Group Theory Assignments
Course number 2F790, TU/e, Eindhoven, November 2004
Arjeh M. Cohen

Rules
• One person per assignment.
• Let me know your preferences before November 20, 2004.
 I will then fix determine your assignment by November 22, 2004.
• The assignment should be submitted to me before December 5, 2004.
• You are allowed (and encouraged) to consult me.
• Visit the library and the internet!
• Use any CA package (especially GAP and Magma can be very useful).
• If there are no satisfactory assignments in the list below, contact me with a
 wish for another assignments, preferably with a indication of your interests.

Assignments
(1) Deal (succinctly) with the representation theory of the symmetric groups
\(S_n \) \((n \in \mathbb{N}) \). You know that conjugacy classes correspond to partitions of \(n \).
There is a way to let irreducible representations correspond to partitions
of \(n \) as well, and to compute the corresponding characters \((n = 25 \) is close
to today’s computational limit). Use this theory to determine the charac-
ter table of \(\text{Sym}_6 \). See, for instance, [M.A.A. van Leeuwen, A.M. Cohen,
and B. Lisser, \textit{LiE Manual}, manual for the software package LiE for Lie
group theoretical computations, CWI/CAN, 1992] or [G.D. James & A.
Kerber: The Representation Theory of the Symmetric Group. Encyclope-
(2) The finite group \(\text{SL}(2, \mathbb{F}_9) \) of all \(2 \times 2 \) matrices of determinant 1 with coefficients in the finite field of order 9, has order 720.
(a) Determine its character table.
(b) The group has a center of order two. With which familiar group is the
 quotient isomorphic? Give a proof of this result.
(c) In which dimension does a faithful representation occur? Can you
 construct it?
(d) If \(\alpha \) is an automorphism of \(\text{SL}(2, \mathbb{F}_9) \) and \(\rho \) a representation of this
 group, then \(\rho \circ \alpha \) is again a representation of \(\text{SL}(2, \mathbb{F}_9) \). Prove this.
(e) Apply the previous part to the automorphism that changes each entry
 of a matrix of \(\text{SL}(2, \mathbb{F}_9) \) to its third power. It induces a permutation
 of characters occurring in the character table. Indicate which permu-
tation.
(3) The finite group \(G = \text{SL}(2, \mathbb{F}_5) \) of all \(2 \times 2 \) matrices of determinant 1 with coefficients in the finite field of order 5, has order 120.
(a) Determine its character table.
(b) The group has a center of order two. With which familiar group is the
 quotient isomorphic? Give a proof of this result.
(c) Conclude from the previous items that \(G \) has a faithful irreducible
 representation of degree 2. Denote by \(\rho \) its character.
(d) For \(\chi \) an irreducible character of \(G \), write
 \[P_\chi(t) = \sum_{i=0}^{\infty} (\chi, \rho^i) t^i. \]
 This is in fact a rational expression in \(t \). Try and find this expression! (Hint:
view G as a subgroup of $SU(2)$ and consider the restrictions to G of the irreducible characters of the latter group described in the notes.)

(4) Let G be a finite group, with a permutation representation $\pi : G \to S_n$ of degree n.

(a) Prove that $(1, \pi)$ is the number of orbits of G on $X = \{1, \ldots, n\}$.

(b) Suppose that π is transitive (that is, $\pi(G)$ has only one orbits on X). Show that (π, π) is the number of orbits of G on $X \times X$ (via the diagonal action).

(c) An orbit of G on $X \times X$ is called an orbital. So, an orbital is a relation on X. Suppose E is a symmetric orbital. Prove that $\pi(G)$ is a group of automorphisms of the graph whose vertex set is X and in which $x, y \in X$ are adjacent vertices iff $(x, y) \in E$.

(d) Show that every graph (X, E) whose automorphism group is transitive on X as well as on E can be constructed as in the previous item.

(e) Give a two parameter series of examples by letting X be the collection of sets of size k from a set of size d, and $G = S_d$. The best examples are obtained by letting adjacency be ‘having intersection of size $k - 1$’. Show that, with this choice of adjacency, the orbitals are precisely the relations ‘having distance i in the graph’.

(f) Analyse the characters involved in the permutation character in the examples of the previous item (as far as you can, possibly explicitly for small d).

(5) Treat the induced representations. Let G be a group with subgroup H, and suppose that a representation $\rho : H \to \text{GL}(V)$ is given.

(a) Describe the character of the induced representation ρ^G of G.

(b) Prove that, if χ denotes the character of ρ, and χ^G is the character of ρ^G, while ψ is an arbitrary character of G, we have: $(\psi, \chi^G) = (\psi|_H, \chi)$, where $|_H$ denotes the restriction (of a function) to H.

(c) Verify that all irreducible representations of the dihedral groups are induced from linear (that is, 1-dimensional) representations.

(d) Check which irreducible representations of Alt_6 are induced from proper subgroups.

(e) Can you also determine which irreducible representations of Alt_6 occur in induced representations from proper subgroups?

(6) Consider the character table below ... that is, I claim it is a character table of a finite group. Find all groups G up to isomorphism, of which this table is a character table. All properties of the group that you can derive from the table are welcome. Record all your arguments.
Hint: a character table records the information

\[a_{ijk} = \#\{z \in \text{ConjClass}_i \mid \exists y \in \text{ConjClass}_j \exists z \in \text{ConjClass}_k \quad z = xy\}. \]

(Consult literature.) Besides, the character table shows that the group has a faithful representation of degree 4. Character \(\chi_3 \) shows that there is a normal subgroup of order 8. Determine its structure, and start your ‘reconstruction’ of the faithful 4-dimensional representation with this subgroup.