The association scheme on the points off a quadric

F. Vanhove
(19 Nov 1984 – 27 Nov 2013)

The association scheme on the points off a quadric

F. Vanhove
(19 Nov 1984 – 27 Nov 2013)

Abstract
The parameters of the association scheme on the points off a quadric are computed. This corrects a mistake in the literature.

In [BCN, Theorem 12.1.1], the existence of a certain association scheme is claimed, and details are given for \(n = 3 \). Here we correct the statements given there for odd \(n \geq 5 \).

Let \(q \) be a power of 2, and \(n \geq 3 \). Let \(V \) be an \(n \)-dimensional vector space over \(\mathbb{F}_q \) provided with a nondegenerate quadratic form \(Q \). Let \(B \) be the associated symmetric bilinear form, given by \(B(x, y) = Q(x + y) - Q(x) - Q(y) \). If \(n \) is odd, there will be a nucleus \(N = V^\perp \).

We construct an association scheme with point set \(X \), where \(X \) is the set of projective points not on the quadric defined by \(Q \) and (for odd \(n \)) distinct from \(N \). For \(n = 3 \) and for even \(n \), the relations will be \(R_0, R_1, R_2, R_3 \) where

\[
R_0 = \{(x, x) \mid x \in X\}, \text{ the identity relation;}
R_1 = \{(x, y) \mid x + y \text{ is a hyperbolic line (secant)}\}; \\
R_2 = \{(x, y) \mid x + y \text{ is an elliptic line (exterior line)}\}; \\
R_3 = \{(x, y) \mid x + y \text{ is a tangent}\}.
\]

For odd \(n, n \geq 5 \), it is necessary to distinguish \(R_{3a} \) and \(R_{3n} \), defined by

\[
R_{3a} = \{(x, y) \mid x + y \text{ is a tangent not on } N\}; \\
R_{3n} = \{(x, y) \mid x + y \text{ is a tangent on } N\}.
\]

Received by the editors in September 2019.
Communicated by H. Van Maldeghem.
Note that every line on N is a tangent, and that for $n = 3$ there are no other tangents, so that R_{3n} is empty. For $q = 2$ a hyperbolic line contains only one nonisotropic point, and a tangent on N contains only one nonisotropic point distinct from N, so that R_1 and R_{3n} are empty.

We show that if $n = 3$ or n is even, then $(X, \{R_0, R_1, R_2, R_3\})$ is an association scheme. Also that if n is odd, $n \geq 5$, then $(X, \{R_0, R_1, R_2, R_{3a}, R_{3n}\})$ is an association scheme. We give the parameters p^i_{jk} and the eigenmatrix P in both cases.

1 Quadric size

The number M of isotropic projective points on a nonisotropic quadric in V, where V has vector space dimension n equals

$$M = \begin{cases} \frac{q^{2m} - 1}{q - 1} & \text{if } n = 2m + 1 \\ \frac{q^m - \epsilon}{(q^m - 1 + \epsilon)} & \text{if } n = 2m. \end{cases}$$

Equivalently,

$$M = \frac{q^{n-1} - 1}{q - 1} + \epsilon q^{n/2 - 1}$$

with $\epsilon = \pm 1$ if n is even, and $\epsilon = 0$ if n is odd.

2 $n = 3$

Suppose first that $n = 3$. The parameters (p^i_{jk}) were given in [BCN], p. 375. Let us call them (a^i_{jk}) here in the special case $n = 3$.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad (a^i_{1j}) = \begin{pmatrix} 0 & \frac{1}{4}q(q - 2) & 0 & 0 \\ 1 & \frac{1}{4}(q - 2)^2 & \frac{1}{4}q(q - 2) & \frac{1}{4}q - 2 \\ 0 & \frac{1}{4}(q - 2)^2 & \frac{1}{4}q(q - 2) & \frac{1}{4}q - 1 \\ 0 & \frac{1}{4}q(q - 4) & \frac{1}{4}q^2 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 0 & \frac{1}{4}q^2 & 0 \\ 0 & \frac{1}{4}q(q - 2) & \frac{1}{4}q^2 & \frac{1}{4}q \\ 1 & \frac{1}{4}q(q - 2) & \frac{1}{4}q^2 & \frac{1}{4}q - 1 \\ 0 & \frac{1}{4}q^2 & \frac{1}{4}q^2 & 0 \end{pmatrix}, \quad (a^i_{2j}) = \begin{pmatrix} 0 & 0 & 0 & q - 2 \\ 0 & \frac{1}{4}q - 2 & \frac{1}{4}q & 0 \\ 0 & \frac{1}{4}q - 1 & \frac{1}{4}q - 1 & 0 \\ 1 & 0 & 0 & q - 3 \end{pmatrix}.$$
We see that R_3 is an equivalence relation (and the equivalence classes are the tangent lines, that is, the lines on N). We also see that R_2 has only three distinct eigenvalues, and hence defines a strongly regular graph.

Now suppose that $\dim V = 3$ but the quadratic form Q on V is degenerate in such a way that $N := V^\perp$ is a (single) isotropic point. Then the space is a cone over a hyperbolic or elliptic line. We have $v = |X| = q^2 - \epsilon q$ and the valencies are $k_0 = 1$, $k_3 = q - 1$ and $k_1 = q^2 - 2q$, $k_2 = 0$ if $\epsilon = 1$, $k_1 = 0$, $k_2 = q^2$ if $\epsilon = -1$. Call the corresponding parameters (h^i_{jk}) and (e^i_{jk}), respectively. Then

\[
(h^i_{ij}) = \begin{pmatrix} 0 & q^2 - 2q & 0 & 0 \\ 1 & q^2 - 3q & 0 & q - 1 \\ * & * & * & * \\ 0 & q^2 - 2q & 0 & 0 \end{pmatrix}, \quad (h^i_{j3}) = \begin{pmatrix} 0 & 0 & 0 & q - 1 \\ 0 & q - 1 & 0 & 0 \\ * & * & * & * \\ 1 & 0 & 0 & q - 2 \end{pmatrix},
\]

\[
(e^i_{ij}) = \begin{pmatrix} 0 & 0 & q^2 & 0 \\ * & * & * & * \\ 1 & 0 & q^2 - q & q - 1 \\ 0 & 0 & q^2 & 0 \end{pmatrix}, \quad (e^i_{j3}) = \begin{pmatrix} 0 & 0 & 0 & q - 1 \\ 0 & 0 & q - 1 & 0 \\ * & * & * & * \\ 1 & 0 & 0 & q - 2 \end{pmatrix}.
\]

(with undefined * since relation R_2 (resp. R_1) does not occur).

Finally, suppose that $\dim V = 3$ and the quadratic form Q on V is a double line (that is, B vanishes identically, Q is the square of a linear form). Now $k_0 = 1$, $k_1 = k_2 = 0$, $k_3 = q^2 - 1$. Call the corresponding parameters (z^i_{jk}). Then

\[
(z^i_{j3}) = \begin{pmatrix} 0 & 0 & q^2 - 1 \\ * & * & * \\ * & * & * \\ 1 & 0 & 0 \end{pmatrix}.
\]

3 n even

Now let n be even, say $n = 2m$, where $m \geq 2$. Let the form have type ϵ, with $\epsilon = 1$ for a hyperbolic and $\epsilon = -1$ for an elliptic quadric.

The number of points of the scheme equals $v = |X| = q^{2m-1} - \epsilon q^{m-1}$.

For the valencies k_i of the relations R_i we find

\[
k_0 = 1
\]

\[
k_1 = (q - 2)q^{m-1}(q^{m-1} + \epsilon)/2
\]

\[
k_2 = q^m(q^{m-1} - \epsilon)/2
\]

\[
k_3 = q^{2m-2} - 1
\]

If $n = 2$, $m = 1$, then only one type of line occurs (since all of V is just a line), and $P = \begin{pmatrix} 1 & q - 2 \\ 1 & -1 \end{pmatrix}$ if $\epsilon = 1$, and $P = \begin{pmatrix} 1 & q \\ 1 & -1 \end{pmatrix}$ if $\epsilon = -1$.

Let $n \geq 4, m \geq 2$. If $(x, y) \in R_h$ for a certain $h \in \{1, 2, 3\}$ then for each plane on the line $x + y$ we find the same relation, and a contribution as just computed for
the case \(n = 3 \). In the plane we did not count the nucleus, but here that nucleus contributes 1 to \(p_{33}^h \) for \(h \neq 3 \). If \(h = 3 \) then \(x \) or \(y \) might itself be the nucleus of a nondegenerate plane on \(x + y \). The details follow.

Let \(L \) be a hyperbolic line, and consider the \((q^{n-2} - 1)/(q - 1) \) planes on \(L \). A degenerate plane must be the span \(L + z \) of \(L \) and an isotropic point \(z \) in \(L^\perp \). Now \(L^\perp \) has the same type \(\varepsilon \) as \(V \) and dimension \(n - 2 \), so has \(a := (q^{2m-3} - 1)/(q - 1) + \varepsilon q^{m-2} \) isotropic points. Hence \(L \) is on a degenerate planes \(L + z \), and on \((q^{n-2} - 1)/(q - 1) - a = q^{n-3} - \varepsilon q^{m-2} \) nondegenerate planes. All parameters \(p_{jk}^1 \) follow by summing such parameters of these two types of planes: If \((x, y) \in R_1 \), then \(L = x + y \) is a hyperbolic line that contributes \(q - 3 \) to \(p_{11}^1 \), and nothing to \(p_{jk}^1 \) for \(\{j, k\} \not\subseteq \{0, 1\} \). A degenerate plane on \(L \) is a cone over a hyperbolic line, and contributes \(h_{1j}^1 \). Thus

\[
p_{11}^1 = q - 3 + (q^{n-3} - \varepsilon q^{m-2})(a_{11}^1 - q + 3) + a(h_{11}^1 - q + 3)
\]

and

\[
p_{33}^1 = (q^{n-3} - \varepsilon q^{m-2})(a_{33}^1 + 1) + ah_{33}^1
\]

and

\[
p_{jk}^1 = (q^{n-3} - \varepsilon q^{m-2})a_{jk}^1 + ah_{jk}^1
\]

for nonzero \(j, k \) not both 1 or both 3.

Let \(L \) be an elliptic line, and consider planes on \(L \). This time \(L^\perp \) has the opposite type, so has \(b := (q^{2m-3} - 1)/(q - 1) - \varepsilon q^{m-2} \) isotropic points, and \(L \) is on \((q^{n-2} - 1)/(q - 1) - b = q^{n-3} + \varepsilon q^{m-2} \) nondegenerate planes. We find

\[
p_{22}^2 = q - 1 + (q^{n-3} + \varepsilon q^{m-2})(a_{22}^2 - q + 1) + b(e_{22}^2 - q + 1)
\]

and

\[
p_{33}^2 = (q^{n-3} + \varepsilon q^{m-2})(a_{33}^2 + 1) + be_{33}^2
\]

and

\[
p_{jk}^2 = (q^{n-3} + \varepsilon q^{m-2})a_{jk}^2 + be_{jk}^2
\]

for nonzero \(j, k \) not both 2 or both 3.

Let \(L \) be a tangent, with isotropic point \(z \). Then \(L^\perp \) is an \((n-2)\)-space containing \(L \). The line \(L \) is on \(q^{n-3} \) nondegenerate planes (where \(Q \) is a conic, \(L \) a tangent to the conic, and the nucleus of the plane is a nonisotropic point of \(L \)), namely those not contained in \(z^\perp \). The line \(L \) is on \((q^{n-4} - 1)/(q - 1) \) planes contained in \(L^\perp \) (on which the symplectic form vanishes identically, and the quadratic form is a double line). The line \(L \) is on \(q^{n-4} \) degenerate planes with radical \(z \) (contained in \(z^\perp \) but not in \(L^\perp \)). The space \(z^\perp/z \) is a nondegenerate \((n-2)\)-space of the same type \(\varepsilon \) in which \(L \) is a nonisotropic point. The quadric in that space has size \((q^{n-3} - 1)/(q - 1) + \varepsilon q^{m-2} \), and through the point \(L \) there are \((q^{n-4} - 1)/(q - 1) \) tangents, and \((q^{n-4} + \varepsilon q^{m-2})/2 \) hyperbolic lines, and \((q^{n-4} - \varepsilon q^{m-2})/2 \) elliptic lines. Consequently, of the \(q^{n-4} \) degenerate planes \(\pi \) on \(L \) with radical \(z \), for \((q^{n-4} + \varepsilon q^{m-2})/2 \) the quotient \(\pi/z \) is hyperbolic, and for \((q^{n-4} - \varepsilon q^{m-2})/2 \) elliptic. Each of the \(q \) nonisotropic points of \(L \) is nucleus of \(q^{n-4} \) nondegenerate planes. For the computation of \(p_{3k}^3 \) starting with two points \(x, y \) where \(L = x + y \)
is a tangent, the q^{n-4} nondegenerate planes in which x is nucleus each contribute
\(\frac{1}{2} q(q-2) \) for $k = 1$ and $\frac{1}{2} q^2$ for $k = 2$. There are $q^{n-4}(q-2)$ such planes where
none of x, y is nucleus. Altogether, we find
\[
p_{jk}^3 = q^{n-4}(q-2) a_{jk}^3 + \frac{1}{2} (q^{n-4} + \epsilon q^{m-2}) h_{jk}^3 + \frac{1}{2} (q^{n-4} - \epsilon q^{m-2}) e_{jk}^3
\]
for $j, k \neq 0, 3$, and
\[
p_{31}^3 = \frac{1}{2} q^{n-3}(q-2),
\]
\[
p_{32}^3 = \frac{1}{2} q^{n-2},
\]
\[
p_{33}^3 = q - 2 + \frac{q^{n-4} - 1}{q-1} (z_{33}^3 - q + 2).
\]

Since we could compute all p_{jk}^i, this proves that we have an association scheme.
Let us substitute the values of $a_{jk}^i, h_{jk}^i, e_{jk}^i$ and z_{jk}^i and compute the eigenmatrix P
of the scheme. In order to save space, we abbreviate $r := q - 2$.

For $(p_{ij}^1)_{ij}$ one finds
\[
\begin{pmatrix}
0 & \frac{1}{2} q^{m-1}(q^{m-1} + \epsilon) r \\
1 & \frac{1}{2} q^{m-2}(q^{m-1} + \epsilon) r \\
0 & \frac{1}{2} q^{m-1}(q^{m-1} + \epsilon) r \\
0 & \frac{1}{2} q^{m-2} + \epsilon q^{m-3} r
\end{pmatrix}
\]
with eigenvalues $\frac{1}{2} q^{m-1}(q^{m-1} + \epsilon)(q - 2), \frac{1}{2} q^{m-2}(q + 1)(q - 2), -\epsilon q^{m-1}, 0$.

For $(p_{ij}^2)_{ij}$ one finds
\[
\begin{pmatrix}
0 & \frac{1}{2} q^{m-1}(q^{m-1} - \epsilon) \\
0 & \frac{1}{2} q^{m-1}(q^{m-1} - \epsilon) \\
1 & \frac{1}{2} q^{m-1}(q^{m-1} + \epsilon) r \\
0 & \frac{1}{2} q^{m-2} + \epsilon q^{m-3} r
\end{pmatrix}
\]
with eigenvalues $\frac{1}{2} q^{m}(q^{m-1} - \epsilon), \epsilon q^{m-1}, -\frac{1}{2} \epsilon q^{m-1}(q - 1), 0$.

For $(p_{ij}^3)_{ij}$ one finds
\[
\begin{pmatrix}
0 & \frac{1}{2} (q^{m-1} - \epsilon)(q^{m-2} + 2 \epsilon) \\
0 & \frac{1}{2} q^{m-1}(q^{m-1} - \epsilon) \\
1 & \frac{1}{2} q^{m-2}(q^{m-1} + \epsilon) r \\
0 & \frac{1}{2} q^{m-2} + \epsilon q^{m-3} r
\end{pmatrix}
\]
with eigenvalues $q^{m-2} - 1, q^{m-1} - 1, -q^{m-1} - 1, \epsilon q^{m-2} - 1$.

The P-matrix is
\[
P = \begin{pmatrix}
1 & \frac{1}{2} q^{m-1}(q^{m-1} + \epsilon)(q - 2) & \frac{1}{2} q^{m}(q^{m-1} - \epsilon) & q^{m-2} - 1 \\
1 & 2 \epsilon q^{m-2}(q + 1)(q - 2) & -\frac{1}{2} \epsilon q^{m-1}(q - 1) & \epsilon q^{m-2} - 1 \\
1 & 0 & -\epsilon q^{m-1} & \epsilon q^{m-1} - 1 \\
1 & -\epsilon q^{m-1} & 0 & \epsilon q^{m-1} - 1
\end{pmatrix}.
\]

The multiplicities (in the order of the rows of P) are 1, $q^{2}(q^{n-2} - 1)/(q^2 - 1)$,
$\frac{1}{2} q(q^{m-1} - \epsilon)(q^{m} - \epsilon)/(q + 1)$, $\frac{1}{2} (q - 2)(q^{m-1} + \epsilon)(q^{m} - \epsilon)/(q - 1)$.
4 n odd

Now let n be odd, say $n = 2m + 1$, where $m \geq 2$. Let Q be a nondegenerate quadric, and let N be its nucleus. We compute the p^j_{jk} as before, this time splitting relation R_3 (being joined by a tangent) into the two relations R_{3a} and R_{3n}, depending on whether the tangent does not or does pass through N.

The number of points of the scheme equals $v = |X| = q^{n-1} - 1$.

For the valencies k_i of the relations R_i we find

$$k_0 = 1$$
$$k_1 = \frac{1}{2} q^{n-2} (q - 2)$$
$$k_2 = \frac{1}{2} q^{n-1}$$
$$k_{3a} = q^{n-2} - q$$
$$k_{3n} = q - 2$$

The number of planes on a line L is $(q^{n-2} - 1)/(q - 1)$. If L is hyperbolic or elliptic, then a degenerate plane must be the span $L + z$ of L and an isotropic point z in L^\perp. Now L^\perp is a nondegenerate $(n - 2)$-space, and has $(q^{n-3} - 1)/(q - 1)$ isotropic points, so there are q^{n-3} nondegenerate planes, and $(q^{n-3} - 1)/(q - 1)$ degenerate planes on L. We find for $i = 1, 2$ that

$$p^i_{jk} = q^{n-3} (a^i_{jk} - c) + \frac{q^{n-3} - 1}{q - 1} (x^i_{jk} - c) + c$$

with $x = h$ for $i = 1$ and $x = e$ for $i = 2$, and $c = q - 3$ if $i = j = k = 1$, $c = q - 1$ if $i = j = k = 2$ and $c = 0$ otherwise.

If L is a tangent on N, with isotropic point z, then the q^{n-3} nondegenerate planes on L are the planes not in z^\perp. The remaining $(q^{n-3} - 1)/(q - 1)$ planes on L are contained in L^\perp, and the form induces a double line on these. Hence

$$p^i_{jk} = q^{n-3} a^i_{jk}$$

for $i = 3n$ when not $\{j, k\} \subseteq \{0, 3a, 3n\}$.

If L is a tangent not on N, with isotropic point z, then the q^{n-3} nondegenerate planes on L are the planes not in z^\perp. Each nonisotropic point of L is the nucleus of q^{n-4} of these planes. There are $(q^{n-4} - 1)/(q - 1)$ planes on L contained in L^\perp, where the form induces a double line. The remaining planes are degenerate, cones over a hyperbolic or elliptic line, $\frac{1}{2} q^{n-4}$ of each.

Relation R_{3n} is an equivalence relation with equivalence classes of size $q - 1$. If L does not pass through N, then it is on a unique plane $L + N$ on N, and the points that have relation R_{4n} with x or y live in that plane. We find $p^1_{1,3n} = \frac{1}{2} q - 2$, $p^2_{2,3n} = \frac{1}{2} q$, $p^2_{1,3n} = p^2_{2,3n} = \frac{1}{2} q - 1$.

For (p^i_{ij}) one finds

$$
\begin{pmatrix}
0 & \frac{1}{2} q^{n-2} (q - 2) & 0 & 0 & 0 \\
1 & \frac{1}{2} q^{n-3} (q - 2)^2 & \frac{1}{2} q^{n-2} (q - 2) & \frac{1}{2} (q^{n-3} - 1) (q - 2) & \frac{1}{2} q - 2 \\
0 & \frac{1}{2} q^{n-3} (q - 2)^2 & \frac{1}{2} q^{n-2} (q - 2) & \frac{1}{2} (q^{n-3} - 1) (q - 2) & \frac{1}{2} q - 1 \\
0 & \frac{1}{2} q^{n-3} (q - 2)^2 & \frac{1}{2} q^{n-2} (q - 2) & \frac{1}{2} q^{n-3} (q - 2) & 0 \\
0 & \frac{1}{2} q^{n-2} (q - 4) & \frac{1}{2} q^{n-1} & 0 & 0
\end{pmatrix}
$$
with eigenvalues $\frac{1}{2}q^{2m-1}(q - 2), \pm \frac{1}{2}q^{m-1}(q - 2), \pm \frac{1}{2}q^m$.

For (p^i_{2j}) one finds

$$
\begin{pmatrix}
0 & 0 & \frac{1}{2}q^{n-1} & 0 & 0 \\
0 & \frac{1}{2}q^{n-2}(q - 2) & \frac{1}{2}q^{n-1} & \frac{1}{2}q(q^{n-3} - 1) & \frac{1}{2}q \\
1 & \frac{1}{2}q^{n-2}(q - 2) & \frac{1}{2}q^{n-1} & \frac{1}{2}q(q^{n-3} - 1) & \frac{1}{2}q - 1 \\
0 & \frac{1}{2}q^{n-2}(q - 2) & \frac{1}{2}q^{n-1} & \frac{1}{2}q^2 & 0 \\
0 & \frac{1}{2}q^{n-1} & \frac{1}{2}q^{n-1} & 0 & 0
\end{pmatrix}
$$

with eigenvalues $\frac{1}{2}q^{2m}, \pm \frac{1}{2}q^m$ (each twice).

For $(p^i_{3a,j})$ one finds

$$
\begin{pmatrix}
0 & 0 & 0 & q(q^{n-3} - 1) & 0 \\
0 & \frac{1}{2}(q^{n-3} - 1)(q - 2) & \frac{1}{2}q(q^{n-3} - 1) & q^{n-3} - 1 & 0 \\
0 & \frac{1}{2}(q^{n-3} - 1)(q - 2) & \frac{1}{2}q(q^{n-3} - 1) & q^{n-3} - 1 & 0 \\
1 & \frac{1}{2}q^{n-3}(q - 2) & \frac{1}{2}q^{n-2} & q^{n-3} - 2q + 1 & q - 2 \\
0 & 0 & 0 & q(q^{n-3} - 1) & 0
\end{pmatrix}
$$

with eigenvalues $q(q^{2m-2} - 1), (q^{m-1} - 1)(q - 1), -(q^{m-1} + 1)(q - 1), 0$ (twice).

For $(p^i_{3n,j})$ one finds

$$
\begin{pmatrix}
0 & 0 & 0 & 0 & q - 2 \\
0 & \frac{1}{2}q - 2 & \frac{1}{2}q & 0 & 0 \\
0 & \frac{1}{2}q - 1 & \frac{1}{2}q - 1 & 0 & 0 \\
0 & 0 & 0 & q - 2 & 0 \\
1 & 0 & 0 & 0 & q - 3
\end{pmatrix}
$$

with eigenvalues $q - 2$ (three times) and -1 (twice).

Since we could compute all p^i_{jk}, this is indeed an association scheme.

The P-matrix is

$$
P = \begin{pmatrix}
1 & \frac{1}{2}q^{2m-1}(q - 2) & \frac{1}{2}q^{2m} & q(q^{2m-2} - 1) & q - 2 \\
1 & \frac{1}{2}q^{m-1}(q - 2) & \frac{1}{2}q^m & -(q^{m-1} + 1)(q - 1) & q - 2 \\
1 & -\frac{1}{2}q^{m-1}(q - 2) & -\frac{1}{2}q^m & (q^{m-1} - 1)(q - 1) & q - 2 \\
1 & \frac{1}{2}q^m & -\frac{1}{2}q^m & 0 & -1 \\
1 & -\frac{1}{2}q^m & \frac{1}{2}q^m & 0 & -1
\end{pmatrix}
$$

The multiplicities (in the order of the rows of P) are $1, \frac{1}{2}q(q^m + 1)(q^{m-1} - 1)/(q - 1), \frac{1}{2}q(q^m - 1)(q^{m-1} + 1)/(q - 1), \frac{1}{2}(q - 2)(q^{2m} - 1)/(q - 1)$ (twice).

5 Conclusion

F. Vanhove computed all p^i_{jk} and communicated both P matrices by email. This note was written by A. E. Brouwer, and confirms his results.
References
