 Y3 =

is satisfied. Bose shows that

(7.14) Iwl = s3 + 1;

~(D) = 1 and Xs +1(D) = s2, DEW;
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otherwise, x./D} = O.

We prove the following theorem by applying Lemma 7.2 and comparing parameters

THEOREM 7.4. <~ (w) is a two-class PBIB design with parameters

6v = s ,

nl = (s2 - 1)(s3 + 1),

P~l = s2(s2 + 1) + s3 .. 2,

222Pll =S (s .. 1),

r = s3 + 1,

4 3
b = s (s + 1) 1

A.
l

= 1,

This design is of negative Latin square type NL (s3), g = s2 .. 1.
g

Three other designs,~o(W), r 1(W) 1 and r 8+1(W) with the same associa­

tion scheme can be constructed from Wby the methods of Theorems 7.2 and

7.3. These designs have the same association scheme parameters as the

designs .~ '/Q) and r ~(Q) 1 t =3, but have different design parameters r,

k, b, A. ..
~

The following tables give the parameters of the designs constructed in

this section which have NL association schemes with v < 100. Additional
g

designs eXist, of course, for these association schemes.
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TABLE 7.2

Parameters of Designs _~ v(Q) and r v(Q), Q Elliptic,

s = 2, t = 2. Nt
1

(4) Designs

Null design; r = b = O.

(Balanced design)

o

3

4

1

o

40
i

: I :
4 I 60

4 I 40

5

r

10

10

15

10

v

16

16

16

16

16

.£ 1(Q)

,I: 0 (Q)

r o(Q)

r
1

(Q)

r 2 (Q)

r
3

(Q)

Design

TABLE 7.3

Parameters of Designs Sv(Q) andr v(Q), Q Elliptic

s = 2, t =3. NL
3

(8) Designs

Design v ~ ~
1 2

~ 1(Q) 64 27 2 1 864 1 0

~o(Q) 64 36 2 11152 0 I 1

r o(Q) 64 120 4 11920 0 I 10

4 14320r 1(Q) 64 270 10 I 15

413456

I
I

r 2(Q) 64 216
I

16 I 6
I

Ir 3(Q) 64 45 4 I 720 5 0
I



TABLE 7.4

Parameters of Designs ~JQ) and r \I(Q) I Q Elliptic I
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Design v r k I b i ~"l
]I.

I ! 2 :

.S"l(Q)
I

10 3 1270 1 0
I

~O(Q) 81 30 3 810 0 1

rO(Q) 81 45 9 405 0 6

r 1(Q) 81 40 9 360 4 4 (Balanced Design)

r2(Q) 81 45 9 J 405 9 3

r4(Q) Null designj r = b = 0

TABLE 7.5

Parameters of Designs ~\I(W) and r)W) I S =2.

NL
3

(8) Designs

Design v i r

I
k b ]I. j]l. ;

1 1..2-I
I

i 144~(W) 64 I 9 I 4 1 I o II

I I
\

IoS: 0(W) 64 12 j 4
1

192 0 1 II I
I I

r 1(w) 64 16
I

36 I
I

9 ! 1 3

r
3

(w) 64 12 16 ! 48 4 I 2 I,



58

1for any two-class association scheme (} with Pll = 0 , then derive stronger

results for NLg schemes with this property.

We define the following sets for a two-class association scheme.

(8.1) 80 = {an initial object aJ,

8
1

= {the nl first associates of aJ,

82 = (the n2 second associates of aJ.

Interpreted as sets of rows and columns, these sets define the following

partition of Al' the first association matrix ofC,. This is the same parti­

1tion used in (4.17). Submatrix Bl reduces to a zero matrix because Pll = o.

(8.2) 0 I
1 .•• 1 o ••• 0I

71·• 0 Cl•

A
l

1=
0

I • CT D
l• 1i •

L0

Theorem 8.1. If pil =0 in a two-class association scheme with

iparameters v, ni I Pjk
'

then

(i) Cl as defined in (8.2) is the incidence matrix of a BIB design

C with parameters
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2
any block of ~ is disjoint from at least P12 other blocks e

,'. .....
Proof. C1 is a matrix of 0 1 sand 1 1 s with n

l
= v· rows and n2 ::: b

columns. The column totals of S. are equal to the row totals of CI, which
2 /.

by Lemma 4.5 are uniformly equal to Pll ::: k. Statement (4.21) of Theorem

4.6, with Bl ::: 0, B2=J-l, pi2 ::: n1 - pil - 1 = nl-l, reduces to

By Corollary 4.7.1 this proves (1).

By (4.23), the matriX ci C
1

+ D~ must have elements pil = 0 in all

2positions occupied by 1 1 s in Dl , and by Lemma 4.5 there are exactly P12

2such positions in each row. Since D
l

has non-negative elements, any row

T 2
of C 1 <i must contain at least P12 zero elements. But the i.th element

of a particular row t3 of ~ S. can be interpreted as the number of objects

which the i-th block of '3 has in common with block t3, proving (ii).

For the rest of this section, a will be taken as an NL (n) schemeg

with

1 2Pll = g + 3g - n = O.

Al will denote the first association matrix of this scheme. Expressing

2
n = g + 3g,

~ has parameters

2 2( 2v = n ::: g g + 3) ,

2 2n2 ::: (g + 2 g - l)(g + 3 g + 1),
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1
Pll = 0 ,

Pi2 = e? + 3g2 + g - 1 = (g+1)(g2 + 2g .., 1),

1 4 ~ 2 ( 2 )P22 =g + 4g- + 3g - 2g = g(g + 2) g + 2g - 1 1

2 2 ( )Pll =g + g =g g + 1 1

2 ~ 2 2P
12

=g- + 2g =g (g + 2),

2 4 ~ 2 2P22 =g + 4g- + 4g - g - 2 = (g + l)(g + 2)(g + g-l),

~ = g2 + 2g _ 1,

T = g.

Theorem 8.1 shows in this case that C1 is the incidence matrix of a

BIB design which has parameters

(8.4)
,- 2
v = nl = g(g + 3g+l),

~ 2 2
b =n2 = (g + 2g-l)(g + 3g-l),

r =Pi2 = (g+1)(g2 + 2g-l),

/.... 2
k =Pll =g(g + 1),

f 2 2
~ =P1l 1 =g + g-l,

and which has the property that

2 2each block is disjoint fram at least P12 =g (g+2) other blocks.

The eXistence of such a design is thus a necessary condition fo~ the

eXistence of the NL (g2 + 3g) association scheme. The next lemma and two
g

theorems will show that it is sufficient as well and that the design can be

used to construct scheme 1 • The proof of sufficiency must be based on a
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design which is not assumed to arise from an association scheme. Let X.

be a Brn design which has parameters (8.4) and property (8.5) but is

otherwise arbitrary. Let Xl be the incidence matrix of this design, so

that

(8.6)

and let

(8.7)

T~' ,......
~Xl = 1:' I + ').. (J - I)

=Pi2 I + (pil-l)(J - I),

Matrix '1. may be regarded as a special case of Xl"

We may regard sets 81 and 82 respectively as the set of rows and the

set of columns of matrix Xl' or we may regard them as the set of objects

and the set of blocks in the corresponding design. The latter interpretation

is convenient for the definition of the following sets.

(8.8) 811 = fthe pil objects in an intial block y},

812 = fthe remaining Pi2 objects of 81 ),

820 = (block .,),

821 = fa set of Pi2 blocks disjoint from .,),

822 = (the rerr..aining P~2 blocks of 82 }"

Lemma 8.2. Let a BIB design )' have parameters (8.4) and property

(8.5) • Then each block of )c is disjoint from exactly Pi2 blocks a:cd

intersects each remaining block in exactly g objects.
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Proof. In the terminology of (8.7), let f i denote the number of objects

common to block 1 and the i-th remaining block. Since f. =0 for all blocks
J.

of S21' the well known formulas due to Hussain [15],

~ f i = k (; - 1),
J.

remain valid if the summation is restricted to the blocks of S22" Straight­

forward computation shows that the fi'S for this subset have mean g and

satisfy

showing that 1 intersects each block of S22 in exactly g objects. Finally,

2
1, which is an arbitrary block , is disjoint from precisely the P12 blocks

of S21' This proves ;the lemma.

This lemma depends on the parameters (8.3) and fails in general for
1(. ,

the BIB design described in Theorem t. It appears therefore that the

construction method of this section for NL (g2 + 3g) schemes will not be
g

1applicable to other two-class schemes with Pll =O.

In each row of the symmetric matrix xiXl' the element in diagonal

222
position is equal to k = Pll' P12 elements are equal to 0, and the P22

other elements are equal to g. Thus we may express

2where Yl and Y2 are matrices of 0' s and l's, each row of Yl contains P12

2
l's, each row of Y2 contains P22 l's, and
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(8.10)

where J is a b x b matrix of l's.

is symmetric.

2
Theorem 8.3. If A1, the first association matrix of an NLg(g + 3g)

scheme with parameters V, ni , P~k given by (8.3), then ci and D1 as defined

in (8.2) are respectively the incidence matrix and first association matrix

of a two-class PBIB design C' and association scheme D with the following

parameters.

(8.11) ~. b"" "" 2 ....k 1 ~ O~
v =n2, =n1, r =P11' =P12' 1 = , 2 =g,

2
n1 = P12'

2
n2 =P22'

""1P11 =0,

"'1 3 2 ( ( 2P12 = g + 2g -1 = 8+1) g +g-l),

""1 4 "3 2 2 2
P22 =g + 3g- + 2g - g - 1 = (g+l) (g +g-l),

""2 2P11 = g ,

P~ =;+g2 = g2(8+1) ,

....2 4 3 2
P22 = g + 3g + 3g - g - 3.

Proof. The values :;., b, rand k follow from Theorem 8.1. From (4.23),

(8.12)

...
From (8.9), denoting by Yi , i = 1, 2, the form taken by Yi in the case Xl = C1'
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By subtraction"

But this is impossible" since Dl has non-negative elements.

and l's" each with O's on the main diagonal

If Y2 ~ D2" negative elements

2 -difference P11 D2 - g Y2 and

in each row.

-Y2 and D2 are matrices of O's

2and each with exactly P22 l's

will occur in off-diagonal positions in the
2hence in Dl •
... N

Therefore Y2 = D2" Y1 = Dl , and we compute

(8.14)

(8.15)

Now D1 and D2 are symmetric matrices of 0' s and l's satisfying I + Dl + D
i

= J,

and (8.15) is sufficient to show by Theorem 4.4 that D1 is the first assoc-
... 2

iation matrix of a two-class association scheme with parameters nl = P12'

-1 -2 2P11 =0, P1l =g. (8.14) is then sufficient to show by Corollary 4.7.1

that ci is the incidence matriX of a PBIB design with this association

scheme and with parameters including ~l = 0, ~2 = g. This implies the

rest of (8.11) and the proof is complete.

All of the nontrivial submatrices of A
l

have now been identified With

the BIB design C or its dual. This motivates the next theorem in which

matrices furnished by the design )<are used in the definition of an assoc-

iation matriX.

Theorem 8.4. Let Xl be the incidence matriX of a BIB design with

parameters (8.4) and property (8.5), and define X2, Y1, Y2 by (8.6), (8.9),

(8.10). Let At be the matrix
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(8.16)

A* =
1

I 0: 1 •••• 1 0 •••• 0
:~~~~~~~

1 • I
I : I
I 1 I

:~
I ~ I

•
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2Then Al is the first association matrix of an NLg(g +3g) scheme with

parameters (8.3).

Proof. In Theorem 4.6, take Al =At, Bl =0, Cl = Xl' D1 =Y1• At

is a matrix of O's and las; the same is true of A~ = J - I - At, since the
T

diagonal elements of Yl are 0' s. Yl is symmetric. From (8.9), Xl has uni-
.... 2

form row sums r =Pll' We have verified (4.18) to (4.20). In order to

prove by Theorem 4.6 that Al is the specified association matrix it now

suffices to verify (4.21) to (4.23), which reduce to

(8.17)

(8.18)

(8.19)

_..T 1 2Xl X1 =P12 I + (Pll • l)(J • I),

(8.17) is equivalent to (8.6). The known row and column sums of Xl and Yl
give the following relations, in which matrices of l's of various orders

are all denoted by the same letter J.

(8.20)

(8.21)
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(8.22)

(8.23)

Solving (8.9) and (8.10) for Yl~

(8.24)

We next multiply on the left by ~ and apply (8.20) and (8.6).

(8.21) is applied and the result is simplified with the aid of (8.3) to ghre

(8.25)

proving (8.18). We now mUltiply (8.24) on the right by Yl and apply (8.23)

and (8.25).

(8.22) and (8.9) are applied and the result is simplified with .the aid of

(8.3) and (8.10) to give

(8.26) _2 ~ 2YJ. = Pl2 I + g Y2 •

Adding (8.9) and (8.26) gives (8.19), completing the proof.
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We are now assured that if matrix ~ eXists, then even though it was

not assumed to occur, as C1 does, as a submatrix of an association matrix,

it does in fact play exactly this role in AI. Moreover, Al is unique for

a given Xl. The design % and matrices ~, X2 will hereafter be denoted

bye, Cl' C2. We also drop the distinction between Al and At·
The following corollary paraphrases Theorem 7.4 in terms of objects

and blocks of e , without use of the matrices A
l

or C1.

Corollary 8.4.1. Let e be a BIB design with parameters (8.4) and

property (8.5). Define a two-class association relation G on the set of

objects 80 U 8
1

U 8
2

, wbere

(8.27) 8
0

= (an initial object al,

81 = {objects ~i of el,

82 = (blocks 1 j of Cl,

and sets of first associates are defined as follows.

Ob ect

a

Set of first associates

8
1

80 U{blocks of 82 containing ~il

(objects of 81 contained in 1 j 1 U (blocks of

82 disjoint from 1j )

Then G is an Nt (g2 + 3g) scheme, with parameters (8.3).g

The following table lists the important parameters of e and G for

a few values of g. D J denotes the number of blocks of 0 which are dis-

joint from any given block.
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TABLE 8.1

i , I/' ,
'b i r' I .", I /" i jParameters of BIB design ,.." j i k ")... , DJ'"" ! I V i I: , I,

I
,

I 1 1 : i !2 I 2Parameters of NL scheme G: gi n n1 n2 P12i Pll : I P12i vI ig I i I I

! I I

1! 4 16 51
10 4 I 2 1 3I

I!

2 ; 10 100 1 221 11 21 I 6 5 16
I I j
, , !

i
3 ; 18 324 51 I 266: 56 I

12
I

11 45
!

4 i 281184 1161661 !115
I II 20 19 96I I I . I !,

Let A
1

be partitioned into Bubmatrices whose sets of rows and columns

are 80, 811, 812, 820, 821, 822 • This is a refinement of the partition (8.2).

The submatrix, say~O, with 811 as its row set and 8
21

as its column set

falls inS., the incidence matriX of BIB design C • 0' is a zero submatrix,

since by (8.8) no object of 811 is in any block of 821• Define notation

as follows for other submatrices of 1·

(8.28) r 1 lj / ......
I 0 E

1
,,

1
i
I 1,
j

s.= ,

I
0
• F

1
G1•

l •
0

J
The submatrix, say 0, with 821 as its row and column set falls in D

1
, the

first association matriX of association scheme ~9. Since S21 is the set

of first associates in :'\ of initial object t3, and pi1 = 0, it follows

from Lemma. 4.5 that 0 is a zero submatrix. Define notation as follows

for other submatrices ofl>r
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01. . . .
...
o

1 • • • .1: 0

--+----------------.

~-

(8.29)
I

0I

I 1

I
•
•••
1

D =1 0
, ••

I ••

L 0

A1 may now be written as follows. The table below indicates the

column sets, and also applies to the row sets.

(8.30) 0 11 • ••• 1!1 • • •• 1 i 0,0 • ••• 0;0 •••• 0I ,
I I

1 I 1i I• 0 0 • I b- El• I • i

I
• • I
1 l'

I

1 0 1
• 0 0 • F1

I G
1• • I I• • I I1 0'

A1 =
0 1 • • • • 1 0 • • • • 0; 0 ; 1 • ••• 1 10 •••• 0.... 1

i
I

I0 )

'il FT ....• 0
I H1• I• 1
I

l

0 Ir
0

ET GT 0
HT I• · K

1
-.• 1 1 • 1 .J• •

0 0

·s I (1 t S12- I ' ('t

S220 °11 t
,S2<J °21 iI "

2 f. 1 2 \

11
2 I 2

1
I

P1l ~' P12 P12. - P22I

I.se~ O~ columns I
II Humbex of .
1 Columns

2Theorem 8.5. If A1, the first association matrix of an NLg(g +3g)

scheme, is partitioned as in (8.30), submatrices E1, F1, G1, H1 are

incidence matrices of BIB designs, say e, '::, (' , ,. , with parameters

as follows.
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Matrix v I b r k ')...

E1 g(g+l) (g+l) (g+2) (g2+g_1) (g+2)(g2+g_1) g f(i-1) (g+2)

F1
g2(g+2) g2(g+2) I g(g+l) g(g+l) g

g2(g+2) 2 I (g+1)(g2ig..l) ;. (g-l) (g+l)G1 (g+1)(g+2)(g +g-l)

Hl
g2(g+2) (g+l) (g+2) (g2+g_l ) (g+1)(g2+g_1) I g2 (g-l) (g+l)

Each of designs e, (j ,~~ has the property that each block is disjoint

from at least g2(g+1) other blocks.

Proof. The results for Hl follow from Theorem 8.1, applied to

association scheme fj.

The proof for El , Fl , Gl will use Corollary 4.7.1. It is easily veri­

fied, say from (8.30) and (8.3), that each of these matrices has the size

v x b stated for it in the theorem, and that Fi has the same size as Fl.

We uext show that each of El , Gl , Fi has uniform column totals which are
2equal respectively to g, g , g(g+l). This is proved for E.t. by applying

Lemma 8.2 to design C ,making use of the block r corresponding to the

first column of Cl • The result for Gl then follows by subtraction from
2 Tg +g, the uniform col~ total of C

l
• Let Tlo be any colunm of F1 and let

11 be the column of Al which includes 110' It is clear from (8.30) that

the sum. of the l' s of '% is equal to the inner product of columns Tl and

r,where r is the column in 520, But for any 1"\ £ 512, 1"\ and r are second

2 Tassociates and have inner product Pll =g(g+l), proving that Fl has uniform

column totals g(g+l).

T TWe now need, in part, the products Cl Cl and Cl e
l
, in partitioned

form, computed in two ways. By multiplication of the partitioned matrix Cl'
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(8.31) ,
I
J

From (8.6) and (8.14),

I'
.-

1 (P~-J.)(J_I)I .
T

P12I +

C1 C1 = I ,
I Pi2I + (pil-1)(J-I) I
L I

1- g(g+1)I + g(J-I)j I

I
CT C I

g(g+J.)I + O·Ki + sK2j ,
1 1 =1 II

I

where ~ =J - I - Kl is a submatrix of D2•

If (8.31) and (8.33) are solved for E1Ei"', Corollary 4.1.1 now shows

that e is a BIB design with the parameters stated in the theorem.

If (8.32) and (8.34) are solved for FiFl' Corollary 4.1.1 now shows

that Fi is the incidence matriX of a BIB design with v =b =g2(g+2),

r = k = g(g+l), A = g. Since this is a symmetric design, the dual design

d- is balanced and has the same parameters.

The product FIF~ is now known, making it possible to solve (8.31) and
T(8.33) for GIGl , and one more application of Corollary 4.1.1 shows that ~,

is a BIB design With the parameters stated in the theorem.

Submatrix K1 in (8.29) has the same relation to D1 as submatrix D1

in (4.11) has to AI' and Lemma 4.5 shows that Kl has uniform row totals
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-2 2
P12 = g (g+l). There must therefore be at least this number of zero

elements in each row of the matrix g(g+l) I + o.lS. +~" and comparison

of (8.32) with (8.34) shows that the same is true of E?l + GIG
1

• This
E

means that any column of matriX [<tJ bas inner product zero with at least
1

g2(g+1) other columns. In particular" this must hold for the inner product

of any column of El With other columns of Ell and similarly for Gl - This

proves that designs e and 0 have the property stated in the last sentence

of the theorem. The proof is now complete.

Design C is triVial in th~ case g = 1" giVing a fourth method of

construction of the Nt
l

(4) scheme. This construction gives an easy proof

of the uniqueness of the scheme.

Design C is tar from trivial for g ~ 2, as suggested by the rapidly

growing parameters in Table 8.1. Theorems 8.3 and 8.5 give useful informa-

tion on the structure of the design but have not yet led to proofs of exis-

tence or of nonexistence in any of the cases g ~ 3. In the case g = 2 just

enough of the structure of C is determined that an empirical study is

feasible. The author conjectured that the design did not exist in this

case" undertook an emDirical search in hopes of proving its noneXistence,

~nd in the course of the search inadvertently constructed it.

Design C in 'the case g = 2 has parameters

v =22, b =77, r =21" k =6" h =5 •

Denoting objects by 1, 2 , ••• , 22,a solution of this design is given by

the blocks in the following table.



TABLE 8.2

1 2 .3 4 5 6

1 2 7 8 9 10
1 2 11 12 1.3 14
1 2 15 16 17 18
1 2 19 20 21 22

3 4 7 8 1112 3 5 7 9 15 17 4 5 7 10 19 22
.3 4 9 10 1.3 14 3 5 8 10 16 18 4 5 8 9 20 21
.3 4 15 16 19 20 .3 5 11 13 19 21 4 5 11 14 15 18
3 4 17 18 21 22 .3 5 12 14 20 22 4 5 12 13 16 17

5 6 7 8 13 14 4 6 7 9 16 18 .3 6 7 10 20 21
5 6 9 10 11 12 4 6 8 10 15 17 .3 6 8 9 19 22
5 6 15 16 21 22 4 6 11 1.3 20 22 3 6 11 14 16 17
5 6 17 18 19 20 4 6 12 14 19 21 3 6 12 1.3 15 18

1 3 7131622 2 3 7 14 18 19
1 3 8 14 15 21 2 3 8 13 17 20
1 3 9 11 18 20 2 3 9 12 16 21
1 3 10 12 17 19 2 3 10 11 15 22

1 4 7 14 17 20 2 4 7 13 15 21
1 4 8 13 18 19 2 4 8 14 16 22
1 4 9 12 15 22 2 4 9 11 17 19
1 4 10 11 16 21 2 4 10 12 18 20

1 5 7 12 18 21 2 5 7 11 16 20
1 5 8 11 17 22 2 5 8 12 15 19
1 5 9 14 16 19 2 5 9 13 18 22
1 5 10 13 15 20 2 5 10 14 17 21

1 6 7 11 15 19 2 6 7 12 17 22
1 6 8 12 16 20 2 6 8 11 18 21
1 6 9 13 17 21 2 6 9 14 15 20
1 6 10 14 18 22 2 6 10 13 16 19

7 8 15 18 20 22 8 10 11 14 19 20
7 8 16 17 19 21 8 10 12 13 21 22
7 9 11 14 21 22 9 10 15 18 19 21
7 9 12 13 19 20 9 10 16 17 20 22
7 10 11 13 17 18 11 12 15 17 20 21
7 10 12 14 15 16 11 12 16 18 19 22
8 911131516 13 14 15 17 19 22
8 9 12 14 17 18 1.3 14 16 18 20 21

73
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It is possible to verify by inSPection that the foregoing design has

property (8.5)" that each block is disjoint from 16 other blocks.

Theorem 8.6. The NL2(10) association scheme exists.

Proof. Apply Corollary 8.4.1 to the foregoing BIB design.

The table of first associates require g 100 rows and 22 columns and

will be omitted to ~ save space.

By listing the 77 blocks of our BIB design we have been able to

prove 1ts eXistence Without describing the em~irical construction. This

method of proof is reminiscent of Bhaskha.ra whose 1150 A.D. treatise on

mathematics presented a sketch of a Particularly lucid construction for

the Pythagorean theorem" accompanied by the brief written proof, IIBehold t II

The situation is . different when a claim of noneXistence or uniqueness

is based on emp1rical search. A valid proof must show that the search was

exhaustive, and this may involve a description which in written form is

more tedious than the search itself. In the next theorem we have attempted

to steer between tedium and nonproof by giving enough details that the

interested or suspicious reader can fill in the rest.

Theorem 8.7. The NL~;/ 10) association scheme is unique up to permuta­

tion of objects.•

2
Proof. Let G be an NLg(n) association scheme" n =g +3s, with

association matriX Al • An initial object 0: may be chosen in n2 different

ways. For a given 0:" (8.1) determines sets 81 and 82" and (8.2)

determines submatrix C
l

up to permutation of rows and independent permuta­

tion of columns. Theorem 8.1 shows that C is the incidence matriX of a
. 1

BIB design C with parameters (8.4) and property (8.5); for a particular

0:, .'3 is determined up to permutation of objects and permutaticn of blocks.
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Theorem 8.4 shows that any such matrix C
l

can be obtained by the same

construction from some NLg(g2~g) association scheme Q" and that a par­

ticular C
l

determines Aland J uniquely. Two designs C which differ only

in permutation of objects and of blocks lead to schemes '7, which differ only

by a permutation of the objects of 8
1

and a permutation of the objects of

82, Then association schemes G which are inequivalent under permutation

of objects must surely lead to designs C which are inequivalent under

permutation of objects and blocks. The number of inequivalent schemes (l is

J.ess than or equal to the number of inequivalent designs C , and G is unique if :2
J.S unJ.que.

The theorem will be proved by showing that C is unique in the case

g = 2. It has parameters (8.35),

v =22, b = 77, r = 21, k =6, ~ =5,

and the property that any block is disjoint from 16 other blocks. By

Lemma 8.2, each of the remaining 60 blocks intersects the given block in

exactly two objects.

Without loss of generality we may assume that the initial block r is

1 2 3 4 5 6,

811 = {l, 2, 3, 4, 5, 6J,

812 = (7, 8, ••• , 22J.

2
821 is a set of P12 = 16 blocks, each containing six objects of 8

12
, com-

2prising the blocks of a symmetric BIB design Z with ~ = 2. Each of the P22

= 60 blocks of 8 is the union of a block of design e , containing two
22

objects of 811, and a block of design G, containing four objects of 8
12

"

Design e is uniquely determined by its parameters
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v =6, b =60, r =20, k =2, ~ =4

to have as its blocks the 15 pairs (i, j) = (j, i) of distinct objects of

8
11

, each pair repeated four times.

::;(1, j) will denote the set of four blocks of ~ which contain a pair

i, j of distinct objects of 8
11

, and ~(i, j) will denote the set of four

blocks of 9 which are contained in the blocks of C(i, j). Any two blocks

of C which are not disjoint must intersect in exactly two objects, showing

that

(8.36) the four blocks of 9(i, j) are pairwise disjoint.

Thus for each (i, j), the blocks of 9(i, j) contain all 16 of the objects

of 812• AlSO,

(8.37) a block of g(i, j) and 9(i, k), j ~ k, must have exactly one object

in common.

Thus the four objects of any block of g(i, j) are distributed one each over

the four blocks OfS'(i, k). Also if i, j, k, K are pairwise distinct, the

objects of any block of 9(i, j) occur two each in two blocks of ~(k, t>.
Using the remarks of the preceding paragraph it is easy to choose

notation for the objects of 812 and permute blocks Within sets C(i, j) so

that ~(l, 2), C(3, 4), 2(3, 5) and C(4, 5) are determined to the

following extent
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1 2 7 8 9 10
1 2 11 12 13 14
1 2 15 16 17 18
1 2 19 20 21 22

3 4 7 8 11 12
3 4 9 10 x y
3 4
3 4
3 5 1 9
3 5 8 10
3 5 11 13 z
3 5 12 14
4 5 1 10
4 5 8 9
4 5 11 14
4 5 12 13

We must now decide whether to assign the pair 13, 14 in C(3, 4) to posi-

tions x, y or to some other block. In the latter case we may assume x, y =

15, 16, which requires z = 15 or 16; then object 15 cannot occur anywhere in

C(4, 5) without violating (8.37). This contradiction shows that x, y = 13, 14:

if one block of 9(3, 4) is 7 8 11 12, then another block must be 9 10 13 14.

This reasoning was used to assign the objects of two blocks of Cj(l, 2) to

the blocks of g(3, 4) but it applies more generally to show that

(8.38) if i, j, k, t are pairwise distinct, the objects of any block of

9(i, j) occur t"lO each in two blocks of 9(k, (), and the remaining

four objects in these two blocks occur together in another block

Choice of notation will now give C(3, 4) and C(3, 5) the form listed in

Table 8.2. After various applications of (8.36) to (8.38), C(4, 6) and

C(5, 6) are determined uniquely and the other C(i, j) are determined in

part.
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C(1, 3) and C(2, 3) have the form

1 3 7 x - ­
1 3 8 -
1 3 9 -
1 3 10 -

2 3 7 y
2 3 8 ­
2 3 9 ­
2 3 10 -

where x and yare equal in some order to 13 and 14. Objects 1 and 2 have

played symmetrical ro1esup to this point and may be exchanged if necessary

so that x = 13" y = 14.

C(4, 5) reduces to one of these two cases.

Case I 4 5 7 10 19 22 Case II 4 5 7 10 20 21

4 5 8 9 20 21 4 5 8 9 19 22 •,
4 5 11 14 4 5 11 14

4 512 13 4 512 13

Once either of these cases is assumed" the remaining sets of blocks C(i, j)

are determined uniquely by arguments based on (8.36) to (8.38). This may

first be established for the sixteen blocks of C(4" 5)" C(3" 6), e(l" 3)

and C(l" 4) by comparing them to each other and to blocks that have already

been determined. The remaining C(i, j) are easily determined, completing

the 60 blocks of 822•

Case I leads to the blocks listed in Table 8.2. The 60 blocks of 822 in

Case II are" apart from order" the blocks obtained from those of Case I by a

permutation of objectswhich in cycle form may be expressed

(1 2) (11 12) (13 14) (19 20) (21 22) •

Therefore Case I and Case II are equivalent under permutation Of objects

and blocks. Case I will be assumed.
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It remains to show that the 16 blocks of S~n are uniquely determined

by the 61 blocks already fixed. The argument, which will be illustrated

for one block, repeatedly uses the fact that two blocks of C intersect

either in no objects or in two objects. Since these 16 blocks comprise a

BIB design with objects 7, 8, ... , 22, and;" = 2, we may assume that two

blocks have the form

(i) 7 8 x -

(ii) 7 8 - - - -.

The remaining objects in (i) and (ii) must be distinct.

Because of blocks

1278910,
3 4 7 8 11 12,
5 6 7 8 13 14,

(i) and (ii) cannot conta1n any of objects 9, 10, 11, 12, 13, 14 and must

therefore contain all of objects 15, 16, ••• , 22. Let x = 15. Then (1)

contains the pair 7, 15 and because of blocks

3 5 7 9 15 17 ,
1 6 7 11 15 19 ,
2 4 7 13 15 21 ,

(i) cannot conta1n any of objects 17, 19, 21 and we have

(i) 7 8 15 - _ _,

(ii) 7 8 17 19 21 - •

Block (11) contains the pair 7, 19 and because of block

4 5 7 10 19 22
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cannot contain object 22; it contains the pa.ir 17, 19 and because of block

5 6 17 18 19 20

cannot contain object 18 or 20. We now ha.ve

(i) 7 8 15 18 20 22

(ii) 7 8 17 19 21 -.

The remaiIWlg blocks of 8
21

may. be completed by similar arguments, or by

easier arguments toward the end.

This completes the proof of Theorem 8.7.

We are finished with the contributions of this section to the theory

of negative Latin square association schemes, but we shall mention some by-

products.

Association scheme'~ in the case g =2 is another scheme outside the

Bose-Shimomot') classification and appears to be new. It has parameters

(8.39) v =77, _.
15" 4 :ljO i

n1 =16,
I

P1 ""
115 45 !

, P2 ""I •112
~ = 60, .j

It is readily constructed by identifying the 77 objects with the blocks of

the BIB design C, and taking two objects as first associates if and only

if the corresponding blocks are disjoint.

We have already noted that the matriX A1 has many submatrices of the

form of el , Gi, Dl , as the partition (8.2) can be carried out for v = n2

different choices of the initial object a. 8ubmatrices of the form dis­

cussed in Theorem 8.5 are even more numerous, as the refinement of (8.2) to
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2 . 2
the partition (8.30) can be carried out for ~ = (g + 2g-l)(g + 3g+l)

different choices of object 1. The number of partitions is thus equal to

the number Vn2 of ordered pairs a, 1 of second associates. Each submatrix

TEll Fl , F1J Gl , Hl is counted twice in this total, since the ordered pairs

a, 1 and 1, a lead to partitioned matrices which differ only by an interchange

Tof F1 and Fl' an interchange of Gl and Hl , l.Slld

an interchange of Gi and ui. In the case g "" 2, one detail of this is that

T
Al contains 3850 pairs of 16 x 16 sUbmatrices F1 and F1 for a total of 7700

incidence matrices of the symmetric design With r =6, ~ "" 2. These are

all equivalent under permutation of rows and columns. We remark that Hussain

[14] has shown that there are just three solutions of this design which are

ineqUivalent, and that the type arising here is his type I.

In the case g = 2, the 15 sets ~(i, j) "" ~(j, i), 1 ~ i < j ~ 6, have a

curious interpretation. Each set is an arrangement of the 16 objects

7~ 8, ... , 22 into four blocks of four objects. We assign four letters, say

A, B, 0, D, one each to the four blocks of each :j(i, j). We then arrange

the 16 objects in a 4 x 4 array, say

7 8 9 10
11 12 13 14

M =15 16 17 18
19 20 21 22

and use M With each ~(i, j) to define a 4 x 4 array M{i, j) of the letters

A, B, OJ D by the rule: for each object e e {7, 8, ... , 22} assign the

same letter to the position of M containing e as bas been assigned to the

block of ~(1J j) containing 9.

Then each letter occurs in four positions in M(i, j) and it follows

from (8.37) that these positions are occupied by four distinct letters in
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M(i, k), j ~ k. This means that M(i, j) and M(i, k) are orthogonal 4 x 4

squares, and for fixed i, the five distinct squares M(i, j), 1 < j < 6,- -
j ~ i, are a complete orthogonal set of 4 x 4 squares. The simplest

assignment of letters A, B, C, D to the blocks of the (i, j) in our

solution of the design =: leads to the squares M(i, j) displayed in the

following table.

TABLE 8.3

~
1 2 3 4 5 6

AAAA ABCD ABC D ABCD ABC D

1
I BBBB CDAB DCBA BADC ABCD

C C C C BADC CDAB DCBA ABCD
DDDD D C B A BAD C CDAB ABCD

AAAA ABCD ABCD ABCD ABCD
2 B B B B DCBA CDAB ABCD BADC

C C C C DCBA ABCD BADC CDAB
DDDD ABC D CDAB BADC DCBA
ABCD ABCD AABB ABAB ABBA

3 CDAB DCBA AABB CDC D CD D C
BADC DCBA CCDD ABAB BAAB
DCBA ABC D CCDD CDC D DCCD
ABC D ABC D AABB ABBA ABAB

4 DCBA CDAB AABB C D D C CDC D
CDAB ABC D C C D D C D D C BABA
BADC CDAB C C D D ABBA D CDC

ABCD ABCD ABAB ABBA AABB

5
BAD C ABCD CDC D C D D C BBAA
DCBA BAD C ABAB C D D C C C D D
CDAB BAD C CDC D ABBA D D C C

ABCD ABCD ABBA ABAB AABB

6 ABC D BAD C C D D C CDC D BBAA
ABCD CDAB BAAB BABA C C D D
ABC D D C B A D C C D D CDC D D C C

Each square M(1, j) is also listed as M(J, i) in this table. With

this duplication, each complete set of five pairwise orthogonal squares is

simply the set of squares in one of the six rows. It will be noted that
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the only Latin squares are M(l, 3), M(l, 4), M(l, 5) and M(2, 6), the first

three forming a complete set of three pairwise orthogonal Latin squares. For

a different assignment of objects 7, 8, ... , 22 to array M, the M( i, j) will

have the same orthogonality properties but need not include any Latin squares.

9. Parameters of designs. The emphasis in most of this :paper is on

PBIB association schemes rather than actual designs. This section, however,

presents and briefly discusses tables of arithmetically possible sets of

parameters for designs based on NL (n) association schemes. Under ~'Remarkstr ,
g

the tables include information which has come to the author's attention on

eXistence and non-eXistence of these designs, with references to published

literature or to some results of this section. A more systematic study of

detailed properties, construction methods, and nonexistence proofs

for NLg designs will be deferred to a later time. The present discussion

and tables are a preliminary report and are intended to facilitate such a

study, not take its place. In partiCUlar, the author has not made a recent

search of the literature on particular designs and may have omitted some

published results from the tables or duplicated them in the following

paragraphs.

iGiven a set of parameters v, ni , Pjk' ~, T, 0i for a two-class scheme,

we define a set of design parameters b, r, k, Ai' 9i to be arithmetically·

possible if the following well-known necessary conditions are satisfied.

rv=bk,

n A + n A = r(k-1).11 2 2
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a. > O· 1 = 1 and 2;
]. - I

if 0i > 0, 1 = 1 and 2, then b ~ v;

if 01 =0, 1 = lor 2, then b ~ v - Q1.

The special case ""1 = ""2 reduces to a balanced design and w1ll be omitted.

These conditions apply to all two-class designs but our tables are restricted

to the negative Latin square family. We assume ~ < n2 (in particular

omitting NLg parameters with nl :II n2, which are already available in tables

of Latin square parameters.) The tables include NL parameters for
g

all designs w1th r S 10, k S 10, all v,

all designs with r S 15, k S 15, v S 100,

and selected designs with r > 15 or k > 15, v < 100.

This range was determined by the desire to include a representative

sample of designs while keeping the tables at a reasonable length. It will

be observed that only a small proportion of the parameter sets are in the

range r S 10, k S 10 which has traditionally been called practical.

kGiven an association scheme with parameters v, ni , Pjk' the following

are some simple methods by which designs can be generated from the association

scheme itself.

In this and the two following paragraphs, i and j represent 1 and 2 in

some order. A design with parameters

can be constructed by taking as blocks all pairs of ith associates.
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A design with parameters

can be constructed by taking block e as the set {ith associates of el.

A design with parameters

can be constructed by taking block e as tbe set

{e} U h-th associate s of eJ.

In the Remarks column of the following tables, the notation R(a, b, ••• , c)

for a design indicates that it can be obtained by replication from the designs

for the same association scheme with serial numbers a, b, ••• , c. Its blocks

may be listed by merging the lists of blocks of those designs.

Each block 111 4l. po.rtkular. design, regarded as a set of k objects,

uniquely determines the complementary set of v-k objects. The complements

of the b blocks of a design Cl comprise a second design, the complement of (1.

It (i., has incidence matrix N, its complement has incidence matrix J.N and

properties which follow readily from (4.7) if Clis partially balanced. If

a two-class design has parameters v, b, r, k, Ai' the complement has the

same association scheme and parameters

v, b, r' = b-r, k' = v-k, Ai =b-2r + Ai •

Designs (9.3) and (9.4) for opposite choices of i are complements. A design

exists if and only if its complement eXists, and a few designs in our tables

are disposed of by first proving the existence or non-existence of the com-

plement.
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If A. =° in a 2-class design, each block must be a set of objects
J

which are pairwise i-th associates. In particular, any two objects of

ithe block must have the remaining k-2 objects among their Pii common i-th

associates. This gives us a lmown [3] necessary condition for a 2-class

design, where i and j represent 1 and 2 in some order.

i
If Aj =0, then k ~ Pii + 2.

A number of designs for which constructions by various methods are

lmown to the author are listed in the tables With the remark.. "Constructed,

to appear." The details.. which are beyond the scope of the present section..

will be presented in a later paper.
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TABLE 9.1

Parameters of Designs wi.th NLl (4) Assrosciation ~chemes

v =: 16"
r - ... ! Ql =: 10" 0:' =: 2"' 0 4 i

1
23 'nl =: 5" Pl =: l46J" P2 =: 3 6 t " ~= 5, T =: 1.

-..!

n2 =: 10"

No. v r k b i\1 i\2 91 92 Remarks

1 16 5 2 40 1 0 6 2 Constructed" [12]" (9.2)
and sec. 7.

2 16 5 5 16 0 2 1 9 Constructed, [12], (9.3).

3 16 5 5 16 2 1 5 1 Constructed, to appear.

4 16 5 8 10 1 3 0 8 Constructed" to appear.

5 16 6 6 16 0 3 0 12 Impossible, (9.5).

6 16 9 6 24 1 4 2 14

7 16 10 2 80 0 1 8 12 Constructed, [12], (9.2)
and sec. 7.

8 16 10 2 80 2 0 12 4 Constructed, R(l" 1) •

9 16 10 4 40 0 3 4 16 Constructed, Sec. 7 •
10 16 10 4 40 4 1 12 0 Constructed, Sec. 7 •

11 16 10 5 32 0 4 2 18 Constructed" R(2, 2).
12 16 10 5 32 2 3 6 10 Constructed, R(2, 3).

13 16 10 5 32 4 2 10 2 Constructed, R(3, 3).

14 16 10 8 20 2 6 0 16 Constructed, R(4" 4).

15 16 10 8 20 4 5 4 8

16 16 10 8 20 6 4 8 0 Constructed,to appear.

17 16 10 10 16 4 7 0 12 Impossible" eomplement of
No.5.

18 16 11 11 16 6 8 1 9 Constructed" (9.4).

19 16 11 11 16 8 7 5 1 Constructed, complement of
No.3 ..

20 16 12 6 32 0 6 0 24 Impossible" (9.5).
21 16 12 6 32 2 5 4 16
22 16 12 6 32 6 3 12 0
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TABLE 9.1 (Continued)

No. v r k b A A
2 91 92 Remarks1

23 16 15 2 120 3 0 18 6 Constructed, R(l, 1, 1).
24 16 15 3 80 0 3 9 21 Constructed, to appear.

25 16 15 3 80 4 1 17 5
26 16 15 4 60 1 4 8 20

27 16 15 4 60 5 2 16 4
28 16 15 5 48 0 6 3 27 Constructed, R(2, 2, 2).

29 16 15 5 48 2 5 7 19 Constructed, R(2, 2, 3).
30 16 15 5 48 6 3 15 3 Constructed, R(3, 3, 3).

31 16 15 6 40 1 7 2 26 R(5, 6) •
32 16 15 6 40 3 6 6 18 Constructed, to appear,

33 16 15 6 40 7 4 14 2
34 16 15 8 30 3 9 0 24 Constructed, R(4, 4, 4).

35 16 15 8 30 5 8 4 16 R(4, 15).
36 16 15 10 24 7 10 2 14 Complement of No.6.

37 16 15 12 20 9 12 0 12 Impossible, complement
has A1 = -1 •
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TABLE 9.2

Parameters of Designs with NL2(6) Association Schemes

v ;: 36,

n1 = 14, r 49] '-6 8l
(Xl ;: 21" 0" ;: 3,

P1 ;: 19 12 ,P2 =l8 12 . , (X2 ;: 14" l' = 2 •J
n2 = 21"

(This scheme is unknown.)

No. v r k b i\ i\ 91 92 Remarks
1 2

1 36 2 8 9 1 0 7 0 Impossible, (9.5).
2 36 7 3 84 1 0 12 5
3 36 7 4 63 0 1 10 8
4 36 7 7 36 3 0 22 1 Impossible, (9.5).
5 36 7 9 28 1 2 0 7
6 36 7 12 21 4 1 21 0
7 36 8 8 36 1 2 1 8
8 36 12 8 54 3 2 15 8
9 36 14 2 252 1 0 19 12

10 36 14 3 168 2 0 24 10
11 36 14 4 126 0 2 20 16
12 36 14 4 126 3 0 29 8

13 36 14 6 84 5 0 39 4
14 36 14 7 72 3 2 17 10
15 36 14 7 72 6 0 44 2 Impossible, (9.5).
16 36 14 8 63 4 2 22 8
17 36 14 9 56 5 2 27 6
18 36 14 12 42 5 4 15 8
19 36 14 14 36 7 4 25 4
20 36 15 15 36 9 4 36 1
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TABLE 9.3

Parameters of Designs with NL2(7) Association Schemes

v :: 491

13 P2 =[1:
(T :: 4,12 10J a1 :: 32,

n1 =16, P = !
1 112 20 , 21 1 a2 =16, T :: 2.

L _\

n2 =32,

(This scheme is unknown.)

No. v r k b ~ ~2 91 92 Remarks1
(No sets of parameters in
the range r < 15, k < 15).. - -

1 49 16 2 392 1 0 18 11 (9.2>-
2 49 16 4 196 3 0 22 1
3 49 16 7 112 0 3 7 28
4 49 16 7 112 4 1 21 0
5 49 16 8 98 1 3 9 23
6 49 16 8 98 3 2 16 9
7 49 16 14 56 1 6 0 35
8 49 16 14 56 3 5 7 21
9 49 16 14 56 5 4 14 7

10 49 16 16 49 3 6 4 25 (9.3).
11 49 17 17 49 3 7 2 30
12 49 17 17 49 5 6 9 16 (9.4).
13 49 17 17 49 7 5 16 2
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TABLE 9.4

Parameters of Designs with NL2(8) Association Schemes

v =64, 12J '\ m 45, II m 5,15l [n1 =18, P [2 P 6
1 = 15 30J' 2 = 12 32_ ' a2 =18, T =2.

~ = 45,

No. v r k b "'1 "'2 91 92 Remarks

1 64 6 4 96 1 0 8 0 Constructed, [19] .
2 64 6 16 24 0 2 0 16 Constructed, to appear,

3 64 9 3 192 1 0 11 3
4 64 9 6 96 0 1 6 14

5 64 10 10 64 0 2 4 2
6 64 12 4 192 2 0 16 0 Constructed, R(l, 1),
1 64 15 4 240 0 1 12 20 Constructed, to appear.

8 64 15 10 96 0 3 6 3
9 64 15 16 60 5 3 16 0 Constructed, to appear.

TABLE 9.5

Parameters of Designs With N,[,3 (8) Association Schemes

v =64,
[10 16] [12 15

l a1 =36, C1 =4,
n1 =27, P1 = 1620.' P2 = 15 20J, Ct2 = 27, ,. =3.

~ =36,

No. v r k b ~"1 '" 91 92 Remarks2
1 64 9 4 144 1 0 12 4 Constructed, sec. 1,
2 64 9 9 64 0 2 1 11
3 64 9 16 36 1 3 0 16 Constructed, Sec. 1 .
4 64 10 10 64 2 1 12 4
5 64 12 4 192 0 1 8 16 Constructed, sec. 1.
6 64 12 16 48 4 2 16 0 Constructed, Sec. 7..
7 64 15 10 96 1 3 6 22



TABLE 9.6

Parameters of Designs with NL2(9) Association Schemes

v = 81,
:-1 181

P2 =f 6
1~J '\ =60, " =6,n1 = 20, P =1 I

1 L18 42J' 45. 'a
2

= 20, ,. =2.14
~ = 60,

No. v r k b ~1 ~2 81 82 Remarks

1 81 10 3 270 1 0 12 3 Constructed, Sec. 7.
2 81 12 6 162 0 1 9 18

3 81 15 5 243 0 1 12 21
4 81 15 9 135 0 2 9 27

5 81 15 9 135 3 1 18 0
6 81 16 16 81 0 4 4 40

7 81 20 2 810 1 0 22 13 Constructed, (9.2).

8 81 20 3 540 2 0 24 6 Constructed, R(l, 1).

9 81 20 4 405 0 1 17 26

10 81 20 6 270 2 1 21 12

11 81 20 10 162 0 3 11 .38
12 81 20 10 162 .3 2 20 11
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TABLE 9.7

Parameters of Designs with NL
3

(9) Association Schemes

v =81,
i 9 20 1 1"12 ,18-: 01 = 50, cr = 5,I

n1 = 30, P =i i , P =1
1 i 20 2 ; 18

I ,
30' 311 02 = 30, 'T = 3.

...) L. j
~ =50,

No. v r k b 'lI. "'2 °1 °2 Remarks
1

1 81 6 6 81 1 0 9 0
2 81 10 6 135 0 1 6 15

3 81 11 11 81 2 1 13 4

4 81 12 6 162 2 0 18 0

5 81 15 3 405 1 0 18 9
6 81 15 5 243 2 0 21 3

7 81 15 15 81 2 3 9 18

8 81 18 6 243 3 0 27 0

9 81 20 4 405 2 0 26 8

10 81 20 6 270 0 2 12 30
11 81 20 10 162 1 3 11 29

TABLE 9.8

Parameters of Designs with NL2(10) Associa.tion Schemes

v =100, I- 211 ;- 6 16 i
P =1 0

a1 ::: 77, (j = 7,
I =1 60] ,n1 = 22"

56.1. '
P
21 !-21 ::_16 02 = 22, 'T = 2.

~= 77,

No. v r k b '" '" °1 °2 Remarks
1 2

No sets of parameters in
the range r < 20, k < 20- -

1 100 21 12 175 0 3 12 42

2 100 22 2 1100 1 0 24 14 Constructed, (9.2).

3 100 22 8 275 0 2 16 36
4 100 22 11 200 3 2 22 12

5 100 22 20 110 5 4 20 10

6 100 22 22 100 0 6 4 64 Constructed, (9.3).

7 100 23 23 100 2 6 9 49 Constructed,(9. 4)_
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TABLE 9.9

Parameters of Designs with NL
3

(10) Association Schemes

v :::I 100,
r 8 241 r12 211 c¥1 :::I 66, (J' :::I 6,

n
1

:; 33, P
1

:::I : !, P
2

:::I
!

i i,
l24 42j , 21 44; c¥2 :::I 33, ,. :::I 3.

66, L :J
n2 =

(This scheme is unknown.)

No. v r k b ')<..
\;~ 91 °2 Remarks

1
1 100 11 4 275 1 0 14 4

2 100 12 12 100 0 2 4 24

3 100 12 12 100 2 1 14 4

4 100 15 12 125 1 2 10 20

5 100 15 12 125 3 1 20 0

6 100 18 45 40 6 9 0 30

7 100 21 12 175 1 3 12 32
8 100 21 12 175 3 2 22 12

9 100 22 4 550 0 1 18 28

10 100 22 10 220 0 3 10 40

11 100 22 22 100 2 6 4 44
12 100 22 22 100 4 5 14 24

13 100 22 22 100 6 4 24 4



~

95

TABLE 9.10

Parameters of Designs with NL4(10) Association Schemes

v = 100"
r 18 251 r20

-l
24 i 01 =55" a = 5"

n1 = 44" P1 = I j , P =1 I ,

L25 30J 2 L24 30J ~ = 44" ,. = 4.
~= 55"

(This scheme is unlmown.)

No. v r k b A. A.
2 91 92 Remarks

1
1 100 11 5 220 1 0 15 5
2 100 11 11 100 0 2 1 21

3 100 11 20 55 1 3 0 20

4 100 15 12 125 0 3 0 30

5 100 21 12 175 4 1 32 2

6 100 22 8 275 1 2 16 26

7 100 22 22 100 3 6 4 34
8 100 22 25 88 7 4 30 0

9 100 22 40 55 7 10 0 30
10 100 23 23 100 4 6 9 29

The following table lists all arithmetically possible parameter

sets of NT... t~ with v > 100 in the range r < 10" k < 10.
g - -

TABLE 9.11

Other NT.. Parameters in the Range r < 10, k < 10
g - -

(These schemes and designs are unknown.)

SCheme
~

1 2 r k b A. A.
2 91 92v n .

P11 P112' 1

NL4(11) 121 48 72 17 20 9 9 121 0 1 4 15

NL4(14) 196 60 135 14 20 10 7 280 1 0 14 0

NL6(14) 196 90 105 40 42 10 10 196 1 0 16 2

NL
5

(15) 225 80 144 25 30 10 9 250 1 0 15 0



10. Generalized Lg~ NLg designs with m ,a;;,'s,;,;s..o;.,c..;;;i;.;.a...t_e_c,;,;l...a_s...s_e_s. The

Latin square family of two-class association schemes and designs can be

8eneralized in a natural way to a larger number of associate classes. The

three-class case has been discussed [22] by Singh and Shukla, who were aware

of the full generalization. In this section we describe the family of m..class

Latin square association schemes, then define an m-class negative Latin square

scheme.

If there exists a complete set of n..l pairwise orthogonal. Latin squares

of order n, we may obtain a set of n + 1 pairwise orthogonal squares (not

all Latin) by adjoining a square in which the i ..th letter occupies all

positions in the i-th row and a square in which the i-th letter occupies

all positions in the i-th column.

To define an m-class association scheme, m~ n+l, we arrange the n+l

orthogonal squares into m disjoint subsets, where, denoting by gi the num­

ber of squares in the i-th set,

8
1

+ ... + 8m = n+l •

2We arrange the n objects in an n x n array and take two objects as i-th

associates if and only if their positions in the array are occupied by the

same letter in an orthogonal square of the i-th subset. It can be shown

that this association relation is a partially balanced m-class scheme with

the following parameters.

2v = n ,

ni =gi (n-l) ,

i
Pii = (8i -l)(8i -2) + n-2,
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pij =P~1 =gj(g1- l ),

1
Pjj =g/gj-1),

i
Pjk =gj~'

1, j, k distinctl 1 ~ i, .1, k < m.

The above definition is more restrictive than necessary. Deooting

we may still construct the m-class Latin square scheme 1 f a set of g pair­

wise orthogonal squares eXists (equiwlently, g-2 such Latin squares).

Associate classes 1, 2, ••• , m-l are defined as before and objects are

taken as m-th associates if they are not associates of any other class.

Expresssions (10.2) apply. It may be conjectured that association schemes

with these parameters eXist in still more cases, though it may be preferable

to treat them as a generalized Eseudo-tatin square family in any cases where

the orthogonal squares are not actually used.

It is now completely straightforward to define a generalized negative

Latin square family of association schemes by using negative integers n,

gl' ... , ~ in expressions (10.1) and (10.2). In terms ~f poSitive, parameters

* * * *n , gi' we take n = -n , gi = -gi' and Bubstitute in (10.1) and (10.2) •

Dropping the stars, we have

(10.4)

gl + ••• + gm =n - 1,

2v = n ,
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i
Pii = (gi+l){gi+e) - n - 2,

i i
Pij =Pji =gj(gi+l ),

i
Pjj :II: Sj(gj+l),

i
Pjk = gjgk'

i, j, k distinct, 1 < i, j, k ~ m.

These parameters are integers satisfying conditions (1.4) and (1.5) and all

except possibly pii are non-negative. The requirement

places a lower bound on gi for a given n, i =1, ... , m, and (10.3) then

places an upper bound on the number m of associate classes for a given n.
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