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1. Introduction. The aséociation relation in an m-class partially balanc-
ed incomplete block (PBIB) design is a partition of the ordered pairé of distinct
objects (or varieties, or treatments) of the design into m classes in accord-
ance with certain well-knowm regularity conditions. If this partition is re-
stricted to the pairs of the k objects of a single block, the restricted partition,

which in this note will be called the association pattern of the block, is not

specified by the definition of the design and in general appears to be quite
irreguler. The blocks of gsemd -regular gfoup divisible designs were shown by

Bose and Connor [2] to have association patterns of particularly simple form.

A similar result was proved by Raghavarao [4] for certain designs of triangular
type and Latin square type with two constraints (L2). Theorem 1 of the present
Daper proves the same result for & more inclusive family of designs, designated
here ag SG designs. SG designs are related to partial geometries and are defined
at the end of this section.

Majindar [3] proved several theorems on the intersection of blocks of BIB
designs by means of enumerstion methods which are not applicable in general to
PBIB designs. Shah [5, 6] generalized these methods and theorems to the
designs whose block association patterns had been analyzed in [ 2 ]
and [4]. Theorems 2 to 5 of the present paper, on the intersection of blocks
of SG designs, are a further extension.

Following Bose [1], we define a partial geometry with parameters (p, Ky t)

as a finite collection of undefined objects called points and subsets called
lines, subject td the following four axioms, where p >2, K >2, t > 1 are
integers.

Al., DNo pair of points is contained in more than one line,

A2, Each point is contained in p lines.



A3, Each line containst‘points.
Ak, Given a point P and a line £ not containing P, exactiy t points of
£ are contained with P in lines.

The nunber of points is denoted by v. A partial geometry may be used to generate
a two-class association relation for a set of v objects, which are identified
with points. Two objécts are defined to be first associates if some line of
the geometry contains both of the corresponding points, and are defined to be
second associates otherwise. It is shown in [1] that such an association rela-
tion satisfies the conditions for partial balance, A PBIB design will be said

to be of partial geometry type if its association scheme can be generated in this

WeY .

A group divisible association scheme with m groups of n objects can be

regarded as a trivial case of a partial geometry, the groups comprising the lines.

The above axioms are satisfied with p=1,K =n, t = 0, Conversely, we may

deduce that a system which satisfies the axioms with p = 1 or t = O must correspond

to an associatior scheme of group divisible type.
Associaﬁion scheme parameters of partial geometry type are given in part
by
[(p - 1)(K - 1) + £1/t,
(1.2)  np = o(K- 1),
(13)  ny = (p - 1)(K- 1)(f- t)/s.

Let a PBIB design of partial geometry type have parameters r, k, b, )i’ )2,

(1.1) v

and let N be the v x b incidence matrix of the design. Then the symmetric

matrix NN' has st most three distinct characteristic roots qa, Gl’ qe given by
qa = rk,

(Lb) o =7+ (Ki-t - 1N - (€ - t)n,




--a----

92=rA—p7\l+(p-l)72-

Except in degenerate cases which do not arise in this investigation, .these roots

have miltiplicities G = 1, &y, O, where
(L.5) o =pp -~ 1)(Kk- 1)/t(K+p -t -1),
(1.6) o = (K- 1)(%-t) [(p=1)(K- 1)+ tl/t(Krp-t-1)
It is easily verified from (1.1l) that
(1.7) v(K-t) =K (v - pk+l +p -t - 1),
and from (1.1) and (1.6) that o
(1.8) vk - 1)(xl~‘- t) =kop( k+ p -t - 1), |
The relations r(k - 1) = nyN +nydy, V=n, +n, + 1, and (L.4) reduce to
r(k - 1) = (v - 1N + (% - A)ny,
o = r + N = (N - ») (k- t).
Eliminating ), - N and employing (1.3) leads to
(o - Dl - 1)o/t = v\ - rk+ [v(r - Nkl
Thus,
(1.9) M o= [r(eg - v)/vlk - 1)1 +6{p - 1) 6/vt.
Also, the condition 6
(1.10) k- vA = vz - Ak
and with (1.4) implies

(1.11) M- N = r(v - kYWvlk - 1)(Kk- t).

= 0 is equivalent to

If a design is of group divisible type with m groups of n objects, we set

p=1,K =n, t =1, Then expressions (1.2) and (1.4) for n, 6y 6, 6 are

velid and other parameters include
v = mn,

na = (m -.l)n,



o, = n(n - 1).
It is readily Werified that (1.7) and (1.8) hold andtet (1..9) can be replaced
by
(1.12) N = [r(kx - m)/u(n - 1)] + [(m - l)el/m(n - 1)1
A group devisible design is semi-regular by definition il ¥k - v%z = 0,
Tt is easv to show that tiis is equivalent to 6, = 0 and tius implies (1.11).
For convenient reference in this paper, ve glve this DEFINITION. An SG

desicn 1s a two-class PBIB deslign vhich is of group diviegible or partial

geonetry type and has the property 61 = 0, Thus 3G designs include semi-regular

groap divisible designs and certain designs of partial geonetry type for which
tue natrix NN' is singular,

2. Block association patterns.

THEOREM 1. Let a tio-class PBIB design be of group divisible type or of
partial geometry type, (p, k, t). Then 6, = 0 if and only if kK/vis an
integer and each block of the design contains exactly klﬂ/v objects from each
line of the geometry

PROOF . Let £ be an arbitrary but fixed line, and let s denote the number
of objects of £ which occur iﬁ the i~th block of tie design, i = 1,...,b.
Emumeration of the occurrenceS“of objects of 2 singly and in pairs within blocks

of the design, we obtain

i=1
b
Z vilyy - 1) =k (k- DN

Therefore,
b 2 2
(2.1) )X Wi—km/ﬂ = KK - 1)y + 7K - e S/,
i=1 )
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Using (1.10), (1.9) and (1.12), the right hand side of (2.1) reduces to
Ke(lc- (p - l)el/vt for a partial geometry and to n(n - l)el/m for a

group divisible scheme, In either case, the sum in (2.1) is equal to zero if
and only if 91 = 0, proving the theorem.

Taeorem 4 of [2] and Theoremsl,l and 2,1 of [4] are special cases., The
hypotueses which are assumed in [4] for the design paraneters are the appropriate
special cases of (1.9).

Designs with the following parametefs,cannot exist with partial geometries
as assoclation schemes beca&use el = 0 while kK /v is not an infeger. This list

of examples is confined to the range r < 15, k < 15 and to partial geometries

not covered by [4].

v r K b A N n, P, b K t
16 12 6 32 2 7 9 L 3 L 2
27 - 12 12 27 2 7 10 1 5 3 1
36 10 9 Lo 1 L 20 10 L 6 3
45 12 K. 35 2 7 28 15 7 5 3
50 15 15 50 3 6 28 15 L 8 L

3., Intersection of blocks.
Bl will denote an arbitrary but fixed block of a design, and Bi’ i=2,...,b
will denote the other blocks, X, denotes the number of objects common to B7

and Bi' We define

b
L=X x.,

i=2

b
Q=X xi R

i=2

IEMMA 1. For some integers x and n, let there exist blocks Bi ,{..,Bi
1 n



such thatb :»:ij-: %X, J=121,4..,n. Then, provided Xq ;é x for some 1 =2,...,0, .
(3.1) n<b-1- ([(b-Vx-1/Q-2xm o+ (5 - 1527

Ifn 21,
(5.2) [1/(b - 1)] =D <x < [1/(b - 1)] + D,

viere p° = [(b - 1)qQ - Le](b -1 ~n)/n(b - 1)2.

FROOF, The b - 1 - n integers X other than X, g = Lyes.,n, have nean

J .
(L-nx)/(b-1-n). Computing the swa of squaves of deviations from the mean, e

obtain
2 2
Q - nx" - [(L-nx)/(b-21-n)]>0,
leadinz to
(3.3) n(b - 1)%° - 2nlx + nq + 1% - (b - 1) < 0.

In particular, Q - [Lz/(b - 1)1 > 0. Now the coefficient of n in (3.3) can be

expressed Q - [Le/(b - )]+ {L - (b - l)x]e/(b - 1)} and is positive unless

X, = x, i =2,...,b. Under the respective hypotheses, (3.3) may therefore be
solved for n to give (3.1) and solved for x to give (3.2).

IEMMA 2, Tor an SG design and for any chioice of block Bl’

(3.%) L = x(r-1),

(3.5) Q = ke[(v -x)(b - ) - aé(v - rk)]/vaé.

PROCF. Enumeration of occurrences in other blocks of obJects of Bl gives
(3.4), Tet Blcontain 7z ordered pairs of first associates. Enumeration of

occurrences within other blocks of pairs of objects of B, leads to

z(A - 1) + [k(x - 1) - z]()é - 1)+ x(xr - 1),

Q

(3.6) Q ()2 - )1) [B(k - 1) - 2] + ()1 - Dx(x - 1) + x(r - 1).
A given object of Bl is contained in p lines of the partial geometry, and

by Theoren 1, Bl contains exactly k K/v objects of each of these lines. Thus

B, contains exactly p(k( - v)/v first associates of the given object, and



. z = k%p(k K - v)/v, for any cioice of block B If the design is of partial

1’
geonetry type, this is used in (3.6), along with (1.11) and (1.9), and after
simplification we obtain
(Q/rk) + (k/z) - (82/v) = |
| (v = k) (K[x(v - pK) + v(p - 1)]. + vK(K - ) - kv(K - t)}/v2(PC - 1){(K-t),
Application of (1.7) and (%.8) gives the right hand side the form
(v - x){kQ(v - pK) + v(p = 1)) + vK(K-t) - kK K(v -pK + K+ p -t ~ 1))}
/K ae(.rc +p -t - 1)
and straightforward siwmplification gives
(/) + (5/2) - (B/v) = (v - ©)%/van,,
This is equivalent to (3.5)., If the design is of grouvp divisible Vtyjpe, z = k(% - 2)/m

and with the aid of (1.11) and (1.12), (3.6) again reduces to (3.5).

THEOREM 2. If a given block B of an SG design is disjoint from d other

blocls, then

i (3.7) d b -1 - {vop(r - 1)2/[(b - )(v - k) ~o,(v - xk)]},
with equality only if
4 (3.8) K[(b - 2)(¥ - k) -0p(v - k) ]/vop(r - 1) =q
_ ls an integer and each of the remeining b ~ d -1 Blocks has exactly M objects
- in common :ith B.
= PROOF. (3.7) follows from (3.1) with x = 0 and Lewmma 2. Frow the proof

of Lemna 1, equality in (3.1) holds only if each of the b - n-1 integers x,
is equal to L/(b-1-n), leading to (3.8).

he following relation for any PBIB design may be verified by straightforard
simplification.

] (3.9) (b - Db = 2)(v - X) = ay(v - 7K)] - wy (= - 1)°

. = (b - o, - (b ~ 2)(v - k).



THEOREM 3. In an SG cdesisn, the following three statenents are equivalent.
(a) Some biock B has the same nuwmber of objects in common ~wita each

of the remaining bhlocks,

c'
il

()
(c) X

exactly x objects in common.

a, + L. (Equivalently, b = v - a].)

k(r - 1)/(b - 1) is an integer and any “wo blocks have

PROOF. Assume (a). Then by Theorem 2 for Block B, (3.7) holds witi
equality and with d = 0. Using (3.9), (b) follows. Next assunme (bj. Consider
Theoren 2 for an arbitrary cioice of block B. (b) and (3.9) imply that (3.7)
nolés with equality and witi: d=0., Thus (3.8) holds. Using (b), (3.8) reduces
to w = k(r-1)/(b-1), proving (c). It is trivial that (c¢) implies (a).

THEOREM 4, If x is the number of objects common between two given blocks
in an 3G design, then

(3.10) [k(r - 1)/ (v - i)] -D<x < [k(r - 2)/(b - 1)1 +D,
wiiere

0° = ke(v - 2)(b - )b - 2)(b - o, - l)/vab(b - 1)2.

PROOF., This theorem follows from (3.2) with n = 1, Lerma 2, and sore
sirmlification (in =hich (3.9) is useful).

A design is defined to be resolvable if it is possible to arrange the
blocks into  disjoint subsets, or replications, suci that each object occurs
in precisely one block of each replication. Necessarily, v/k = b/r = u, say,
is an integer, representing the number of blocks in a replication. Then each

blocl: is disjoint from at least u - 1 other blocks. A design is defined to

be affine resolvable if it is resolvable and each block hwas tiie same number

of objects in cormon with each of the b - u blocks not in its own replication.

THEOREM 5. 1In an SG design, let v = ku where u > 2 is an integer, and

(@]




let some block B have u ~ 1 blocks disjoint from it. Then
%.11) b>v-o +r -1,
and the following two statements are equivalent,

(a) . b=v- dl + - L,

(e) k/u is an intezer and B has exactiy k/u objects in common --ith

each non-disjoint block, |

PROOF., Let v = ku, b = ru., Applying Theorem 2 with d = ﬁ -1, (3.7)
reduces to b > @, + r, vhich is equivalent to (3.11). 1If o, =D - r and v = ku,
(3.8) reduces to k/u = p, and Theorem 2 implies the equivalence of (d) and (e).

COROLIARY 5.1, Let an SG design be resolvable. Taen (3..1) holds and
thé'following three statements are equivalent.

(£) Some block B has the same number of objects in common witn

each block not in its replication.

(g) b=v-a +r-L

(n) The design is affine resolvable,

PROOF. Theorem 5 is applicable for an arbitrary chQice of block B, imply-
ing (3.11). Assume (f) for a particular block B. ' Then the k objects of block
B are distributed in equal numbers over the u blocks of each replication not
containing'B, whence k/u is an integer and (e) holds, irplying (g). Assume

(g). Then (e) holds for any choice of block B, implying (h). It is trivial

that (h) implies (f).
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