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1. General properties of designs and association schemes. In a

balanced or partially balances incomplete block design, a collection of

b subsets, called blocks, is chosen from a set of v objects, commonly

called varieties or treatments, in such a way that every block contains

the same number k of objects, every object occurs in the same number r of
blocks, and a further regularity condition holds for the number of occurrences
together within blocks of peairs of distinct objects. In a balanced incom-
plete block (BIB) design this number has the same value M for all pairs

of distinct obJjects. In an m-class partislly balanced incomplete block
(PBIB) design [5, 18], any two distinct objects are related as first, second,
«ssy Or m-th associates in accordance with rules to be stated in (l;l), and
all pairs of obJjects which asre i-th associates occur together in the same
number Ki of blocks. The arrangement of pairs of distinct objects into
associate classes is called an m-cless association scheme and involves
parameters n,, p?k, i, J, k=1, 2, vee, m« We denote by Pi the matrix
whose element in the J,k position is ij' Association schemes have been
found useful in the combinatorial study of PBIB designs, as well as in the
analysis of data from experiments in which these designs are spplied. To

each association scheme there corresponds a family of designs which share

1 Prepared with the partial support of the National Science Foundation,
Grant GP-1660.



this association scheme and have common values of certain parameters, including

vy, Dy, pék, but which differ in the arrangement of objects into blocks and

in values of b, r, k, and hi'

An m-class association scheme with v objects is defined by the following

conditions [6].

(1) Any two distinct objects are either first, second, ..., or m=-th
assoclates.

( : )(ii) Each object has n, i-th associates, 1 =1, ..., m.

-t (1ii) For any pair of the v objects which are i-th associates, the
number pzk of objects which are j-th associates of the first
and k-th associates of the second is independent of the pair
of i-th associates with which we start.

The following are well-known identities which can be derived from this

definition.
m
L n =v-=-1l,
i=1 *
i i
p,jk-pkj,
(L2) 5 gt y
1.2 L po=1n,J#1,
k=1 Jk i
=ni"l,j=l’
i J

BiPsp = B4Pyye

These rélations among the parameters make it possible to simplify the
definition. A two-class association scheme with v objects may be defined

by the following conditions [3].



(1.3) (i) Any two objects are either first or second associates.

(ii) Bach object has n, first associates.

(i1i) Given any two objects which are i-th associates, 1 = 1, 2, there
are exactly pil other objects which are first associates of both.

Then, defining other perameters by

(1.4) n, +n,

=V - l,
11 2 2
Pyp = Poys Pyp = Ppy»

1l 2

1 2
Py FPp TR tPpp =

l’

1 .1 2 .2
*Pyp tl=n

P1p ¥ Ppp = Ppp 2!
. each object has B, second associates and, given any two objects which are

i-th associates, there are P?k other objects which are j-th associates of

the first and k~-th associates of the second. Also,

’ 1 2 1 2
(1.5) B1P1p = DoPyqs ByPpp = DoPyoe

If N is the v x b incidence matrix of objects and blocks in the
design, then the v x v symmetric matrix NNT has only three distinct charac-
teristic roots eo, el, 92, with multiplicities ab, ai, Ob respectively,

where Z ai = Vv, 6. may be expressed

0

. = ’- A
(1.6) B =T oy ¥R

and 0y =1if NNT is irreducible (equivalently if the design is connected).

Then

. (107) (07 + 04 =V "l °



If we define
' 2 1
(1.8) 7 = P12 - P12’

2 1 2

>4
i

(A% -7 - l)/E,

q
fl

-3
1

S (47 - 1)/

then it has been shown [13] that

(1.9) el =1 + le + Az(-T -1),
1 - - }\
0, =T + Kl( o -1) + 275
. (1.10) o, =Llon, + (o0 + L)n ]/A%
* 1 1 2 ?

a, = L(7 + 1)nl + T n2]/A%;

The parameters y, b, o, T, Gy, Op depend only on the association scheme and

not on blocks. Other known relations [17] that will be needed later are

(1.11) vain, = b8Q O
1

(1.12) Py, =o(T +1),

Pyp = 7(0 + 1),

If in a two-class association scheme we interchange the designation
of first and second associates we obtain another association relation
which satisfies (1.1). Two association schemes related in this way will

said to be
. be/complements of each other. If a scheme has parameters



n, = (
1 ’ _recad _rfeg
V, Pl-[de], PQ—[gh]’
n2 =m,
its complement will have parameters
n, =m
1 ? _rheg _red
v, Pl-[gf]; Pe—[dc]c
n2=1,

There are m-class schemes for m > 2 which differ only by a permutation of
associate classes, although the term "complement" is not appropriate in
such cases,

Most known two-class PBIB designs have been classified by Bose and
Shimemoto [6] into five types, distinguished primarily by the structure of

their association schemes. The simplest type is group divisible, in which

the v = mn objects are arranged into m disjoint groups of n objects, and
objects are first associates if and only if they are in the same group.

For a group divisible scheme,

(1.13) v = mn,
nl = n-1, P = [n-2 0 ] p = 0 n-1 ]
1-"0 n(@1)"? 27 "n-1l n(m-2)" °
n, = n(m-1),

Cyclic type schemes are defined in terms of certain combinatorial properties
and have parameters which may be expressed as follows in terms of an integer

t.

(1.1h) v=Ut +1,

g/
1

t-1t t %
[ t t] ’ Pe B [t t-l] ’

2t.

B
1
B
]
Q
il
Q
i



Association schemes with parameters (1.12), whatever their combinatorial

structure, will be called pseudo-cyclic. In the next section we take up

Latin square association schemes, esnother type in the Bose-Shimamoto class-
ification, then introduce the new family of designs, negative Latin square,

vwhich are the principal topic of this paper.

2. Negative Latin square designs., An association scheme of Latin square

type with v = n2 objects and g constraints, which we denote as an Lg(n) scheme,
is defined by an n x n square array of the objects and a set of g-2 pairwise
orthogonal Latin squares of order n., Two objects are first associates if

and only if they occur in the same row or column of the array or in positions
occupied by the same letter in any of the Latin squares. If to the set of
Latin squares we adjoin two more n x n arrays of n letters, one in which

the 1-th letter occuples all positions in the i-th row and another im which
the i-th letter occupies all positions in the i-th column, we have g pair-
wise orthogonal squares (not all Latin) and may define first associates
somevhat more symmetrically as objects which occur in positions occupied by
the same letter in any of the squares. Finite nets [7, 9] and orthogonal
arrays [11) may be used as the basis for equivalent definitions. Lg(n)

parameters are given by

(2.1) v =n®,

(e-1)(g-2)#n-2 (n-g+1)(e-1)

= g(n-1) , [(n-g+l)(8-l) (n-g+1)(n-g)

oy

n, = (p-g#1)(n-1) , _ [8le-1)

g(n-g) (nvg)(n-g-l§+n-



These lead to further parameters

@ = g(n-1), o, = (n~g+1)(n-1) .

Association schemes with parameters (2.1), whatever their combinatorial

structure, will be called pseudo-Latin square.

Since there can be at most n-1 pairwise orthogonal Latin squares of
order n, g cannot exceed n+l; moreover, if g = n+l, all pairs of objects are
first associates and the design reduces to a BIB design. The result is the
same with g = O,

A Latin square association scheme with g = 1 constraint is a special
case of a group divisible scheme, while it is easy to show that its complement

has this structure in the case g = n. We may therefore assume
(2.3) 2<g<nm-l.

We observe that the complement of a Latin square association scheme with
g constraints is a pseudo-Latin square scheme with n+l-g constraints. This
was illustrated in the preceding paragreph and becomes obvious if we use the

brief notation f = n+l-g and note pairs of symmetric expressions such as

n, = g(n-1), n, = f(n-1),

and

1 2
Ppp = £(£-1), py; = ele-1) .

As a result, any pseudo-Latin square association scheme may be reduced by

choice of notation to a pseudo-Latin square scheme with

(2.4) 2<g< (ntl)/2.



These are simply the schemes of this family for which nl < n,. An example
will show that not all pseudo-Latin square schemes have Latin square struc-
ture. An L3(6) scheme can be constructed from any 6x6 Latin square., Its
complement then has Lh(é) parameters but cannot have Latin square structure
since no set of 4-2 = 2 orthogonal 6x6 Latin squares exists. On the other
hand, it is known [21, 9, 16] for a wide range of values of n and g that an
association scheme with parameters (2.1) necessarily corresponds to a set
of g-2 pairwise orthogonal Latin squares of order n.

While minor infringements of inequality (2.3) lead only to trivial
special cases, we now obtain something interesting by committing a major
violation, Negative values of n and g lead in wmany cases to parameters (2.1)
vhich sre non-negative integers. These parameters satisfy conditions (1.4)
and (1.5), vhich reduce to algebraic identities in n and g, but differ from
the parameters of any of the types of association schemes in the Bose-Shimamoto
classification. This suggests the existence of a new series of 2-class PBIB
designs, based on association schemes with such parameters. The name negative
Latin square will be used for designs and assoclation schemes in the new series.
The simplest case is n = -4, g = -1, giving the following, which could be

termed L_l(-h) parsmeters,

v = 16,

n, =5 p. =[Ok, p (23,
157 1567 2 T3 6]
n, = 10,



Designs are known with these parameters, showing that the negative Latin
square family of designs 1s not vacuous.

Instead of using (2.1) with negative srguments for negative Latin
square parameters it is convenient to have expressions in terms of positive
arguments, which we shall still denote, however, by the same letters n and g.

Then using the negative integers -n and -g in (2.1) we arrive at

(2.5) vent, (g+1)(g+2)-n-2 (n-g-1)(g+l
Py = [(gfszli(gllg (2-2-1;(§fg;]'

n, = g(ntl) ,
[s(s+1) g(n-g)

n, = (n-g-1)(n+1) , Po = l(n-g)  (ne) (n-gr1)-m-e™

In terms of the positive integers n and g, we denote these as NLg(n) parameters.

Using (2.5) in (1.8) and (1.10),
2
(2.6) o = n-g-l, T=g, A =n%,

o = (n-g-1)(n+1), o, = g(n+1),

Alternatively, values of o, T, o, could be obtained by using the negative
integers -n and ~g in (2.2). This amounts to using the negative square root
of & in (1.8) and leads to negative values of ¢ and T, finally giving values
of eiand o, which differ from those of (1.9) and (2.6) by an interchenge of
indices 1 and 2. In adopting expressions (2.6) we are following the customary
[13] notation for o, and a,.

The sbbreviations Lg(n) and NLg(n) will sometimes be shortened to Lg and
NLg when it is not necessary to specify the value of n.

Like the pseudo-Latin square family, which is also defined in terms of

the form of its parameters, the negative Latin square family of association
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schemes contains the complement of each of its members; specifically, the
complement of an NLg(n) scheme is an NLn-g-l(n) scheme, As a result, any
negative Latin square scheme may be reduced by choice of notation to one

for which
1
g < 5(n-1),

or equivalently

The requirement that pil is non~-negative places a lower bound on g.

If n is odd, we note that L%(n+l)(n) parameters are identical with
NL%(n-l)(n) parameters and that both agree with pseudo-cyclic parameters
(1.14) with argument t = (n2-1)/h. These are the only Lg or NLg schemes for
which n, = n, and the only pseudo-cyclic schemes for which v is a square.

No other schemes are common to any two of these three families.

All NLg(n) parameters satisfying n < n, are listed in the following

1 2

table for the range n < 10, The six schemes which were previously known and
the four which are comstructed for the first time in the present paper are
identified in the "Remarks" column, together with references to publications,
to known schemes in the Latin square family, and to sections of this paper in

vhich constructions are presented. Parameters of designs with NLg(n) associa~

tion schemes will be tebulated in Section 9.
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TABLE 2.1

PARAMETERS OF ng(n) ASSOCIATION SCHEMES

Scheme v n, n, Py pil Remarks
ML, (3) 9 4 b 1 2 Known, L,(3); Sec. 5
M, (%) 16 5 10 0 2 Known, [12]; secs. 4, 5, 7, 8
NL2(5) 25 12 12 5 6 Known, L3(5); Sec. 5
NL2(6) 36 1k 21 b 6

ML, (T) k9 16 32 3 6

NL3(7) b9 2 24 1 12 Known, L, (7); Sec. 5
M,(8) 64 18 ks 2 6 Known, [19]

NL3(8) 64 27 36 10 12 New, Secs. 5, T
NL2(9) 81 20 60 1 6 New, Secs. 5, 7
NL3(9) 81 30 50 9 12 New, Sec. 5

NLh(9) 81 40 Lo 19 20 Known, L5(9); Sec. 5
NL2(10) 100 22 77 0 6 New, Sec, 8

NLB(lo) 100 33 66 8 12

M, (10) 100 55 18 20



3. A characterizing property. We observe that for association

schemes of pseudo-cyclic, pseudo-Latin square and negative Latin square
types, the multiplicities ai, Gé of the characteristic roots of NNT are
equal in some order to the numbers n,, 0, of objects in thg two associate
classes, This proves sufficiency in the following theorem. The necessity
statement shows that this property characterizes these three types of
association schemes.

Theorem 3.1, In order for the parameters al, aé in a two-class
associlation scheme to be equal in some order to the parameters ny, Dy, it
is necessary and sufficient that the scheme be of pseudo-cyclic, pseudo-
Latin square or negative Latin square type.

Before completing the proof of this theorem, we state a simple lemma.
Lemma 5.1, The parsmeters al, e, in a two-class association scheme

are equal in some order to the parameters n., n. if and only if v = A,

1’ 2
Proof of lemma. From (1.4) and (1.7),

+n. =0 +

By 70y =0 7O, .

1

The lemma follows from this and (1.11).
Proof of theorem (necessity). If the scheme is of pseudo-cyclic type
we are finished. If not, then by Theorems 5.3 and 5.5 of [13], A is the

square of an integer n, and using the lemma,

n2=A=V.

Then

(3.1) n, p° -1-n
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Using (1.8),
(3.2) 0'+T+l=A%=n,

partially identifying o and 7.
Case I. Suppose n, = Q,. Then from (1.10) and (3.1),
2
n, = (o n, + (o+1)(n -l-nl)]/n ,
reducing to

n, = (c+1)(n-1) .

This identifies o and T completely. If we set o+l = g we have

[=}
1}

, = &n-1) ,

n, = (a-g#1)(a-1) ,

and from (1.12),

1

Py, = (e-1)(n-g#1) ,
2

r, = &(nee) .

Thg parameters v, n,, pia are of the form of (2.1), and it follows from
(1.4) that the same is true of the remaining p?k. Therefore the scheme is
of pseudo-Latin square type.

Case II. Suppose n. = O.. Then using (1.10) and (3.1) as in Case I

1 2
wve find

n, = 7(n+1)

and setting T = g we again use (1.12),this time arriving at parameters of
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the form of (2.5). Therefore, the scheme is of negative Latin square
type and the proof is coumplete.

It is clear from Lemma 3.1 that the condition on n, and o, in
Theorem 3.1 could be replaced by the condition v = A, The fact that v is
& square is a distinctive property of the Latin square and negative Latin
square schemes but is not peculiar to them, as shown,for example,by numerous
group divisible schemes and by the triangular scheme with v = 36. However,
inspection of a list of arithmetically possible parameters for two-class
assoclation schemes leads to the interesting conjecture that when v is a
square, a high proportion of these parameters fell in the group divisible,
Lg end NLg series, As an illustration, in the range v < 100, v a square, nls Dy
there are at most 65 sets of two-class parameters, of which 59 are in these

three series,

L, Some Preliminary Theorems. Several results, most of them from

other sources, which will be needed in Sections 5 and 7 for the construc-
tion of association schemes, are collected in this section for convenient
reference,

In an association scheme with classes 1, ,.., m, we may introduce a
zero-th associate class by letting each object be the zero-th associate of

itself and of no other object. We define additional parameters

no=l,
0
= O otherwvise, ’
i i co s

0 otherwise,
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This convention increases the concisenessand symmetry of many statements
about association schemes and their parameters, We shall retain the
term "m-class" for a scheme with clesses O, 1, ..., m.

The method of differences was introduced for comstruction of incom-
plete block designs in the module theorem of Bose and Nair [5] and later
stated in somewhat greater generaiity by Sprott [23]., The following is
the portion of the theorem which epplies to associetion schemes, using
the terminology of the zeroth sssociate class.

Theorem 4.1, Module theorem, Let the elements of an additive
Abelian group G of finite order v be partitioned into disjoint sets

Cﬁa = {0},<31, ooy Gpo Let (i, comtain n, elements, demoted by

Gy = {ai,l’ HPORITY ai,ni}.

We set up an assoclation reletion among the elements of G by taking y
as an i-th associate of x if and only if the difference y-x is in (ﬁf Then

each element has n, i-th associates, and the relation is an m-class
agsociation scheme with perameters v, n,, Pik if and only if

(1) each group element is in the same ¢}, as its inverse;

i
(i1) for any i, j, k in the range 0, 1, ..., m, and for any fixed
element x exii, there are exactly p?k ordered pairs u, w, where

1<uc< 15, 1< vw<n, such thet
("l’.l) a. - 8 = X PY
’

Our application of the module theorem will be to the additive group
of a finite field, using the multiplicative group in the construction of

the sets qi. Our procedure is similar to that of Sprott, but a self-con-
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tained account will be given here.

Theorem 4.2, In a finite field of order v with additive group G and
multiplicative group G', let m be a divisor of the order v-1 of G' such
that N = (v-l)/m is even if v is odd, and let € be a generator of G'. Let
GO = {O}, let(zl be the multiplicative subgroup of order N generated by §m,

and let Gi’ i=2, ..., my be the coset of G, which contains §l'l. Define

1
an association relation (v, m) in which two elements X, y of G are i-th
associates if and only if y—xegi, i=0,1 ..., m, Then for i, j, k in

the range i, ..., m and interpreted wmodule m where necessary,

(4.2) %(v,m) is an m-class partially balanced association scheme
i
with parameters v, n, = N, pjk’
i i 1
(4.3) Pik = P41, k1 T Pyaed, ko141’
(bo4) pi is equal to the number of elements of - which occur
ik J-141

in the set obtained by sdding the unit element 1 to ¢sch

element of Cpuitl®

Proof. To prove (4.2) we shall verify that the sets G satisfy
conditions (i) and (1i) of Theorem 4.1, The first of these conditions is
automatic if v is even, since in this case every nonzero element is of
order 2 and is its own additive inverse., If v is odd, the unit element 1

is given by

l=§mN

and its additive inverse is given by

-1 = (gm)N/2’
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vhere N/2 is an integer by hypothesis. Therefore -1 is an element of

the su.bgroup(;1 generated by gm. It follows that for every element y of any

Gi, -y = y(gm)N/2 is also in(}i, .verifying condition (1) of Theorem k.1.
An element x = & €G , may be expressed
i,t i
a - gmt + i-l,

1,t

and (4.1) may be written

(L.5) gmu + j-1 - gmw + k-1 - gmt + 1.1 .

This equation is equivalent to

(4.6) gm(u-t) + J-1 gm(w-t) + kel gi'l ‘

As u and w range independently over the residue classes 1, 2, ..., N modulo

N, the same is true of u-t and w-t. Then each of gm(u-t) and gm(w-t)

ranges
overg ., and the two terms in the left hand side of (4.6) range independently
over g andctk. The number of solutions u,w of (4.1) and of (4.5) is thus

equal to the number of solutions of
(4.7) a, -a _ =t"1

But this is independent of t and hence of the particular element x chosen

i
(ii) of Theorem 4.1, completing the proof of (4.2).

fromG ,. Denoting the number of solutions by p?k’ ve have verified condition

Multiplying (4.5) by Ed gives the equivalent equation

(4.8) gmu +) +Hd-1 gmw + k + d-1 - gmt-ki -1 ,
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which has the same number P?k of solutions for fixed i, Jj, k, t. But this

number of solutions may also be interpreted as pgig’ k+d’ where indices are
reduced modulo m to f£all in the renge 1, 2, ..., m. €% and €4 are in the
same coset of(;l, and reducing wodulo m merely means that the cosets are

still designated by the representatives named in the theorem, With this

interpretation of indices, we have

i i+
Pik = Pj+a, x4 °

and two special cases give (4.3).

From (4.7), p%k is the number of solutions u,w of

(%.9) 8y u = %t L

that is, the number of elements of'aJ in the set obtained by adding the
unit element 1 to each element of'ak. Together with (4.3) this gives (4.4)

and completes the proof of Theorem 4.2,
3

Determining the m” parameters ng of an m-class association scheme is
considerably simplified for the +4(v,m) schemes by (L.3), vhich says that

matrices P2, ceey Pm may be obtained from P, by cyclic permutation of rows

1l

and columns. The standard relations pgk = pij and nipf].‘k = njpgk, the latter

of which may be simplified because n, = n,, reduce the m2 parameters pﬁk to

i J
a subset of epproximately m2/6 of them, The analogous number of independent
parameters in the absence of (4.3) is m:/6. Enumerating solutions of (4.9)
to find the independent ng values is still a non-trivial problem. It can

be reduced to finding the number of ordered pairs u,w, where 0 < u <mu,

0 < w <m, such that the equation
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k +aw

gJtmu g +1=0

(4.10)

holds in GF(v). This problem in finite fields has been extensively
studied, especially in the case of prime v, but not solved completely.
A survey is given in [8].

For given v, m, the association scheme:}(v,m) is determined uniquely
up to a certain permutation of associate classes 2, 3, ..., m. Since G' is
a cyclic group, the subgroupczl of a glven order N is unique, and with it the
first associate class, The partition of G' into cosets is also unique. How-
ever, there are #(v-1) choices of the generator §, where %is the Euler totient
function, and different choices may result in different assigmments of the
indices 2, ..., m to the cosets. The indexing of elements within cosets will
also be affected, but this is irrelevant for the association schemes. If s
is a positive integer less than and prime to m, and if instead of the generator

g we use a generator 1 such that

t =8 (mod m),

i-1

then the coset representative § will be expressed

gl-1 _ ns(i-l)

and the 1i-th associate class in our original formulation will receive g
nev index congruent modulo m to 1 +8(i-1). The number of different permu-
tations of associate classes that can arise for a given v and m will thus be

$(m), the number of possible values of s.
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The associationmatrices A , A , «¢o, Am of an m-class association

0’ "1
scheme are matrices of order v defined by

' 1
(1.11) Ay =1, A = (a$3))
vhere &i) = 1 if objects p and v are i-th associates,

O otherwise,

Clearly Ai is a symmetric matrix with all row and column sums equal to n,.
We may prove [2L4, 4]

Theorem 4,3, Matrices A = I, Al, ey Am are assoclation matrices of

0
an m-class partially balanced association scheme with parameters v, n, = pgi,
p}k if and only if
(4.12) each A, is a symmetric v x v matrix of O's and 1's,
(4,13) Z A = J, the v x v matrix of 1l's,
| i=0
(4o1k) JAk = Z p sk Ay 3y k=0, 1, voo, m.

This theorem can be simplified as follows in the case m = 2,

Theorem 4.4, A; is the first association matrix of a 2-class partially

balanced association scheme with parameters v, n,, pék if and only if,

defining A2 =dJd -1~ Al’

(4.15) A, and A, sre symmetric v x v matrices of 0's and 1's,
2 1 2

(k.16) A" =1, I+ Py Ay * B3 A, -

Useful information can be obtained from certain submatrices of

and A for a 2-class scheme

association matrices, We partition matrices Al o



into submatrices whose sets of rows and columns correspond to an initial

object &, the eet of n. first associates of ¢, and the set of n_, second

1 2
associates of @. For convenience, we may choose notation so that o is in
leaeding position with its first associates in the next n, positions. The

following illustrates the partition and defines notation for the submatrices.

r~ 1 ™ . -
(4.17) 0/1...200...0! .toi 0 eee O t1 ... 1
¥ i ¥
1 ? : o
. ! ~ e
; P
. B, ¢ § K B, C,
Al= l g’ A2 = O i
0 i 1
. T i . T |
. € D, ! .| € | D,
0 ? j 1
: ] - —

!

B, and B, are symmetric n. X n, matrices; D, and D, are symmetric n, X n

1 2 1l 1 1 2 2 2
matrices,
R T 1
Lemma 4,5. Submatrices Bys Cl, Cl’ D, have uniform row totals p,,

1 2

Pipr Pyy2 Pip respectively.

Proof. The inner product of rows 6 and ¢ of Al is equal to the number
of first associates common to objects 0 and ¢. The results for Bl and CE are

obtained by setting 6 = 1 while ¢ ranges over the remaining rows. The results

for C1 and Dl follow by subtraction from the uniform row totals n

Theorem 4.6. A partitioned matrix A

1 of Al'

1 of the form (4.17) is the first

association matrix of a two-class partially balanced association scheme with

parsmeters v, n., pgk if and only if, defining A_ =dJd - I - A

o 12 and defining

submatrices of A2 by (4.17), -

(4,18) Al and A2 are matrices of O's and 1's,



(k.19

(k.20
(.21
(k.22

(k.23

Proof,

of Al

(4,24

class scheme. Then (4,18) to (4.20) hold, (4.16) holds and implies

) B, and D

1
respectively,
1 T 2
) Bl has row sums py, and C] has rov sums Py,
2 T 1 2
) J + Bl + Clcl = nlI + pllgl + pllﬁe,
1 2
) B\Cy +CyDy =133C; * P340
T 2 1 2
) clc:L + D1 = nlI + pllDl + pllD2 .
If A, is any partitioned matrix of the form given in (4.17), the square
is given in part by -
!
\ 1
Lo 2 T
) iJ +B] + clcl BlCl +C.D,
A2'-:=‘ B
1
! T T T 2
I iciBl + DlCl Clcl + Dl
Lo -

Now suppose A1

- R | 2 2
(h025) ! nl —‘:‘ pll e o o o pl}( P-‘ll e o pll
1
Pyy
< 1 2 1 2
« 0T Py + BP0 F PGy
.
Ai _ [ P
2
Py
* 1T 2 T 1 2
. P30 *+ P13 o, I+ 937Dy + 240
2
Pry | ,

and comparison of (4.24) and (4.25) gives (4.21) to (4.23).

are symetric matrices of order n, and n,

¥

22

is the first association matrix of the specified two~
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Convers:ly, suppose A. satisfies (4.18) to (4.23). (4.18) and (4.19)

1
imply (4.15), (L4.24) holds, and with the aid of (4.17) to (4.20) the first
row and column of Ai may be shown to be as in (4.25), while (4.21) to (4.23)
give the rest of (4.25). But (4.25) implies (4.16), and by Theorem 4.k, Al
is the first association matrix of a two-class scheme with the specified
parameters,
While our primary concern in this paper is with association schemes,
some balanced and partially balanced designs will be discussed in Sections
7 and 8; The next theorem and corollary are well-known characterizations of
these designs in terms of the incidence matrix N of obJjects and blocks.
Theorem 4.7. N is the incidence matrix of objects and blocks in a
PBIB design with parameters v, b, r, k, hi’ n,, P?k if and only if
‘ (i) N is a v x b matrix of O's and 1's,
(ii) every column of N contains exactly k 1's,
(ii1) M = T+ MA + .o+ M A, uhere
(iv) A;, «+s, A satisfy the conditions of Theorem 4.3 or Theorem k.4,
Corollary 4.7.1. N is the incidence matrix of obJects and blocks in a
BIB design with parameters v, b, r, k, A, if and only if
(1) Nis a v x b matrix of O's and 1's
(ii) Every column of N contains exactly k 1's,
T

(iii) NNT = rI + A(J-I).

A matrix of the form rI + KlAl + ... + KmAm’ whether or not it arises
as a product NNT, has characteristic roots whose values and multiplicities
are of some interest and have been discussed, for example, in (4], 1In the

case m = 2 they are given by expressions (1.6) to (1.8) in this paper.
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It is sometimes possible to construct an m-class association scheme
¢ by the device of combining associate classes in an m~-class scheme'é\with
the same v,‘a > m. In terms of association matrices, this means that the
matrices Kl’ eosy Aﬁ of scheme a\are arranged into m disjoint non~empty sets,
and the i-th association matrix of ¢ is taken as the sum of all matrices in
the i-th set. The resulting association relation does not in general meet
the conditions of partial balance; necessary and sufficient conditions that
it will do so are derived in Theorem 5.1 of [4] and are stated in Theorem 4.8
below for the case m=2, We continue to use the notion of the zero-th asso-
ciate class.

Theorem 4,8, Given a partially balanced association scheme 6\with more
than two classes and with parameters v’.ﬁa’/ﬁgg’ let the indices of the
associate classes be partitioned into disjoint sets SO = {O}, Sl’ 82.

Define a two-class association relation ¢ in which two objects are taken

N

as i-th associates if and only if their associate class in g has its index

in Sl' Then (; satisfies the conditions of partial balence if and only if,

for i =0, 1, 2 and for some integers pil,

(4.26) z 'ﬁav = pi , uniformly for o € S, .
B, ves ﬁ v 11 1
1

If (4.26) is satisfied, g has parameters v, pil, vhere n, = pgl

other parameters n,» pgk are defined by the standard identities (1.3).
We note that for i = 0, (4.,26) reduces to the statement = ﬁ& =n, ,
Qes
1
which is equivalent to = ﬁ& = D, For 1 = 1, 2, the left hand side of
Q€S
2

‘ 5 oo
(4.26) represents pil as the sum of the elements of a submatrix of P.

Somewhat more generally, if (4.26) is satisfied, then for i, J, k =1, 2,
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‘ and for any o € Si ’ p?}ik is the sum of the elements of the submatrix of
Jﬁa which has Sj as its set of row indices and Sk as its set of column
indices,

Example., As the objects in an association relation /f: take the 16

ordered quadruples

0000 0100 1000 1100
0001 0101 1001 1101
0010 0110 1010 1110
0011 0111 1011 1111

and take two objects as i-th associates if they differ in exactly i positionms,

By interpreting the quadruples as rectangular coordinates we may interpret
. the objects as the 16 vertices of the Y-dimensional unit cube, two vertices

being i-th associates if their distance is ‘/i. (3 is found to be a k-class

association scheme with parsmeters

V=l6,

ﬁl=)+, [~ T B B B 7 P )
R 0300 2020 0301 ooko
ny =6, . 3o3o =~ Jjoko1i % |3030] % 0600
- Pl— ’ PE—- ,P3= k) Ph=

n, =k, 0301 2020 0300 L000
N 0010 0000
A - 1, ( ) 0100 1000 0000

P N
The matrices P o 2re repeated below, with PO included and with zero-th row

and column adjoined to each to display the -ggv vith zero indices. Ve mow

combine associate classes, taking S = {0}, s, = {3, 41, 8, = {1, 2}. Tme
watrices below are partitioned into the submatrices described in the preceding

paragraph.
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1i00l00 0110100 ojo1loo]

. |omooo] . |TTo3Too| . [0TEOTIEO

Py =100 6:00f , 1= 013050, P,=1]110 Lio1lf
5T00 50 5TO3T0 1 oIz 0TZ0
0100101 010010 00100
0100 {10 0. 00{01

. Pjo3i01 . |0T00 %O

Py=f0 3050 , B =f0,06 00|,
170300 6‘fﬁ"ﬁ”‘6‘6
01000 1'00]0 0]

The submatrices over which the sum in (4.26) is taken are, respectively,

Lo 01 20 00 00
’ ’ ’ ’ )
01 10 00 00 00

and the sums are 5 for ¢ € S O for o € Sl, 2 for @ € S,, showing that the

0’ 2

~ is the two-class scheme with parameters

o

new association relation

V=16,

_ 10 4 _re2s
n, =5, B = [, 6], P, = [3 6].
n, = 10,

This is the Negative Latin Square.type scheme NLl(h). An isomorphic scheme
is obtained by teking S, = {1, 13,

In Section 5, Theorem 4.8 will be applied to some schemes ; of the
(v, m) Pamily. Sums of elements ofvﬁa in these schemes, @ = 2, ..., m,
may be expressed as sums of elements of §i by suitable application of (4.3).
A rather simple consequence of (4.3), stated as a lemma for later reference,

is that the form of the set S, can be partially specified without loss of

1
generality.

Lemme 4.9. In applying Theorem 4.8 to a scheme U'(v, @) any set Sl

satisfying (4.26) is related by a cyclic permutation of the class indices
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1, 2, «o., W to & set {1y, i) +eey i ) vhich setisfies (k.26) with the

same pil and satisfies

il=l<12<onc<im,

i, -1<1

2 t=2’ seey m"l,

g1 " Ty

i-1<nm+tl -1,
2 - m

5. Construction of NLg schemes from finite fields. This section will

meke use of some special cases of the association schemes (v,M) of Theorem
4.2, For n° a prime pover, g(na, n+l) will first be described for reference,
then.;(n?, n-1) will be used in the construction of some NLg(n) schemes.,

The multiplicative subgroup used in constructing;;(ng, n+l) from
GF(ne) has n-1 elements, which along with the zero element are readily
shown to form a subfield of order n. Among the special features which

follow from this are the following simple expressions for the parameters

i 1.2
Pk of =(n“, n+l).
S SR s B, R i _
(5'1) pii =n 2} pjj - Pi,j = pji = O) ij - l’

i, J, k distinet, 1 <1, J, k < n+l,

Because of the uniformity of these values, this scheme lends itself
exceptionally well to the formation of 2-class schemes by cowbination of
associate classes, If Theorem 4.8 is applied with an arbitrary set‘Sl of

g of the indices 1, ..., n+l, condition (4.26) is satisfied and the resulting
two~-class scheme, in which n

1
be only a familiar construction in slightly disguised form. It can be shown

= g(n-1), is of Lg(n) type. This turns out to

that the n+l associate classes in the scheme g(ng, n+l) are equivalent to the
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n + 1 constraints of a complete set of pairwise orthogonal Latin squares
of order n, a fact which will be taken up in Section 6 from the point of
view of finite geometry. Consideration of Latin squares gives (5.1) at once
and reduces the cowbination of associate classes to a simple application
of the definition of the Lg(n) scheme.

The scheme S(ne, n-1) uses a multiplicative subgroup of order n+l and
has less regularity thant?(ne, n+l); In particular, the writer is unable
to give general expressions for pgk, though he conjectures that O < pgk <2
for 1 <1, j, k <n-1. Hovwever, there are analogies with the;;(na, n+l)
scheme and our success in combining g associate classes of size n-1 to give
a two-class scheme with n, = g(n-1) suggests an attempt, with the:;(n?, n-1)
scheme, to combine g associate classes of size n+l to give a two-class scheme
with ny = g(n+l), hopefully of negative Latin square type. It is not obvious

that a set 8, of g indices can be found which meets condition (4.26) of

1
Theorem 4.8, or that a two-class scheme if obtained will be of NLg type.

However, in the range n < 10 it is easy to write down the association
schemeszz(n?, n-1) in sufficient detail that ng values can be computed
explicitly, and then to search empirically for suitable sets Sl‘ The results
of this computation are given in tables which follow, and fortunately several
schemes of NLg'type are obtained, including the three new schemes NL3(8),
NL2(9), NL3(9). I# is not known vhether the seme method yields any NLg(n)
schemes for n > 10,

The objects in all association schemes discussed in this section may

be taken ags elements of finite filelds and will be represented in a notation

which is convenient for field operations. The elements of GF(p) for a prime
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p will be denoted by the residues 0, 1, ..., p-1, and a polynomial of
degree at most -1 with coefficients in GF(p) will be denoted briefly by the

g~tuple of its coefficients:

ety _

if.-o a,Xx =(a‘q-l’ cee) ao) LR IRTLIL

Under addition and multiplication modulo a polynomial Q(x) of degree q,
irredugible over GF(p), the polynomials (aq_l, couy ao) represent the field
GF(p%). The polynomial Q will be chosen here so that & root § of Q(x) = 0

is a primitive element of GF(pq); This will in general be possible for

more than one choice of the polynomisl Q and the primitive element §, and
while different choices lead to fields, and hence association schemes, which
are abstractly identical, the association schemes will differ by a permutation
of associate classes, as remarked in Section 4, For definiteness, the table

for each g(ne, n-1) will list the equation Q(§) = O used in its construction.

Each table of powers of & will be arranged so that row i contains the set

- + =
’Ti = {g(n l)u i l, u = O, l, esoy n}

of i~-th associates of the zero element in 3(n2, n-1), The i-th associates
of an element 6 are obtained by adding 0 to each of the i-th associates of

zero., The matrix Pl exhibits the parameters P?k’ which are calculated by

means of (L.4); it follows from (4.3) that the matrices Poy «es, P, may

1

be obtained from Pl by cyclic permutation of rows and columns.

It may be verified by straightforward calculation that each set

1’
with the sppropriate values of pil. In the NLg(n) scheme, the first

8, = {1 iy eeey ig} listed for an NLg(n) scheme meets condition (4.26)
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associates of the zero object are the elements in rows il, ia, ey ig of

the table of powers of €, and the first associates of 6 are obtained by

adding 9 to the first associates of zero. The search by trial and error

for the sets Sl was the only part of the construction method which was
tentative as well as tedipus. It was expedited by restricting Sl to the

form described in Lemma 4.9, The search was exhaustive and the author can
report . for each;}(ne, n-1) scheme considered, that the sets Sl listed,
other sets obtained from them by cyclic permutation of the indices 1, 2, ... 1,
and the complements of these sets, are the only sets of associate classes
which can be combined to give twoeclass association schemes,

The methods of this section base on finite fields thus fall to provide
constructions for the schemes NLQ(T) and NL2(8), or to give any new schemes
not of the NLg femily in the range v < 100, The attempt to construct NL2(7)
fromy: (49, 6) was supplemented by attempts with other:: (v,m) schemes, such
as’ (49, 12), in which combination of classes could give two associate

classes of sizes n, = 16, n, = 32, but condition (4.26) was not satisfied

1
in any case,



TABIE 5.1, (3% 2)

Elements of GF(32) represented as polynomials

a.a € GF(3), where Q(E) =% + 25 +2 = 0

1%0 > 8

= al E + g

07 "1

2u +i-l

Table of powers § and of i-th associates of 00

\.\& l
i | o 2 4
1 01l 11 o2 22
2 10 21 20 12
] 2
P =
1 2 2

This is the known two-class scheme NL1(5).

TABLE 5.2. (4 3)

Elements of GF(Qh) represented as polynomials

8,8.2.8. = a §3 + e, §2 +a, € +a., a, €GF(2), vwhere

5210 3 (O1 |

QE) = §h+§ +1=0

Table of powers g2% * 1-1 014 of 1-th associates of 0000

~Ju

i ™ 0 3 6 9 12
1 0001 1000 1100 1010 1111
2 0010 0011 1011 011l 1101
3 0100 0110 0101 1110 1001
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P, =

n Do

= DN

N = NGy
[ 3

The following two-class scheme may be obtained by combining associate
classes in;;(he, 3).

NLl(h), a known scheme, 8, = {1}

TABLE 5.3. 3(52, L)

Elements of GF(52) represented as polynomials

a8, =a, E+ay, a, € GF(5), where Q(§)= £2 + 4 E +2 =0,

10 i

Table of powers §hu *1-1 ona

table of i-th associates of 00

\\isi
i 0 L 8 12 16 20

1 lor 22 210 o 33 3k 2 0 1 2]

2 {10 4 31 s 1 2k P, = 2 2 .
2 1 2

3 113 02 b4 k2 03 11 5 o 2

L 143 20 32 12 30 23

The following two-class scheme may be obtained by combining associate

classes in:?(52, L)

NL2(5), a known scheme. S, = {1, 3%
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2
TABLE 5.4, (7%, 6)

Elements of GF(72) represented as polynomials

818, Sa) § + 8, a, € CF(7), vhere Q(§)= g2 + 65 + 3 =0,
Table of powers §6u *i-1 ona
table of i-th associates of 00
éu
i 0O 6 12 18 24 30 36 ko
1 for o2& 64 22 06 53 13 56 _ -
002212
2 110 61 33 31 60 16 44 L6 022202
221012
3 [+ 03 65 45 63 ok 12 32 P1= looo0220] °
101222
L |54 30 43 22 235 Lk 34 55 222020
5 {26 35 02 L1 51 W2 05 36 B -
6 (11 15 20 52 66 62 50 25

The following two-class scheme may be obtained by combining associate

classes in ;3:_(72, 6).

NL3(7), & known scheme. S, = {1, 3, 5}.
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TABLE 5.5. (8%, T)

Elements of GF(26) represented by polynomials

858)88,8,8, =8 §5+...+a,a € GF(2), where Q(§) 5§6+§+1=0.

32710 p) o7 i

Table of powers g +1-1 4
table of 1-th associates of 000000

Tu
1\ 0 7 1k 21 28 | 35. 42 L9 56

000001 000110 010100 111011 011100 001011 111010 011010 01111l

000010 001100 101000 110101 111000 010110 110111 110100 111110
000100 * 011000 010011 101001 110011 101100 101101 101011 111111
001000 110000 100110 010001 100101 011011 011001 010101 111101
010000 100011 001111 100010 001001 110110 110010 101010 111001

100000 000101 011110 000111 010010 101111 100111 010111 110001

~ [s )N} = N no =

000011 001010 111100 001110 100100 011101 001101 101110 100001

NMHHNDOMNMN O
(SRIVEIVE IV e
MDD OEEOMD
FPOMMMNOMNMNDO
NDOONNN-=N
(P HMNOMN N,

|.-J
MMRDOoONOOM!

The following two-class scheme may be obtained by combining associate

classes in 51(82, 7).

NL5(8), a nev scheme. 5, = {1, 2, 6}.
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2
TABLE 5.6. (9%, 8)
Elements of GF(B“) represented as polynomials

a,a a8 sa5§3+...+a,aieGF(3), vhere Q(§) = é“+e§5+2=—.o.

5372710 0

8u + i-1

Table of powers § and of i-th associates of 0000

8u
;\\\\ 0 8 16 2k 32 4o 48 56 64 T2

1 10001 0112 0212 2110 2012 0002 0221 0121 1220 1021

2 {0010 1120 2120 0102 2122 0020 2210 1210 0201 1211

3 10100 2201 0202 1020 0202 0200 1102 010L 2010 011l
4 11000 1012 2020 1201 2220 2000 2021 1010 2102 1110
5 {1001 1121 2202 0011 1202 2002 2212 1101 0022 2101
6 {1011 2211 1022 0110 0021 2022 1122 2011 0220 0012
7 11111 1112 1221 1100 0210 2222 2221 2112 2200 0120
8 2111 2121 0211 2001 2100 1222 1212 0122 1002 1200

102002232

02202202

22201210

pp=|0ooo22222| ,

02120212

22222000

20121022

22022020

The following two-class schemes may be obtained by combining associate
classes in 3(92, 8).

NL2(9), a new scheme, S {1, s5l.

[}

1
{1, 2, 7).

=1{1, 3,5, 7T}or {1, 2, 5, 6}.

NL3(9), a new scheme., Sl

NLh(9)’ a known scheme, Sl
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To illustrate the computation of the matrix P. for . (v, m) schemes,

1
ve evaluate some of the values p%k fox'3(52, k), Ve recall that if the

unit element, Ol in this example, is added to each element ofg;k = {a

U =20, 1, seey n} s the resulting set contains exactly Pﬁk elements oquj.

The following working teble is so arranged that Pﬁk is gilven by the number

kyu’

of columns which contain k in the first row and j in the last row.

k 1 1 1 1 1 1 2 2 2 2 2 @2
u o 1 2 3 4 5 0 1 2 3 k4 5
8, u 01 22 21 O4% 33 34 10 41 31 Lo 14 2k
e,y + 01 02 235 22 00 34 30 11 42 32 41 10 20

Jgak,u"Ole% 3 4 1 - Y 4 3 3 4 2 2 4

Tebulation of the results gives

k 1 1 1 1 2 2 2 2

b 3k

6. Geometric interpretations of ~(v, m) association schemes, The

finite field scheme g(ne, n+l) furnishes an easy construction of a finite
Euclidean plane geometry of order n., The n2 obJects of the association
scheme are interpreted as points of this geometry. It is easy to show

that lines satisfying the incidence postulates of the geometry are obtained
by defining as & line every set consisting of a point and its n-1 i-th
associates, i = 1, ..., n+l. In particular, there are n2 + n lines, each
containing n points, For fixed 1, the points fall into n pairwise disjoint .

lines, which couwprise a parellel class. The geometry obteined for any n
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(of prime power form) is the unique Desarguesian plane,

We remark that if v = nk, t 1s & divisor of k, and N = nt-l, so that
m = (v-1)/N = o= 4 If;-et + ... + 1, then the association scheme % (v, m)
may be used to generate some of the t-dimensional gubspaces 1in EG(k, n),
the Euclidean geometry of dimension k and order n, giving all such gub-
spaces (lines) in the case t = 1.

Conversely, in the case t = 1, a finite Euclidean geometry may be
used to construct assoclation schemes :.,:(nk, m), where n, =Ns= (nk-l)/m = n-1.
Assoclate classes are identified with the m parallel classes of lines and the
i-th associates of a point are the points which occur with it on a line of
the i:th parallel class. In the case k = 2 of a plane geometry, the
Desarguesian plane gives an :f(na, n+l) scheme while a non-Desarguesian
plane gives a pseudo- ;;:(n2 » n+l) scheme, which has the same parameters n, pﬁk
but whose elements do mot correspond to those of - (ne, n+l) under any one-
one mapping which preserves the association relation.

In the Lg(n) scheme which is obtained fro :.c(na, n+l) by class combi-
nation, the set of first associates of an object can now be interpreted as
a simple geometric figure. Some g of the parallel classes are chosen--
speaking informally, g of the directions on the plane. The first associates
of a point § are the remaining points on the lines through 6 in the g chosen
directions.

Retaining the identification of the elements of GF(n°) with the points
of EG(2,n), we turn to the association scheme g(nz, n-1) and ask what geometric
figure is formed by the n+l i-th associates of a point 0.

As i ranges over the values 1, ..., n-1l, a collection of n-1 disjoint

figures is obtained which exhausts the n2-l points of the plene other than 6.
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In an NLg(n) scheme formed by combining g associate classes, the set of

first associates of § will be the union of g of these geometric figures.

DEFINITION. For GeGF(ne),(zi(e) will denote the set of i~-th asso-
clates of 8 in;;(ne, n+l) and @i(e) will denote the set of i-th associates
of 0 in.g(n?, n-1).

Theorem 6.1, The number of elements in ai(e)n Cj(e) is
1l if n is even,

2 if n 1s odd and 1 =J (mod 2),

O if n is odd and 1 £ J (mod 2).

g(n+-1)u+ i-1
J

PrOOf. Gi(e) = {9 + u= O, seey n"e}o

cy(0) = fo + glo-1)v +3-1 o 6 ..., nl

The number of elements common to these sets is the number of pairs u, w of

integers in the specified ranges for which

5 + g(n+1) wHi-l o g(n-l)w + 91
This equation is equivalent to
(6.1) (o + 1)u + i-1 = (n-1)w + j~1 = y-1, say,
which in turn is equivalent to

(6.2) o<y<n®-1,

1 (mod (n+l)),

y
Yy = j (mOd (n'l))o

Methods of elementary number theory applied either to the Diophantine equation

(6.1) or the congruences (6.2) show that if d = (n+l, n-1), the greatest
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common divisor of n+l and n-1, then the number of solutions is d if 1 = J
(mod d) and is zero otherwise, If n is even, d = 1; if n is odd, d = 2;
the conclusion of the theorem follows at once,

This theorem shows that if 6 is a point of EG(2,n) and if n is even,
then‘the points of each set CJ(G) are distributed one each over the lines
on 6. If n is odd, the points of cj(e) are distributed #wo each over half
the lines on 6. The next theorem gives a deeper insight.

Theorem 6.2. For any 6 € GF(ne), end for any i, J, 1 < i < n-1,
1< Jj < n+l, no three elements of ci(e) are pairwise Jj-th associates in
3(n2, n+l).

Remarks. In terms of the EG(2,n) induced by the scheme 3(n2, n+l),
this theorem seys that no three points of a set 31(9) are collinear.

We are in the fortunate position of having three methods of proof of this
theorem, of which all are instructive and two will be given here. These

two proofs use the following well-known facte on finite fields. For x € GF(nE),

2
&L = x. Also, the mapping x —> x° ie an automorphism of GF(na) which

reduces to the identify x° = x if and only if x ¢ GF(n).
Proof I. Three distinct elements of C&(e) mey be represented

ut(n-l) + i-1
(6.3) ¢, =8 +8 , t=1,2,3

2

where § is a primitive element of GF(ne) end u,, us are distinet modulo

n+ 1, It will be convenient to use the abbreviation

ut(n-l)

(6014’) Tlt = g .

“1’ ﬂe, ﬂs are nonzero elements which are distinct since @l, wz, ¢3 are

distinct,
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The representation we are using for the geometry has the property
that wl’ @2, ¢., regarded as points, are collinear if and only if, regarded

as elements of GF(ne), they satisfy an equation

(6.5) 8P tap, +ea; =0,

where a., 8,, 8,, not all zero, are elements of the subfield GF(n), and

(6.6) 8y ta, +a,= 0.

Using (6.3), (6.4) end (6.6) and simplifying, we find that (6.5) is

equivalent to
(6.7) a«lnl + 8.2“2 + EBT\B =0,

Since the wmapping x —> x® is an automorphism, a valid equation is obtained

if it is applied to all the field elements in equation (6.7). Under the

mapping, each of a,, &, 855 0 m?ps §nto itself, §n'l maps into &° P = §l-n,
u, (l-n

and T, accordingly maps into § v = ﬂ;l. The new equation is

(6.8) it et vemt -0,
The system of equations (6;6), (6;7), (6.8) in 815 8, 85 has determinant
of coefficients
1 1 1 T T Ty
U T I el e e -
ﬂil ﬂ;l ﬂgl 1 1 1

2t () (T-Tg) (=T ).
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Since ﬂl, ﬂe, 1]3 are distinct, the determinant is nonzero and the system
has no nontrivial solution aqs 8y, a3. Then ¢l’ ¢2, ¢3 are not collinear.

Proof I is complete.

n

Proof II. We need the fact that for z € GF(ng), z + z is an element

of the subfield GF(n). The proof is that under the automorphism x —> xn,

this element maps into itself.

2
n n n
Z +Z >y + zn =2 + 2 .

The elements 9= Q(w) of ci(e) may be expressed

6.9) ¢=t"tp" w=0, ..., n,

. AW \
where B = §n'l. Let ¢, =06 % {;fl—lﬁ © and @ oe @istinct elements of ci(e), where(¢.9)

determines a value w ;é wo corresponding to ¢. Then ¢ and cpo are Jj~th

associates in scheme 'J=(n2, n+l) for some value of j, which we now determine.
That is, we find J so that ¢ - ¢, can be expressed in the form g1 o,

where Q = §n+1.

w
P -9y =(0-0)- (9, -0)=t"p" g0,

Now -1 = Bc, vhere

c = -;‘-(n + 1) if n is odd,
¢ =0 if n is even.

. w_+C
cp-cpo=§1'l[3w+§i'l[3°
o gl-l +ovew | il + n(wg+c) - (wgytc)

_gl-l+ n(wy+c)-w [gn(w-wo-c) » €9 ¥o=C],
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The factor in brackets is an element of GF(n) since it is of the form
zn + 2, and is nonzero since ¢ # wo. It may therefore be expressed oP

for some u. Then

® - = g:L-l + n(wg+e)-w o

)

0

determining that ¢ and ¢0 are jth associates in Z(n?, n+l) for 1 < J < ntl,
(6.10) j=1i+ n(wo +¢) =w (mod(n + 1)).

As ¢ ranges over ci(e), ¢# mo, W ranges over distinet values O, 1, ..., n,
w o# LA Clearly the corresponding values of J are distinct. Thus no two
elements of Ci(e) are common Jjth assoclates of mo for any Jj, where ¢O is
an arbitrary element of Ci(e). This implies the conclusion of the theorem
and completes Proof II.

An oval in a finite plene of order n is defined as a set of n + 1
points, n odd, or n + 2 points, n even, with the property that no three
points of the set are collinear., It is known that an oval is a maximal
set with this property. In the EG(2,n) generated byﬁj(ne, n-1), let 6 be
any point and let 1 = 1, 2, ..., n-1l. Theorem 6.2 shows for n odd that
ci(e) is an oval. Theorems 6.2 and 6.1 show £or n even that {6}y ci(e)
is an oval,

The n + 1 points of a non-degenerate conic in PG(2,n) furnish an
example of an oval when n is odd.

A non-degenerate conic in PG(2,n), n = 2t, has the property that its
n + 1 tangent lines are concurrent in an (n + 2)nd point which together
with the points of the conic makes up an oval. It has been shown by Segre

[20] that in the Desarguesian projective plane of odd order n, every oval
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is & conic., In particular, this holds for every oval in a Desarguesian
Euclidean plane of odd order n. The EG(2,n) constructed from 3(n2, n+l) is
Desarguesian, Therefore for n odd, the n-1 sets ci(e) for sny element 6

are conics, palrwise disjoint, all confined to the Euclidean plane (and thus
disjoint from the "line at infinity"), all disjoint from the point 6 and with
it exhausting the n2 points of the plane.

It is/;iausible conjecture that the scheme 3(n2, n-1) for n = 2t also
leads to gets ci(e) which are conics, and this has been verified for n = 4
and n = 8. Segre's proof does not investigate ovals for even n.

Without giving details, we state that these conics can be exploited
to give information on'g(ne, n-1). The algebraic statements that cl(e) is
a multiplicative subgroup in GF(ne), each ci(O) is a coset, and each ci(e)
is obtained by addition, all have implications for the equations of the conics.
Each sz can be interpreted as the number of points of intersection of two
conics. We conjecture that this will lead to a proof that 0 < pék <a.

After the author conjectured tpat the sets ci(e) were conies, the first
proof of Theorem 6.2 was found by R. C. Bose, Using some ideas from this
proof, the author then devised the second proof. While these were the first
premeditated proofs, a third method became available when R. H. Bruck noticed
that the configuration of n-l disjoint conics in the Euclidean plane of
order n could be obtained in many ways by taking suitable plane sections of
a configuration he had already discovered in the projective 3-space of order
n, consisting of two lines and n-l ruled quadrics, all disjoint and exhausting
the points of the space. The details, which will not be given here, are part

of the theory of spreads in proJjective space [10].
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The NLg(n) schemes obtained in Section 5 by couwbination of associate
classes now inherit a geometric interpretation: the set of first associates
of a point 6 is the union of g "concentric” conics about 8. Unfortunately,
neither the algebraic construction nor the geometric representation has
enabled the author to determine in general which NLg(n) schemes can be
formed from 3(n2, n~1l) schemes. The case n = 2m + 1, g = m is rather special
and is discussed in the following paragraph.

As noted in Section 2, the NLm(em + 1) scheme, the L +l(2m+1) scheme,
and the pseudo-cyclic scheme with v = (2m + 1)2 all have the seme parameters.
The scheme T{(2m + 1)2, 2))is pseudo-cyclic; it is identical with the Lm+1(2m+1)
scheme obtained from =((2m + 1)2, 2m + 2) by combining the set 8, = {1, 3, ..,
2m + 1} of associate classes; it is also identical with the NLm(Qm + 1) scheme
obtained from z((2m + 1)2,2m)4by4COmbining the set Sl{i,B,;;a,(zm;l} of
associate classes. Geometrically, the set of first associates of a point ¢
appears first as the union of half of the 2m + 2 lines through 6 (with @
deleted), and second as the union of half of the 2m conics ci(e). Even in
this special case there are associatlon schemes with the same parameters
but with less geometric regularity. The Lm(2m + 1) scheme can be con-

structed using an arbitrary set S. of m + 1 associate classes, giving each

1
point 0 a set of first associates which is a union of lines through 6 but
not in general & union of conics ci(e). At least one negative Latin square

construction, NLh(9) using S, = {l, 2, 5, 6}, gives 6 a set of first asso-

1
ciates which is & union of conics ci(e) but not of lines. Two solutions
of the pseudo-cyclic scheme for a given n may be identical as association

schemes in spite of differences in geometric structure; that is, they may

be related by a one-one correspondence of objects which preserves the
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association relation without preserving algebraic or geometric relationships.
Thus even in simple cases our geometric interpretation of negative

Latin square association schemes needs some clarification, It will probably

be of interest to make a geometrical investigetion of 3 (v,m) schemes other

than those that have been employed here.

7. Direct construection of NLg designs from finite geometries. A design
with the negative Latin square association scheme NL3(8) occurs as the case
8 = 4 of a family of two-class designs with paraneters
(7.1) Vv o= 83, 8 = 2t s

o = (s +2)(s - 1),

1
Py =8-2,
2

Ppp=8te,

k=s’
A o=l
Ny =0,

constructed by Ray-Chaudhuri [19]. The construction uses PG(3,8), the
projective 3-space of order s, s = 2t, in which there are s + 1 points on

5 + s2 + 8 + 1 points in

each line, s2 + s + 1 points on each plane, and s
all. In one plane y a non-degenerate conic Q is chosen. Each of the s + 1
points of Q is on one line of ¥y which contains no other points of Q and is
called a tangent line. A special property of planesof even order is that

the tangents of a conic are all concurrent in a point P, Let R be the set

QU {P}, containing s + 2 points of y. The 33 points not on y are teken as
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objects in the design, and two of these points are first associates if and
only if the line containing them also contains a point of R, All such lines,
with the points of R deleted, are the blocks of the design. The parameters
are immediate with the exception of Pil and pil’ vhich follow from certain
properties of conics.

There is no value of s = ot other than 4 for which the design of the
Ray-Chaudhuri family is of NLg type, but we shall describe a generalization
vhich leads to infinitely many NLg designs, among others. This generalization
seems to have gone unnoticed until now.

Various known theorems and formulas in finite geometry, which have been
adapted from [25] and from Chapter 2 of [2], will be stated as needed without
further reference., The number of elements in a finite set S will be denoted
vy Isl.

Let £ = PG(n,s) be a projective space of dimension n and order s, where
s is a prime power. Let ' = PG(n-1,s8) be a fixed subspace of dimension n - 1,
and let A be the complement of I' in £, A set R of points of I' is chosen.

R denotes the complement of R in I'. A contains g points, which are taken
as the objects in a two-cless designg (R). Each line not entirely in T
contains s points of A and one point of I' Two points of A are taken as
first associates if and only if the line joinirg them contains a point of R.
A1l such lines, with the points of R deleted, are the blocks of ¢(R).

Clearly,
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(7.2) v=s8 ,
%=(s-nlm,

r = IRl ’

k

> o

1 u
(]

o] ]
- <)

1 -

- -

=

-

>’
i
o
L]

2

¢(R) will be partially balanced if and only if condition (iii) of (1.3) is
satisfied. We proceed to interpret this as a condition on the set R.

If A and B are two points of A which are i-th associates, i = 1, 2,
we denote by pil(A,B) the number of points C which are common first asso-
ciates of A and B, The required points C are of two types which will be
enunmersted separately.

DEFINITION, D is the point of I' on line AB. Let C be a common first
associate of A and B. Then we define C to be a collinear common first asso-
ciate of A and B (c-point of A and B) if C is on line AB, and a diagonal
common first associate of A and B (d-point of A and B) if C is not on line
AB.

Obviously there are s - 2 c-points of A eani B if D € R and pone if D € R,

If C is a d-point of A and B, then lines AC and BC respectively must
meet I' in points D' and D" of R. Plane ABC meets I in & line m on D which
also contains D' and D". Suppose that m con%eins v points of R. Then the

ordered pair of points D', D" can be chosar. in (v - 1)(v - 2) ways if D € R,
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and in v(v-1) ways if D € R, and the plane determined by m, A and B con-
tains a like number of d-points of A and B. The total number of d-points of
A and B can be obtained by summing over the lines m which are in I' and con-
tain D,

DEFINITION, Tv(R) is the set of lines of I' which contain exactly Vv
points of R, v = 0, 1, +es, B8H+l,

DEFINITION, x\)(D), V=0, 1, esos, 8+l, 18 the number of lines of
T,(R) which contain D.

Now if A and B are first essociates, so that D € R,

(? ) 1 (A B) 2 + BZ ( l)( 2) (D)
- " = - V = V - X )
3 pll 8 V=0 \Y

and if A and B are second associates, so that D € R,

‘ s+l
.,4' 2 ’ = - .
(Th) 2y (A,8) = MY - 1) x,(0)

This is enough to prove

LEMMA T.1l. ¢(R) is a two-class PBIB design if and only if the right
hand side of (7.5) has the same value for ell points D € R and the right
hend side of (7.4) has the same value for all points D € R. In this case

© (R) will have parameters (7.2), along with
1 1 2 2
pll = Pll(AJB)) pll - pll(A,B)'

REMARK. The condition of Lemma 7.1l will be recognized as essentially
a condition on the variance of the numbers v. It is implied by the condition

the following lemma places on their frequency distribution.
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LEMMA T.2. £(R) is a two-clase PBIB design if for fixed V = 0, 1, ...5+l,
the frequencies xv(D) are equal for all D € R and are equal for all D € R,
In this case ¢ (R) will have parsmeters as stated in Lemma 7.3.

In our first application of these lemmas we take R = Q, & non-degenerate
quadric in I' = PG(n-l,s), denoting @ = R, All lines of I fall into the

following four sets TV(Q).

(7.5) TO(Q): non-intersectors, conteining no points of Q,
Tl(Q): tangents, each containing 1 point of Q,
TQ(Q): secants, each containing 2 points of Q,

Ts+1(Q): rulings, each conteining s+l points of Q.

Thus nonzero frequencies xv(D) can occur only for vV =0, 1, 2, s+l, and (7.3)

and (7.4) reduce to
(7.6) pil(A,B) =8-2+s8(s -1) xs+l(D), DeQ,
(7.7) pil(A,B) = 2 XE(D), DeqQ.

In a particular non-degenerate quadric Q in PG(n-1l,s), the number x8+l(D)
of rulings on D is the same for all points D € Q, so that pil(A,B) has &
uniform value pil for all pairs A, B of first associates ing (Q).

We must specify the dimension n before proceeding further, If n = 2%,
8o that I' has odd dimension 2¢~1, the number xa(D) of secant lines on D is
the same for all points D € 5, so that pil(A’B) has a uniform value pil for
all pairs A, B of second aseociates ing (Q). If n is odd, so that Q is &

non-degenerate quaedric in a space I' of even dimension, the points D € Q are

of different types which are contained in different numbers x2(D) of secant
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lines, 1In this case pil(A,B) does not have the same value for all pairs
A, B ofMsecond associates.

We conclude that if Q is a non-degenerate quadric in I', the design
g(Q) is a two-class partially balanced design if and only if the dimension
n of I is even,

Let n = 2t, In ' = PG(2t-1,s) there ere two types of non~-degenerate
quadrics, which we shall call hyperbolic and elliptic, differing in the
number of points, ruling lines, and secants., In the following formules,
the upper signs hold for hyperbolic quadrics and the lower signs hold for

elliptiec quadrics.
(7.8)  lal = (s> + 1)(s* T 1)/(s - 1),

(D) = (st'e + l)(st-l +1)/(e - 1), DeQq,

t-l(st-l

b'4
s+l

x,(D) = 8 +1)/2, DeQ.

The parameters of ¢ (Q) can now be computed in both cases and compared with
(2.1) and (2.5) to complete the proof of
THEOREM T.l. If n = 2t and Q is & non-degenerate quadric in I', the

design £ (Q) 1s a two-class PBIB design with association scheme parameters

(7.9) v =s°%,

n, = (st + 1)(s 7 1),

1

t

P L D) +8 -2,

P ™

]

2 Bt-l(st-l

Py + 1),
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and design parameters

(7.10)  r=(s"r +1)(s*F2)/(s - 1),

k = 8,
b = s2t-l r,
Al =1,
A=

o 0.

If Q is hyperbolic the upper signs hold and £(Q) is of pseudo-Latin square

type Lg(st), g = st'l + 1, If Q is elliptic the lower signs hold and £(Q)

t-1 1.

is of negative Latin square type NLg(st), g =8
Since the required projective spaces and quadrics exist for every s
. which is a prime or a power of a prime and for every positive integer t, our
construction gives a doubly infinite famlily of Gesigns having NLg association

schemes. The following schemee with v < 100 are included.

8 =2, t=2, NLl(h),

8§ =2, t =23, NL3(8),

B =3, t=2, NL2(9).

The spaces Z, I', and A and the quadric Q may be used to construct other
designs which have the same association scheme as £(Q).

We note that each block of £(Q) is the intersection { N A of A with a
line f of %, where f intersects I in a point of Q. We define a more
general design‘SV(Q), v =0, 1, with sets of blocks constructed as follows

from the set of all limes [ which are in £ but not in L.
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Design Blocks
£ (@) {{nalgnreq}
2(Q) {gnalfnreaql

The subscript vV may be interpreted as the number of points of Q contained
in {. The following theorem is now obvious.

THEOREM 7.2, If n = 2t and Q is a non-degenerate quadric in T, then
ﬁv(Q), v = 0, 1, is partially balenced with the same aspociation scheme as
(Q) described in Theorem T.l. & SQ) has association scheme parameters  (7.9).

Sl(Q) is identical with .£(Q). ﬁO(Q)~h&s.design parameters

(7'. ll) r

- lal,
k =8,
b = s21:-1 l@l ,
A =0,
Kz = 1.

Let % be a2 plane in £ but not in I' =« intersects A in a set of 82
points which we shall use as a block of a design, and intersects I' in a line
which falls in one of the classes Tv(Q). We define designs PQ(Q) with sets
of blocks constructed as follows from the set of all planes = which are in

Z but not in I,

Design ‘ Blocks

PVOQ; ‘ fxnalanre Tv(Q)}, v=0, 1, 2, 8 + 1.
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The subscript vV may be interpreted as the number of points of Q contained
in =.

If A is a point of 4, planes containing A are determined by the lines
of Tv(Q) , and these planes lead to the blocks of PV(Q) vhich contain A.
Therefore A is contained in |T (Q)| blocks.

If A and B are two points of A and D is the intersection of line AB
with I', planes containing A and B are determined by the lines of TV(Q)
vhich contain D, and these planes lead to the blocks of Pv(Q) vhich con-
tain both A and B, Therefore A and B occur together in xV(D) blocks. We
now use the fact, stated in part in (7.8), that for a non-degenerate Q in
I of odd dimension, all of the frequencies xv(D) satisfy the uniformity
condition of Lemma 7.2. Thieg gives us the following theorem.

. THEOREM T.3. If n = 2t and Q is non-degenerate, then PV(Q), v=0,1,
2, s+l, is partially balanced with the same association scheme as © (Q,), des=-
cribed in Theorem 7.l. Qv(Q) has association scheme parameters (7.9) and

design paremeters

(T12) = = T,Q) ,
k = 82,

b = 202 |z (@)1,

xl = xv(D), D € Q,
7\2 = xV(D), De -Q.

Formulas for lTv(Q)I and xv(D) are listed below. In each case Q@ is under-
stood to be & non-degenerate quadric in I = PG(2‘t—1,s). The upper signs

' hold if Q is hyperbolic and the lower signs hold if Q is elliptic.
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TABLE 7.1
v LOT! | x,(D), Deq x,(D), D €@
!
| 2(s+1) 2
| tep, 2.2 t —
1 (s _ 12)(5 + 1) s62(gt-1 3 1) 262
; 5 -1
|
| ote2, bt~ £-1 tel, t-1
o | B (s” +1)(s + 1) ;2t-2 s (Z +1)
‘ 2(s - 1) ‘
o 2te2 t = oy, b2 L el £-2
o1 | 8 =" +1)(s " +1) | (87~ +1)(s"" +1) o
i g -1

(6% - 1)(s - 1) |

There are sets R other than quadrics for which the design ¢ (R) is
partially balanced, as illustrated by the Ray<Chaudhuri family of designs
described at the beginning of the section. Our final construction uses
an interesting set whose properties have been investigated by Bose (1],

Take I = PG(2,q), I' = PG(2,q), where q = se, and represent the points
of I' by homogeneous coordinates (yi, Vs yz), v, € GF(q). Take R = W,

vhere W is the set of points of I’ for which the equation

+ +1 +1
(7.13) 3§+ g e =0

is satisfied. Bose shows that

(1.1%)  lwl =& + 1;

2
xl(D) = 1 and x8+l(D) =8, D€ W;
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2
xl(D) =8 +1and xsfl(D) =8 -s, DeW;

otherwise, xv(D) = 0,

We prove the following theorem by aepplying Lemma 7.2 and comparing parameters
with (2.5).

THEOREM 7.4, ¢ (W) is a two-class PBIB design with parameters

(1.15) v =85,

n, = (52 - 1)(s3 + 1),

A PR 1) + & - 2,

Py =

pil = 55(s® - 1),
r = 85 + 1,

k= 52,

b = s* (s + 1),
o= 1,

A, = O.

This design is of negative Latin square type NLg(sB), g = gt . 1,

Three other designs,go(w),gbl(w), andg:s+l(w) with the same associa-
tion scheme can be comstructed from W by the methods of Theorems 7.2 and
T«3. These designs have the same association scheme parameters as the
designszﬁv(Q) andﬁ’v(Q), t = 3, but have different design parameters r,

k, b, M.

The following tables give the parameters of the designs constructed in

this section which have NLg association schemes with v < 100, Additional

designs exist, of course, for these association schemes.
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Parameters of Designs ,qv(Q.) and Pv(Q)’ Q Elliptic,

g =2, t =2 NLl(h) Designs

Design [’ v r | k b | NN

£,(Q) IlI 16 5 2| w | 1 0

$o@ 6 10 | 2,8 | 0o | 1

Py(Q) ' 16 | 10 L | Lo 0 3

,(Q) ’ 16 | 15 L 60 3 3  (Balanced design)
P,(Q) g 16 |10 | k| k| 4 | 1

P5(Q’) ! Null design; r = b = O,

TABLE T.3

Parameters of Designs °S'V(Q,) ande(Q), Q Elliptic

g =2, t =3, NL3(8) Designs

Design | v! r k | b‘}»l M
¢, (@) a 6 | 21 2|8k 1] o0
£,(Q) § 6 | 36 2 |1152 i © | 1i
P Q) | 6 {120 | b4 '1920 | 0 | 10 |
SN CY : 64 | 270 L {4320 | 10 | 15 |
P 5(Q) ‘ 64 | 216 b 3456 | 16 6
P3(Q)g 6 | U5 | k{70 | 5| o]
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Parameters of Designs £{Q) andP (Q), Q Elliptic,

8 =3,1t=2, NL2(9) Designs

Design | v : r |k ; b 5 hl %.2

5, (Q) | 81 F 0 3 % 270 } 1| 0
{ :
£,(Q) b8l ! 30 3 810 {0 1
Po(Q) | 8L |45 | 9 % 405 % o | 6
P,(Q) 8L | ko 9 % 360 % I 4
@ 1B (ks |9 ks | 9| 3
Ph(Q) Null design; r =b = 0
TABLE 7.5

Parameters of Designs sv(w) and Pv(w), s = 2,

NL3(8) Designs

Design f v { T k ’ b | }‘l >\.2
g 6 i 9 | b }m 1 1| o
£ (W) i, 6l ;12 4 ]192 ; 0 1
P (W) 6l ] 9 i16 i 36 2 3
P (W) 6+ |12 16 Y- 2

(Balanced Design)
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8. Association scgggggmy;yp_pil = 0. We begin with a theorem which holds

for any two-class association scheme ¢ with pil = 0, then derive stronger
results for NLg schemes with this property.

We define the followlng sets for a two-class association scheme,

(8,1) 8y = {an initial object a},
8 = {the n, first associates of al,
8, = {the n, second associates of al.

Interpreted as sets of rows and columns, these sets define the following

partition of A, , the first association matrix of¢ . This is the same parti-

l’
tion used in (h.l?). Submatrix Bl reduces to a zero matrix because pil = 0.
(8.2) 0 1 ees 1 0 +e0 O
1
: 0 Cy
A = 1
0
. T
o “ !
o | ' i

Theorem 8.1, If pil = 0 in a two-class association scheme with
pareameters Vv, n,, pgk, then

(1) C, as defined in (8.2) is the incidence matrix of a BIB design

1
C with parameters

-~

A
v=n,, b=n
l,

-~ i 7 2 5 2
2, r—Plz)k=Pll,}"=Pll‘l:
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(ii) any block of Z is disjoint from at least pi,‘) other blocks.

Proof. Cl is a matrix of O's and 1's with n, = v rows and n, = b
columns. The column totals of (i are equal to the row totals ofCT, which
by Lemma 4.5 are uniformly equal to P?.l = k. Statement (4.21) of Theorem

4,6, with B, =0, B,=Jd, pi2 =n, - PéIL.l - 1 = n,-1, reduces to

1 1

T 1 2
C,C =P I+ (pll - 1)(7 - 1),

By Corollary 4.7.1 this provee (1).

By (4.23), the matrix (§ Cl + Di must have elements pil = 0 in all
positions occupied by 1's in Dl’ and by Lemma 4.5 there are exactly pie
such positions in each row, 8Since Di has non-negative elements, any row
ofcf{ Cl must contain at least p:2L2 zero elements, But the i-th element
of a particular row B of cf Cl can be interpreted as the number of objects
vwhich the i-th block of 2 has in common with block B, proving (ii).

For the rest of this section, ¢ will be taken as an NLg(n) scheme

with

1 2
pll=g +3g - n =0,

Al will denote the first association matrix of this scheme. Expressing

2
n=g + 3g,

~

? has parameters

(8.3) v =n° = 82(6 + 3)2:

n =g(e +3¢g+1),

o (P+2eg-1)(f +3¢+ 1),

=}
il
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Pil =0

Pia =& +3¢ +g- 1= (gr)(e" +28 1),

B3, = g +4e + 36 - 26 = &(g + 2)(f + 2 - 1),

pil =" +g=g(g+1),

Pia =& +28° = (e +2),

po, = g + 4 +4g? - g-2=(g+1)(g+2)(& + &),

o= g2 +2¢ - 1,

T = 8.

Theorem 8.1 shows in this case that Cl is the incidence matrix of a

BIB design which has paresmeters

(8.4) v

]
=
§

1= g(e® + 3g41),

L}
=]
]

2 2 2
b =n, = (g° + 2g-1)(g" + 3e-1),

o1 2

¥ = p), = (g+1)(g" + 2g-1),
s 2

k =p, =glg+1),

o 2 2
}\=Pll-l=g +g-l,

gnd which has the property that
(8.5) each block is disjoint from at least pie = 82(g+2) other blocks.

The existence of such a design is thus a necessary condition for the
existence of the NLg(g2 + 3g) association scheme. The next lemma and two
theorems will show that it is sufficient as well and thet the design can be

used to construct scheme 5 . The proof of sufficiency must be based on a
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design which is not assumed to arise from an association scheme, ILet X
be a BIB design which has parameters (8.4) and property (8.5) but is
otherwise arbitrary. Let Xl be the incidence matrix of this design, so
that

(8.6) xle fI+N(T-1)

1 2

and let

(8.7) X, =Jd - X.

Matrix C, may be regarded as a special case of X, .

1
‘ We may regard sets Sl and S2 respectively as the set of rows and the
set of columns of matrix Xl’ or we may regard them as the set of objects

and the set of blocks in the corresponding design. The latter interpretation

is convenient for the definition of the following sets.

(8.8) 811 = {the p]2.l objects in an intial block 71,
81p = {the remaining pie objects of sl},
8,0 = {block 7],
Sy, = {a set of pie blocks disjoint from 7J,
80 = {the remaining pge blocks of 82}.

.

Lemma 8.2, Let a BIB design °¥ have parameters (8.,4) and property
(8.5). Then each block of :f)(" is disjoint from exactly p]e-2 blocks ard

‘ intersects each remaining block in exactly g objects.
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Proof. In the terminology of (8.7), let £, denote the number of objects

i
comnon to block y and the i-th remaining block, Since fi = 0 for all blocks

of 8 17 the well known formulas due to Hussain [15],

2
>:f1=k(£-1),
i
Zf§=i£(§~1)+1§(k-1)(5~-1),

remain valid if the summation is restricted to the blocks of 522. Straight-

forward computation shows that the f,'s for this subset have mean g and

i
satisfy

2
Z (fi-g) = 0 3

showing that ¥ intersects each block of S in exactly g objects. Finally,

22
7, vwhich is an arbitrary block , is disjoint from precisely the pia blocks
of 821' This proves .the lemma.

This lemma depends on the parameters (8.3) and fails in general for
the BIB design described in Theoremﬁii It appears therefore that the
construction method of this section for NLg(g2 + 3g) schemes will not be
applicable to other two-class schemes with pil = 0,

In each row of the symmetric matrix xfxl, the element in diagonsl
position is equal to k = pil, pia elements are equal to O, and the p§2

other elements are equal to g. Thus we may express

2
(8.9) XX =p5,I+0 .Y +ay,

vhere Yl and Y_ are matrices of O's and 1's, each row of Y, contains pie

2 1

1's, each row of Y2 contains pge 1's, and
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(8.10) I+Y) +Y,=4J,

where J is & b X b matrix of 1's. Yl and Y2 are symmetric because Xixl

is symmetric,

Theorem 8.3, If A,, the first association matrix of en NLg(g2 + 3g)
scheme with parameters v, n,, P§k given by (8.3), then Ci and D1 as defined
in (8.2) are respectively the incidence matrix and first association matrix

of a two-class PBIB design ¢' and association scheme  with the following

parsmeters.

~ ~ ~ 2 ~ l ~ ~
(8.11) Vv =mn, b=n, 7 =05, k=0 M =0, =g

~ 2

o) = Pyoy

~ 2

Oy = Popy

~1

Py =%

~1 2 2

P = & + 26°-1 = (g+1)(e’+e-1),

~1 4 2

Dy, = 8 +3& +2¢° - g - 1= (gt1)%(fre-1),

~2 2

Pjy = &

~2 2 _ 2
Bo, = &+ = &(gH),

2 - g+ 38

il

2
+38 -g - 3.
Proof. The values ;, ﬁ, y and k Pollow from Theorem 8.1. From (4.23),
2 2

T
(8.12) €} C; +D] =n I+0.D +plD,.

From (8.9), denoting by ii’ i

1, 2, the form taken by Yi in the case Xl

Uy 2 ~ ~
(8.13) €} € =P I+0.X +g¥,

=C

l,
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By subtraction,

2 2 2 ~
Dl = (nl - Pll) I+ P11 D2 -g Yé .

Y and D_ are matrices of O's and 1's, each with O's on the main diagonal

2 2
and each with exactly pge 1's in each row, If ié # De, negative elements

will occur in off-diagonal positions in the difference pil D2 - g §2 and

hence in D, But this is impossible, since D, has non-negative elements.

1l

= N

Therefore

1]
m'—<

= D2, Yl = Dl’ and ve compute

2 I+0.D, +8D

(8.14) cT ?

1 G =Py 1

2 2

Now Dl and D2 are symmetric matrices of 0's and 1l's satisfying I + Dl %
and (8.15) is sufficient to show by Theorem 4.4 that Dl is the first assoc-

iation matrix of a two-class association scheme with paremeters El = p§2,

511 =0, 5?1 = g2. (8.14) is then sufficient to show by Corollary 4.7.1

that Ci is the incidence matrix of a PBIB design with this association

scheme and with parameters including Xl = 0, X = g. This implies the

rest of (8.11) and the proof is complete.

All of the nontrivial submetrices of Al have now been identified with

the BIB design ¢ or its dual. This motivates the next theorem in which
matrices furnished by the design >(are used in the definition of an assoc-

iation matrix,

Theorem 8.4, Let X1 be the incidence matrix of a BIB design with

paremeters (8.4) and property (8.5), and define X, Y

s Y0 Y, by (8.6), (8.9),

l’

(8.10)., Let A'i be the matrix

+D =J,
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Loeeel | 0 uese©

(8.16) | o |
S ’
AR %
o
At = | S .
R
| o .

- &

Then A% is the first association matrix of an NLg(ge+3g) scheme with

parameters (8.3).

* = = = . *
Proof. In Theorem 4.6, take A %, B 0, C; =X, D, =Y. A

1
» 8ince the

17 1
is a matrix of O's and 1's; the same is true of Ag =J -1« A{

| are O's. Yl is symmetric. From (8.9), Xi has uni-

form row sums T = pil. We have verified (4.18) to (4.20). In order to

disgonal elements of ¥

prove by Theorem 4,6 that Ai is the specified association matrix it now

suffices to verify (4.21) to (4.23), which reduce to

(8.17) X x{ - pi’z I+ (piL - 1) - 1),

2
(8.18) XY = Py %o
T 2
(8.19) Xl X] + Yi =n; I+ P1; Y2.

(8.17) is equivalent to (8.6). The known row and column sums of X, end Yl

give the following relations, in which matrices of 1's of various orders

are all denoted by the same letter J.

(8.20) X J= ‘pi’z J,

2

(8.21) I X =Py,

J,
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2
(8.22) xi 3=, 9,
, 2
(8.23) J Yl = Dy, I
Solving (8.9) and (8.10) for Yl,
-1 T
(8.24) I, =gI+d-g X xl.

We next multiply on the left by X, and apply (8.20) and (8.6).

-1 T
HYh=gX+X4d-87 XX X
1 -1¢,1 2 2
=g X +p,J -8 [(p12'pll+l)I + (pll-l)J] X .

(8.21) is applied and the result is simplified with the aid of (8.3) to give
’ 2

proving (8.18). We now multiply (8.24) on the right by Y, and apply (8.23)

1
and (8.25).

Y2==gY

1

-1,
L *dY -6 1x T Xy

2 -1 2
=gY1+p12J-g P1; l(J-X)

(8.22) and (8.9) are applied and the result is simplified with the aid of

(8,3) and (8.10) to give

' 2 2
(8.26) Yi=p121+g Y, .

Adding (8.9) and (8.26) gives (8.19), completing the proof.
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We are now assured that if matrix Xl exists, then even though it was

not assumed to occur, as C. does, as a submatrix of an association matrix,

1

it does in fect play exactly this role in A Moreover, A-){ is unique for

1.

a given Xl. The design “,“5'(_ and matrices )Ll, X2 will hereafter be denoted

by C, Cl’ C2' We also drop the distinction between Al and A'i.

The following corollary paraphrases Theorem T.4t in terms of objects
and blocks of ¢ , without use of the matrices Al or Cl'

Corollary 8.4.1. Let ¢ be a BIB design with parameters (8.4) and
property (8.5). Define a two-cless associetion relation g on the set of

objects S, Us, U §s_., vhere

0 1 2
(8;27) Sy = {an initial object a},
‘ 8 = {objects B, of cl,
8, = {blocks 75 of cl,

and sets of first associates are defined as follows.

ObJject Set of first associates
o Sl
B, S, U{btlocks of s, containing Bi}
75 {objects of S, contained in 73} U {blocks of
8, disjoint from y 3}

Then G is an N’Lg(ge + 3g) scheme, with parameters (8.3).

The following table lists the important parameters of C and G for
a few values of g. D J denotes the number of blocks of C which are dis-

‘ Joint from any given block.
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TABLE 8.1
Parameters of BIB design C ‘ E T i r K } A i DJ
i 1| 2| 2
! | I i
Parameters of l\lI..g scheme G g | By v, n N, p12§ Pll; ; P15
- - t {
! ! i ,
10 4| 16 5[ 10 k| 2| 1| 3 |
! ! ! i |
210|100 22| 7Tl 2| 6! 5{16
Lo ‘ |
3/18(324 57266 56| 12 11| b5 |
H [ : N !
b (28| T8kI116 | 667 ]l 15 | 20 |19 | 96 |

Let Al be partitioned into submatrices whose sets of rows and columns

S This is & refinement of the partition (8.2).

are 8459 5y95 By5r 8555 8595 Bppe

The submatrix, say 0, with 8), 88 its row set and §,, as its column set

falls in Cl, the incidence matrix of BIB design C . 0 is a zero submatrix,

since by (8.8) no object of Sll is in any block of §,,. Define notation

as Tollows for other submatrices of 1°

(8.28) 1 : N
: 5 |
. 0 3 El f
|1 |
G = 0 i
i &
ol
The submatrix, say 6, with 821 as its row and column set falls in Dl’ the

first association matrix of association scheme 2 . Since 821 is the set
of first associates in 2 of initial object B, and i;;-.l = 0, it follows
from Lemma 4.5 that 6 is a zero submatrix. Define notation as follows

. for other submatrices of "Dl.
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'

0 l.ees1{04.su.0
1
: ° B

5 1

1° 0 *
. T
s | B K
Lo

Al may now be written as follows. The table below indicaetes the

column sets, and also applies to the row sets.

(8;50) 0 ‘1 eese L1 4u0e li Oio sece O;O veee O
1| | EY
0 | o0 0 E;
il | 3
i j | !
1, | 0!
s 00 R G
1, L0 ,
A =1 : N v —— »
1 0] il XY 10 ssee 0 0.1 XEE 1 :0 seee O
. : i ’ :
o | Y ‘ T ' K ~
0 | .
'l 0 0 |
. T T 7 T |
el B G i B K
o \ ‘o ‘ B
Set of columns { S L s ! S S | Saq ‘{ S
1 o [ “11 jo12 20 "1 | 22
e , : — L. !
; Numbér of . 1 1 p2 : %3 p2 : lTﬁ p2 I P2
," Colwms | 1l f 12 ~ 12 22

Theoren 8.5, If Al, the first association matrix of an NLg(g2+5g)

scheme, is partitioned as in (8.30), submatrices El’ F Gl’ Hl are

1’
incidence matrices of BIB designs, say &, ', © , ' , with parameters

as follows.
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Matrix v b g r k 8

E, |ele+) (e+1)(g+2)(g°+e-1) | (s+)(ef+e-1)| &  i(e-1)(g+2)
F, g°(g+2) g2 (g+2) g(g+l)  |a(e+1) g
o, | () | (er) () (ePHe-1) | (e41)(eBrg-1)| & |(e-1)(e+1)

B | &¥(es2) | (ex1)(e2)(Fre-1) | (es2)(e™e-1)| &8 | (e-1)(ew)

Each of designs ¢ , o , ;¢ has the property that each block is disjoint
from at least ge(g+1) other blocks.

Proof, The results for Hl follow from Theorem 8.1, epplied to

association scheme g .

The proof for El’ F., G, will use Corollery 4,7.1l. It is easily veri-

1’71
fied, say from (8.30) and (8.3), that each of these matrices has the size

? has the same size as Fl.

We next show that each of El’ Gl’ Fi has uniform column totals which are

equel respectively to g, g2, g(g+l). This is proved for El by applying

v X b stated for it in the theorem, and that F

Lemma 8,2 to design C , making use of the hlock y corresponding to the

first column of ql. The result for Gl then follows by subtraction from

g2+g, the uniforu column total of Cl' Let no be any column of Ff and let

T be the column of A, which includes no. It is clear from (8.30) that

1
the sum of the 1l's of T is equal to the inner product of columns 1} aid

7,vhere 7 is the column in Sao.

associates and have inner product pil = g(g+l), proving that F{ has uniform

But for any T € 812, T end y are second

column totals g(g+1).

T T R
1 Cl and cl Cl’ in partitioned

form, computed in two ways. By multiplication of the partitioned matrix Cq»

We now need, in part, the products ¢
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. T 1
J+E B | ‘
(8.31) T 11 i
C C = i 2

oo I FFL + GG |

L 11755

. . {' . §
| |
| l EJE, + ) G

From (8.6) and (8.1%),

(8.33)

| ot + 600D
|

€1 C1 © 1 B |2
[ ele)I + s(J-I)f }
(8.3)4') CT c = f * | »
I | e(gtl)I + 0.k + eX,
|

where Ké =J -1~ Kl is a submatrix of D2.

If {8.31) and (8.33) are solved for Eléi‘, Corollery 4.7.1 now shows

that ¢ 1s a BIB design with the parameters stated in the theorem.

If (8.32) and (8.34) are solved for FiFl, Corollary 4.7.1 now shows
that FY is the incidence matrix of a BIB design with v = b = ga(g+2),

1
r =k = g(g+l), M = g. Since this is a symmetric design, the dual design
°# is balanced and has the same parameters,
1F§ is now known, making it possible to solve (8.31) and
» and one more application of Corollary 4.7.l1 shows that 2

The product F

T
(8.33) for GlGl

is a BIB design with the parameters stated in the theorem.

Submatrix Kl in (8.29) has the same relation to Dl as submatrix Dl

in (h.l?) has to A., and Lemma 4.5 shows that K, has uniform row totals

1’ 1
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5?2 = ge(g+l). There must therefore be at least this number of zero
elements in each row of the metrix g(g+l) I + 0.K, + gk,, and comparison

of (8.32) with (8.34) shows that the seme is true of E%:l + G? 1°

means that any column of matrix [G;] has inner product zero with at least

This

2(g+1) other columns, In particular, this must hold for the inner product

of any column of E. with other columns of El’ and similarly for G.. This

1l 1l
proves that designs & and ( have the property stated in the last sentence
of the theorem, The proof is now complete.

Design C is trivial in the case g = 1, giving a fourth method of
construction of the NLl(h) schege. This construction gives an easy proof
of the uniqueness of the scheme.

Design C is fer from trivial for g > 2, as suggested by the rapidly
growing parameters in Teble 8.1. Theorems 8.3 and 8.5 give useful informa-
tion on the structure of the design but have not yet led to proofs of exis-
tence or of nonexistence in any of the cases g 2 3. In the case g = 2 Just
enough of the structure of  is determined that an empirical study is
feasible. The author conjectured that the design did not exist in this
case, undertook an empirical search in hopes of proving its nonexistence,

and in the course of the search inadvertently constructed it.

Design C inthe case g = 2 has parameters
(8.35) v=22,b=1,r=21l, k=6 A=5,

Denoting objects by 1, 2, ..., 22,a solution of this design is given by

the blocks in the following table.
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TABLE 8.2

1 2 3 4 5 6

6 22
D> 21
8 20
T 19

s e W |
&
aaAad
~0 NGO

1

LAY AR ¥ 2

Al

20 22

19 20
21 22
1921
20 21
19 22
19 22
20 21

oo Q t~
ARAEHARS

AYABRI8NN
28323333

VO AN\~
HARR

17 18
15 16
17 18

\Xo}

-~
=

OEANNANG

ERpia g Ba P R v
DD NG QG A

20 22
19 21
2l 22
19 20

e e e ek
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It is possible to verify by inspection that the foregoing design has
property (8.5), that each block is disjoint from 16 other blocks.

Theorem 8.6, The NL2(1O) association scheme exists.

Proof. Apply Corollary 8.4,1 to the foregoing BIB design.

The table of first associates requires 100 rows end 22 columns and
will be omitted to .savespace,

By listing the 7T blocks of our BIB design we have been able to
prove its existence without describing the empirical construction. This
metbod of proof is reminiscent of Bhaskhara whose 1150 A,D. treatise on
mathematics presented a sketch of a particularly lucid construction for
the Pythegorean theorem, accompanied by the brief written proof, "Beholdl"
The situation is . diffefent vhen a claim of nonexistence or uniqueness
is based on empdirical search., A valid proof must show that the search was
exhaustive, and this may involve & description which in written form is
more tedious then the search itself., In the next theorem we have attempted
to steer between tedium and nonproof by giving enough details that the
interested or suspicious reader can fill in the rest;

Theorem 8.7. The NLE(lO) association scheme is unique up to permuta-
tion of objects.

Proof. Let ( be an NLg(n) assoclation scheme, n = ga+5g, with
association matrix A.. An initial object « may be chosen in n2 different

1

ways. For a given ¢, (8.1) determines sets S, and S,, and (8.2)

1 2
determines submatrix Cl up to permutation of rows and independent permuta-

tion of columns., Theorem 8.1 shows that (_is the incidence matrix of a

1
BIB design ( with parameters (8.4) and property (8.5); for a particular

o, ~ is determined up to permutation of objects and permutatica of blocks.
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Theorem 8.4 shows that any such matrix Cl can be obtained by the same
construction from some NLg(geﬁig) associestion scheme  , and that a par-
ticular Cl determines Al and 4 uniquely. Two designs ¢ which differ only

in permutation of objects and of blocks lead to schemes - which differ only

by a permutation of the objects of Sl end a permutation of the objects of

52. Then association schemes  which are inequivalent under permutation

of objects must surely lead to designs C which are inequivalent under
permutation of objectes and blocks. The number of inequivalent schemes ¢ 1s
%%s%nggggfr equal to the number of inequivalent designs ¢ , and g is unique if =

The theorem will be proved by showing that ¢ is unique in the case

g€ = 2. It has paremeters (8.35),
v=22, b =T, r =21, k=6,}\=5,

and the property that any block is disjoint from 16 other blocks. By
Lemma, 8.2, each of the remaining 60 blocks intersects the given block in
exactly two objects,

Without loss of generality we may assume that the initial block 7y is
123L456,

Sll = {1’ 2, 3, h: D, 6}:

Sip = {7, 8, ..., 22},

. 2 . .
321 is a set of pl2 = 16 blocks, each containing six objects of 812, com~
prising the blocks of a symmetric BIB design ¥ with M = 2, Each of the pgz

= 60 blocks of Sée is the union of a block of design £ , containing two

objects of S.., and a block of design ¢, containing four objects of 812.

11
Design £ is uniquely determined by its parameters
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[}
=

v=6,b=60, r=20,5%k=2,N=

to have as its blocks the 15 pairs (i, J) = (J, i) of distinct objects of

Sll’ each pair repeated four times.
(1, J) will denote the set of four blocks of < which contain a pair

i, J of distinet objects of S 12 and 3(1, j) will denote the set of four

1
blocks of|9 which are contained in the blocks of C(i, Jj). Any two blocks
of ¢ vwhich are not disjoint must intersect in exactly two objects, showing

that
(8.36) the four blocks of g(i, j) are pairwise disjoint.

Thus for each (i, J), the blocks of g(i, j) contain all 16 of the objects

of 812’ Also,

(8.37) a block of q(i, j) and 9(1, k), J # k, must have exactly one object

in common,

Thus the four objects of any block of g(i, j) are distributed one each over

the four blocks oﬁg'(i, k)., Also if i, J, k, { are pairwise distinct, the

objects of any block ofcg(i, J) occur two each in two blocks ofgy(k, 0.
Using the remarks of the preceding paragraph it is easy to choose

notation for the objects of S,. and permute blocks within sets C(i, 3) so

12
that (1, 2), c(3, 4), (3, 5) and (4, 5) are determined to the

following extent



12 7T 8 9 10

12 11 12 13 14

12 15 16 17 18

12 19 20 21 22

3 b 7 8 11 12
3 4 9 10 x vy
3 b - - - -
3 4 - -« - -
3 5 1T 9 - -
3 5 8 10 - -
3 5 11 2z -
3 5 12 1 - -
b 5 7 10 - -
Yy 5 8 9 - -
L 5 11 % - -
L 5 12 13 -

We must now decide whether to assign the pair 13, 1% in (3, 4) to posi-
tions X, y or to some other block. In the latter case we may assume X, y =

15, 16, wvhich requires z = 15 or 16; then object 15 cannot occur anywhere in
G(4, 5) without violating (8.37); This contradiction shows that x, y = 13, 1k:
if one block of 9(3, 4) is 7 8 11 12, then another block must be 9 10 13 1k,
This reasoning was used to assign the obJjects of two blocks of <3(1, 2) to

the blocks of<a(3, 4) but it applies more generally to show thet

(8.38) if 1, J, k, [ are pairwise distinct, the objects of any block of
9(1, J) occur two each in two blocks ofc?(k, {), and the remaining

four obJjects in these two blocks occur together in another block

of g(i, 3.

Choice of notation will now give C(3, 4) and (3, 5) the form listed in
Table 8,2, After various applications of (8.36) to (8.38), c(k, 6) and

c(5, 6) are determined uniquely and the other (i, J) are determined in

part.



c(1, 3) and (2, 3) have the form

137 - 2 37y - -
13 8 - - 2 3 8 - - =
139 - 2 3 9 - -
1 310 - - = 2 310 - - =

where x and y are equal in some order to 13 and 1k, Objects 1 and 2 have
played symmetrical rolesup to this point and may be exchanged if necessary
so that x = 13, y = 14,

c(h, 5) reduces to one of these two csses.,

Case I 4 5 7 10 19 22 Cagse IT 4 5 7 10 20 21
b 5 8 9 20 21 , L 5 8 9 19 22 .
b 511 1k - - L 511 1% - -
b 512 13 - - L 512 13 - -

Once either of these cases is assumed, the remaining sete of blocks (i, J)
are determined uniquely by arguments based on (8.36) to (8.38). This may
first be established for the sixteen blocks of (4, 5), c(3, 6), c(1, 3)
and c(l, h) by comparing them to each other and to blocks that have already
been determined. The remaining ¢(i, J) are easily determined, completing
the 60 blocks of S,,.

22

Case I leads to the blocks listed in Teble 8.,2. The 60 blocks of 822

Case II are, apart from order, the blocks obtained from those of Case I by a

in

permutation of objectswhich in cycle form may be expressed
(12) (1112) (13 1%) (1920) (2122).

Therefore Case I and Case II are equivalent under permutation of objects

and blocks. Case I will be assumed.
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It remains to show that the 16 blocks of 8,, 8re uniquely determined
by the 61 blocks already fixed. The argument, which will be illustrated
for one block, repestedly uses the fact that two blocks of ¢ intersect
either in no objJects or in two objects. Since these 16 blocks comprise a
BIB design with objects 7, 8, .., 22, and M = 2, we may assume that two
blocks have the form

(1) 7 8 x - - =

(11) 7 8 = - = =,

The remeining objects in (i) and (ii) must be distinct.

Because of blocks

127 8 9 10,
3 b 7T 811 12,
5 6 7T 813 1,

(1) and (i1) cannot conmtain any of objects 9, 10, 11, 12, 13, 14 and must

therefore contain all of objects 15, 16, ..., 22, Let x = 15, Then (i)

contains the pair 7, 15 and because of blocks

35 7T 91517,
16 7111519,
2 4 7T131521,

(1) cannot contain eny of objects 17, 19, 21 and we have

(i) 7 8 15 - - -,
(1) 7 8 171921 - .

Block (ii) contains the pair 7, 19 and because of block

L 5 71019 22
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cannot contain object 22; it contains the pair 17, 19 and because of block
5 6 17 18 19 20

cannot contain object 18 or 20. We now have

(1) 7 815 18 20 22
(11) 7 8171921 -,

The remaining blocks of S.. may be completed by similar arguments, or by

21
easier arguments towerd the end.

This completes the proof of Theorem 8.7.

We are finished with the contributions of this section to the theory
of negative Latin square association schemes, but we shall mention some by-
products.

Aseociation scheme " in the case g = 2 is another scheme outside the

Bose~Shimomot > classification and appears to be new. It has parameters

(8-39) v = 77:

i ho12
P =| '
2 12 4

"o 15}

= 16, P. = |
15 45,

oy 1

B = 60,

| I—

It is readily constructed by identifying the 77 objects with the blocks of
the BIB design C , and taking two objects as first associates if and only
if the corresponding blocks are disjoint.

We have already noted that the matrix Al has many submatrices of the
form of C,, Cg, D), as the partition (8.2) can be carried out for v = n®
different choices of the initial obJect ¢, Submatrices of the form dis-

cussed in Theorem 8.5 are even more numerous, as the refinement of (8.2) to



81

the partition (8.30) can be carried out for n, = (ga + ag-l)(g2 + 3g+1)
different choices of object y. The number of partitions is thus equal to

the number th of ordered pairs ¢, y of second associates. Each submatrix

El, Fl, Fi, Gl’ Hl is counted twice in this total, since the ordered pairs

a, 7 and 7, & lead to partitioned matrices which differ only by an interchange

of Fl and Ff, an interchange of Gl
an interchange of G§ and Hi. In the case g = 2, one detail of this is that

A, contains 3850 pairs of 16 x 16 submatrices F, and Fg for a total of TT00

incidence matrices of the symmetric design with r = 6, M = 2, These are

end Hl,zand

all equivalent under peruutetion of rows and columns. We remark that Hussain
[14] nas shown that there are jJust three solutions of this deeign which are
inequivalent, and that the type arising here is his type I.

In the case g = 2, the 15 sets (i, J) = W(J, 1), L <i< J<6, have &
curious interpretation. Each set is an arrangement of the 16 objects
Ty 8, «vey 22 into four blocks of four objJects. We assign four letters, say
A, B, C, D, one each to the four blocks of each (i, j). We then arrange

the 16 objects in a 4 x 4 array, say

T 8 910
11 12 13 1b
15 16 17 18
19 20 21 22

M=

and use M with each ~(i, j) to define a 4 x 4 array M(i, j) of the letters
A, B, C, D by the rule: for each object ¢ ¢ {7, 8, ;;;, 22} assign the
same letter to the position of M containing 6 as has been assigned to the
block of #(1, j) containing 0.

Then each letter occurs in four positions in M(i, j) and it follows

from (8,37) that these positions are occupied by four distinct letters in



This means that M(i, J) and M(i, k) are orthogonal 4 x k

M(i, k), J # k.

<J<6,

squares, and for fixed i, the five distinct squares M(i, j), 1

The simplest

3 # i, are a complete orthogonal set of 4 x L squeres,

(1, J) in our

assignment of letters A, B, C, D to the blocks of the

solution of the design -~ leads to the squares M(i, j) displayed in the

following table,

TABLE 8.3

AAAA ALM< <OMA MA<KO MLAD
VOLL DA<CA MA<LD <VMA MO
dd<a MDA COMA <OMA <MOA
A<M AADD MAMA <O h<ao
VAMd DDAA <V MAAM Ao
MdOQ MMad< MAMA MAAMQ Emoa
[ &) (&) [ & [ &)
<MAD MM COLD FOO tmoA
A<M AmMAM MmAAA
OmLA DadO< mMmAA OO« MA<LO
mAaAm <omA
MoA< MAMA <<OO
CADM VLD <L <O mAAmM MA<D
<O <OmMA
a [ &
mMmMAAQ <0< MA<O
mA<o moom
ome <o <<OO MAMA MA<O
LV O KSOMA
[&]
MMCM ACd<A AMAM ARDD AL @<
tmon MOOM MAMA MMt [<AO
<AN< <O <<MA <MOA
<mMDA ARV A<K@AD AD<M ARAA
CMOA V€A DA DAMg DODD
<GMNMOLOUMA MACED DA MELU A MMM
<MOA <OMA TAVM <MAD < << <
—~ Q (.2 = 0"\ \O

With

Each square M(i, j) is also listed as M(J, i) in this table.

this duplication, each complete set of five pairwise orthogonal squares is

It will be noted that

simply the set of squares in one of the six rows.
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the only Latin squares are M(1, 3), M(1, 4), M(1, 5) and M(2, 6), the first
three forming a complete set of three pairwise orthogonal Latin squares. For
a different assignment of objects 7, 8, ..., 22 to array M, the M(i, j) will

have the same orthogonality properties but need not include any Latin squares.

9. Parameters of designs, The emphasis in wmost of this paper is on
PBIB association schemes rather than actual designs. This section, however,
presents and briefly discusses tables of arithmeticelly possible sets of
parameters for designs based on NLg(n) association schemes. Under "Remarks",
the taebles include informetion which has come to the author's attention on
existence and non~existence of these designs, with references to published
literature or to some results of this section. A more systematic study of
detailed properties, construction methods, and nonexistence proofs
for NLg designs will be deferred to a later time., The present discussion
end tables are a preliminary report and are lntended to facilitate such a
study, not take its place. In perticular, the author has not mede a recent
search of the literature on particular designs and may have omitted some

published results from the tables or duplicated them in the following

paragrephs,
Given a set of perameters v, D, p?k, Oy Ty O for a two-class scheme,
we define a set of design paremeters b, r, k, hi’ ei to be arithmetically-

possible if the following well-known necessary conditions are satisfied.

(9.1) rv=bk,

A AN = -
nM + ok r(k-1).



6, >0; 1 =1and 2;

i -
if ei >0, 1i=1eand 2, then b > v;
if ei =0, i=1or2, thend >V - a .

The special case Kl = Aé reduces to a balanced design and will be omitted.

These conditions apply to all two-class designs but our tables are restricted
to the negative Latin square family. We assume ny < B, (in particular

= n.,, vhich are already available in tables

1 2
of Latin square parameters.) The tebles include NLg parameters for

omitting NLg parameters with n

all designs with r < 10, k < 10, all v,
all designs with r < 15, k < 15, Vv < 100,

and selected designs with r > 15 or k > 15, v < 100.

This range vwas determined by the desire to include a representative
sample of designs while keeping the tables at a reasonable length. It will
be observed that only a small proportion of the parameter sets are in the
range r < 10, k < 10 which has traditionally been called practical.

Given an association scheme with parameters v, n, pgk, the following
are some simple methods by which designs can be generated from the association
scheme itself,

In this and the two following paragraphs, i end j represent 1 and 2 in

some order. A design with parameters

,k=2,)‘-=l,}\=0

(9.2) V, b = Vni/2, r=n J

i i

can be constructed by teking as blocks all pairs of ith associates,
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A design with parameters

| = = = AN o= i A = 'j
(9.3)  ve=b,r=k=n, N =py, M=y

can be constructed by taking block o as the set {1th associates of 8}.

A design with perameters

J

' 1
. = = A A
(9 )'") v b) r k n +l’ i = pii + 2) J = pii

i

can be constructed by taking block © as the set
{6}V {1-th associates of 6}.

In the Remarks column of the following tables, the notation R(a, b, ..., ¢)
for a design indicates that it can be obtained by replicetion from the designs
for the same association scheme with serial numbers &, b, ..., ¢. Its blocks
may be listed by merging the lists of blocks of those designs.

Each block in & particular.design, regarded as a set of k objects,
uniquely determines the complementary set of v-k objects. The complements
of the b blocks of & design (| comprise a second design, the complement of (L.
It (| has incidence matrix N, its complement has incidence matrix J-N and
properties which follow readily from (4.7) if (L is partially balanced, If
a two-class design has perameters v, b, r, k, hi’ the complement has the

same association scheme and parameters

V, b, r' = b-r’ k' = V-k, hi = b-Qr + ki

Designs (9.3) and (9.4) for opposite choices of i are complements. A design
exists if and only if its complement exists, and a few designs in our tables
are disposed of by first proving the existence or non-existence of the com-

plement.
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It Kj = 0 in a 2-class design, each block must be a set of objects
vhich are pairwise i-th assoclates. In particular, any two objects of
the block must have the remaining k-2 obJjects among their Pii common i-th
associates. This gives us a known (3] necessary condition for a 2-class

design, where i and J represent 1 and 2 in some order.

i

(9.5) If Ay = 0, then k<p, +

e.

A number of designs for which conmstructions by various methods are
known to the author are listed in the tables with the remark, "Constructed,
to eppear,” The details, which are beyond the scope of the present section,

will be presented in a later paper.
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Parameters of Designs with NLl(h)lxﬁmaciation Sehemes

v =25 10 2
[t N ! = =

my=2 B i_g y%**?%fg . s, i=1j

n, = 10, -7
No. v r kb M A8 6 Remarks
1 16 5 2 ko 1 0 6 2 Comstructed, [12], (9.2)

and Sec, T.
2 16 5 5 16 0 2 1 9 Constructed, [12], (9.3),
3 16 5 5 16 2 1 5 1 Constructed, to appear,
b 16 5 8 10 1 3 0 8 Constructed, to appear,
5 16 6 6 16 0 3 0 12 TImpossible, (9.5).
6 16 9 6 24 1 L 2 1k 4
7 16 10 2 8 ) 1 8 12 Comstructed, [12], (9.2)
and Sec. T.

8 16 10 2 80 2 0 12 4  Constructed, R(1, 1).
9 16 10 L 4o 0 3 b 16 Constructed, Sec. T .
10 16 10 i 4o L 1 12 0 Constructed, Sec. T ,
11 16 10 5 32 0 L 2 18 Constructed, R(2, 2),
12 16 10 5 3 2 3 6 10 Constructed, R(2, 3),
13 16 10 5 32 4 2 10 2 Constructed, R(3, 3).
1% 16 10 8 20 2 6 0 16 Constructed, R(k, &),
15 16 10 8 20 b 5 y 8
16 16 10 8 20 6 L 8 0 Constructed,to appear.
17 16 10 10 16 L 7 0 12 Impossible, Cbmplement of
8 16 1 1 16 6 8 1 9 Congbracted, (9.4).,
19 16 11 11 16 8 7 5 1 Comstructed, complement of
20 16 12 6 3 o 6 0 ok ImpNgészﬁle, (9.5).
21 16 12 6 32 2 5 4 16
22 16 12 6 32 6 3 12 0
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88

v r k b }‘l 7\2 8y 0, Remarks
23 16 15 2 120 3 o) 18 6 Comstructed, R(1, 1, 1),
24 16 15 3 80 o] 3 9 21 Constructed, to appear,
25 16 15 3 80 L 1 17 5
26 6 15 L 60 1 L 8 20
27 16 15 L 60 5 2 16 4
28 16 15 5 k8 o 6 3 27 Constructed, R(2, 2, 2),
29 16 15 5 W 2 5 7 19 Constructed, R(2, 2, 3).
30 16 15 5 18 6 3 15 3 Constructed, R(3, 3, 3).
31 16 15 6 o 1 7 2 26 R(5, 6).
32 16 15 6 o 3 6 6 18 Constructed, to eppear,
35 6 15 6 Lo 7 L 1k 2
34 16 15 8 30 3 9 6 24 Constructed, R(k, 4, L),
35 16 15 8 30 5 8 L 16 Rk, 15).
36 6 15 10 2l 7 10 2 14  Complement of No. 6.
37 6 15 12 20 9 12 0 12 Impoesible, complement

B A, = o=
has ! 1.



No.

n

n,

TABLE 9.2
Paremeters of Designs with NL2(6) Association Schemes

'V‘==56,

~ ! o, = 21, c=3
=, Po=| %9 p |6 81 1 ’
| 772708 12,7 g e1b, T=2.

1

2=21’

(This scheme is unknown,)

89

v r k b h;: Ne 8, 8y Remarks‘ |

1 36 2 8 9 1 0 T 0 Impossible, (9.5),
2 36 7 3 8L 1 0 12 5
3 36 7 L 63 0 1 10 8

L 36 7 7 36 3 0 22 1 TImpossible, (9.5),
5 36 7 9 28 1 2 0 7
6 36 7 12 21 L 1 21 0
T 36 8 8 36 1 2 1l 8
8 36 12 8 5k 3 2 15 8
9 36 1k 2 252 1 0 19 12
10 36 1 3 168 2 0 2L 10
11 36 14 4 126 0 2 20 16
12 36 1k L 126 3 0 29 8
13 36 14 6 8 5 0 39 4
1 36 1k 7T T2 3 2 1T 10

15 36 1k 7T T2 6 0 L 2 Tmpossible, (9.5).
16 36 1L 8 63 L 2 22 8
17 36 1k 9 56 5 2 27 6
18 36 1 12 L2 5 L 15 8
19 36 1k 14 36 7 L 25 4
20 36 15 1 36 9 L 36 1
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TABLE 9.3

Parameters of Designs with NL2(7) Association Schemes

v = ,4’9: — .
l 5 12 6 10 al = 32, o = ).].,
1 1 :_.12 20‘ 2 10 21 (22 = 16, T=2,
n, = 32, )

(This scheme is unknown.)

No. v r k b Kl KQ ] ) Remarks

(o sets of paremeters in
the range r < 15, k < 15)

1 ho 16 2 3% 1 o 18 11 (9.2),
2 b9 16 4 196 3 o 22 1

3 49 16 7T 12 0 3 T 28

4 ko 16 7T 112 " 1 21 )

5 L9 16 8 98 1 3 9 23

6 4o 16 8 98 3 2 16 9

7 49 16 1k 56 1 6 0 35

8 Y] 16 14 56 3 5 7 21

9 hg 16 1L 56 5 L 14 7
10 b9 16 16 ko 3 6 L 25 (9.3),
11 L9 17 17 Lo 3 7 2 30 ‘
12 b9 17 1T b9 5 6 9 16 (9.4).
13 b9 17T 17T b9 7 5 16 2
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TABLE 9,k
Parameters of Designs with N12(8) Association Schemes

v = 64
’ 2 15| 6 12| B =W0=5
n. = 18 » P = [ ! Pe = [ ‘3 ’

1 1 15 30__‘, 12 32 02=18, T=2,
np = 5,
No. v o k b hl Ké 8y 6, Remarks
1 6k 6 9% 1 o) 8 0 Constructed, [19],
2 64 6 16 2k 0 2 0 16 Constructed, to appear,
3 6l 9 3 19 1 0 1 3
L 64 9 6 96 0 1 6 1k
5 64 10 10 6k 0 2 L 2
6 6l 12 L o192 2 0 16 0 Constructed, R(1, 1).
7 6 15 L 240 0 1 12 20 Constructed, to appear,
8 64 15 10 96 0 3 6 3
9 6l 15 16 60 5 3 16 O Constructed, to appeer,
TABLE 9.5
Paremeters of Designs with NL3(8) Association Schemes
VvV = 6)4 ’ -
10 16 1215 o =36, o=b,
ny=2l, B = [16 20] » By =I;15 20J >o, =27 =3
, = 36, | ’
No. v r k b i o8 8 Remerks
1 6l 9 bk 1 o} 12 4  Constructed, Sec. T,
2 64 9 9 64 0 2 1l 17 .
3 64 9 16 36 1 3 0 16 Constructed, Sec. T.
b 64 10 10 64 2 1 12 L
5 64 12 Loo192 0 1 8 16 Constructed, Sec. T.
6 64 12 16 48 L 2 16 O Constructed, Sec, 7,
7 64 15 10 9% 1 3 6 22



TABLE 9.6

Parameters of Designs with NL2(9) Agsociation Schemes

v=281, - -
1 18] [6 m] o =60, o =6,
n, = 20, Pl = K P2 = ’
(18 k2| h b5 o, =20, T=2.
np = €0,
No. V' r k b }\1 >~2 91 8, Remarks |
1 81 10 3 270 1 o] 12 3 Constructed, Sec. T,
2 81 12 6 162 0 1 9 18
3 81 15 5 243 0 1 122 21
L 81 15 9 135 0 2 9 27
5 81 15 9 135 3 1 18 0
6 81 16 16 81 0 L b Lo .
7 81 20 2 810 1 0O 22 15 Conmstructed, (9.2),
8 81 20 3 540 2 0 2k 6 Constructed, R(1, 1),
9 81 20 L ko5 o) 1 17 26
10 81 20 6 270 2 1 21 12
11 8. 20 10 162 0 3 11 38
12 81 20 10 162 3 2 20 1



TABLE 9.7

Parameters of Designs with NL5(9) Association Schemes

v = 8), ,. - . -
"9 20l 12 18! o =50, =35,
By =30, Py = s By = K
120 30 L18 31 @, = 30, T = 3.
B =50, ; ”
No. v r k b }\1 %.2 el 92 Remearks
1 81 6 6 81 1 0 9 0
2 8L 10 6 135 0 1 6 15
3 81 1 1 8 2 1 13 b
L 81 12 6 162 2 0 18 0
5 81 15 3 Los5 1 0 18 9
6 8L 15 5 243 2 0o 21 3
7 81 1 15 & 2 3 9 18
8 81 18 ou3 3 o 27 0
9 81 20 ko5 2 0 26 8
10 81 20 6 270 0 2 12 30
11 8L 20 10 162 1 3 11 29
TABLE 9.8
Parameters of Designs with NL2(10) Association Schemes
v = 100, o 21 [ 616 0 =T, o=1,
n, = 22, Pl = | P2 = | ’ ‘
| n, = 1, 21 56 .16 60 a, =22, T=2.
No. v r k b ?»!_ >-2 8, 6, Remarks
No sets of parameters in
the range r < 20, k < 20
1 100 21 12 175 0 3 12 ke ,
2 100 22 2 1100 1 0 2% 14 Conmstructed, (9.2).
3 100 22 8 275 0 2 16 3
L 100 22 11 200 3 2 22 12
5 100 22 20 110 5 L 20 10 ‘
6 00 22 22 100 O 6 L4 6k Constructed, (9.3),
7 100 23 23 100 2 6 49 Constructed,(9.4) .



TABLE 9.9

Parameters of Designs with NL3(10) Association Schemes

v = 100, . _
:fs elﬂlg F12 21% = 66, 0'=6.,
R ok ug) 2 T 21 Wy ay =33, T=3
n, = 66, -
(This scheme is unknown, )
No. v r k b }‘1 ?\-2 91 8, Remarks
1 100 11 L 275 1 0 1 L
2 100 12 12 100 0 2 L 24
3 100 12 12 100 2 1l 1k 4
L 100 15 12 125 1l 2 10 20
5 100 15 12 125 3 1 20 0
6 100 18 45 4o 6 9 0 30
7 100 21 12 175 1 3 12 32
8 100 21 12 175 3 2 22 12
9 100 22 L 550 0 1 18 28
J0 100 22 10 220 0 3 10 %o
11 100 22 22 100 2 6 y Ly
12 100 22 22 100 y 5 14 24
13 100 22 22 100 6 L 24 4



TABLE 9.10

Parameters of Designs with NLu(lO) Association Schemes

vV = 100 s’ - -
118 25 [20 24 @ =55, o=5
n, = b, Pl= i 9 P2=.| L s ‘
125 30 |2k 30] o, =44, T=bh
n2 = 55, »
(This scheme is unknown.)
No. v r k | b 7\1 ?\2 61 6, Remarks
1 100 11 5 220 1 0 15 5
2 100 11 1 100 0 2 1 21
3 100 11 20 55 1 3 0O 20
b 100 15 12 185 0 3 0 30
5 100 21 12 175 L 1 32 2
6 100 22 8 275 1 2 16 26
7 100 22 22 100 3 6 b 3k
8 100 22 25 88 7 L 30 0
9 100 22 40 55 7 10 0 30
10 100 23 25 100 L 6 9 29

The following table liste all arithmeticelly possible parameter

sets of NLg, type with v > 100 in the range r < 10, k < 10,

Other l\ILg Parameters in the Renge r < 10, k< 10

(These schemes and designs are unknown, )

TABLE 9.11

Schewe v n  ny pi‘l p?-l r kb AN N 6 6,
NLh(ll) 121 48 T2 17 20 9 9 121 O 1 15
NLh(llL) 196 60 135 1k 20 10 7 280 1 0 1k 0
NL6(1h) 196 90 105 4o Y2 10 10 196 1 0 16 2
NL5(15) 225 80 1kk4 25 30 10 9 250 1 0 15 0
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10, Generalized Lg and NLg designs with m associate classes, The
Latin square family of two-class sssociation schemes and designs can be
generalized in a naturael way to a larger number of associate classes. The
three-class case has been discussed [22] by Singh and Shukla, who were aware
of the full generalization, In this section we describe the family of m~-class
Latin square assoclation schemes, then define an m~class negative Latin square
scheme,

If there exists a complete set of n-l1 palrwise orthogonal Latin squares
of order n, we may obtain & set of n + 1 pairwise orthogonal squares (not
all Latin) by adjoining a square in which the i-th letter occupies all
poeitions in the i-th row and a square in which the i-th letter occupies
all positions in the i-th column,

To define an m-class assoclation scheme, m < n+l, we arrenge the n+l
orthogonal squares into m disjoint subsets, where, denoting by g the num-

ber of squares in the i-th set,

(lO.l) 8, * s0e + gm = n+l .

1

We arrange the n? objects in an n x n array and take two objects as i-th
associates if and only if their positions in the array are occupied by the
same letter in an orthogonal square of the i-th subset. It can be shown
that this association relation is a partially balanced m-class scheme with

the following parameters.

(10.2) V= n?,

h, = Si(n-l) s

i
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i i
Py = Py = sj(si-l),
i
ij = gj(gj-l),
i
Pix = 848

i, J, k distinet, 1 <1, J, k< m,

The above definition is more restrictive than necessary. Denoting
= + o0e = -
€ =8 By F e W gy =0t oGy,

we may still comstruct the m~class Latin square scheme if & set of g pair-
wise orthogonal squares exists (equivalently, g-2 such Latin squares).
Associate classes 1, 2, ..., m-1 are defined as before and obJjects are
taken as m-th associates if they are not associates of any other class.
Expreessions (10,2) apply. It may be conjectured that association schemes
with these parameters exist in still more cases, though it mey be preferable
to treat them as e generalized pseudo~-Latin square family in any cases where
the orthogonal squares are not actually used'.

It is now completely straightforward to define a generalized negative
La.tip fsquare family of association schemes by using negative integers n,
81s e+ § in expressions (10.1) and (10.2). In terms of positive parameters
n*, g:, we take n = -n*, g = -g-:', and substitute in (10.1) and (10.2) .
Dropping the stars, we have
(10.3) B * eeo tg =n-1,
(10.4) v =27,
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1
;; = (g,#1)(g;#2) - n - 2,

pij = Pii = gd(gi+l),

i

pjj = gj(gj+l)’
i

p,jk = gdgk}

i, J, k distinet, 1 < i, J, k < m,

These parameters are integers satisfying conditions (1.4) end (1.5) and all

except possibly pi 4 ore non~-negative, The requirement

i
Pys =
places & lower bound on g, for a given n, 1 = 1, ese, m, and (10.3) then

places sn upper bound on the number m of assoclate classes for a given n.

11. Aclmowledglements'. Portions of this work appeared in 1956 in the
author's Ph.D., thesis at Michigan State University [16]. Section 9 includes
portions of unpublished tables which were compiled by the author in 1961 in
an investigation for which computer facilities were provided by Purdue

University.
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